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Edmundo José Huertas Cejudo

Memoria presentada para optar al grado de doctor por el programa de
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Universidad Carlos III de Madrid

Leganés, 30 de Mayo 2011





i

“What are the base states of the world?”

Richard P. Feynman

The Feynman Lectures on Physics, Volume III, Chapter 8.

Resumen y aportaciones

Esta tesis incluye cinco caṕıtulos, y está dedicada al estudio de familias de polinomios

ortogonales de tipo estándar y no estándar. Este Primer Caṕıtulo contiene una breve

introducción histórica e información inicial acerca de estos dos tipos de polinomios orto-

gonales mencionados.

En el Caṕıtulo 2 se presentan algunos conceptos preliminares y notación acerca de las

secuencias de polinomios ortogonales estudiadas. Aqúı reunimos varios resultados básicos

que se usan en caṕıtulos posteriores.

En el Caṕıtulo 3 analizamos el comportamiento de las ráıces (o ceros) de las secuencias

de polinomios mónicos {Q̂n(x)}n≥0, ortogonales con respecto a una medida modificada con

una perturbación canónica de tipo Uvarov dµM (x) = dµ(x) +Mδ(x− c), donde dµ(x) es

una medida de Borel positiva soportada en un conjunto acotado (o no acotado) de la recta

real E = (a, b), δ(x − c) es el funcional delta de Dirac en el punto c, con c 6∈ (a, b), y M

es un número real no negativo, es decir, estudiamos polinomios ortogonales con respecto

al producto interno

〈f, g〉M =

∫

E
f(x)g(x)dµ(x) +Mf(c)g(c) (1)

definido en el espacio vectorial lineal de los polinomios con coeficientes reales P. Aplicamos

éstas técnicas al estudio de las propiedades anaĺıticas de secuencias de polinomios orto-

gonales asociadas con medidas modificadas Jacobi-Koornwinder y Laguerre-Koornwinder.

Seguidamente, cuando la medida µ es semiclásica, se proporciona una interpretación elec-

trostática de la distribución de ceros de estas familias. A continuación, extendemos la

mencionada interpretación electrostática considerando secuencias de polinomios ortogona-

les con respecto al producto interno

〈f, g〉m =

∫ +∞

0
f(x)g(x)dµα(x) +

m∑

j=1

Mjf(cj)g(cj), (2)
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donde dµα(x) = xαe−xdx es la medida de Laguerre soportada en R+, α > −1, cj < 0,

Mj > 0, y f, g son polinomios con coeficientes reales. Obsérvese que este producto interno

es una generalización de (1), considerando una cantidad numerable m de iteraciones de

la perturbación de Uvarov localizadas fuera del soporte de la medida clásica de Laguerre.

Propiedades anaĺıticas de tales secuencias de polinomios cuando E es un intervalo acotado

han sido previamente estudiadas en la literatura (ver [22], [25], [16] y las referencias ah́ı con-

tenidas). Proporcionamos también una interpretación electrostática general de sus ceros

en términos de una interacción de tipo potencial logaŕıtmico de cargas unidad sometidas a

la acción un campo externo. Esta interpretación electrostática ha sido obtenida mediante

técnicas diferentes a las utilizadas para el caso de un solo punto de masa, a partir de

los coeficientes de la ecuación diferencial holonómica que satisfacen estas familias de poli-

nomios. La mayor parte de los resultados obtenidos en éste caṕıtulo han sido publicados

en [43] , y el resto han sido sometidos para publicación (ver [44]).

En el Caṕıtulo 4 tratamos en primer lugar con secuencias de polinomios con respecto

a la mismas perturbaciones que las estudiadas en el Caṕıtulo 3, pero centrándonos en el

caso en el que el soporte es no acotado, y la medida perturbada dµ(x) es la clásica de

Laguerre, es decir, dµ(x) = xαe−xdx, a = 0, b = +∞, α > −1, M ∈ R+, y c ∈ R−.

Analizamos algunas propiedades asintóticas externas de éstas familias de polinomios or-

togonales. También presentamos la representación de estos polinomios en términos de la

medida estándar de Laguerre, aśı como su caracterización como funciones de tipo hiper-

geométrico. Igualmente, se obtienen los llamados operadores de creación y destrucción

asociados a estos polinomios. Finalmente, como en el Caṕıtulo 3, extendemos estos re-

sultados considerando las secuencias de polinomios ortogonales con respecto a (2). Aqúı

proporcionamos también la asintótica externa relativa general. Todos los resultados men-

cionados en este caṕıtulo han sido incluidos en los art́ıculos de investigación [23] y [44],

éste último actualmente en revisión.

Por último, en el Caṕıtulo 5 consideramos secuencias de polinomios ortogonales con

respecto al producto interno de Sobolev discreto

〈f, g〉S =

∫ +∞

0
f(x)g(x)dµ(x) +Mf(c)g(c) +Nf ′(c)g′(c), (3)

donde dµ es una medida de Borel positiva, c ≤ 0, y M,N ≥ 0. Observe que este producto

interno es una extensión de los considerados en los Caṕıtulos 3 y 4. Los polinomios or-

togonales con respecto a tales productos internos son llamados de tipo-Sobolev discreto.
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Seguidamente se obtiene la localización de los ceros de tales polinomios tipo-Sobolev dis-

creto, ortogonales con respecto a la medida de soporte no acotado µ. En particular, para

la medida de Laguerre dµ(x) = xαe−xdx, α > −1, obtenemos algunas propiedades de los

polinomios ortogonales tipo-Sobolev discreto. Por último, presentamos una relación entre

la matriz pentadiagonal de Jacobi H, asociada a la relación de recurrencia a cinco términos

que satisfacen los polinomios no estándar de tipo-Sobolev {sM,N
n (x)}n≥0, ortonormales con

respecto a (3), y la matriz tridiagonal de Jacobi J[2], asociada a la relación de recurrencia a

tres términos que satisfacen los polinomios ortogonales estándar 2−iterados {p[2]n (x)}n≥0.

La mayoŕıa de los resultados mencionados en este caṕıtulo aparecen publicados en [24] y

[32].

A continuación resumimos brevemente las conclusiones aportadas por la presente memo-

ria.

• Se realiza por primera vez un estudio completo del comportamiento de los zeros de

familias de polinomios ortogonales con respecto a una medidas modificadas mediante

perturbaciones canónicas de tipo Uvarov y Christoffel . El comportamiento de estos

ceros se da en términos del parámetro M , el cuál determina como es la intensidad

de la perturbación sobre la medida clásica. Hasta el momento, se hab́ıan realizado

progresos significativos en esta dirección a través de aproximaciones semiclásicas,

como en [3] y solamente tratando el comportamiento de propiedades promedio de

los ceros, usando el método de WKB.

• Se obtienen resultados asintóticos de las secuencias de polinomios ortogonales móni-

cos con respecto a la perturbación de Uvarov de la medida clásica de Laguerre, como

ejemplo canónico de perturbación fuera del soporte de una medida clásica con so-

porte no acotado. Hasta la fecha, los puntos de masa se localizaban en la frontera

(o fronteras) del soporte de la medida perturbada.

• Se proporciona un modelo electrostático de los ceros de la familia de polinomios

ortogonales con respecto a una medida de Laguerre perturbada, con una cantidad

numerable m de puntos de masa, fuera del soporte de la medida clásica de Laguerre.

Hasta el momento, el único trabajo similar consideraba un solo punto de masa en

el origen. Igualmente, describimos el comportamiento de los ceros de los polinomios

ortogonales tipo-Krall en términos de los ceros de cierto polinomio de grado 2m
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(siendo m el número de masas de Dirac que aparecen en la medida), y que son las

fuentes de un potencial logaŕıtmico de corto alcance que afecta a la localización de

los ceros de las secuencias de polinomios ortogonales Krall-Laguerre, considerados

como puntos cŕıticos de un problema de equilibio.

• Igualmente se obtienen propiedades asintóticas de secuencias de polinomios ortogo-

nales mónicos de tipo Laguerre-Sobolev, cuando los puntos de masa están situados

fuera del soporte de la medida clásica de Laguerre. Hasta la fecha, los puntos de masa

se localizaban en la frontera (o fronteras) de los soportes de las medidas perturbadas.

Los resultados originales contenidos en el presente trabajo han sido publicados en

distintas revistas de investigación internacionales, todas ellas inclúıdas en el Journal of

Citation Reportsr, como se detalla a continuación (el número entre corchetes al comienzo

señala el orden en que aparece en la bibliograf́ıa el correspondiente trabajo)

[23] H. Dueñas, E. J. Huertas, y F. Marcellán, Analytic properties of Laguerre-type or-

thogonal polynomials, Integral Transforms Spec. Funct. 22 (2011), 107-122.

[24] H. Dueñas, E. J. Huertas, y F. Marcellán, Asymptotic properties of Laguerre-Sobolev

type orthogonal polynomials, Numer. Algorithms 60 (1), (2012), 51-73.

[32] F. Marcellán, R. Xh. Zejnullahu, B. Xh. Fejzullahu, y E. J. Huertas, On orthogonal

polynomials with respect to certain discrete Sobolev inner product, Pacific J. Math.

257 (1), (2012), 167-188.

[43] E. J. Huertas, F. Marcellán y F. R. Rafaeli, Zeros of Orthogonal Polynomials Gene-

rated by Canonical Perturbations of Measures, Appl. Math. Comput. 218, (2012),

7109-7127.

[44] E. J. Huertas, F. Marcellán, y H. Pijeira, An Electrostatic Model for Zeros of La-

guerre Polynomials. Enviado a Proceedings of the American Mathematical Society,
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CHAPTER 1

Introduction

1.1 The standard theory of orthogonal polynomials

After Newton’s work, astronomy became much more precise. It was necessary to take

into account in calculating the earth’s deviation from perfect sphericity and for that, new

mathematical functions were necessary. Thus, in the classical memory by Adrien-Marie

Legendre (1752-1813) on the motion of the planets [61] (1785) the polynomials that now

bear his name were introduced, although previously, Joseph-Louis de Lagrange (1736-

1813) had already used the recurrence relation that defines them [57]. General Jacobi

polynomials, which contain as a particular case those of Legendre, appeared in 1859 in

the work [49] by Carl Gustav Jakob Jacobi (1804-1851).

In the same way, a first reference to Hermite polynomials appears in the celebrated

treatise of celestial mechanics [59] by Pierre-Simon de Laplace (1749-1827), published in 5

volumes for 26 years (1799-1825). These were also studied by the Russian mathematician

Pafnuty Lvovich Chebyshev (1821-1894) [14] before that Charles Hermite (1822-1901)

studied them in [42].

As in the previous cases, the Laguerre polynomials of parameter α = 0 had already

appeared in works ofNiels Henrik Abel (1802-1829), J.L. Lagrange and P.L. Chebyshev [14]

when Edmond Nicolas Laguerre (1834-1886), studied them in 1879 [58]. The generalization

1
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of these Laguerre polynomials was initially made by Yulian Karol Sokhotski (1842-1927)

and later on by Nikolay Yakovlevich Sonin (1849-1915) [93].

Other special classes of orthogonal polynomials (Charlier, Meixner and Pollaczek) were

studied by Carl Vilhelm Ludwig Charlier (1862-1934), Josef Meixner (1908-1994), Ervin

Feldheim (1912-1944), Félix Pollaczek (1892-1981) and Thomas Joannes Stieltjes (1856-

1894).

Thus, in the mid-nineteenth century, the families of orthogonal polynomials which

belong to the theory of special functions are known as classical orthogonal polynomials, and

they had been very well studied. It was known that they share similar properties. However

there were no comparative studies concerning their similarities that allow us to establish

a general theory to characterize all those properties depending on their orthogonality.

The motivation to study systems of orthogonal functions was started under the influ-

ence of the invention of the steam engine. The aim was to provide a mathematical frame-

work to the heat conductivity, later developed in thermodynamics, the general science

about the laws of thermal motion.

The demands of a mathematical framework in relation to this issue, were highlighted in

the contest organized in 1811 by the Academy of Sciences in Paris: giving a mathematical

theory of the laws of heat distribution and compare the results of this theory with experi-

mental data. The winner turned out to be the Parisian academician Jean Baptiste Joseph

Fourier (1768-1830), who in 1807 had addressed the issue by using the trigonometric sys-

tem of orthogonal functions. In his report of 1811, Fourier developed a powerful method

for solving partial differential equations based on the concept of orthogonality. After 11

years, he published the Analytical Theory of Heat, which exerted an enormous influence

on the development of mathematics in general. As noted earlier, the first classes of or-

thogonal polynomials were studied under the refinement of the mathematical apparatus

of celestial mechanics.

Later, in the second half of the nineteenth century, again under the influence of the

steam engine, were made the first general studies on the subject. Around 1852, P.L.

Chebyshev became interested in the study of various articulated mechanisms which trans-

form, in rectilinear movement, the circular motion of the pistons of a steam engine. In

many of these mechanisms, the point of contact between the piston rod and the rotating

parts is under several forces which modify their rectilinear motion. This causes deviations

which have a negative influence on the machine working and leads to the mathematical
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problem of determining the motion of a certain point M as a function with a minimal

deviation from zero inside a given range. This issue gave rise Chebyshev’s work on deter-

mining polynomials with minimum deviation from zero and the approximation of functions

by polynomials, and led him to consider the study of special classes of orthogonal poly-

nomials from a general point of view, abstracting from the peculiarities related to their

orthogonality.

About the same time, T. J. Stieltjes, while studying the importance of real numbers,

introduced the first notions of approximation of functions by continued fractions and per-

formed with them several studies about families of orthogonal polynomials, which lead

him to be considered the co-founder of this theory. Together with P.L. Chebyshev, his

student Andréi Andréyevich Márkov (1856-1922) and T.J. Stieltjes, the theory of ortho-

gonal polynomials was born as a branch of mathematics, but with a very close link with

the theory of approximation of functions.

A second stage in the development of this theory has to do with the rise of the theory

of approximation of functions and numerical mathematics, which was imposed by the

development of productive forces and world wars of the first half of the 20th century. The

most important figures here were the Hungarian mathematicians Gábor Szegő (1895-1985)

([99]) and Géza Freud (1922-1979) ([33]), the Russians Sergei Natanovich Bernstein (1880-

1968) and Yakov Lazarevich Geronimus (1898-1984) ([37]), toghether with their students.

Special mention deserves the G. Szegő’s monograph [99], which is considered the bible of

orthogonal polynomials. There, he condense all the algebraic, differential and asymptotic

results of this theory. Since the mid 70’s, with the develop of modern computers and

algorithm theory, the improvement in function approximation addressed to the realm of

quality, i.e. how much approximant simulates the properties of the approximate function?

Can be extracted new information from the approximants?

The answer to the above questions requires a deep knowledge on asymptotic (limit)

behavior of orthogonal polynomials. This led to the third stage of development of the

standard theory, mainly marked by the asymptotic studies, which extends to the present

days. This knowledge has increased considerably the field of extra-mathematical appli-

cations, so for example these results are used in signal transmission, data encoding and

molecular biology among others.

At this stage of development, it is possible to distinguish at first between the work of

rational approximation of Andrei Aleksandrovich Gonchar (1931) together with his stu-
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dents in the mid-seventies (which show the need for refinement of the theory of orthogonal

polynomials) and the appearance of texts such as [94] in 1992, where are systematized the

main results obtained up to date. Nowadays, the location of zeros, recurrence formulas

and analytical properties are the focus of interest. Taking into account the mathematical

advances in recent decades, new techniques based on the theory of logarithmic poten-

tial, geometric theory of functions of complex variables, functional analysis and operator

theory are developped. At this time, several new different families of orthogonal poly-

nomials appear, namely, multi-orthogonal polynomials, orthogonal polynomials in several

variables, matrix orthogonal polynomials and orthogonal polynomials in Sobolev spaces

among others.

In the modern mathematical analysis of abstract spaces are highlighted those linear

spaces with metric structure. A particular importance have the spaces with an inner

product. Among the basic concepts involved on them are inner products, bases, complete

families, best approximation, and so on. They are intrinsically related to the concept of

orthogonality.

One of the most interesting structures in mathematics and physics is the space L2(µ),

formed by square integrable functions with respect to a measure µ supported on a subset

of the complex plane. In what follows, we assume by measure, a non-negative, finite

Borel measure with support E (bounded or unbounded) on the real line R. L2(µ) has

Hilbert-space structure, with the inner product and the norm given by, respectively, by

〈f, g〉µ =
∫
E f(x)g(x)dµ(x)

‖f‖µ =
√

〈f, f〉





f, g ∈ L2(µ) (1.1)

Two functions f, g ∈ L2(µ) are said to be orthogonal with respect to the measure µ

(or with respect to the inner product 〈f, g〉µ) if 〈f, g〉µ = 0. Complete sets of orthogonal

functions, which span linear spaces, are dense in all L2(µ) and then they allow to obtain

approximate representations of the elements (functions) of such space.

We have many different possibilities to choose systems of orthogonal functions from

L2(µ). Among the most important, are those formed by algebraic and trigonometric

polynomials. The advantages of working with polynomials are many. Namely: they provide

ease of numerical computation, they are dense in the space of continuous functions on

bounded support with uniform norm, and they constitute Chebyshev systems, so they are



1.1. THE STANDARD THEORY OF ORTHOGONAL POLYNOMIALS 5

very good interpolants. Additionally algebraic polynomials have the advantage that, if

changing the scale of the variable, then a change in the polynomial coefficients holds but

not their shape, and their ratios are the more general functions that can be evaluated

by a computer (except possibly those other functions involving logical operations or the

magnitude of numbers, respectively). Throughout this dissertation, a polynomial of degree

n ≥ 0 (in the sequel, degP denotes the degree of the polynomial P ) will mean a function

Pn(x) := knx
n + · · ·+ k1x+ k0 ∈ P

with real coefficients kn, . . . , k1, k0 and kn 6= 0, where P will denote the linear space of all

polynomials in one real variable and real coefficients. The real number kn will be said to

be the leading coefficient of Pn(x). If kn = 1 we say that it is a monic polynomial, and

we write

P̂n(x) := xn + lower degree terms.

According to (1.1), we define the inner product 〈·, ·〉µ : P× P → R associated with µ

〈P,Q〉µ :=

∫

E
P (x)Q(x)dµ(x), for every P, Q ∈ P, (1.2)

and the corresponding norm

‖P‖µ =

(∫

E
|P (x)|2 dµ(x)

)1/2

, for every P ∈ P.

A sequence (system or family) of polynomials {Pn(x)}n≥0, n = 0, 1, 2, . . . is said to be

orthogonal with respect to the positive Borel measure µ on the interval E ⊆ R (which can

be bounded or unbounded) if, for every n

〈Pn, Pm〉µ
{

6= 0, if n = m

= 0, if n 6= m
, (1.3)

or, analogously ∫

E
Pn(x)x

mdµ(x) =

{
6= 0, if m = n

= 0, if m < n.

Such a sequence {Pn(x)}n≥0 is said to be an orthogonal polynomial sequence (OPS in

short). If the polynomials of the sequence are monic, i.e. {P̂n(x)}n≥0, then it is customary

to say that they constitute a monic OPS, or MOPS in short. Sometimes we will use a
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notation relative to the norm of the polynomials. If for every n we have ‖Pn‖µ = 1, then

we say that the system of polynomials is orthonormal, i.e. the norm of Pn(x) is equal

to one. In this case we write {pn(x)}n≥0 for an orthonormal polynomial sequence, and

these polynomials will be denoted with lower-case letters. Obviously, for an arbitrary

orthonormal polynomial of deg n

pn(x) =
Pn(x)

‖Pn‖µ

and, given an orthonormal polynomial sequence, it holds

〈pn(x), pm(x)〉µ = δnm, n,m = 0, 1, 2, . . . .

The most classical example of a system of orthogonal polynomials are the Chebyshev

polynomials Tn(x) which are orthogonal with respect to the measure dµ(x) = dx√
1−x2

supported on [−1, 1]. More precisely

∫ 1

−1

Tn(x)Tm(x)√
1− x2

dx =





π, n = m = 0,

π/2, n = m > 0,

0, n 6= m.

Such polynomials are expressed by

Tn(x) =

[n2 ]∑

k=0

(
n

2k

)
xn−2k(x2 − 1)k, n = 0, 1, · · · , (1.4)

where
[
n
2

]
denotes the integer part of n

2 . For x ∈ [−1, 1] one has that

Tn(x) = cos(n arccos(x)).

1.2 On Sobolev orthogonality

From the theory of boundary value problems of partial differential equations, it arises the

interest in inner products involving not only functions, but also their derivatives up to

a given order. These inner products are called Sobolev inner products. The definition of

Sobolev spaces where these products make sense is a delicate matter, so in what follows,

we restrict the definition of Sobolev product on the space of polynomials, which allow
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derivatives of any order and are integrable with respect to any finite Borel measure with

finite moments. Let {µk}dk=0, d ∈ Z+ be a system of d + 1 positive Borel measures with

support Ek ⊂ R, k = 0, 1, · · · , d, respectively. Assume that at least the support µ0

contains an infinite number of points and, to avoid trivial cases, which µd contains an

infinite number of points and which is not negligible. We call

〈P,Q〉S :=
d∑

k=0

∫
P (k)(x)Q(k)(x)dµk(x) =

d∑

k=0

〈P (k), Q(k)〉µk
, P,Q ∈ P, (1.5)

the Sobolev inner product (on the space of polynomials) associated with the vector of

measures {µk}dk=0.

The superscripts in parentheses denote the order of derivation. The associated standard

norm (1.5) is called the Sobolev norm and is given by the expression

‖P‖S = (〈P, P 〉S)
1
2 =

(
d∑

k=0

〈P (k), P (k)〉µk

) 1
2

=

(
d∑

k=0

‖P (k)‖2µk

) 1
2

. (1.6)

It is clear that if d = 0 both (1.5) and (1.6) admit extension to the space L2(µ0).

A system {Qn(x)}n≥0 of polynomials orthogonal with respect to the inner product (1.5)

is said to be a Sobolev OPS. The study of Sobolev orthogonal polynomials is relatively

new (about algebraic properties see [68] and [84], for analytic properties [83]). The work

[62] of 1947 is the first publication where norms like (1.6) are studied in the framework of

approximation theory. They appear in connection with least squares problems. However,

the Sobolev polynomials were first time considered less than forty years ago in [2] and the

largest research has been during last the and present decade (see [77]).

In [2] is noted that, although the study of Sobolev orthogonal polynomials may seem

similar to the standard case, this is not true at all. Immediately, one finds substantial

differences that require other approaches to their study. In the case of orthogonality in

the usual sense, the location of the zeros of the family of orthogonal polynomials in the

convex hull of the support of the measure of orthogonality is an immediate result of the

definition of orthogonality. For a Sobolev product as simple as the case considered by

Althamer in [2]

〈f, g〉S :=

∫ 1

−1
f(x)g(x)dx+ 10

∫ 0

−1
f ′(x)g′(x)dx+

∫ 1

0
f ′(x)g′(x)dx, (1.7)
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one finds that zeros can be outside the convex hull of the support of the measures involved,

and they may even be complex. Moreover, no one knows even if the set of zeros of poly-

nomials orthogonal with respect to an arbitrary Sobolev inner product, remains bounded

or unbounded in the complex plane. The more general result in this way is the sufficient

condition proved in [64] using techniques of bounded operators. So far, only results about

Sobolev inner products involving classical weights (or close to them) had been obtained.

One of the main tools in the study of monic orthogonal polynomials (1.3) is the three

term recurrence relation which they satisfy

xPn(x) = Pn+1(x) + βnPn(x) + γnPn−1(x), n ≥ 1, (1.8)

where for every n ∈ N, γn is real and positive, and βn is real. It is very well known that

(1.8) is a consequence of the symmetry of the usual inner product with respect to x. That

is, for every pair of polynomials P and Q,

〈xP,Q〉µ = 〈P, xQ〉µ

and they are called standard inner products.

In contrast, this is not true at all for an arbitrary Sobolev inner product, that is, they

verify

〈xP,Q〉S 6= 〈P, xQ〉S ,

for all arbitrary polynomials P and Q, and therefore they are an example of non-standard

inner products. Because this fact, they lose the nice properties of polynomials orthogonal

with respect to a standard inner product. For example, their zeros can be complex or,

if real, they can be located outside of the support of the modified measure and they can

satisfy recurrence relations with more than three terms. In [64] were the first time when the

recurrence relation for Sobolev inner products, and its connection with the corresponding

moment matrix and the location of zeros were obtained.

We will split the Sobolev inner products into two different categories. A product like

(1.5) is called:

1. Continuous Sobolev inner product, when the support of the Borel measures involved

in the Sobolev inner product are formed by an infinite number of points. They were

already introduced in (1.5).
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2. Sobolev-type or discrete Sobolev-type inner product, when the support of the measures

{µk}dk=1 has a finite number of points. The Sobolev-type term is often used, because

sometimes we make considerations that go beyond the framework of inner products.

A general expression for them is

〈f, g〉S =

∫
fgdµ0 +

d∑

k=0

FT
k MkGk, d ∈ Z+, (1.9)

where

Fk =




f(ck)

f (1)(ck)
...

f (nk)(ck)



, Gk =




g(ck)

g(1)(ck)
...

g(mk)(ck)



,

Mk =




a1,1 a1,2 · · · a1,mk

a2,1 a2,2 · · · a2,mk

...
...

. . .
...

ank,1 ank,2 · · · ank,mk



,

with µ0 being a finite positive Borel measure, and for k = 0, 1, · · · , d , d ∈ Z+,

ck ∈ R, ai,j ∈ R+ and nk,mk > 0. FT denotes the transpose of the vector F. This

kind of families have been considered by several authors (see, for instance, [1], [67],

[76], [79] and the references therein), and they are known in the literature as Sobolev-

type or discrete Sobolev orthogonal polynomials. Analytic properties of these families

of orthogonal polynomials were studied in [76], and some properties concerning the

behavior of their zeros were obtained in [73]. A substantial part of this memoir is

devoted to the study of OPS with respect to inner products which are particular

cases of (1.9).

1.3 Krall-type and Sobolev-type OP: State of the art

Next, we give a brief overview of the state of the art on the two types of polynomials

discussed in this work, namely the Krall-type and Sobolev-type orthogonal polynomials.
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Krall-type orthogonal polynomials

In the seminal papers by H. L. Krall [56] and A. M. Krall [55] devoted to the spectral analy-

sis of fourth order linear differential operators with polynomial coefficients, for the first time

appear some extensions of the classical measures of Laguerre, Legendre and Jacobi. These

new (non-classical) orthogonal polynomials were called Laguerre-type, Legendre-type and

Jacobi-type orthogonal polynomials. They are orthogonal with respect to modified classi-

cal measures by adding one or two Dirac masses, so they are standard inner products.

Nowadays, this kind of polynomials are called Krall-type orthogonal polynomials.

T. H. Koornwinder [54] analyzed a general situation for Jacobi weights when two

masses are added at the end points of the interval [−1, 1]. Later on, in [40], Krall-Hermite

and Krall-Bessel polynomials are studied in the framework of Darboux transformations.

In [52] analytic properties of orthogonal polynomials with respect to a perturbation

of the Laguerre weight when a mass is added at x = 0 were considered. Indeed, up to

date this case, or when the Dirac masses are added in the boundary of the support of the

modified measure, have been extensively studied in the literature, mainly in connection

with spectral problems for higher order linear differential operators. In this direction, in

[51] and [50] the authors obtain infinite order differential operators such that the Krall-

Laguerre and Krall-Jacobi are their respective eigenfunctions. In particular, for some

choices of the parameters in Laguerre and Jacobi weights they prove that the differential

operator has a finite order.

In recent years, there has been an increasing interest in the so called spectral transfor-

mations of measures, and the Krall-type orthogonal polynomials have been analyzed from

this particular point of view by several authors. Many studies have been done concerning

the distribution of their zeros in terms of the mass of the Dirac delta, as well as their

interlacing properties, which were analyzed, e.g. in [18]. Moreover, the monotonicity of

their zeros in terms of the mass of the perturbation and their asymptotic behavior have

been established in some recent works, when the support of the modified measure is either

bounded or an unbounded subset of R. (see [18], [19]).

The application of Stieltjes’ ideas (see [39] and [101]) to obtain the electrostatic inter-

pretation of the zeros of the Krall-type polynomials as equilibrium points with respect to

a logarithmic potential (under the action of an external field) has attracted the attention

of the researchers. Pioneer works in this direction are [34], [35], [25], and [26]. The holo-

nomic differential equation that these polynomials satisfy is closely connected with the
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interpretation of their behavior in terms of a problem of electrostatic equilibrium (see [38],

[39], [45], [46] and [47]). In [75], the holonomic equation that these OPS satisfy for such

modified measures (with the mass point located in the negative real semi-axis) is deduced

for the very first time.

It is worth noting that, when the mass points are located outside the support of the

measure, the study of the analytic properties of the Krall-type orthogonal polynomials has

not attracted the interest of researchers, up to in the general framework of semiclassical

functionals [72]. Indeed, one the main goals of this thesis is to consider the perturbations

of the classical measures outside the support of the modified measure. Recent works in

this direction are [31], [23], and [43].

Sobolev-type orthogonal polynomials

Concerning the Sobolev-type orthogonal polynomials, as in the Krall-type case, very little

is done when the Sobolev-type modification is inside or outside of the support of the

modified measure. Nontheless, the case when the Sobolev-type modification is located at

the boundary of the support of the modified measure has been studied extensively (see for

instance [18], [19], [27], and [28]). For example, when the support of the modified measure

is the interval [0,+∞) and the perturbation is at x = 0,Meijer [85] analyzed some analytic

properties of the zeros of these Sobolev-type families. Some results of [85] are direct

generalizations of the results of [53], where the weight function is the Laguerre classical

weight. In [53], the authors established different properties of the discrete Laguerre-

Sobolev polynomials such as their representation as a hypergeometric series, an holonomic

second order linear differential equation associated with them, properties of the zeros as

well as a higher order recurrence relation that such polynomials satisfy. Notice that the

asymptotic properties of these discrete Laguerre-Sobolev polynomials have been studied

in [4] and [71], while the analysis of convergence of the Fourier expansions in terms of such

polynomials was done in [30].

1.4 Outline of this thesis

The thesis includes five chapters and it is focused on the so called standard and non-

standard families of orthogonal polynomials. This first Chapter contains a brief historical

introduction and some background information.
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Chapter 2 presents some preliminary concepts and notations about orthogonal poly-

nomial sequences. There we summarize the results that will be useful in later sections.

In Chapter 3 we analyze the behavior of the zeros of the sequence of monic polynomials

{Q̂n(x)}n≥0 orthogonal with respect to a Uvarov-perturbed measure dµM (x) = dµ(x) +

Mδ(x−c), where dµ(x) is a positive Borel measure supported in a finite or infinite interval

of the real line E = (a, b), δ(x− c) is the Dirac delta functional at c, with c 6∈ (a, b), and

M is a nonnegative real number. i.e., we study polynomials orthogonal with respect to

the inner product defined in the linear space of polynomials with real coefficients P by

〈f, g〉M =

∫

E
f(x)g(x)dµ(x) +Mf(c)g(c). (1.10)

We apply these techniques to the study of analytic properties of orthogonal poly-

nomial sequences associated with the Jacobi and Laguerre-Koornwinder perturbed mea-

sures. Next, when the measure µ is semiclassical, an electrostatic interpretation of their

zero distribution is given. Finally, we extend the previous electrostatic interpretation by

considering the sequences of polynomials orthogonal with respect to the inner product

〈f, g〉m =

∫ +∞

0
f(x)g(x)dµα(x) +

m∑

j=1

Mjf(cj)g(cj), (1.11)

where dµα(x) = xαe−xdx is the Laguerre measure supported on R+, α > −1, cj < 0,

Mj > 0, and f, g are polynomials with real coefficients. Notice that this inner product

is a generalization of (1.10), by considering m iterations of Uvarov perturbations outside

the support of the Laguerre measure. Notice that analytic properties of such polynomial

sequences when E is a bounded interval have been studied in the literature (see [22], [25]

and the references given therein). We give a general electrostatic interpretation of their

zeros in terms of a logarithmic potential interaction of unit charges under an external

field. This electrostatic interpretation has been reached by different techniques as those

used for just one mass point, from the coefficients of the holonomic equation that these

polynomials satisfy. Most of the results obtained in this chapter have been published in

[43] , and the other ones have been submitted for publication (see [44]).

In Chapter 4 we first deal with sequences of polynomials orthogonal with respect

to the same perturbation as in Chapter 3, but we focus our attention when the sup-

port of the measure is unbounded, and the measure dµ(x) is the Laguerre measure, i.e.

dµ(x) = xαe−xdx, a = 0, b = +∞, α > −1, M ∈ R+, and c ∈ R−. We analyze some outer
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asymptotic properties of such orthogonal polynomials. We also discuss the representation

of these polynomials in terms of the standard Laguerre polynomials as well as their char-

acterization as hypergeometric functions. The lowering and raising operators associated

with these polynomials are obtained as well. Finally, as in Chapter 3, we extend these

results considering the sequences of polynomials orthogonal with respect to (1.11). Here

we provide the general outer relative asymptotics. All results mentioned in this chapter

yield the paper [23] and the contribution [44], which has been submitted for publication.

Finally, in Chapter 5 we deal with sequences of polynomials orthogonal with respect

to the discrete Sobolev inner product

〈f, g〉S =

∫ +∞

0
f(x)g(x)dµ(x) +Mf(c)g(c) +Nf ′(c)g′(c), (1.12)

where dµ is a positive Borel measure, c ≤ 0, and M,N ≥ 0. Notice that this inner

product is an extension of the inner product studied in Chapters 3 and 4. Polynomials

orthogonal with respect to such an inner product are said to be of discrete Sobolev-type.

The location of the zeros of such discrete Sobolev-type orthogonal polynomials is given in

terms of the zeros of standard polynomials orthogonal with respect to the measure µ with

unbounded support. In particular for the Laguerre measure dµ(x) = xαe−xdx, α > −1,

we obtain some asymptotics properties for discrete Laguerre Sobolev-type orthogonal po-

lynomials. Finally, we obtain a relation between the pentadiagonal Jacobi matrix H,

associated with the five term recurrence relation satisfied by the non-standard sequence of

Sobolev-type polynomials {sM,N
n (x)}n≥0, orthonormal with respect to (3), and the tridi-

agonal Jacobi matrix J[2], associated with the three term recurrence relation satisfied by

the standard 2−iterated sequence of orthonormal polynomials {p[2]n (x)}n≥0. The results

mentioned in this chapter appear in [24] and [32].
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CHAPTER 2

Orthogonal Polynomials on the Real Line

2.1 Basic facts on OPS

In this chapter we summarize some definitions and basic concepts to be used in the sequel.

Let assume that µ is a bounded, and non-decreasing function with an infinite set of

points of increase, such that all the integrals

mn =

∫

E
xndµ(x), E ⊆ R,

exist for n = 0, 1, 2, . . .. mn is said to be the moment of order n of the function µ(x). A

point x0 is said to be of increase of µ(x) if in every neighborhood (x0 − h, x0 + h) of x0

the inequality µ(x0 + h)− µ(x0 − h) > 0 holds.

We recall that the mass distribution function (also distribution function or, in short,

m-distribution) of a positive Borel measure µ is a non-decreasing, right continuous and

non-negative function defined by

Fµ(x) :=

∫ x

−∞
dµ(t) = µ((−∞, x]).

Conversely, any function satisfying these properties is a distribution function for a measure

15
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µ and ∫

R

f(x)dFµ(x) =

∫

R

f(x)dµ(x).

A finite and positive Borel measure µ is said to be absolutely continuous with respect to

the Lebesgue measure if there exists a non-negative function ω(x) such that

dµ(x) = ω(x)dx.

The function ω(x) is the density function of the mass distribution Fµ(x) (also called

the weight function) and then sometimes one speaks of orthogonality of a sequence of

polynomials with respect to a weight function ω(x).

From the moments, there exists an explicit expression of the MOPS {P̂n(x)}n≥0. In-

deed,

P̂0(x) = 1,

P̂n(x) =
1

∆n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 m2 ... mn

m1 m2 m3 ... mn+1

m2 m3 m4 ... mn+2

. . . ... .

mn−1 mn mn+1 ... m2n−1

1 x x2 ... xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1, (2.1)

where

∆n−1 =

∣∣∣∣∣∣∣∣∣∣∣∣

m0 m1 m2 ... mn−1

m1 m2 m3 ... mn

m2 m3 m4 ... mn+1

. . . ... .

mn−1 mn mn+1 ... m2n−2

∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 1,

are the so called Gram determinants. Notice that these moment matrices have a Hankel

structure.

2.1.1 The moment functional and orthogonality

Let {mn}n≥0 be a sequence of real numbers and L a linear functional defined on the linear

space P, such that

〈L, xn〉 = mn, n ∈ N.
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L is said to be a moment functional associated with {mn}n≥0. If φ(x), P (x) ∈ P, and D

is the usual distributional derivative of L, then we introduce the linear functionals

〈φ(x)L, P (x)〉 = 〈L, φ(x)P (x)〉 ,
〈DkL, P (x)〉 = (−1)k〈L, P (k)(x)〉, k ≥ 0.

Instead of talking about a sequence of polynomials orthogonal with respect to a m-

distribution function, (or with respect to a measure µ), in a more general framework one

can speak about sequences of orthogonal polynomials associated with a moment functional.

Given a moment functional L, a sequence of polynomials {Pn(x)}n≥0 is said to be an OPS

with respect to L if:

1. The degree of Pn(x) is n.

2. 〈L, Pn(x)Pm(x)〉 = 0, n < m.

3. 〈L, P 2
n(x)〉 6= 0, n = 0, 1, 2, . . ..

The following theorem, whose proof can be found in [15, Th. 3.1], gives necessary and

sufficient conditions for the existence of a MOPS {P̂n(x)}n≥0 orthogonal with respect to

a moment functional L associated with {mn}n≥0.

Theorem 2.1 Let L be the moment functional associated with {mn}n≥0. There exists a

MOPS {P̂n(x)}n≥0 associated with L if and only if every leading principal submatrix of

the Hankel matrix [mi+j ]i,j∈N is nonsingular.

In this case, L is said to be a regular or quasi-definite moment functional ([15]). If

every leading principal submatrix of the Hankel matrix has positive determinant, then L

is said to be a positive definite moment functional. Given a polynomial P (x) ∈ P and a

positive definite moment functional L then, from the Riesz representation theorem, L has

the following integral representation

〈L, P (x)〉 =
∫

E
P (x)dµ,

where µ is a nontrivial positive Borel measure supported on an infinite subset E of the

real line.
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A remarkable property of any sequence of polynomials {P̂n(x)}n≥0, orthogonal with

respect to a regular moment functional L is that any three consecutive polynomials of

the sequence are connected by a simple recurrence relation, known as the Three Term

Recurrence Relation (TTRR in short). Next we show this TTRR and its converse, the

Favard’s Theorem (see [15])

Theorem 2.2 (Three Term Recurrence Relation) Let L be a quasi-definite moment

functional and let {P̂n(x)}n≥0 be the corresponding MOPS. Then, there exist sequences of

real numbers {βn}n≥1 and {γn}n≥1, with γn 6= 0 for every n ∈ N, such that

xP̂n(x) = P̂n+1(x) + βnP̂n(x) + γnP̂n−1(x), n = 1, 2, . . . (2.2)

with P̂0(x) = 1, P̂1(x) = x− β0.

Theorem 2.3 (Favard’s Theorem) Let {βn}n≥1 and {γn}n≥1 be sequences of real num-

bers, with γn 6= 0 and {P̂n(x)}n≥0 a sequence of monic polynomials such that

xP̂n(x) = P̂n+1(x) + βnP̂n(x) + γnP̂n−1(x), n = 1, 2, . . .

where P̂0(x) = 1, P̂1(x) = x− β0 Then, there exists a unique moment functional L, such

that 〈L, 1〉 = 1 and 〈L, P̂n(x)P̂m(x)〉 = 0 for n 6= m, n, m ∈ N. Under these conditions,

L is quasi-definite and {P̂n(x)}n≥0 is the corresponding sequence of monic orthogonal

polynomials. Moreover, L is positive definite if and only if βn is real and γn > 0 for every

n ≥ 1.

Concerning the zeros of these MOPS, they satisfy (see details in [15] and [99])

Theorem 2.4 Let L be a positive definite moment functional supported on an infinite set

E ⊆ R and let {P̂n(x)}n≥0 be the corresponding MOPS. Then, for n ≥ 2, the zeros of

P̂n(x) are simple, real, interlace with the zeros of P̂n−1(x) and they lie in the interior of

the convex hull of E.

2.1.2 Kernels and the Christoffel-Darboux summation formula

Given a MOPS with respect to the linear functional L, we define the n-th reproducing

kernel as

Kn(x, y) =

n∑

k=0

P̂k(x)P̂k(y)

〈L, P̂ 2
k 〉

. (2.3)
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Theorem 2.5 (Christoffel-Darboux formula) Let {P̂n(x)}n≥0 be the sequence of po-

lynomials orthogonal with respect to the quasi-definite moment functional L. Then for

every n ∈ N

Kn(x, y) =
n∑

k=0

P̂k(x)P̂k(y)

〈L, P̂ 2
k 〉

=
P̂n+1(x)P̂n(y)− P̂n(x)P̂n+1(y)

〈L, P̂ 2
n〉(x− y)

. (2.4)

The confluent formula reads as

Kn(x, x) =
n∑

k=0

(P̂k(x))
2

〈L, P̂ 2
k 〉

=
1

〈L, P̂ 2
n〉

(
P̂ ′
n+1(x)P̂n(x)− P̂ ′

n(x)P̂n+1(x)
)
. (2.5)

Concerning the partial derivatives of (2.3) we will use the following notation

∂j+k(Kn(x, y))

∂xj∂yk
= K(j,k)

n (x, y). (2.6)

Let {P̂n(x)}n≥0 be a MOPS. From the Christoffel-Darboux formula we have

Kn−1(x, y) =
1

〈L, P̂ 2
n−1〉

P̂n(x)P̂n−1(y)− P̂n−1(x)P̂n(y)

(x− y)
.

Next, computing the j-th derivative with respect to y we obtain (see [28])

K
(0,j)
n−1 (x, y) =

1

〈L, P̂ 2
n−1〉

(
P̂n(x)

∂j

∂yj

(
P̂n−1(y)

x− y

)
− P̂n−1(x)

∂j

∂yj

(
P̂n(y)

x− y

))
. (2.7)

Using the Leibnitz’s rule

∂j

∂yj

(
P̂n(y)

x− y

)
=

j∑

k=0

j!

k!

P̂
(k)
n (y)

(x− y)j−k+1
,

and replacing in (2.7) we obtain

K
(0,j)
n−1 (x, y) =

1

〈L, P̂ 2
n−1〉

(
P̂n(x)

j∑

k=0

j!

k!

P̂
(k)
n−1(y)

(x− y)j−k+1
− P̂n−1(x)

j∑

k=0

j!

k!

P̂
(k)
n (y)

(x− y)j−k+1

)

=
j!

〈L, P̂ 2
n−1〉(x− y)j+1

×
(
P̂n(x)

j∑

k=0

1

k!
P̂

(k)
n−1(y)(x− y)k − P̂n−1(x)

j∑

k=0

1

k!
P̂ (k)
n (y)(x− y)k

)
.
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Thus,

K
(0,j)
n−1 (x, c) =

j!

〈L, P̂ 2
n−1〉(x− c)j+1

(
P̂n(x)Qj(x, c; P̂n−1)− P̂n−1(x)Qj(x, c; P̂n)

)
, (2.8)

where Qj(x, c; P̂n−1) and Qj(x, c; P̂n) denote the Taylor polynomials of degree j, around

the point x = c, of the polynomials P̂n−1(x) and P̂n(x), respectively.

Next, using the Taylor expansion of P̂n(x) and P̂n−1(x) in (2.8), we can compute

K
(0,j)
n−1 (c, c). Indeed,

K
(0,j)
n−1 (x, c) =

j!

〈L, P̂ 2
n−1〉(x− c)j+1

×

[(
P̂n(c) + P̂ ′

n(c)(x− c) +
P̂ ′′
n (c)

2!
(x− c)2 + · · ·+ P̂

(n)
n (c)

n!
(x− c)n

)

×
(
P̂n−1(c) + P̂ ′

n−1(c)(x− c) +
P̂ ′′
n−1(c)

2!
(x− c)2 + · · ·+

P̂
(j)
n−1(c)

j!
(x− c)j

)
−

(
P̂n−1(c) + P̂ ′

n−1(c)(x− c) +
P̂ ′′
n−1(c)

2!
(x− c)2 + · · ·+

P̂
(n−1)
n−1 (c)

(n− 1)!
(x− c)n−1

)

×
(
P̂n(c) + P̂ ′

n(c)(x− c) +
P̂ ′′
n (c)

2!
(x− c)2 + · · ·+ P̂

(j)
n (c)

j!
(x− c)j

)]
. (2.9)

Taking into account the coefficient of (x − c)j+1 in the right hand side of (2.9), an easy

computation shows that, for x = c,

K
(0,j)
n−1 (c, c) =

1

(j + 1)〈L, P̂ 2
n−1〉

(P̂n−1(c)P̂
(j+1)
n (c)− P̂n(c)P̂

(j+1)
n−1 (c)).

To find K
(j,j)
n−1 (c, c), we need to consider the coefficients of (x − c)2j+1 in the expression

inside the square bracket in (2.9), i.e.
[
P̂n−1(c)

0!

P̂
(2j+1)
n (c)

(2j + 1)!
+
P̂ ′
n−1(c)

1!

P̂
(2j)
n (c)

(2j)!
+ · · ·+

P̂
(j)
n−1(c)

j!

P̂
(j+1)
n (c)

(j + 1)!

]
−

[
P̂n(c)

0!

P̂
(2j+1)
n−1 (c)

(2j + 1)!
+
P̂ ′
n(c)

1!

P̂
(2j)
n−1(c)

(2j)!
+ · · ·+ P̂

(j)
n (c)

j!

P̂
(j+1)
n−1 (c)

(j + 1)!

]

=
1

(2j + 1)!

[(
P̂n−1(c)P̂

(2j+1)
n (c) + P̂ ′

n−1(c)P̂
(2j)
n (c)

(
2j + 1

1

)
+ · · ·
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+

(
2j + 1

j

)
P̂

(j)
n−1(c)P̂

(j+1)
n (c))

)
−

(
P̂n(c)P̂

(2j+1)
n−1 (c) + P̂ ′

n(c)P̂
(2j)
n−1(c)

(
2j + 1

1

)
+ · · ·

+

(
2j + 1

j

)
P̂ (j)
n (c)P̂

(j+1)
n−1 (c)

)]
.

Hence,

K
(j,j)
n−1 (c, c) =

(j!)2

(2j + 1)!〈L, P̂ 2
n−1〉

×

[(
P̂n−1(c) P̂

(2j+1)
n (c) + P̂ ′

n−1(c) P̂
(2j)
n (c)

(
2j + 1

1

)
+ · · ·

+

(
2j + 1

j

)
P̂

(j)
n−1(c) P̂

(j+1)
n (c)

)
−

(
P̂n(c) P̂

(2j+1)
n−1 (c) + P̂ ′

n(c) P̂
(2j)
n−1(c)

(
2j + 1

1

)
+ · · ·

+

(
2j + 1

j

)
P̂ (j)
n (c) P̂

(j+1)
n−1 (c)

)]
.

On the other hand, let Q(x) ∈ P be an arbitrary polynomial with degQ(x) ≤ n. It

can be written as a linear combination of orthogonal polynomials {Pn(x)}n≥0

Q(x) =
n∑

k=0

〈L, Pk(x)Q(x)〉
〈L, P 2

k 〉
Pk(x).

Therefore,

[Q](j)(y) =
n∑

k=0

〈L, Pk(x)Q(x)〉
〈L, P 2

k 〉
[Pk]

(j)(y),

and using the fact that

〈L,K(0,j)
n (x, y)Q(x)〉 =

〈
n∑

k=0

Pk(x)[Pk]
(j)(y)

〈L, P 2
k 〉

, Q(x)

〉

=
n∑

k=0

〈L, Pk(x)Q(x)〉
〈L, P 2

k 〉
[Pk]

(j)(y),

then

〈L,K(0,j)
n (x, y)Q (x)〉 = [Q](j)(y). (2.10)
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Notice that for j = 0 one has the so called reproducing property of the kernel (2.3), i.e.

〈L,Kn (x, y)Q (x)〉 = Q(y). (2.11)

2.2 Canonical perturbations of a linear functional

Throughout this dissertation, the notion of quasi-definiteness will be crucial, because this

feature ensures that every quasi-definite linear functional has associated an OPS.

We begin by defining a particular case of linear functional that will appear frequently

in next chapters, which is called the Dirac functional or the Dirac delta functional .

Definition 2.1 (Dirac delta functional) Let c ∈ R. The linear functional δ(x − c)

supported at x = c, such that

〈δ(x− c), P (x)〉 = P (c), ∀P ∈ P,

is called the Dirac functional at c.

Next, let define three basic canonical transformations of a linear functional L (see [13]

and [103]).

Definition 2.2 Given a quasi-definite moment functional L and p ∈ P

1. Christoffel transformation of L (multiplication by a polynomial)

UC = (x− c)L, (2.12)

i.e.

〈UC , p〉 = 〈L, (x− c)p〉.

2. Uvarov transformation of L (addition of a Dirac mass point)

UM = L+Mδ(x− c), (2.13)

i.e.

〈UM , p〉 = 〈L, p〉+Mp(c),

where M ∈ R+.
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3. Geronimus transformation of L (division by a polynomial and addition of a Dirac

mass point)

UG = (x− c)−1L+Mδ(x− c), (2.14)

i.e.

〈UG, p〉 =
〈
L,
p(x)− p(c)

x− c

〉
+Mp(c),

where M ∈ R+.

We can establish some relationships between them. First, if we make the composition

of the Geronimus and Christoffel transformations, we obtain the identity transformation

I

UC ◦ UG = I,

and composing the Christoffel and the Geronimus transformations, we recover the Uvarov

transformation

UG ◦ UC = UM .

Next, we characterize the MOPS {Q̂n(x)}n≥0 associated with UM , i.e., the new moment

functional (2.13)

Theorem 2.6 Let {P̂n(x)}n≥0 be the MOPS associated with L. If we consider the modified

moment functional UM , the following statements hold:

1. UM is quasi-definite if and only if 1 +MKn(c, c) 6= 0, for every n ∈ N.

2. In the above conditions, if {Q̂n(x)}n≥0 is the MOPS associated with UM , for every

n ∈ N,

Q̂n(x) = P̂n(x)−
M P̂n(c)

1 +MKn−1(c, c)
Kn−1(x, c). (2.15)

(see [3, (8)] and [100]).

3. If L is positive definite, then UM is positive definite if and only if 1+MKn(c, c) > 0,

i.e., −M < 1
Kn(c,c)

for every n ≥ 0. In other words, it is enough to consider −M
as a lower bound of the sequence { 1

Kn(c,c)
}n≥0 because {Kn(c, c)}n≥0 is a monotonic

non-decreasing sequence.
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2.2.1 k-Iterated Christoffel orthogonal polynomials

Let µ be a positive Borel measure supported on an infinite subset E of the real line, and

assume c /∈ E. Here and subsequently, {P̂ [k]
n (x)}n≥0 denotes the MOPS with respect to

the inner product

〈f, g〉[k] =
∫

E
f(x)g(x)dµ[k] (2.16)

where

dµ[k] = (x− c)kdµ.

Then, the polynomials {P̂ [k]
n (x)}n≥0 are orthogonal with respect to a k-iterated Chris-

toffel perturbation of the measure µ. If k = 1 we have the Christoffel canonical transfor-

mation of the measure (see [103] and [102]). It is well known that P̂
[1]
n (x) is the monic

kernel polynomial which can be represented as (see [15, (7.3)])

P̂ [1]
n (x) =

1

(x− c)

[
P̂n+1(x)−

P̂n+1(c)

P̂n(c)
P̂n(x)

]
=

‖P̂n‖2µ
P̂n(c)

Kn(x, c). (2.17)

Since P̂
[2]
n (x) are the polynomials orthogonal with respect to the inner product (2.16) when

k = 2, using (2.17) we can continue in this way to obtain

P̂ [2]
n (x) =

1

(x− c)

[
P̂

[1]
n+1(x)−

P̂
[1]
n+1(c)

P̂
[1]
n (c)

P̂ [1]
n (x)

]
(2.18)

=
1

(x− c)2

[
P̂n+2(x)− dnP̂n+1(x) + enP̂n(x)

]
,

where

dn =
P̂n+2(c)

P̂n+1(c)
+
P̂

[1]
n+1(c)

P̂
[1]
n (c)

=
P̂n+2(c) + P̂n(c)

P̂n+1(c)
en,

en =
P̂

[1]
n+1(c)

P̂
[1]
n (c)

P̂n+1(c)

P̂n(c)
=

‖P̂n+1‖2µ
‖P̂n‖2µ

Kn+1(c, c)

Kn(c, c)
> 0

and similar formulas could be obtained for k > 2.

For n ≥ 1, {P̂ [k]
n (x)}n≥0 are given by the determinant (2.1) where ci is replaced by d

[k]
i ,

k ∈ N, where

d[k]n =

∫

E
xn(x− c)kdµ = d

[k−1]
n+1 − c d[k−1]

n , n = 0, 1, 2, ..., (2.19)
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and mn = d
[0]
n .

In the sequel, we will denote

||P̂ [k]
n ||2µ,[k] =

∫

E

(
P̂ [k]
n (x)

)2
(x− c)kdµ

and x
[k]
n,r, r = 1, 2, ..., n, will denote the zeros of P̂

[k]
n (x) arranged in an increasing order.

2.3 Semiclassical orthogonal polynomials

Next we introduce the concept of semiclassical moment functional and their correspond-

ing sequences of orthogonal polynomials. They were introduced by J. Shohat in the latest

thirties [92], in connection with weight functions ω(x) that satisfy a differential equa-

tion known as Pearson type differential equation (see, for instance [48]). We first give a

definition introduced by Maroni (see [82]).

Definition 2.3 (Admissible pair) Let φ(x), ψ(x) be two polynomials in P such that

deg φ(x) = r ≥ 0,

degψ(x) = l ≥ 1.

A pair of polynomials (φ, ψ) is said to be admissible if it satisfies the following conditions:

(i) deg φ′ 6= degψ.

(ii) If deg φ′ = degψ, then mφ(r)(0)
r! + φ(l)(0)

l! 6= 0, m = 0, 1, . . .

Definition 2.4 (Semiclassical moment functional) The quasi-definite linear functio-

nal L is said to be semiclassical if there exists an admissible pair (φ, ψ) such that L satisfies

the following distributional Pearson equation

D[φ(x)L] = ψ(x)L, (2.20)

where D denotes the distributional derivative. The corresponding sequence of polynomials

orthogonal with respect to L is said to be semiclassical.
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Definition 2.5 (Class of a linear functional) Let X be the set of admissible pairs (φ, ψ)

such that (2.20) holds. We define the class of the semiclassical linear functional L as the

non-negative integer

s = min {max {deg φ− 2, degψ − 1} : (φ, ψ) ∈ X} .

Moreover, provided that φ(x) is a monic polynomial, the pair for which the minimum is

attained is unique (see [81] and [82])

Next, we will give some characterizations of semiclassical OPS. They are characterized

from their orthogonality and by some special differential-difference equations, known as

structure relations.

Definition 2.6 (Structure Relation for semi-classical OPS) Let L be a regular li-

near functional and {P̂n(x)}n≥0 its corresponding MOPS. The following statements are

equivalent:

1. L is semiclassical of class s.

2. There exists a polynomial φ(x) of degree r, 0 ≤ r ≤ s+ 2, such that

φ(x)P̂ ′
n+1(x) =

n+r∑

k=n−s

ankP̂k(x), n ≥ s, (2.21)

with ank real numbers such that an,n−s 6= 0, n ≥ s+ 1.

Another characterization for the semiclassical OPS (and, in fact, a straightforward

consequence of the structure relation), is that they are the polynomial solutions of a

particular case of second order linear differential equations known as holonomic equations.

These differential equations can be obtained from the structure relation, that is associated

with the so called creation and destruction operators. In physics, these two operators are

known as ladder operators, and have an extensive use in quantum mechanics.

Definition 2.7 (The Holonomic Equation) Let L be a regular linear functional and

{P̂n(x)}n≥0 its corresponding OPS. L is semiclassical of class s if and only if there exist

polynomials A(x;n), B(x;n) and C(x;n), whose degrees are independent of n and such

that

A(x;n)[P̂n]
′′(x) +B(x;n)[P̂n]

′(x) + C(x;n)P̂n(x) = 0, n ≥ 0, (2.22)

where degA ≤ 2s+ 2, degB ≤ 2s+ 1 and degC ≤ 2s.
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2.4 Classical orthogonal polynomials

Next, we study a particular case of the semiclassical sequences of orthogonal polynomials

called classical orthogonal polynomials. They constitute the most important sequences of

orthogonal polynomials (see [5], [6] and [9]). They are widely used in the literature due

to their applications in mathematical physics, since they appear when Sturm-Liouville

problems for hypergeometric differential equations are studied.

Based on the aforesaid notion of class of a linear functional , the classical OPS are those

semiclassical of class s = 0. Moreover, depending on the polynomial φ(x) the canonical

families are known as 



Hermite: φ(x) = 1,

Laguerre: φ(x) = x,

Jacobi: φ(x) = 1− x2,

Bessel: φ(x) = x2.

Throughout this memoir we will use mainly the classical Laguerre and Jacobi OPS.

For convenience, next, we summarize some properties of them.

2.4.1 Classical Laguerre orthogonal polynomials

Laguerre orthogonal polynomials are defined as the polynomials orthogonal with respect

to the inner product

〈f, g〉α =

∫ +∞

0
f(x)g(x)xαe−xdx, α > −1, f, g ∈ P. (2.23)

The expression of these polynomials as an 1F1 hypergeometric function is very well

known in the literature (see [7], [46], [60], [87], [99], among others). The connection

between these two facts follows from a characterization of such orthogonal polynomials as

eigenfunctions of a second order linear differential operator with polynomial coefficients.

Let {L̂α
n(x)}n≥0, α > −1, denote the family of monic Laguerre orthogonal polynomials,

defined by the orthogonality relations
∫ +∞

0
L̂α
n(x)x

kdµ(x) = 0, k = 0, 1, . . . , n− 1,

where L̂α
n(x) = xn+ lower degree terms and dµ(x) = xαe−xdx, α > −1. We are interested

in the structural properties of Laguerre polynomials which will be useful in the sequel (see

[15] and [9]).
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Proposition 2.1 Let {L̂α
n(x)}n≥0 be the sequence of monic Laguerre orthogonal polyno-

mials. Then the following statements hold

1. Three term recurrence relation. For every n ∈ N,

xL̂α
n(x) = L̂α

n+1(x) + βnL̂
α
n(x) + γnL̂

α
n−1(x), n ≥ 1, (2.24)

with L̂α
0 (x) = 1, L̂α

1 (x) = x− (α+ 1) , βn = 2n+ α+ 1, and γn = n (n+ α) , n ≥ 1.

2. Structure relation. For every n ∈ N,

L̂α
n(x) = L̂α+1

n (x) + nL̂α+1
n−1 (x) . (2.25)

3. For every n ∈ N,

||L̂α
n||2α = n!Γ(n+ α+ 1). (2.26)

4. Lowering and raising operators (see [99, 5.1, Formula (5.1.14)]). For every n ∈ N,

x[L̂α
n]

′(x)− nL̂α
n(x) = n (n+ α) L̂α

n−1(x) (lowering) (2.27)

and

x[L̂α
n−1]

′(x) + (n+ α− x)L̂α
n−1(x) = −L̂α

n(x) (raising). (2.28)

5. For every n ∈ N, L̂α
n(x) is the polynomial eigenfunction of the differential operator

xD2 + (α+ 1− x)D (2.29)

with −n as the corresponding eigenvalue.

When another normalization for the Laguerre polynomials is needed, we list other

interesting properties of this family (see [99, (5.1.13)])

Proposition 2.2 Let {L(α)
n (x)}n≥0 be the sequence of Laguerre orthogonal polynomials

with leading coefficient (−1)n

n! , i.e.

L(α)
n (x) =

(−1)n

n!
L̂α
n(x), (2.30)

the following statements hold
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1. For an arbitrary real number α, Laguerre polynomials are defined by

L(α)
n (x) =

n∑

k=0

(
n+ α

n− k

)
(−x)k
k!

. (2.31)

2. Generating function

(1− t)−α−1e
−xt
(1−t) =

∞∑

n=0

L(α)
n (x)tn, |t| < 1.

3. Rodrigues formula (see [99, Formula 5.1.5]). For every n ∈ N ∪ {0}

L(α)
n (x) =

1

xαe−x

1

n!

dn

dxn
(e−xxn+α).

4. Hahn’s condition (see [99, Formula 5.1.14]). For every n ∈ N,

[L(α)
n ]′(x) = −L(α+1)

n−1 (x). (2.32)

5. Outer strong asymptotics (Perron’s asymptotics formula on C�R+). Let α ∈ R.

Then

L(α)
n (x) =

1

2
π−1/2ex/2 (−x)−α/2−1/4 nα/2−1/4 exp{2 (−nx)1/2} (2.33)

×
{

p−1∑

k=0

Ck(α;x)n
−k/2 + O(n−p/2)

}
.

Here Ck(α;x) is independent of n. This relation holds for x in the complex plane

with a cut along the positive real semiaxis, and it also holds if x is in the cut plane

mentioned. (−x)−α/2−1/4 and (−x)1/2 must be taken real and positive if x < 0.

The bound for the remainder holds uniformly in every compact subset of the complex

plane with empty intersection with R+ (see [99], Theorem 8.22.3).

6. Mehler-Heine type formula. For a fixed j, with j ∈ N∪{0}, if Jα denotes the Bessel

function of the first kind, then

lim
n→∞

L
(α)
n (x/(n+ j))

nα
= x−α/2Jα

(
2
√
x
)
, (2.34)

uniformly on compact subsets of C (see [99], Theorem 8.1.3)
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7. Plancherel-Rotach type formula. Let ϕ (x) = x +
√
x2 − 1, with

√
x2 − 1 > 0 if

|x| > 1, be the conformal mapping of C \ [−1, 1] onto the exterior of the unit circle.

Then

lim
n→∞

L
(α)
n−1(nx)

L
(α)
n (nx)

=
−1

ϕ ((x− 2) /2)
, (2.35)

uniformly on compact subsets of C \ [0, 4].

2.4.2 Classical Jacobi orthogonal polynomials

Jacobi orthogonal polynomials are defined as the polynomials orthogonal with respect to

the inner product

〈f, g〉α,β =

∫ 1

−1
f(x)g(x)(1− x)α(1 + x)βdx, α, β > −1, f, g ∈ P.

The expression of these polynomials as an 2F1 hypergeometric function is very well

known in the literature (see [7], [46], [60], [87], [99], among others). They satisfy the Pear-

son equation with φ(x) = 1−x2 and ψα,β(x) = −(α+β+2)x+(β−α). Let {P̂α,β
n (x)}n≥0,

α, β > −1, denote the family of classical monic Jacobi orthogonal polynomials. Next we

summarize some basic properties of this MOPS.(see [15] and [99]).

Proposition 2.3 Let {P̂α,β
n (x)}n≥0 be the sequence of monic Laguerre orthogonal poly-

nomials. Then the following statements hold

1. Three term recurrence relation. For every n ∈ N,

xP̂α,β
n (x) = P̂α,β

n+1(x) + βα,βn P̂α,β
n (x) + γα,βn P̂α,β

n−1(x), n ≥ 1,

with P̂α,β
0 (x) = 1, P̂α,β

1 (x) = x+ α−β
α+β+2 , and

βα,βn =
β2 − α2

(2n+ α+ β)(2n+ 2 + α+ β)
,

γα,βn =
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)
.

2. Structure relation. For every n ∈ N,

(1− x2)[P̂α,β
n ]′(x) = aα,βn P̂α,β

n+1(x) + bα,βn P̂α,β
n (x) + cα,βn P̂α,β

n−1(x),
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where

aα,βn = −n,

bα,βn =
2(α− β)n (n+ α+ β + 1)

(2n+ α+ β)(2n+ 2 + α+ β)
,

cα,βn =
4n(n+ α)(n+ β)(n+ α+ β)(n+ α+ β + 1)

(2n+ α+ β − 1)(2n+ α+ β)2(2n+ α+ β + 1)
.

3. For every n ∈ N,

||P̂α,β
n ||2α,β =

22n+α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)n!

(2n+ α+ β + 1)(Γ(2n+ α+ β + 1))2
.

4. For every n ∈ N,

[P̂α,β
n ]′(x) = n P̂α+1,β+1

n−1 (x).

5. For every n ∈ N, there exists a sequence {λn}n≥0 of real numbers such that P̂α,β
n (x)

satisfies the second order linear differential equation

φ(x)y′′ + ψα,β(x)y
′ = λα,βn y

with λα,βn = −n(n+ 1 + α+ β).

6. For every n ∈ N,

Pα,β
n (x) =

2n(α+ 1)n
(n+ α+ β + 1)n

2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)
,

where

2F1

(
−n, n+ α+ β + 1;α+ 1;

1− x

2

)

=
∞∑

k=0

(−n)k(n+ α+ β + 1)k
(α+ 1)k

(1− x)k

2kk!
.
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CHAPTER 3

Krall-type Orthogonal Polynomials: Zeros

3.1 Introduction

In this chapter we study the behavior of the zeros of the MOPS {Q̂n(x)}n≥0 with respect

to the Uvarov perturbed measure (2.13)

dµM (x; c) = dµ(x) +Mδ(x− c)

where dµ(x) is a positive Borel measure supported on a bounded or unbounded interval

E = (a, b) ⊆ R, the mass point c /∈ E, and M is a nonnegative real number. In other

words, this sequence of polynomials is orthogonal with respect to the inner product

〈f, g〉M =

∫ b

a
f(x)g(x)dµ(x) +Mf(c)g(c), M ∈ R+, c /∈ (a, b). (3.1)

The structure of the chapter is as follows. First, we obtain a new connection formula for

orthogonal polynomials obtained from Uvarov and Christoffel transformations and several

results about their zeros, concerning monotonicity and speed of convergence with respect

to M . These results follow from the Christoffel formula, from a connection formula for

the perturbed polynomials in terms of the initial ones and from the behavior of the zeros

of a linear combination of two polynomials (Lemma B.1 in Appendix B).

33
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In the second part of the chapter, we obtain an electrostatic interpretation of the

zeros of Q̂n(x) as equilibrium points in a logarithmic potential interaction of positive unit

charges under the presence of an external field, following a model by M. E. H. Ismail (see

[45] and [47]). Next, we check these results for the Krall-Jacobi and Krall-Laguerre MOPS

introduced by T. H. Koornwinder [54].

Finally, we deal with a natural generalization of the above problem. We consider se-

quences of Krall-Laguerre polynomials {Q̂α,m
n }n≥0, orthogonal with respect to the iterated

Uvarov perturbed measure

dµm(x) = dµm(x; c) = χR+dµα(x) +
m∑

j=1

Mjδ(x− cj), c = {c1, c2, . . . , cm} ⊂ R \ R+,

In other words, we study iterated-Uvarov perturbed MOPS with respect to the inner

product

〈f, g〉m =

∫ +∞

0
f(x)g(x)dµα(x) +

m∑

j=1

Mj f(cj)g(cj), f, g ∈ P, (3.2)

where dµα(x) = xαe−xdx is the Laguerre measure on R+, α > −1, c = {c1, c2, . . . , cm} ⊂
R \ R+, such that if i < j then cj < ci, Mj > 0, and m is a positive integer. We give the

representation of these polynomials in terms of the standard Laguerre polynomials. Next,

from the holonomic equation that such polynomials satisfy, we obtain an electrostatic

model for their zeros in terms of a logarithmic potential. Here, we use different techniques

from those analyzed in the previous section to show some of the different approaches that

can be used in order to formulate electrostatic interpretations of zeros of MOPS.

Obviously, for m = 1 and c1 = c we have Q
(α,1)
n (x) = Q

(α)
n (x) and, then, we recover

the results analyzed for one mass point.

3.2 New connection formula

There is a well known connection formula for the MOPS {Q̂n(x)}n≥0 taking into account

the standard MOPS {P̂n(x)}n≥0 and the reproducing kernel (2.15), but in [41] another

connection formula was obtained. Using a similar idea as in [41, Proposition 4] we de-

duce another connection formula for the MOPS {Q̂n(x)}n≥0 using the standard MOPS

{P̂n(x)}n≥0 and the 2-Iterated-Christoffel’s MOPS {P̂ [2]
n−1(x)}n≥0.
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Theorem 3.1 (Connection Formula) The polynomials Q̃n(x), with the normalization

Q̃n(x) = κnQ̂n(x), can be represented as

Q̃n(x) = P̂n(x) +MBn(x− c)P̂
[2]
n−1(x), (3.3)

where

Bn =
−P̂n(c)

〈x− c, P̂
[2]
n−1〉µ

= Kn−1 (c, c) > 0 (3.4)

and κn = 1 +MKn−1 (c, c).

Proof. In order to prove the orthogonality of the polynomials given in (3.3), we deal with

the basis 1, (x − c), (x − c)2, . . . , (x − c)n of the linear space Pn of polynomials of degree

at most n. Then,

〈1, Q̃n〉M = 〈1, P̂n〉µ +MBn〈1, (x− c)P̂
[2]
n−1〉µ +MP̂n(c) = 0,

〈(x− c), Q̃n〉M = 〈(x− c), P̂n〉µ +MBn〈1, P̂ [2]
n−1〉[2] = 0,

〈(x− c)n−1, Q̃n〉M = 〈(x− c)n−1, P̂n〉µ +MBn〈(x− c)n−2, P̂
[2]
n−1〉[2] = 0,

and, finally,

〈(x− c)n, Q̃n〉M = 〈(x− c)n, P̂n〉µ +MBn〈(x− c)n−1, P̂
[2]
n−1〉[2]

= ‖P̂n‖2µ +MBn‖P̂ [2]
n−1‖2[2] > 0.

It remains to prove (3.4). From (2.17) and (2.18) we get

〈x− c, P̂
[2]
n−1〉µ =

∫

E
(x− c) P̂

[2]
n−1(x)dµ(x)

=

∫

E
(x− c)

1

x− c

[
P̂ [1]
n (x)− P̂

[1]
n (c)

P̂
[1]
n−1(c)

P̂
[1]
n−1(x)

]
dµ(x)

=

∫

E
P̂ [1]
n (x)dµ(x)− P̂

[1]
n (c)

P̂
[1]
n−1(c)

∫

E
P̂

[1]
n−1(x)dµ(x)

=
‖P̂n‖2µ
P̂n(c)

∫

E
Kn(x, c)dµ(x)

−
‖P̂n‖2µ
P̂n(c)

Kn(c, c)

Kn−1(c, c)

P̂n−1(c)

‖P̂n−1‖2µ

‖P̂n−1‖2µ
P̂n−1(c)

∫

E
Kn−1(x, c)dµ(x)
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=
‖P̂n‖2µ
P̂n(c)

−
‖P̂n‖2µ
P̂n(c)

Kn(c, c)

Kn−1(c, c)

=
‖P̂n‖2µ
P̂n(c)

(
1− Kn(c, c)

Kn−1(c, c)

)
.

Thus

Bn =
−P̂n(c)

〈x− c, P̂
[2]
n−1〉µ

=
(P̂n(c))

2

‖P̂n‖2µ [Kn(c, c)/Kn−1(c, c)− 1]
= Kn−1(c, c) > 0.

We also derive a representation of the monic polynomial Q̂n(x) as a linear combination

of two perturbed Christoffel polynomials that will be useful later on this chapter, assuming

that c does not belong to the interior of the convex hull of the support of µ.

Corollary 3.1 The monic polynomial Q̂n(x) can be also represented as

Q̂n(x) = P̂ [1]
n (x) + cn P̂

[1]
n−1(x), (3.5)

where

cn =
1 +MKn(c, c)

1 +MKn−1(c, c)

P̂n−1(c)

P̂n(c)
γn and γn =

‖P̂n‖2µ
‖P̂n−1‖2µ

. (3.6)

Proof. Using (2.3), we obtain

P̂n(x) =
‖P̂n‖2µ
P̂n(c)

[Kn(c, x)−Kn−1(c, x)] . (3.7)

From (2.17) and (3.7), we have

P̂n(x) = P̂ [1]
n (x)− γn

P̂n−1(c)

P̂n(c)
P̂

[1]
n−1(x). (3.8)

Therefore, replacing (2.17) and (3.8) in (2.15) we get (3.5).

3.3 Zeros of Krall-type MOPS

The behavior of the zeros of orthogonal polynomials has been extensively studied because

of their applications in many areas of physics and engineering. First, the zeros of orthogo-

nal polynomials are the nodes of the Gaussian quadrature rules and also play an important
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role in some of their extensions like Gauss-Radau, Gauss- Lobatto, and Gauss-Kronrod

rules, among others (see [15], [36] [88]). Second, the zeros of classical orthogonal polyno-

mials are the electrostatic equilibrium points of positive unit charges interacting according

to a logarithmic potential under the action of an external field, see Stieltjes’ papers ([95],

[96], [97] and [98]), Szegő’s book ([99, Section 6.7]), and some recent works by D. K. Dimi-

trov and W. Van Assche ([17]), A. Grünbaum ([38] and [39]), M. E. H. Ismail ([45]), and

F. Marcellán, A. Mart́ınez-Finkelshtein and P. Mart́ınez-González ([70]) among others.

Third, in a more general framework, the counting measure of zeros weakly converges to

the equilibrium measure associated with a logarithmic potential (see [94]). Fourth, zeros

of orthogonal polynomials are used in collocation methods for boundary value problems

of second order linear differential operators (see [8]). Fifth, global properties of zeros of

orthogonal polynomials can be analyzed when they satisfy second order linear differential

equations with polynomial coefficients using the WKB method (see [3]). Finally, zeros of

orthogonal polynomials are eigenvalues of Jacobi matrices and its role in Numerical Linear

Algebra is very well known.

Now, for polynomials orthogonal with respect to (3.1), some natural questions arise:

Are there values of the parameter M for which the zeros of Q̂n(x) interlace with the zeros

of P̂n(x)? Are the zeros of Q̂n(x) monotonic functions in terms of the parameter M? Do

these zeros converge when M tends to infinity? If so, what the speed of convergence is?

One of our main contributions in this chapter concerns the questions posed above. We

provide an interlacing property as well as the monotonicity and asymptotic behavior of

the zeros of the polynomial Q̂n(x) with respect to M . All the above questions related to

the behavior of the zeros of the polynomials Q̂n(x) were answered for two important and

particular cases in [18] and [19]. The authors considered the cases when dµ(x) = xαe−xdx

with (a, b) = (0,∞) and c = 0, and dµ(x) = (1− x)α(1 + x)βdx with (a, b) = (−1, 1) and

c = 1, respectively.

3.3.1 A description of zero distribution

Theorem 3.2 Let {xn,j}nk=1 and {x[2]n,j}nk=1 be the zeros of P̂n(x) and P̂
[2]
n (x) respectively.

Then, the inequalities

xn+1,1 < x
[2]
n,1 < xn+1,2 < x

[2]
n,2 < · · · < xn+1,n < x[2]n,n < xn+1,n+1 (3.9)

hold for every n ∈ N.
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Proof. Let {x[1]n,k}nk=1 be the zeros of the monic polynomial P̂
[1]
n (x) of degree n, orthogonal

with respect to the inner product (2.16) when k = 1. In Chihara’s book [15, Th. 7.2] the

following interlacing property involving the zeros of P̂
[1]
n (x), P̂n+1(x), and P̂n(x) is given.

• If c ≤ a, then

xn+1,1 < xn,1 < x
[1]
n,1 < xn+1,2 < · · · < xn,n < x[1]n,n < xn+1,n+1;

• If c ≥ b, then

xn+1,1 < x
[1]
n,1 < xn,1 < · · · < xn+1,n < x[1]n,n < xn,n < xn+1,n+1.

Since P̂
[2]
n (x) are the MOPS with respect to the inner product (2.16) when k = 2 it is

straightforward to prove that P̂
[2]
n (c) 6= 0. Then, using the three term recurrence relation

P̂n+1(x) = (x− βn)P̂n(x)− γnP̂n−1(x),

where

βn =
〈xP̂n, P̂n〉µ
‖P̂n‖2µ

, n ≥ 0, and γn =
‖P̂n‖2µ
‖P̂n−1‖2µ

> 0, n ≥ 1,

from (2.17) and (2.18) we obtain

P̂ [2]
n (x) =

1

(x− c)2

[
(x− βn+1 − dn)P̂n+1(x) + (en − γn+1)P̂n(x)

]
. (3.10)

On the other hand,

en − γn+1 =
‖P̂n+1‖2µ
‖P̂n‖2µ

(
Kn+1(c, c)

Kn(c, c)
− 1

)
> 0. (3.11)

Thus, evaluating P̂
[2]
n (x) at the zeros xn+1,k, from (3.10) and (3.11),

sign P̂ [2]
n (xn+1,k) = sign P̂n(xn+1,k), k = 1, . . . , n+ 1.

Since the zeros of P̂n+1(x) and P̂n(x) interlace, the proof is concluded.

Let {xMn,k}nk=1 be the zeros of Q̂n(x). IfM is a nonnegative real number then dµM (x; c)

is a positive measure, and, as a consequence, the zeros of Q̂n(x) are real, simple, and lie

in (c, b) (resp. in (a, c)) if c ≤ a (resp. if c ≥ b), that is,

min{a, c} < xMn,1 < · · · < xMn,n < max{b, c}.
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As a consequence of the following theorem, when M tends to infinity notice that the mass

point c attracts one zero of Q̂n(x), that is, it captures either the least or the largest zero,

according to the location of the point c with respect to the interval (a, b). In addition,

when either c < a or c > b, at most one of the zeros of Q̂n(x) is located outside (a, b).

Theorem 3.3 Let M > 0 and {x[2]n,k}nk=1 be the zeros of the polynomial P̂
[2]
n (x) orthogonal

with respect to the inner product (2.16) when k = 2.

(i) If c ≤ a, then

c < xMn,1 < xn,1 < x
[2]
n−1,1 < xMn,2 < xn,2 < · · · < x

[2]
n−1,n−1 < xMn,n < xn,n. (3.12)

Moreover, each xMn,k is a decreasing function of M and, for each k = 1, . . . , n − 1,

(see the comment in the last sentence 3.3.2)

lim
M→∞

xMn,1 = c, lim
M→∞

xMn,k+1 = x
[2]
n−1,k,

as well as

lim
M→∞

M [xMn,1 − c] =
−P̂n(c)

Kn−1(c, c)P̂
[2]
n−1(c)

,

lim
M→∞

M [xMn,k+1 − x
[2]
n−1,k] =

−P̂n(x
[2]
n−1,k)

Kn−1(c, c)(x
[2]
n−1,k − c)[P̂

[2]
n−1]

′(x[2]n−1,k)
.

(3.13)

(ii) If c ≥ b, then

xn,1 < xMn,1 < x
[2]
n−1,1 < · · · < xn,n−1 < xMn,n−1 < x

[2]
n−1,n−1 < xn,n < xMn,n < c. (3.14)

Moreover, each xMn,k is an increasing function of M and, for each k = 1, . . . , n− 1,

lim
M→∞

xMn,n = c, lim
M→∞

xMn,k = x
[2]
n−1,k,

and

lim
M→∞

M [c− xMn,n] =
P̂n(c)

Kn−1(c, c)P̂
[2]
n−1(c)

,

lim
M→∞

M [x
[2]
n−1,k − xMn,k] =

P̂n(x
[2]
n−1,k)

Kn−1(c, c)(x
[2]
n−1,k − c)[P̂

[2]
n−1]

′(x[2]n−1,k)
.
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Proof. Using the interlacing property (3.9) and the connection formula (3.3), we get

sign Q̃n(xn,k) = sign
(
M(xn,k − c)P̂

[2]
n−1(x)

)
, k = 1, . . . , n,

sign Q̃n(x
[2]
n−1,k) = sign P̂n(x

[2]
n−1,k), k = 1, . . . , n− 1,

which yield the inequalities stated in (3.12) and (3.14). It remains to show the monotoni-

city, asymptotics, and the speed of the convergence of the zeros xMn,k with respect to M .

Indeed, it follows from Lemma B.1 concerning the zeros of a linear combination of two

polynomials with interlacing zeros.

We point out that Theorem 3.3 is general in two aspects and uses new approaches to

the analysis of zeros: dµ(x) is any positive Borel measure and c is outside (a, b).

Next, we deduce the value M0 of the mass such that for M > M0 one of the zeros of

Q̂n(x) is located outside (a, b).

Corollary 3.2 Let M > 0.

(i) If c < a, then the least zero xMn,1 satisfies

xMn,1 > a, for M < M0,

xMn,1 = a, for M =M0,

xMn,1 < a, for M > M0,

where

M0 =M0(n, a, c) =
−P̂n(a)

Kn−1 (c, c) (a− c)P̂
[2]
n−1(a)

> 0.

(ii) If c > b, then the largest zero xMn,n satisfies

xMn,n < b, for M < M0,

xMn,n = b, for M =M0,

xMn,n > b, for M > M0,

where M0 =M0(n, b, c).

The proofs are a direct consequence of the connection formula (3.3).
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3.3.2 Convergence of the zeros

We can study to where the zeros of Q̂n(x) converge as M → ∞, from another point of

view. For this purpose, we express Q̂n(x) in terms of the generalized moments using the

Gram-Schmidt orthonormalization process for the family of polynomials {(x − c)k}nk=0.

Indeed, if
〈
(x− c)k, (x− c)j

〉
= ck+j and denoting

Ωn (dµ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

...
...

. . .
...

cn−1 cn · · · c2n−1

cn cn+1 · · · c2n

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

we get

P̂n(x) =
1

Ωn−1 (dµ)

∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 · · · cn

c1 c2 · · · cn+1

...
...

. . .
...

cn−1 cn · · · c2n−1

1 x− c · · · (x− c)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.15)

If dµM (x; c) = dµ(x) +Mδ(x− c), then

Q̂n(x) =
1

Ωn−1 (dµM )

∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 +M c1 · · · cn

c1 c2 · · · cn+1

...
...

. . .
...

cn−1 cn · · · c2n−1

1 x− c · · · (x− c)n

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Since

Ωn−1 (dµM ) =

∣∣∣∣∣∣∣∣∣∣

c0 +M c1 · · · cn−1

c1 c2 · · · cn
...

...
. . .

...

cn−1 cn · · · c2n−2

∣∣∣∣∣∣∣∣∣∣

= Ωn−1 (dµ) +MΩn−2

(
(x− c)2 dµ

)

we conclude

Q̂n(x) =
Ωn−1 (dµ) P̂n(x) +M (x− c) Ωn−2

(
(x− c)2 dµ

)
P̂

[2]
n−1(x)

Ωn−1 (dµ) +MΩn−2

(
(x− c)2 dµ

) .
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From the above expression we can easily see that whenM → ∞, the mass point c attracts

only one zero of Q̂n(x), and each zero of P̂
[2]
n−1(x) attracts one of the remainder n−1 zeros

of Q̂n(x).

3.4 Application to classical measures

3.4.1 Krall-Jacobi (Jacobi-Koornwinder) MOPS

Let {P̂α,β
n (x)}n≥0 be the monic Jacobi polynomial sequence which is orthogonal with

respect to the measure dµα,β(x) = (1 − x)α(1 + x)βdx, α, β > −1, supported on (−1, 1).

We consider the following Uvarov perturbations of dµα,β(x) where either c = −1 or c = 1,

and M ≥ 0.

dµM (x;−1) = dµα,β(x) +Mδ(x+ 1), (3.16)

dµN (x; 1) = dµα,β(x) +Nδ(x− 1). (3.17)

Such orthogonal polynomials were first studied in 1984 by T. H. Koornwinder (see [54]), in

1984. There, he adds simultaneously two Dirac delta functions at the end points x = −1

and x = 1, that is,

dµM,N (x) = dµα,β(x) +Mδ(x+ 1) +Nδ(x− 1).

Let denote by {Q̃α,β
n (x;−1)}n≥0 and {Q̃α,β

n (x; 1)}n≥0 the OPS with respect (3.16) and

(3.17), with the normalization introduced in Theorem 3.1, respectively. Then, the connec-

tion formulas are

Q̃α,β
n (x;−1) = P̂α,β

n (x) +MKn−1(−1,−1)(x+ 1)P̂α,β+2
n−1 (x)

and

Q̃α,β
n (x; 1) = P̂α,β

n (x) +NKn−1(1, 1)(x− 1)P̂α+2,β
n−1 (x).

It is straightforward to see that

Kn−1(−1,−1) =
1

2α+β+1

Γ(n+ β + 1)Γ(n+ α+ β + 1)

Γ(n)Γ(β + 1)Γ(β + 2)Γ(n+ α)
,

Kn−1(1, 1) =
1

2α+β+1

Γ(n+ α+ 1)Γ(n+ α+ β + 1)

Γ(n)Γ(α+ 1)Γ(α+ 2)Γ(n+ β)
.
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Recently, several authors ([3], [19], [25]) have contributed to the analysis of the behavior

of the zeros of Q̃α,β
n (x;−1) and Q̃α,β

n (x; 1).

Let us denote by xMn,k(α, β) and xn,k(α, β), k = 1, . . . , n, the zeros of Q̃α,β
n (x;−1) and

P̂α,β
n (x), respectively, in an increasing order. Then, applying Theorem 3.3 we obtain

Theorem 3.4 ([19]) The inequalities

− 1 < xMn,1(α, β) < xn,1(α, β) < xn−1,1(α, β + 2) < xMn,2(α, β) < xn,2(α, β) < · · ·
< xn−1,n−1(α, β + 2) < xMn,n(α, β) < xn,n(α, β)

hold for every α, β > −1. Moreover, each xMn,k(α, β) is a decreasing function of M and,

for each k = 1, . . . , n− 1,

lim
M→∞

xMn,1(α, β) = −1, lim
M→∞

xMn,k+1(α, β) = xn−1,k(α, β + 2),

and

lim
M→∞

M [xMn,1(α, β) + 1] = hn(α, β),

lim
M→∞

M [xMn,k+1(α, β)− xn−1,k(α, β + 2)] =
[1− xn−1,k(α, β + 2)]hn(α, β)

2(β + 2)
,

where

hn(α, β) =
2α+β+2Γ(n)Γ(β + 2)Γ(β + 3)Γ(n+ α)

Γ(n+ β + 2)Γ(n+ α+ β + 2)
.

Proof. From (3.13)

lim
M→∞

M [xMn,1(α, β) + 1] =
−P̂α,β

n (−1)

Kn−1(−1,−1) P̂α,β+2
n−1 (−1)

.

Since

P̂α,β
n (−1) =

(−1)n2nΓ(n+ β + 1)Γ(n+ α+ β + 1)

Γ(β + 1)Γ(2n+ α+ β + 1)

and

Kn−1(−1,−1) =
1

2α+β+1

Γ(n+ β + 1)Γ(n+ α+ β + 1)

Γ(n)Γ(β + 1)Γ(β + 2)Γ(n+ α)

we obtain

−P̂α,β
n (−1)

Kn−1(−1,−1) P̂α,β+2
n−1 (−1)

=
2α+β+2Γ(n)Γ(β + 2)Γ(β + 3)Γ(n+ α)

Γ(n+ β + 2)Γ(n+ α+ β + 2)
= hn(α, β).
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It also follows from (3.13) that

lim
M→∞

M [xMn,k+1(α, β)− xn−1,k(α, β + 2)]

=
−P̂α,β

n (xn−1,k(α, β + 2))

Kn−1(−1,−1)(xn−1,k(α, β + 2) + 1)[P̂α,β+2
n−1 ]′(xn−1,k(α, β + 2))

.

On the other hand, from

n(n+ α)(1 + x)P̂α,β+2
n−1 (x) = n(n+ α+ β + 1)P̂α,β

n (x) + (β + 1)(1− x)[P̂α,β
n ]′(x)

we get

n(n+ α+ β + 1) P̂α,β
n (xn−1,k(α, β + 2))

= −(β + 1)(1− xn−1,k(α, β + 2))[P̂α,β
n ]′(xn−1,k(α, β + 2))

as well as

n(n+ α)(1 + xn−1,k(α, β + 2))[P̂α,β
n ]′(xn−1,k(α, β + 2))

= [n(n+ α+ β + 1)− (β + 1)][P̂α,β
n ]′(xn−1,k(α, β + 2))

+(β + 1)(1− xn−1,k(α, β + 2))[P̂α,β
n ]′′(xn−1,k(α, β + 2)).

Using the last two equalities and the second order linear differential equation for the Jacobi

polynomials

(1− x2)[P̂α,β
n ]′′(x) + [β − α− (α+ β + 1)x][P̂α,β

n ]′(x) + n(n+ α+ β + 1)P̂α,β
n (x) = 0

we obtain

(1 + xn−1,k(α, β + 2))[P̂α,β+2
n ]′(xn−1,k(α, β + 2))

=
−(n+ β + 1)(n+ α+ β + 1)

(β + 1)(1− xn−1,k(α, β + 2))
P̂α,β
n (xn−1,k(α, β + 2)).

Therefore,

lim
M→∞

M [xMn,k+1(α, β)− xn−1,k(α, β + 2)]

=
−P̂α,β

n (xn−1,k(α, β + 2))

Kn−1(−1,−1)(xn−1,k(α, β + 2) + 1)[P̂α,β+2
n−1 ]′(xn−1,k(α, β + 2))
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=
[1− xn−1,k(α, β + 2)]hn(α, β)

2(β + 2)

Let xNn,k(α, β) be the zeros of Q̃α,β
n (x; 1). Then

Theorem 3.5 ([19]) The inequalities

xn,1(α, β) < xNn,1(α, β) < xn−1,1(α+ 2, β) < · · · <
xn,n−1(α, β) < xNn,n−1(α, β) < xn−1,n−1(α+ 2, β) < xn,n(α, β) < xNn,n(α, β) < 1

hold for every α, β > −1. Moreover, each xNn,k(α, β) is an increasing function of N and,

for each k = 1, . . . , n− 1,

lim
N→∞

xNn,n(α, β) = 1, lim
N→∞

xNn,k(α, β) = xn−1,k(α+ 2, β),

and

lim
N→∞

N [1− xNn,n(α, β)] = gn(α, β),

lim
N→∞

N [xn−1,k(α+ 2, β)− xNn,k(α, β)] =
[1 + xn−1,k(α+ 2, β)] gn(α, β)

2(α+ 2)
,

where

gn(α, β) =
2α+β+2Γ(n)Γ(α+ 2)Γ(α+ 3)Γ(n+ β)

Γ(n+ α+ 2)Γ(n+ α+ β + 2)
.

Proof. We can proceed as in the proof of Theorem 3.4. We only observe that

n+ β

2n
(x− 1)P̂α+2,β

n−1 (x) = P̂α,β
n (x)− α+ 1

n(n+ α+ β + 1)
(1 + x)[P̂α,β

n ]′(x).

To illustrate the results of Theorem 3.5, the graphs of Q̃α,β
3 (x; 1), for α = β = 0 and

N + ε, for some values of ε > 0 appear in Figure 3.1 where the monotonicity of the zeros

of Q̃α,β
3 (x; 1) as a function of the mass N is shown.

In Table 3.1 we describe the zeros of Q̃α,β
3 (x; 1), with α = β = 0, for several choices of

N .

Notice that the largest zero converges to 1 and the other two zeros converge to the

zeros of the Jacobi polynomial P̂
(2,0)
2 (x), that is, they converge to x2,1(2, 0) = −0.75497

and x2,2(4) = 0.0883037. Also note that all the zeros increase when N increase.
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Figure 3.1: The graphs of Q̃α,β
3 (x; 1) with N + ε, for some values of ε.

Table 3.1: Zeros of Q̃α,β
3 (x; 1) for some values of N .

λ x3,1(0, 0;λ) x3,2(0, 0;λ) x3,3(0, 0;λ)

0 −0.774597 0 0.774597

1 −0.757872 0.0753429 0.955257

10 −0.755305 0.0868168 0.994575

100 −0.755004 0.0881528 0.999446

1000 −0.754974 0.0882886 0.999944

3.4.2 Krall-Laguerre (Laguerre-Koornwinder) MOPS

Let {L̂α
n(x)}n≥0 be the monic Laguerre polynomials which are orthogonal with respect to

the classical Laguerre measure dµα(x) = xαe−xdx, α > −1, supported on [0,+∞). Let us

denote by {Q̂α
n(x)}n≥0 the sequence of polynomials orthogonal with respect to

dµM (x; c) = dµα(x) +Mδ(x− c), M ≥ 0. (3.18)

When c = 0, this family was also obtained by T. H. Koornwinder [54] as a special limit

case of the Jacobi-Koornwinder (Jacobi type) orthogonal polynomial. Analytic properties

of these polynomials have been studied in the last years (see [3], [18], [26], [52], among
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others). The connection formula (3.3) reads

Q̃α
n(x) = L̂α

n(x) +MKn−1(0, 0)x L̂
α+2
n−1(x),

where

Kn−1(0, 0) =
Γ(n+ α+ 1)

Γ(n)Γ(α+ 1)Γ(α+ 2)
.

Now, we will analyze the behavior of their zeros. Let denote by xMn,k(α) and xn,k(α),

k = 1, . . . , n, the zeros of the Krall-Laguerre polynomial Q̃α
n(x) and the classical Laguerre

orthogonal polynomial L̂α
n(x), respectively. Applying the results of Theorem 1 we obtain

Theorem 3.6 ([18]) The inequalities

0 < xMn,1(α) < xn,1(α) < xn−1,1(α+ 2) < xMn,2(α) <

xn,2(α) < · · · < xn−1,n−1(α+ 2) < xMn,n(α) < xn,n(α)

hold for every α > −1. Moreover, each xMn,k(α) is a decreasing function of M and, for

each k = 1, . . . , n− 1,

lim
M→∞

xMn,1(α) = 0, lim
M→∞

xMn,k+1(α) = xn−1,k(α+ 2),

as well as
lim

M→∞
MxMn,1(α) = gn(α),

lim
M→∞

M [xMn,k+1(α)− xn−1,k(α+ 2)] =
gn(α)

α+ 2
,

where

gn(α) =
Γ(n)Γ(α+ 2)Γ(α+ 3)

Γ(n+ α+ 2)
.

Proof. From (3.13)

lim
M→∞

MxMn,1(α) =
−L̂α

n(0)

Kn−1(0, 0) L̂
α+2
n−1(0)

.

Since

L̂α
n(0) =

(−1)nΓ(n+ α+ 1)

Γ(α+ 1)
and Kn−1(0, 0) =

Γ(n+ α+ 1)

Γ(n)Γ(α+ 1)Γ(α+ 2)
,

we obtain
−L̂α

n(0)

Kn−1(0, 0) L̂
α+2
n−1(0)

=
Γ(n)Γ(α+ 2)Γ(α+ 3)

Γ(n+ α+ 2)
= gn(α).
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From (3.13)

lim
M→∞

M [xMn,k+1(α)− xn−1,k(α+ 2)]

=
−L̂α

n(xn−1,k(α+ 2))

Kn−1(0, 0)xn−1,k(α+ 2)[L̂α+2
n−1]

′(xn−1,k(α+ 2))
.

On the other hand, it is easy to verify that

xL̂α+2
n−1(x) = L̂α

n(x) +
α+ 1

n
[L̂α

n]
′(x).

Thus,

[L̂α
n]

′(xn−1,k(α+ 2)) = − n

α+ 1
L̂α
n(xn−1,k(α+ 2))

and

xn−1,k(α+ 2)[L̂α
n]

′(xn−1,k(α+ 2))

= [L̂α
n]

′(xn−1,k(α+ 2)) +
α+ 1

n
[L̂α

n]
′′(xn−1,k(α+ 2)).

Using the last two equalities and the second order linear differential equation for the

Laguerre polynomials

x[L̂α
n]

′′(x) + (α+ 1− x)[L̂α
n]

′(x) + nL̂α
n(x) = 0

we obtain

xn−1,k(α+ 2)[L̂α
n]

′(xn−1,k(α+ 2)) =
−(n+ α+ 1)

α+ 1
L̂α
n(xn−1,k(α+ 2)).

Therefore,

lim
M→∞

M [xMn,k+1(α)− xn−1,k(α+ 2)]

=
−L̂α

n(xn−1,k(α+ 2))

Kn−1(0, 0)xn−1,k(α+ 2)[L̂α+2
n−1]

′(xn−1,k(α+ 2))

=
Γ(n)Γ(α+ 2)Γ(α+ 2)

Γ(n+ α+ 2)
=
gn(α)

α+ 2
.

To illustrate the results of Theorem 3.6 we enclose the graphs of Q̂α
3 (x) for α = 2 and

M + ε, for some values of ε > 0. Figure 3.2 shows the monotonicity of the zeros of Q̂α
3 (x)

as a function of the mass M .
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Figure 3.2: The graphs of Q̂α
3 (x) for c = 0 and M + ε, for some values of ε.

Table 3.2: Zeros of Q̂α
3 (x) for c = 0 and some values of M .

λ x3,1(2;λ) x3,2(2;λ) x3,3(2;λ)

0 1.51739 4.31158 9.17103

1 0.321731 3.64053 8.53774

10 0.0390611 3.5604 8.45936

100 0.00399042 3.55151 8.45049

1000 0.00039990 3.55061 8.44959

Table 3.2 describes the zeros of Q̂α
3 (x), with α = 2, for several choices of M . Observe

that the least zero converges to 0 and the other two zeros converge to the zeros of the

Laguerre polynomial L̂4
2(x), that is, they converge to x2,1(4) = 3.55051 and x2,2(4) =

8.44949. Note that all the zeros decrease when M increases

3.5 Electrostatic model for one mass point

3.5.1 Ismail’s electrostatic model for semiclassical measures

We assume that dµ(x) = ω(x)dx, where ω(x) is a weight function supported on the

real line. We can associate with ω (x) an external potential υ (x) such that ω (x) =
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exp (−υ (x)). Notice that if υ(x) is assumed to be differentiable on the support of dµ(x) =

ω (x) dx then
ω′ (x)
ω (x)

= −υ′ (x) .

If υ′(x) is a rational function on (a, b), then the weight function ω(x) is said to be

semiclassical (see [82], [92]). The linear functional L associated with ω(x),

〈L, f(x)〉 =
b∫

a

f(x)ω (x) dx,

satisfies the Pearson’s equation

D[σ(x)L] = τ(x)L,

where D is the distributional derivative of L introduced in Section 2.1.1, and σ(x), τ(x)

are non-zero polynomials such that σ(x) is monic and deg(τ(x)) ≥ 1. Notice that, in terms

of the weight function, the above relation reads

ω′(x)
ω(x)

=
τ(x)− σ′(x)

σ(x)
, or, equivalently υ′(x) = −τ(x)− σ′(x)

σ(x)
.

Let consider the linear functional UC associated with the measure dµ[1](c, x) = (x−c)dµ(x)
(see (2.12)). In order to find the Pearson equation that UC satisfies, we analyze two

situations:

(i) If σ(c) 6= 0, then

D[(x− c)σ(x)UC ] = D[(x− c)2σ(x)L] = 2(x− c)σ(x)L+ (x− c)2D[(σ(x)L]

= 2σ(x)UC + (x− c)2τ(x)L = [2σ(x) + (x− c)τ(x)]UC .

Thus,

D[φ(x)UC ] = ψ(x)UC ,

where {
φ(x) = (x− c)σ(x)

ψ(x) = 2σ(x) + (x− c)τ(x).
(3.19)
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(ii) If σ(c) = 0, i.e., σ(x) = (x− c)σ̄(x), then

D[σ(x)UC ] = D[(x− c)σ̄(x)UC ] = D[(x− c)2σ̄(x)L] = D[(x− c)σ(x)L]

= σ(x)L+ (x− c)D[σ(x)L] = σ(x)L+ (x− c)τ(x)L = (σ̄(x) + τ(x))UC .

In this case,

D[φ(x)UC ] = ψ(x)UC ,

with {
φ(x) = σ(x)

ψ(x) = σ̄(x) + τ(x).
(3.20)

It is well known that the sequence of monic polynomials {P̂ [1]
n (x)}n≥0, orthogonal with

respect to dµ[1](x) = (x− c)dµ, satisfies the structure relation (see [20] and [82])

φ(x)[P̂ [1]
n ]′(x) = A(x, n)P̂ [1]

n (x) +B(x, n)P̂
[1]
n−1(x), (3.21)

where A(x, n) and B(x, n) are polynomials of a fixed degree, and the three term recurrence

relation (see [13] )

x P̂ [1]
n (x) = P̂

[1]
n+1(x) + β̃n P̂

[1]
n (x) + γ̃n P̂

[1]
n−1(x), n ≥ 0, (3.22)

with initial conditions P̂
[1]
0 (x) = 1 and P̂

[1]
−1(x) = 0, and

β̃n = βn+1 +
P̂n+2(c)

P̂n+1(c)
− P̂n+1(c)

P̂n(c)
, n ≥ 0, (3.23)

and

γ̃n =
P̂n+1(c)P̂n−1(c)

[P̂n(c)]2
γn > 0, n ≥ 1. (3.24)

Lemma 3.1 [45] We have, for n ≥ 2

A(x, n) +A(x, n− 1) +
(x− β̃n−1)

γ̃n−1
B(x, n− 1) = φ′(x)− ψ(x). (3.25)

Proof. According to a result by Ismail ([45], (1.12)) which must be adapted to our

situation since we use monic polynomials, we get

A(x, n) +A(x, n− 1) +
(x− β̃n−1)

γ̃n−1
B(x, n− 1)
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= −φ(x)
[
ω[1](x)

]′

ω[1](x)
− φ(x)

ψ(x)− φ′(x)
φ(x)

φ′(x)− ψ(x),

where ω[1](x) = (x− c)ω(x).

Next, in order to find the holonomic equation that Q̂n satisfy (following the Ismail’s

model). Applying the derivative operator in (3.5) and multiplying it by φ(x), we obtain

φ(x)[Q̂n]
′(x) = φ(x)[P̂ [1]

n ]′(x) + cnφ(x)[P̂
[1]
n−1]

′(x). (3.26)

Thus, substituting (3.21) in (3.26), yields

φ(x)[Q̂n]
′(x) = A(x, n)P̂ [1]

n (x)

+ [B(x, n) + cnA(x, n− 1)] P̂
[1]
n−1(x) + cnB(x, n− 1)P̂

[1]
n−2(x).

Using (3.22) in the above expression, we obtain

φ(x)[Q̂n]
′(x) = Ã(x, n)P̂ [1]

n (x) + B̃(x, n)P̂
[1]
n−1(x), (3.27)

where

Ã(x, n) = A(x, n)− cn
γ̃n−1

B(x, n− 1) and (3.28)

B̃(x, n) = B(x, n) + cnA(x, n− 1) +
cn
γ̃n−1

(x− β̃n−1)B(x, n− 1). (3.29)

Therefore, from (3.5) and (3.27), it follows that
[

1 cn

Ã(x, n) B̃(x, n)

][
P̂

[1]
n (x)

P̂
[1]
n−1(x)

]
=

[
Q̂n(x)

φ(x)[Q̂n]
′(x)

]
,

that is,

P̂ [1]
n (x) =

B̃(x, n)

B̃(x, n)− cnÃ(x, n)
Q̂n(x)−

cnφ(x)

B̃(x, n)− cnÃ(x, n)
[Q̂n]

′(x)

and

P̂
[1]
n−1(x) =

−Ã(x, n)
B̃(x, n)− cnÃ(x, n)

Q̂n(x) +
φ(x)

B̃(x, n)− cnÃ(x, n)
[Q̂n]

′(x).

Substituting the above two expressions in (3.21), we deduce

φ(x)

[
B̃(x, n)Q̂n(x)

B̃(x, n)− cnÃ(x, n)
− cnφ(x)[Q̂n]

′(x)

B̃(x, n)− cnÃ(x, n)

]′
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= A(x, n)

(
B̃(x, n)Q̂n(x)

B̃(x, n)− cnÃ(x, n)
− cnφ(x)[Q̂n]

′(x)

B̃(x, n)− cnÃ(x, n)

)

+B(x, n)

(
−Ã(x, n)Q̂n(x)

B̃(x, n)− cnÃ(x, n)
+

φ(x)[Q̂n]
′(x)

B̃(x, n)− cnÃ(x, n)

)
.

Then the following statement follows

Theorem 3.7 (Holonomic eq. for one mass point) The MOPS {Q̂n(x)}n≥0 satisfies

the holonomic equation (second order linear differential equation)

A(x;n)[Q̂n]
′′(x) +B(x;n)[Q̂n]

′(x) + C(x;n)Q̂n(x) = 0, (3.30)

where

A(x;n) =
cn [φ(x)]

2

B̃(x, n)− cnÃ(x, n)
,

B(x;n) =
φ(x)

[
B(x, n)− B̃(x, n) + cn(φ

′(x)−A(x, n))
]

B̃(x, n)− cnÃ(x, n)

−cnφ(x)
2[B̃(x, n)− cnÃ(x, n)]

′
(
B̃(x, n)− cnÃ(x, n)

)2 ,

C(x;n) =
A(x, n)B̃(x, n)−B(x, n)Ã(x, n)

B̃(x, n)− cnÃ(x, n)
− φ(x)

[
B̃(x, n)

B̃(x, n)− cnÃ(x, n)

]′
.

If we denote u(x;n) := B̃(x, n)− cnÃ(x, n) and using (3.25), (3.28), and (3.29), then

u(x;n) = B(x, n) + cn

[
−2A(x, n) + φ′(x)− ψ(x) +

cn
γ̃n−1

B(x, n− 1)

]
. (3.31)

Notice that, according to the fact that the zeros of Q̂n are simple, then u(xn,k;n) 6= 0.

On the other hand, from (3.31) and (3.28), we obtain

B̃(x, n)−B(x, n) + cnA(x, n)− cnφ
′(x) = −cnψ(x).

If we evaluate this second order linear differential equation (3.30) at xMn,k, k = 1, 2, . . . n,

then we obtain

A(xMn,k;n)[Q̂n]
′′(xMn,k) +B(xMn,k;n)[Q̂n]

′(xMn,k) = 0.
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Hence,

[Q̂n]
′′(xMn,k)

[Q̂n]′(xMn,k)
= −

B(xMn,k;n)

A(xMn,k;n)
, k = 1, 2, . . . n. (3.32)

Substituting A(xMn,k;n) and B(xMn,k;n) in the right hand side of (3.32), we get

[Q̂n]
′′(xMn,k)

[Q̂n]′(xMn,k)
=

[B̃(xMn,k, n)− cnÃ(x
M
n,k, n)]

′

B̃(xMn,k, n)− cnÃ(xMn,k, n)
+

B̃(xMn,k, n)−B(xMn,k, n) + cnA(x
M
n,k, n)− cnφ

′(xMn,k)

cnφ(xMn,k)
.

Thus
[Q̂n]

′′(xMn,k)

[Q̂n]′(xMn,k)
= [lnu]′ (xMn,k, n)−

ψ(xMn,k)

φ(xMn,k)
, k = 1, 2, . . . n.

We consider two external fields

−
∫
ψ(x)

φ(x)
dx and lnu(x;n).

In this model, the (double) total external potential V(x) is given by

V(x) = −
∫
ψ(x)

φ(x)
dx+ lnu(x;n). (3.33)

Let us consider a system of n movable positive unit charges in (c, b) or (a, c), depending

on the location of the point c with respect to (a, b), in the presence of the external potential

V(x) given in (3.33). Let x := (x1, . . . , xn), where x1, . . . , xn denote the location of the

charges. Following Ismail ([46, Ch. 3], [45] and [47]), in this model the potential energy

at x of a point charge e located at certain arbitrary point t is −2e ln |x− t|. Thus,

E(x) =
n∑

k=1

V(xk)− 2
∑

1≤j<k≤n

ln |xj − xk|

can be interpreted as the (double, see [80, Ch. 3]) total energy of the system.

To standardize all the electrostatic interpretations provided in this memoir, we will

consider that the total electrostatic energy stored because the position of the charges

in the global system is actually given by the half of that considered in Ismail’s model.

Therefore, the actual total electrostatic potential considered is

V (xk) =
1

2
V(xk)
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and the total electrostatic energy is

E(x) =
1

2
E(x) =

n∑

k=1

V (xk)−
∑

1≤j<k≤n

ln |xj − xk| . (3.34)

In order to find the critical points of E(x) we set

− ∂

∂xj
E(x) = 0 ⇔ ψ(xj)

φ(xj)
− u′(xj ;n)
u(xj ;n)

+ 2
∑

1≤k≤n,k 6=j

1

xj − xk
= 0, j = 1, . . . , n. (3.35)

Let f(y) := (y − x1) · · · (y − xn). Thus,

ψ(xj)

φ(xj)
− u′(xj ;n)
u(xj ;n)

+
f ′′(xj)
f ′(xj)

= 0, j = 1, . . . , n,

or, equivalently,

f ′′(y) +
B(y;n)

A(y;n)
f ′(y) = 0, y = x1, . . . , xn.

Therefore

f ′′(y) +
B(y;n)

A(y;n)
f ′(y) +

C(y;n)

A(y;n)
f(y) = 0, y = x1, . . . , xn. (3.36)

On the other hand, from (3.36) we obtain f(y) = Q̂n(y), which means that the zeros of

Q̂n(x) satisfy (3.35).

3.5.2 Example with the zeros of Krall-Laguerre MOPS

We give an electrostatic interpretation for the zeros of Krall-Laguerre polynomials Q̂α
n(x)

orthogonal with respect to the measure (3.18).

We analyze two cases:

1. First, we consider c = 0. Thus, the polynomials Q̂α
n(x; 0) are orthogonal with

respect to

dµM (x; 0) = xαe−xdx+Mδ(x), α > −1,

The measure

dµ[1](x) = xα+1e−xdx

satisfies a Pearson equation with (see (3.20))

φ(x) = σ(x) = x, ψ(x) = σ̄(x) + τ(x) = α+ 2− x.
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On the other hand, the structure relation (3.21) reads (see [99])

φ(x)[L̂α+1
n ]′(x) = A(x, n)L̂α+1

n (x) +B(x, n)L̂α+1
n−1(x),

where

φ(x) = x, A(x, n) = n, B(x, n) = n+ α+ 1.

The coefficients (3.6) and (3.22) are

γ̃n = n(n+ α+ 1),

cn = − 1 +MKn(0, 0)

1 +MKn−1(0, 0)

L̂α
n−1(0)

L̂α
n(0)

n(n+ α)

=
n!Γ(α+ 1)Γ(α+ 2) +MΓ(n+ α+ 2)

(n− 1)!Γ(α+ 1)Γ(α+ 2) +MΓ(n+ α+ 1)

As a conclusion, u(x;n) in (3.31) becomes

u (x;n) = n(n+ α+ 1)− cn (2n+ 1 + α− cn) + cnx

with a zero at

zn = (2n+ 1 + α− cn)−
n(n+ α+ 1)

cn
.

It is easy to see that 0 < cn < n+ α+ 1. Thus, u(0, n) < 0 and it implies that zn > 0.

The electrostatic interpretation of the distribution of zeros means that we have an

equilibrium position under the presence of a total external field

V (x) =
1

2
lnu(x;n)− 1

2
lnxα+2e−x,

where the first term represents a short range potential corresponding to a unit charge

located at zn and the second one is a long range potential associated with the weight

function (see also [47] and [46]).

Next we show in (3.5.2) the position of the least two zeros of the Krall-Laguerre

polynomial Q̂α
5 (x) (at x5,1 = 0.0892553 and x5,2 = 1.27635) and the unique zero zn =

−0.0357143 of u (x, n). Parameters considered were n = 5, α = 0, and M = 0.5.

2. Now, we take c < 0. In this case dµ[1](x) = (x − c)xαe−xdx. Thus, the structure

relation (3.21) for dµ[1](x) is

φ(x)[L̂α,[1]
n ]′(x) = A(x, n)L̂α,[1]

n (x) +B(x, n)L̂
α,[1]
n−1(x),
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Figure 3.3: The least two zeros of Q̂α
5 (x) and the polynomial u(x;n) (dashed line).

where

φ(x) = (x− c)x,

A(x, n) = n

[
x− (n+ 1 + an)

(
1 +

n+ α

an−1

)]
,

B(x, n) =
n (n+ α)

an−1
[anx− (n+ 1 + an) (n+ 1 + an + α)] .

Proof. From (2.17) we obtain

(x− c) L̂α,[1]
n (x) = L̂α

n+1(x)−
L̂α
n+1(c)

L̂α
n(c)

L̂α
n(x).

Taking derivatives with respect to x in both hand sides of the above expression, and

multiplying the resulting expression by x, we derive

xL̂α,[1]
n (x) + x (x− c) [L̂α,[1]

n ]′(x) = x[L̂α
n+1]

′(x)− L̂α
n+1(c)

L̂α
n(c)

x[L̂α
n]

′(x).

Using the structure relation and the three term recurrence relation for Laguerre polyno-

mials we obtain

xL̂α,[1]
n (x) + x (x− c) [L̂α,[1]

n ]′(x) =
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(n+ 1) L̂α
n+1(x) + (n+ 1) (n+ 1 + α) L̂α

n(x)−
L̂α
n+1(c)

L̂α
n(c)

[
nL̂α

n(x) + n (n+ α) L̂α
n−1(x)

]
,

or

xL̂α,[1]
n (x) + x (x− c) [L̂α,[1]

n ]′(x) =
[
(n+ 1) (x− n)− nL̂α

n+1(c)

L̂α
n(c)

]
L̂α
n(x)−

(
n (n+ 1) (n+ α) + n (n+ α)

L̂α
n+1(c)

L̂α
n(c)

)
L̂α
n−1(x).

Let

an =
L̂α
n+1 (c)

L̂α
n (c)

and, from (3.8),

L̂α
n(x) = L̂α,[1]

n (x)− γn
an−1

L̂
α,[1]
n−1(x),

we have

xL̂α,[1]
n (x) + x (x− c) [L̂α,[1]

n ]′(x) =

((x− n) (n+ 1)− nan) L̂
α,[1]
n (x)

−
[
((n+ 1) (x− n)− nan)

n (n+ α)

an−1
+ n (n+ α) (n+ 1 + an)

]
L̂
α,[1]
n−1(x)

+n (n− 1) (n+ α) (n− 1 + α) (n+ 1 + an)
L̂
α,[1]
n−2(x)

an−2
.

Using (3.22) and (3.23)

γ̃n−1

γn−1
=

L̂α
n(c)

L̂α
n−1(c)

L̂α
n−2(c)

L̂α
n−1(c)

we obtain
an−1

an−2
=

γ̃n−1

(n− 1) (n− 1 + α)

(n− 1) (n− 1 + α)

an−2
=
γ̃n−1

an−1

and, then,

xL̂α,[1]
n (x) + x (x− c) [L̂α,[1]

n ]′(x) =

[
((n+ 1) (x− n)− nan)−

n (n+ α) (n+ 1 + an)

an−1

]
L̂α,[1]
n (x)

+n (n+ α)

[
1

an−1
(n+ 1 + an)

(
x− β̃n−1

)
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− 1

an−1
((n+ 1) (x− n)− nan)− (n+ 1 + an)

]
L̂
α,[1]
n−1(x)

Therefore,

φ(x)[L̂α,[1]
n ]′(x) = A(x, n)L̂α,[1]

n (x) +B(x, n)L̂
α,[1]
n−1(x),

where

φ(x) = x (x− c) ,

A(x, n) = ((n+ 1) (x− n)− nan)−
n (n+ α) (n+ 1 + an)

an−1
− x

B(x, n) = n (n+ α)

[
1

an−1
(n+ 1 + an)

(
x− β̃n−1

)

− 1

an−1
((n+ 1) (x− n)− nan)− (n+ 1 + an)

]
.

Simplifying these expressions we get

A(x, n) = n

[
x− (n+ 1 + an)

(
1 +

n+ α

an−1

)]
,

B(x, n) = n (n+ α)

[
an
an−1

x+
n+ 1 + an
an−1

(
n− β̃n−1

)
− (n+ 1 + an)

]
.

In the last expression, using again (3.23)

β̃n = βn+1 + an+1 − an = 2n+ α+ 3 + an+1 − an

we obtain

B(x, n) =
n (n+ α)

an−1
[anx− (n+ 1 + an) (n+ 1 + an + α)] .

This is an alternative approach to the method described in [75]. Notice that the

Pearson equation for the linear functional associated with the measure dµ[1] = (x − c)dµ

becomes

D[φUC ] = ψUC ,

where (see (3.19))

φ(x) = (x− c)σ(x) = (x− c)x,

ψ(x) = 2σ(x) + (x− c)τ(x) = 2x+ (x− c) (α+ 1− x) .
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According to (3.23) and (3.24),

β̃n−1 = βn + an − an−1, and γ̃n−1 =
an−1

an−2
γn−1.

This means that u(x;n) in (3.31) is the following quadratic polynomial

u (x, n) = cnx
2 + rnx+ sn

with

rn = n (n+ α)
an
an−1

+ c2n − cn (c+ α+ 1 + 2n)

= (cn + an) (cn − an)− (cn − an) c− (cn + an) (2n+ α+ 1)

and

sn = (n+ 1 + an) [(n+ 1 + an + α) (2n+ 1 + an + α− c− 2cn) + 2ccn]

+ cαcn + c2n (an − an−1 + 1− c) .

The zeros of this polynomial are

z1,n = − 1

2cn

(
rn +

√
r2n − 4sncn

)
,

z2,n = − 1

2cn

(
rn −

√
r2n − 4sncn

)
.

Taking into account
ψ(x)

φ(x)
=

2

x− c
+
α+ 1

x
− 1,

the electrostatic interpretation means the equilibrium position for the zeros under the

presence of a total external field

V (x) =
1

2
lnu(x, n)− 1

2
ln (x− c)2 xα+1e−x, (3.37)

where the first one is a short range potential corresponding to two unit charges located at

z1,n and z2,n and the second one is a long range potential associated with a polynomial

perturbation of the weight function.

In figure 3.4 we show the position of the least two zeros of the Krall-Laguerre polyno-

mial Q̂α
6 (x) (at x6,1 = −0.145632 and x6,2 = 0.714756) and the two zeros of u(x;n) (at
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Figure 3.4: The least two zeros of Q̂α
6 (x) and polynomial u(x;n) (dashed line).

z1,6 = −0.82332 and z2,6 = −0.0530003). The parameters are considered when n = 6,

α = 0, c = −1 and M = 5.0 · 10−3.

Next we also show some numerical experiments dealing with the least zero of Krall-

Laguerre orthogonal polynomial Q̂α
n(x). We are interested to analyze when such a zero

is negative as well as how fast converges to the point c. To obtain these results we have

implemented a Matlabr software using the classical Chebyshev algorithm, since these

polynomials satisfy a three term recurrence relation and therefore, this technique can be

used.

In the first two tables, for M = 0 obviously we recover the least zero and the second

zero of the classical Laguerre polynomials (in bold). The following table shows this effect

for the first and second zeros of Krall-Laguerre polynomial of degree n = 15 and α = 0,

for some choices of the mass M , when c = −10

xM
15,k(0) M = 0 M = 5.0 · 10−12 M = 5.0 · 10−8 M = 5.0 · 10−4 M = 5.0 · 10−2

k = 1 0.0933078 −9.9962381 −9.9999996 −10.0 −10.0

k = 2 0.4926917 0.1117925 0.1117908 0.1117908 0.1117908
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as well as when the masspoint is located at c = −1

xM
15,k(0) M = 0 M = 5.0 · 10−12 M = 5.0 · 10−8 M = 5.0 · 10−4 M = 5.0 · 10−2

k = 1 0.0933078 0.0933077 0.09307224 −0.9279098 −0.9992515

k = 2 0.4926917 0.4926916 0.4917823 0.1649767 0.1632534

.

In the next table we give the least zero for polynomials of degree n = 7, α = 0, as well

as we point out the fact that there exists M = M0 such that this zero is negative. In

this particular example, with the mass point located at c = −10, this value is roughly

1, 0 · 10−9 < M0 < 2 · 10−9

xM
7,k(0) M = 0 M = 1.0 · 10−9 M = 2.0 · 10−9 M = 5.0 · 10−9 M = 5.0 · 10−5

k = 1 0.193044 0.048634 −0.775950 −3.598918 −9.998880

and with the mass point located at c = −1, we need larger values of M0 to get the least

zero as a negative real number. Now the estimate is 1.0 · 10−3 < M0 < 2 · 10−3.

xM
7,k(0) M = 0 M = 5.0 · 10−9 M = 1.0 · 10−3 M = 2.0 · 10−3 M = 5.0 · 10−2

k = 1 0.193044 0.193043 0.059013 −0.094368 −0.915571

Another interesting question is to analyze, for a fixed value M , the behavior of zeros

of Krall-Laguerre polynomials in terms of the parameter α. Notice that, for a fixed value

of α we can lose its negative zero. Again we show the behavior of the first two zeros to

give more information about their relative spacing.

For instance, let us show the first two zeros of the Krall-Laguerre polynomials of degree

n = 6, when M = 5.0 · 10−8 and the mass point is located at c = −10,

xM
6,k(α) α = 0 α = 0.5 α = 1 α = 3 α = 10

k = 1 −3.498898 −1.606946 −0.173020 1.271640 4.890738

k = 2 0.333321 0.592795 1.031807 3.044173 8.143534

and again, the first two zeros when M = 5.0 · 10−3 and c = −1.

xM
6,k(α) α = 0 α = 0.5 α = 1 α = 3 α = 10

k = 1 −0.145632 −0.146124 −0.083058 0.835712 4.890712

k = 2 0.714756 0.982986 1.270833 2.677161 8.143506

Finally, another interesting numerical approach is to consider a different choice of the fixed

parameters. For instance, for a fixed M we would find values of the degree n for which
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Q̂α
n(x) has a negative zero. Locating the mass point at c = −10, we have

M = 5.0 · 10−8 n ≥ n0

α = −0.99 n ≥ 5

α = 0 n ≥ 6

α = 1 n ≥ 6

α = 2.5 n ≥ 7

α = 5 n ≥ 10

α = 8 n ≥ 14

M = 5.0 · 10−6 n ≥ n0

α = −0.99 n ≥ 4

α = 0 n ≥ 4

α = 1 n ≥ 5

α = 2.5 n ≥ 5

α = 5 n ≥ 7

α = 8 n ≥ 11

M = 5.0 · 10−4 n ≥ n0

α = −0.99 n ≥ 3

α = 0 n ≥ 3

α = 1 n ≥ 3

α = 2.5 n ≥ 4

α = 5 n ≥ 5

α = 8 n ≥ 8

3.5.3 Example with the zeros of Krall-Jacobi MOPS

We give an electrostatic interpretation for the zeros of Krall-Jacobi polynomials Q̂α,β
n (x; c)

which are orthogonal with respect to the measure

dµM (x; c) = (1− x)α(1 + x)βdx+Mδ(x− c),

with c 6∈ (−1, 1) and M ≥ 0.

We analyze two cases:

1. First, we consider c = −1. Thus, the polynomials Q̂α,β
n (x;−1) are orthogonal with

respect to

dµM (x;−1) = (1− x)α(1 + x)βdx+Mδ(x+ 1).

The measure

dµ[1](x) = (x− (−1))dµ(x) = (1− x)α(1 + x)β+1dx

satisfies a Pearson equation with (see (3.20))

φ(x) = σ(x) = 1− x2, ψ(x) = σ̄(x) + τ(x) = (β − α+ 1)− (α+ β + 3)x.

On the other hand, the structure relation (3.21) reads

φ(x)[P̂α,β+1
n ]′(x) = A(x, n)P̂α,β+1

n (x) +B(x, n)P̂α,β+1
n−1 (x),

where

A(x, n) =
−n[β − α+ 1 + (2n+ α+ β + 1)x]

2n+ α+ β + 1
,
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B(x, n) =
4n(n+ α)(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β + 1)2(2n+ α+ β)
.

The coefficient γ̃n in (3.22) when c = −1 and P̂
α,β,[1]
n (x) = P̂α,β+1

n (x) is

γ̃n = γα,β+1
n =

4n(n+ α)(n+ β + 1)(n+ α+ β + 1)

(2n+ α+ β)(2n+ α+ β + 1)2(2n+ α+ β + 2)

and

cn =
1 +MKn(−1,−1)

1 +MKn−1(−1,−1)

2n(n+ α)

(2n+ α+ β)(2n+ α+ β + 1)
> 0,

Thus,

u(x;n) = B(x, n)

+cn

[
(2n+ α+ β)cn − (α+ β + 1)(β − α+ 1)

2n+ α+ β + 1

]
+ (2n+ α+ β + 1)cnx.

Observe that the zero of u(x, n) belongs to (−1, 1). In fact, after some tedious calculations

we see that

u(1;n) = B(1, n)

+cn

[
(2n+ α+ β)cn +

2(2n(n+ α+ β + 1) + α(α+ β + 1))

2n+ α+ β + 1

]
> 0,

and

u(−1, n)

=
−2α+β+3(β + 1)Γ(n)Γ(n+ α)Γ(β + 2)2Γ(n+ β + 1)Γ(n+ α+ β + 1)M

2n+ α+ β

× 1

2α+β+1Γ(n)Γ(n+ α)Γ(β + 1)Γ(β + 2) +MΓ(n+ β + 1)Γ(n+ α+ β + 1)

< 0.

Using some known properties of the Jacobi polynomials we conclude that

zn = −1 + 2M
n(n+ α)

(
P̂α,β
n (−1)

)2
/||P̂α,β

n ||2µ
(2n+ α+ β + 1)2 (1 +MKn (−1,−1))

×

(
P̂α,β
n (−1)

)2
/||P̂α,β

n ||2µ
Kn−1 (−1,−1) (1 +MKn−1 (−1,−1))

.
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The electrostatic interpretation means that the equilibrium position for the zeros under

the presence of a total external field

V (x) =
1

2
lnu(x, n)− 1

2
ln(1− x)α+1(1 + x)β+2,

where the first one is a short range potential corresponding to a unit charge located at

the zero of u(x, n) and the other one is a long range potential associated with the weight

function.

2. We take c < −1. Then,

dµ[1](x) = (x− c)(1− x)α(1 + x)βdx

and the structure relation (3.21) for the above measure is

φ(x)[P̂α,β,[1]
n ]′(x) = A(x, n)P̂α,β,[1]

n (x) +B(x, n)P̂
α,β,[1]
n−1 (x),

where

φ(x) = (x− c)(1− x2),

A(x, n) = an+1(x− βn) + bn+1 − λ nan − (an+1γn + λnbn)
1

λn−1
− 1 + x2,

B(x, n) = (an+1(x− βn) + bn+1 − λnan)
γn
λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1
.

Let

λn = λα,βn (c) =
P̂α,β
n+1 (c)

P̂α,β
n (c)

. (3.38)

From (2.17) we obtain

(x− c) P̂α,β,[1]
n (x) = P̂α,β

n+1(x)− λnP̂
α,β
n (x).

Taking derivatives with respect to x in both hand sides of the above expression, and

multiplying them by (1− x2), we see that

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

= (1− x2)[P̂α,β
n+1]

′(x)− λn(1− x2)[P̂α,β
n ]′(x).
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Since

(1− x2)[P̂α,β
n ]′(x) = anP̂

α,β
n (x) + bnP̂

α,β
n−1(x),

where

an = aα,βn (x) =
−n[β − α+ (2n+ α+ β)x]

2n+ α+ β
,

bn = bα,βn =
4n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β)2(2n+ α+ β − 1)
,

we obtain

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

= an+1P̂
α,β
n+1(x) + (bn+1 − λnan) P̂

α,β
n (x)− λnbnP̂

α,β
n−1(x).

The three term recurrence relation of monic Jacobi polynomials yields

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

= [an+1(x− βn) + bn+1 − λnan] P̂
α,β
n (x)− (an+1γn + λnbn)P̂

α,β
n−1(x).

From (3.8) and (3.38),

P̂α,β
n (x) = P̂α,β,[1]

n (x)− γn
λn−1

P̂
α,β,[1]
n−1 (x).

Then

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

= [an+1(x− βn) + bn+1 − λnan] P̂
α,β,[1]
n (x)

−
[
(an+1(x− βn) + bn+1 − λnan)

γn
λn−1

+ an+1γn + λnbn

]
P̂

α,β,[1]
n−1 (x)

(an+1γn + λnbn)
γn−1

λn−2
P̂

α,β,[1]
n−2 (x).

From (3.22) for monic kernels,

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

= [an+1(x− βn) + bn+1 − λnan] P̂
α,β,[1]
n (x)

−
[
(an+1(x− βn) + bn+1 − λnan)

γn
λn−1

+ an+1γn + λnbn

]
P̂

α,β,[1]
n−1 (x)
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(an+1γn + λnbn)
γn−1

λn−2

(x− β̃n−1)P̂
α,β,[1]
n−1 (x)− P̂

α,β,[1]
n (x)

γ̃n−1
.

According to (3.23) and (3.38), we obtain

γ̃n−1

γn−1
=
λn−1

λn−2
.

Therefore

(1− x2)P̂α,β,[1]
n (x) + (x− c) (1− x2)[P̂α,β,[1]

n ]′(x)

=

[
an+1(x− βn) + bn+1 − λnan − (an+1γn + λnbn)

1

λn−1

]
P̂α,β,[1]
n (x)

−
[
(an+1(x− βn) + bn+1 − λnan)

γn
λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1

]
P̂

α,β,[1]
n−1 (x).

Thus

φ(x)[P̂α,β,[1]
n ]′(x) = A(x, n)P̂α,β,[1]

n (x) +B(x, n)P̂
α,β,[1]
n−1 (x),

where

φ(x) = (x− c)(1− x2),

A(x, n) = an+1(x− βn) + bn+1 − λnan − (an+1γn + λnbn)
1

λn−1
− 1 + x2,

B(x, n) = (an+1(x− βn) + bn+1 − λnan)
γn
λn−1

+ an+1γn + λnbn

−(an+1γn + λnbn)
x− β̃n−1

λn−1
.

Simplifying these expressions we have

A(x, n) = An,0 +An,1x+An,2x
2,

B(x, n) = Bn,0 +Bn,1x+Bn,2x
2.

Notice that the Pearson equation for the linear functional associated with the measure

dµ[1](x) = (x− c)(1− x)α(1 + x)βdx
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becomes

D[φUC ] = ψUC ,

with (see (3.19))

φ(x) = (x− c)σ(x) = (x− c)(1− x2),

ψ(x) = 2σ(x) + (x− c)τ(x) = 2(1− x2) + (x− c)(β − α− (α+ β + 2)x),

which means that u (x;n) is the following quadratic polynomial

u (x;n) = B(x, n) + cn

[
−2A(x, n) + φ′(x)− ψ(x) +

cn
γ̃n−1

B(x, n− 1)

]

=

[
Bn,2 +

(
α+ β + 1− 2An,2 +

cnBn−1,2

γ̃n−1

)
cn

]
x2

+

{
c2nBn−1,1

γ̃n−1
+Bn,1 − [α(c− 1) + β(c+ 1) + 2An,1]cn

}
x

+Bn,0 − [2An,0 + 1 + c(α− β)]cn +
c2nBn−1,0

γ̃n−1
.

Taking into account
ψ(x)

φ(x)
=

2

x− c
− α+ 1

1− x
+
β + 1

1 + x
,

the electrostatic interpretation means that the equilibrium position for the zeros under

the presence of a total external field

V (x) =
1

2
lnu(x;n)− 1

2
ln (x− c)2 (1− x)α+1(1 + x)β+1,

where the first one is a short range potential corresponding to two unit charges located

at the zeros of u(x;n) and the second one is a long range potential associated with a

polynomial perturbation of the weight function.

3.6 General electrostatic model for Krall-Laguerre OPS

In this section, we apply again the Stieltjes’ ideas (see [39] and [101]) to study the elec-

trostatic interpretation of zeros of perturbed MOPS from an alternative point of view to

that followed in the preceding sections. We consider only the case of orthogonality with

respect to a standard Laguerre weight, perturbed with a finite number m of positive mass



3.6. GENERAL ELECTROSTATIC MODEL FOR KRALL-LAGUERRE OPS 69

points on the negative real axis. Note that this is a generalization of the problem discussed

in the preceding sections, but taking into account only a canonical example of a measure

with an unbounded support.

Next, we provide the holonomic equation that the family {Q̂α,m
n }n≥0 satisfy. This

differential equation will be useful to get a new electrostatic model in this Section. We

begin by proving a lemma, concerning two connection formulas that will be needed later.

Lemma 3.2 For the sequences of polynomials {Q̂α,m
n }n≥0 and {L̂α

n}n≥0 we get

Rm(x)Q̂α,m
n (x) = A1(x;n)L̂

α
n(x) +B1(x;n)L̂

α
n−1(x), (3.39)

x[Rm(x)Q̂α,m
n (x)]′ = C1(x;n)L̂

α
n(x) +D1(x;n)L̂

α
n−1(x), (3.40)

where

A1(x;n) = Rm(x)−
m∑

j=1

(
Mj L̂

α
n−1(cj) Q̂

α,m
n (cj)

(n− 1)!Γ(n+ α)

)
Rm,j(x),

B1(x;n) =

m∑

j=1

(
Mj L̂n(cj) Q̂

α,m
n (cj)

(n− 1)!Γ(n+ α)

)
Rm,j(x), (3.41)

Rm,k(x) =
m∏

j=1
j 6=k

(x− cj) ,

C1(x;n) = nA1(x;n)−B1(x;n) + xA′
1(x;n),

D1(x;n) = n(n+ α)A1(x;n) + (x− (n+ α))B1(x;n) + xB′
1(x;n).

Proof. Since Kn−1(x, y) is a polynomial of degree n− 1 in the variable y, we have

〈Kn−1(x, y), Q̂
α,m
n (y)〉m = 0,

〈Kn−1(x, y), Q̂
α,m
n (y)〉α = −

m∑

j=1

Mj Kn−1(x, cj) Q̂
α,m
n (cj).

(3.42)

Using in (3.42) the Christoffel-Darboux formula, we have

〈Kn−1(x, y), Q̂
α,m
n (y)〉α = −




m∑

j=1

Mj L̂
α
n−1(cj) Q̂

α,m
n (cj)

(n− 1)!Γ(n+ α)(x− cj)


 L̂α

n(x)

−




m∑

j=1

Mj L̂
α
n(cj) Q̂

α,m
n (cj)

(n− 1)!Γ(n+ α)(x− cj)


 L̂α

n−1(x). (3.43)
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Replacing (3.43) in (3.42) and multiplying by Rm(x), we deduce (3.39) for x ∈ C \
{R+ ∪ {c1, . . . , cm}}. To prove (3.40), we can take derivatives in both hand sides of (3.39)

[Rm(x)Q̂n(x)]
′ = A′

1(x;n)L̂
α
n(x) +A1(x;n)[L̂

α
n]

′(x) +

+B′
1(x;n)L̂

α
n−1(x) +B1 (x;n) [L̂

α
n−1]

′(x). (3.44)

Now, multiplying (3.44) by x and using (2.27)–(2.28), we obtain (3.40).

Lemma 3.3 The sequences of monic orthogonal polynomials {Q̂α,m
n }n≥0 and {L̂α

n}n≥0 are

also related by

Rm(x)Q̂α,m
n−1(x) = A2(x;n)L̂

α
n(x) +B2(x;n)L̂

α
n−1(x), (3.45)

x[Rm(x)Q̂α,m
n−1(x)]

′ = C2(x;n)L̂
α
n(x) +D2(x;n)L̂

α
n−1(x), (3.46)

where

A2(x;n) =
−1

(n− 1 + α)(n− 1)
B1(x;n− 1),

B2(x;n) = A1(x;n− 1) +
(x+ 1− 2n− α)

(n− 1 + α)(n− 1)
B1(x;n− 1), (3.47)

C2(x;n) =
−1

(n− 1 + α)(n− 1)
D1(x;n− 1),

D2(x;n) = C1(x;n− 1) +
(x+ 1− 2n− α)

(n− 1 + α)(n− 1)
D1(x;n− 1).

Proof. The proof of (3.45)-(3.46) is a straightforward consequence of (3.39)–(3.41) and

the three term recurrence relation (2.24) for monic Laguerre polynomials.

The following lemma shows the converse relation of (3.39)–(3.45) for the polynomials

L̂α
n(x) and L̂

α
n−1(x)

Lemma 3.4

L̂α
n(x) =

Rm(x)

∆(x;n)

(
B2(x;n)Q̂

α,m
n (x)−B1(x;n)Q̂

α,m
n−1(x)

)
, (3.48)

L̂α
n−1(x) =

Rm(x)

∆(x;n)

(
−A2(x;n)Q̂

α,m
n (x) +A1(x;n)Q̂

α,m
n−1(x)

)
. (3.49)

where

∆(x;n) = A1(x;n)B2(x;n)−B1(x;n)A2(x;n), deg∆(x;n) = 2m.
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Proof. Note that (3.39)–(3.45) is a system of two linear equations with two unknowns

L̂α
n(x) and L̂

α
n−1(x) and from the Cramer’s rule the lemma follows.

Lemma 3.5

G(x;n)Q̂α,m
n (x) + F (x;n)[Q̂α,m

n ]′(x) = H(x;n)Q̂α,m
n−1(x), (3.50)

J(x;n)Q̂α,m
n−1(x) + F (x;n)[Q̂α,m

n−1]
′(x) = K(x;n)Q̂α,m

n (x), (3.51)

where

F (x;n) = x∆(x;n)Rm(x),

G(x;n) = x∆(x;n)R′
m(x) +Rm(x) [D1(x;n)A2(x;n)

−C1(x;n)B2(x;n)] ,

H(x;n) = Rm(x)[D1(x;n)A1(x;n)− C1(x;n)B1(x;n)], (3.52)

J(x;n) = x∆(x;n)R′
m(x) +Rm(x) [C2(x;n)B1(x;n)

−D2(x;n)A1(x;n)] ,

K(x;n) = Rm(x)[C2(x;n)B2(x;n)−D2(x;n)A2(x;n)].

Proof. Replacing (3.48)–(3.49) in (3.40) and (3.46), (3.50) and (3.51), holds.

From (3.50)

Q̂α,m
n−1(x) =

1

H(x;n)
(G(x;n)Q̂α,m

n (x) + F (x;n)[Q̂α,m
n ]′(x)),

and replacing this polynomial in (3.51), after some cumbersome computations, we obtain

Theorem 3.8 (Holonomic Equation) The n−th monic orthogonal polynomial with res-

pect to the inner product (3.2) is a polynomial solution of the second order linear differential

equation with rational functions as coefficients

[Q̂α,m
n ]′′(x) + R1(x;n)[Q̂

α,m
n ]′(x) + R0(x;n)Q̂

α,m
n (x) = 0, (3.53)

where

R1(x;n) = −u
′
2m(x;n)

u2m(x;n)
+ 2

R′
m(x)

Rm(x)
+
α+ 1

x
− 1,

R0(x;n) =
H(x;n)G′(x;n)−G(x;n)H ′(x;n)

H(x;n)F (x;n)
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+
J(x;n)G(x;n)−K(x;n)H(x;n)

F 2(x;n)
,

u2m(x;n) = D1(x;n)A1(x;n)− C1(x;n)B1(x;n). (3.54)

Note that u2m(x;n) is a polynomial of degree 2m.

Remark 3.1 Notice that the polynomial u2m(x;n) plays the same role that the polynomial

u(x;n) (see (3.31)), In the Ismail’s model for just one mass point. Notice that degu(x;n) =

1 if c = 0 and degu(x;n) = 2 if c < 0.

Next, we apply again the Stieltjes’ ideas (see [39] and [101]) to study the electrostatic

interpretation of zeros of perturbed MOPS from an alternative point of view to that

followed in the preceding sections, for the specific case of the Laguerre measure. This result

generalizes that of (3.37) for an iterated Uvarov perturbation on the Laguerre measure

dµα(x) = xαe−xdx, α > −1.

Let Q̂α,m
n (x) be the n-th monic orthogonal polynomial with respect to the inner product

(3.2), i.e.

〈Q̂α,m
n (x), xk〉m =

∫ +∞

0
Q̂α,m

n (x)xk dµα(x) +
m∑

j=1

Mj Q̂
α,m
n (cj) c

k
j = 0, k = 0, 1, 2, . . . , n− 1. (3.55)

If

Rm(z) =
m∏

j=1

(z − cj),

then is straightforward to see that Q̂α,m
n (x) is quasi-orthogonal of order m (see [11, Defi-

nition 1]) with respect to Rm(x)dµα(x), i.e.

∫ +∞

0
xkQ̂α,m

n (x)Rm(x)dµα(x) = 0, k = 0, 1, 2, . . . , n−m− 1. (3.56)

As a well known consequence (see [99, §3.3]), the polynomial Q̂α,m
n (x) has at least n−m

changes of sign on [0,+∞). Hence, Q̂α,m
n (x) has at least n −m zeros of odd multiplicity

on [0,+∞).

Furthermore, there is at most one zero of Q̂n in each gap between ck’s, assuming c0 = 0.

This can be proved by contradiction. Suppose that the polynomial Q̂n(x), orthogonal with
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respect to the inner product (3.2), has two simple zeros x1 and x2 both inside the interval

(ck, ck−1). We can write Q̂n(x) in the form

Q̂n(x) = (x− x1)(x− x2)qn−2(x), (3.57)

where qn−2(x) is certain polynomial of degree n−2. Obviously, if dµm(x) = χR+x
αe−xdx+∑m

j=1Mjδ(x− cj), then

In =

∫

R

Q̂n(x)qn−2(x)dµm(x) = 0 (3.58)

because the orthogonality of Q̂n(x) to polynomials of lower degree.

On the other hand, (x− x1)(x− x2) > 0 whenever x /∈ (ck, ck−1), hence from (3.57)

In =

∫

R

(x− x1)(x− x2)q
2
n−2(x)dµm(x)

=

∫

R�(ck,ck−1)
(x− x1)(x− x2)q

2
n−2(x)dµm(x) > 0,

contrary to (3.58). This implies that Q̂n(x) cannot have two zeros in (ck, ck−1).

From the Fourier expansion of the polynomials {Q̂α,m
n (x)}n≥0 in terms of the monic

polynomials {L̂α
n(x)}n≥0 and the definition (2.3) of kernel polynomial associated with

Laguerre polynomials, it is straightforward to prove that {Q̂α,m
n }n≥0 and {L̂α

n}n≥0 are

related by

Q̂α,m
n (x) = L̂α

n(x)−
m∑

j=1

MjQ̂
α,m
n (cj)Kn−1(x, cj). (3.59)

Evaluating (3.59) in x = ck, with k = 1, 2, . . . ,m, we obtain the following system of m

linear equations (1 ≤ k ≤ m) with m unknowns Q̂α,m
n (cj) (1 ≤ j ≤ m)

L̂α
n(ck) = (1 + akKn−1(ck, ck)) Q̂

α,m
n (ck) +

m∑

j=1
j 6=k

MjKn−1(cj , ck)Q̂
α,m
n (cj).

Next, we present the electrostatic interpretation of the distribution of the zeros of

{Q̂α,m
n (x)}n≥0 as the logarithmic potential interaction of positive unit charges in the pre-

sence of an external field, for {c1, c2, . . . , cm} /∈ [0,+∞). We use the fact that this family

of monic polynomials satisfies the second order linear differential equation (3.53). Notice

that the zeros of Q̂α,m
n (x) are real, simple and belong to the interior of the convex hull of
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R+ ∪{c1, c2, . . . , cm}, because dµm is a positive Borel measure. Now we evaluate (3.53) at

xmn,k, where
{
xmn,k

}n

k=1
are the zeros of Q̂α,m

n (x) arranged in an increasing order, yielding

[Q̂α,m
n ]′′(xmn,k)

[Q̂α,m
n ]′(xmn,k)

= −R1(x
m
n,k;n).

Using the explicit expressions R1(x
m
n,k;n) we get, for 1 ≤ k ≤ n,

[Q̂α,m
n ]′′(xmn,k)

[Q̂α,m
n ]′(xmn,k)

=
u′2m(xmn,k;n)

u2m(xmn,k;n)
− 2

R′
m(xmn,k)

Rm(xmn,k)
− α+ 1

xmn,k
+ 1. (3.60)

Taking into account the fact that the zeros of Q̂α,m
n (x) are simple, then

[Q̂α,m
n ]′(x) =

n∑

i=1

n∏
j=1,
j 6=i

(x− xmn,j), [Q̂α,m
n ]′′(x) =

n∑

i=1

n∑

j=1,
j 6=i

n∏

l=1,
i6=l 6=j

(x− xmn,l),

[Q̂α,m
n ]′(xmn,k) =

n∏

j=1,
j 6=k

(xmn,k − xmn,j), [Q̂α,m
n ]′′(xmn,k) = 2

n∑

i=1,
i6=k

n∏

j=1,
i6=j 6=k

(xmn,k − xmn,j).

Consequently, (3.60) reads as the “electrostatic equilibrium condition” (see [39] and [47]

for other examples). Indeed, with 1 ≤ k ≤ n,

n∑

j=1
j 6=k

1

xmn,j − xmn,k
+

1

2

u′2m(xmn,k;n)

u2m(xmn,k;n)
−
R′

m(xmn,k)

Rm(xmn,k)
− α+ 1

2xmn,k
+

1

2
= 0. (3.61)

We should notice that according to the Lemma 3.2 and the fact that the zeros of

Q̂α,m
n (x) are simple, then u2m(xmn,k;n) 6= 0. The above equation means that have an

unstable (at least in principle) equilibrium on the zeros of the family {Q̂α,m
n (x)}n≥1, that

is, the gradient of the total energy is zero at the points {xmn,k}1≤k≤n. In other words, the

energy functional has a critical point (either a relative extreme or a saddle point) therein.

We now consider n unit positive charges located in the real line, with a logarithmic

interaction under an external field V (x). For x ∈ R�{cj} the total potential is

V (x) =
1

2
lnu2m(x;n)− lnRm(x)− α+ 1

2
lnx+

1

2
x. (3.62)
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The term − lnRm(x) is the potential field due to the mass points of our measure. Thus,

we have in (3.62)

V (x) =
1

2
lnu2m(x;n)− 1

2
ln
(
R2

m(x)xα+1e−x
)
.

Following [45], the term

υlong(x) =
−1

2
ln
(
R2

m(x)xα+1e−x
)
,

is said to be a long range potential, which is associated with a polynomial perturbation of

the Laguerre weight function. Similarly,

υshort(x) =
1

2
lnu2m(x;n)

represents a short range potential (or varying external potential) corresponding to 2m unit

charges located at the zeros of u2m(x;n).

Next we give some numerical experiments using Mathematicar software, dealing with

the least zeros of Krall-Laguerre polynomials. We are interested to show the location

of their zeros outside the interval [0,+∞) and the position of the source-charges of the

short range potential υshort(x), which are the roots of the polynomial u4(x;n). In these

experiments we consider in the inner product (3.2) two fixed mass points (that is,m = 2) at

points c1 = −1 and c1 = −2. The parameter α = 0 and the masses are always a1 = a2 = 1.

Notice that in the examples shown, the zeros of the Krall-Laguerre polynomials never

match with the zeros of u4 given in (3.54), i.e. the polynomial u4 never vanishes at the

zeros of any Krall-Laguerre polynomial. The negative zeros appear in bold.

Next, we show the position of the zeros of the Krall-Laguerre polynomial of degree

n = 4 and the four real zeros of the polynomial u4(x;n). Notice that the polynomial

u4(x;n) have four negative real roots, but there is only one zero of the Krall-Laguerre

polynomial on R−.

zero 1st 2nd 3rd 4th

Q̂4(x) −1.84565 0.0122706 2.65152 7.49184

u4(x; 4) −1.93302 −1.48646 −0.60338 −0.000119291

As n increases, the situation changes as expected according to the Hurwitz’s Theorem,

and the mass points attract exactly one zero of the Krall-Laguerre polynomial in each gap

between them
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zero 1st 2nd 3rd 4th 5th

Q̂5(x) −1.9219 −0.439622 1.73422 5.20588 10.7544

u4(x; 5) −1.96394 −1.56249 −0.767607 −0.11943 −

Next two tables show the behavior of the zeros of Krall-Laguerre polynomials and u4

for degrees n = 6 and n = 10 respectively. Notice that the two negative zeros of Q̂n(x)

and the four zeros of u4 become more negative approaching to the position of the mass

points

zero 1st 2nd 3rd 4th 5th 6th

Q̂6(x) −1.96485 −0.711952 1.23489 3.98228 8.03313 14.1729

u4(x; 6) −1.9831 −1.61526 −0.871511 −0.275212 − −

zero 1st 2nd 3rd 4th 5th 6th

Q̂10(x) −1.99898 −0.979076 0.515223 2.00183 4.11731 6.87812

u4(x; 10) −1.99949 −1.69674 −0.989683 −0.54116 − −

In Figure 3.5 we present an example of the electrostatic behavior of the zeros of

Q̂α,m
3 (x), the perturbed Laguerre polynomial of degree n = 3 with parameter α = 0.

The dotted line shows the monic standard Laguerre polynomial of degree n = 3 with pa-

rameter α = 0, L̂α
3 (x) and the thick black line shows the graph of Q̂α,m

3 (x) in the particular

case of two mass points a1 and a2 located at x = c1 and x = c2, respectively. The thick

blue line shows the total potential V (x) that rules the behavior of the zeros of Q̂α,m
3 (x),

and the green and orange thin lines show the short range vshort(x) and long range vlong(x)

potentials, respectively. Notice that vshort(x) has its source points in the four zeros of the

polynomial u2m(x;n) (thick red line).
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Figure 3.5: Potential graphs for two mass points.
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CHAPTER 4

Krall-Laguerre OPS: Asymptotics

4.1 Introduction

In this chapter we consider the MOPS {Q̂α
n(x)}n≥0 with respect to the inner product

〈f, g〉M =

∫ +∞

0
f(x)g(x) dµα(x) +Mf(c)g(c), f, g ∈ P, (4.1)

where dµα(x) = xαe−xdx, α > −1, M ∈ R+, and c ∈ R−. This is the Uvarov canonical

transformation of the measure dµα introduced in (2.13). The polynomials {Q̂α
n(x)}n≥0 are

said to be either Laguerre-type or Krall-Laguerre OPS.

In [52] analytic properties of orthogonal polynomials with respect to a perturbation

of the Laguerre weight when a mass is added at x = 0 are considered. When the mass

point is located at c = 0 in (4.1), an electrostatic interpretation of the zeros as equilibrium

points with respect to a logarithmic potential, under the action of an external field, has

been done in [26].

First, we consider some algebraic and analytic properties of such polynomials and to

present a comparison with those of Laguerre polynomials. We obtain the representation of

these polynomials in terms of the standard Laguerre polynomials as well as hypergeometric

functions. The lowering and raising operators associated with these polynomials are also

79
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obtained . Second, we analyze the outer relative asymptotics as well as the Mehler-Heine

formula for these polynomials.

Finally, we consider again Laguerre-type MOPS {Q̂α,m
n }n≥0 with respect to the inner

product (3.2) in order to generalize the previour results for m mass points. We find the

explicit formula for their outer relative asymptotics that such polynomials satisfy. Of

course, for m = 1 and c1 = c we recover the same results for only one mass point.

From now on, the notation un ∼= vn means that the sequence un/vnn converges to 1 as

n→ ∞.

4.2 Analytic properties of Krall-Laguerre OPS

4.2.1 The connection formula

Applying Theorem 2.6 to the sequence of monic Laguerre-type orthogonal polynomials

{Q̂α
n(x)}n≥0, we get

Q̂α
n(x) = L̂α

n(x)−MQ̂α
n (c)Kn−1 (x, c) . (4.2)

In order to find Q̂α
n (c) , we evaluate (4.2) in x = c. Thus

Q̂α
n(c) =

L̂α
n(c)

1 +MKn−1 (c, c)
(4.3)

and replacing this value in (4.2), we have

Q̂α
n(x) = L̂α

n(x)−
M L̂α

n(c)

1 +MKn−1(c, c)
Kn−1(x, c). (4.4)

On the other hand, from (2.4)

(x− c)Kn−1(x, c) =
1

||L̂α
n−1||2α

(
L̂α
n(x)L̂

α
n−1(c)− L̂α

n−1(x)L̂
α
n(c)

)
,

and (4.4) becomes

(x− c)Q̂α
n(x) = (x− c)L̂α

n(x)−

− M L̂α
n(c)

||L̂α
n−1||2α (1 +MKn−1(c, c))

(
L̂α
n(x)L̂

α
n−1(c)− L̂α

n−1(x)L̂
α
n(c)

)

= L̂α
n+1(x) +AnL̂

α
n(x) +BnL̂

α
n−1(x),
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where

An = βn − c− M L̂α
n(c)L̂

α
n−1(c)

||L̂α
n−1||2α (1 +MKn−1(c, c))

,

Bn = γn +
M
(
L̂α
n(c)

)2

||L̂α
n−1||2α (1 +MKn−1(c, c))

= γn

(
1 +MKn(c, c)

1 +MKn−1(c, c)

)
.

Introducing the notation

an =
L̂α
n+1 (c)

L̂α
n (c)

, bn =
1 +MKn(c, c)

1 +MKn−1(c, c)
(4.5)

we get

An = βn − c−M
γn

||L̂α
n||2α

L̂α
n−1(c)

L̂α
n(c)

(
L̂α
n(c)

)2

(1 +MKn−1(c, c))

= βn − c−M γn
L̂α
n−1(c)

L̂α
n(c)

((1 +Kn(c, c))−Kn−1(c, c)− 1)

||L̂α
n||2α (1 +MKn−1(c, c))

= βn − c− γn
L̂α
n−1(c)

L̂α
n(c)

(
1 +MKn(c, c)

1 +MKn−1(c, c)
− 1

)

=
(βn − c) L̂α

n(c) + γnL̂
α
n−1(c)

L̂α
n(c)

− γn
L̂α
n−1(c)

L̂α
n(c)

1 +MKn(c, c)

1 +MKn−1(c, c)

=
−L̂α

n+1(c)

L̂α
n(c)

− γn
L̂α
n−1(c)

L̂α
n(c)

1 +MKn(c, c)

1 +MKn−1(c, c)

= −an − γn
bn
an−1

= −an − Bn

an−1
(4.6)

and

Bn = γnbn. (4.7)

Notice that from (4.5)

Bn =
〈(x− c) Q̂α

n(x), L̂
α
n−1(x)〉α

||L̂α
n−1||2α

=
〈Q̂α

n(x), (x− c) L̂α
n−1(x)〉α

||L̂α
n−1||2α
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=
||Q̂α

n||2M
||L̂α

n−1||2α
= γn

||Q̂α
n||2M

||L̂α
n||2α

.

This yields an expression for the ratio of the energy of polynomials (in the sense of signal

theory) Q̂α
n and L̂α

n with respect to the norms associated with their corresponding inner

products.

Proposition 4.1 Let ||Q̂α
n||2M be the norm of Laguerre-type monic polynomials with res-

pect to (4.1). Then

||Q̂α
n||2M

||L̂α
n||2α

=
1 +MKn (c, c)

1 +MKn−1 (c, c)

Proof. Taking in account

||Q̂α
n||2M = 〈Q̂α

n(x), x
n〉M

= 〈Q̂α
n(x), L̂

α
n (x)〉M

= 〈Q̂α
n(x), L̂

α
n (x)〉α +M Q̂α

n(c)L̂
α
n (c)

and using (4.3), we get

||Q̂α
n||2M = ||L̂α

n||2α +
M
(
L̂α
n (c)

)2

1 +MKn−1 (c, c)

= ||L̂α
n||2α

(1 +MKn−1 (c, c)) +
M(L̂α

n(c))
2

||L̂α
n ||2α

1 +MKn−1 (c, c)

= ||L̂α
n||2α

1 +MKn (c, c)

1 +MKn−1 (c, c)
.

Remark. From the expressions (4.6) and (4.7) we observe that two basic parameters

(an, bn) are needed in the connection formula.

As a conclusion,

Theorem 4.1 Let {Q̂α
n(x)}n≥0 be the sequence of monic Laguerre-type polynomials or-

thogonal with respect to (4.1). Then

(x− c)Q̂α
n(x) = L̂α

n+1(x) +AnL̂
α
n(x) +BnL̂

α
n−1(x), (4.8)
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where

An = (2n+ 1 + α− c)− M L̂α
n(c)L̂

α
n−1(c)

||L̂α
n−1||2α (1 +MKn−1(c, c))

= −an − γn
bn
an−1

, (4.9)

Bn = n (n+ α)
1 +MKn(c, c)

1 +MKn−1(c, c)
= γnbn, (4.10)

with

an =
L̂α
n+1 (c)

L̂α
n (c)

, bn =
1 +MKn(c, c)

1 +MKn−1(c, c)
.

4.2.2 Hypergeometric representation

Next we will focus our attention in the representation of this new family of orthogonal po-

lynomials as hypergeometric functions. From (4.8) and the hypergeometric representation

of the classical Laguerre polynomials

L̂α
n (x) =

(−1)n Γ (n+ α+ 1)

Γ (α+ 1)
1F1 (−n;α+ 1;x) ,

we can write

(x− c) Q̂α
n(x) = − (−1)n (α+ n+ 1)(α+ 1)n

∞∑

k=0

(−n− 1)

(−n− 1 + k)

(
(−n)k
(α+ 1)k

xk

k!

)

−
(
an + γn

bn
an−1

)
(−1)n (α+ 1)n

∞∑

k=0

(
(−n)k
(α+ 1)k

xk

k!

)

−γnbn (−1)n
(α+ 1)n
(α+ n)

∞∑

k=0

(−n+ k)

(−n)

(
(−n)k
(α+ 1)k

xk

k!

)

= (−1)n (α+ 1)n

∞∑

k=0

(
(−n)k
(α+ 1)k

xk

k!

)

×
[−(α+ n+ 1) (−n− 1)

(−n− 1 + k)
−
(
an + γn

bn
an−1

)
− γnbn

(α+ n)

(−n+ k)

(−n)

]
.

Now let’s write the expression in brackets as a rational function in the variable k. A careful

computation of the elements of the sum inside these brackets, yields

[−(α+ n+ 1) (−n− 1)

(−n− 1 + k)
−
(
an + γn

bn
an−1

)
− γnbn

(α+ n)

(−n+ k)

(−n)

]
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= bn
(k − e1) (k − e2)

(k − (n+ 1))

where

e1 =
−1

2bnan−1

(
d1 +

√
d21 − 4d0bnan−1

)
,

e2 =
−1

2bnan−1

(
d1 −

√
d21 − 4d0bnan−1

)
,

d0 = (n+ 1) (γnbn + an−1 (an + 1 + α+ n (1 + bn))) ,

d1 = −γnbn − an−1 (bn (2n+ 1) + an) .

Thus

(x− c) Q̂α
n(x) =

∞∑

k=0

(
(−1)n (α+ 1)n(−n)k

(α+ 1)k

xk

k!

)
×
[
bn

(k − e1) (k − e2)

(k − (n+ 1))

]
. (4.11)

Notice that although the sum is up to infinity, this is a terminating hypergeometric

series, because the Pochhammer symbol (−n)k becomes zero if k > n + 1. Now, using

some properties of the Pochhammer symbol, we can write

(k − e1) (k − e2)

(k − (n+ 1))
=

(−e1) (1− e1)k
(−e1)k

(−e2) (1− e2)k
(−e2)k

( − (−n− 1)k
(n+ 1) (−n)k

)

=

(
e1e2

(n+ 1)

)
(1− e1)k (1− e2)k (−n− 1)k

(−e1)k (−e2)k (−n)k

and, therefore,

(x− c) Q̂α
n(x) = (−1)n bn

(
e1e2
n+ 1

)
(α+ 1)n

∞∑

k=0

(−n)k
(α+ 1)k

xk

k!
× (1− e1)k (1− e2)k (−n− 1)k

(−e1)k (−e2)k (−n)k

= (−1)n bn

(
e1e2
n+ 1

)
(α+ 1)n

∞∑

k=0

(1− e1)k (1− e2)k (−n− 1)k
(−e1)k (−e2)k (α+ 1)k

xk

k!

= Cn,α 3F3 (1− e1, 1− e2,−n− 1;−e1,−e2, α+ 1;x) .

Finally, the hypergeometric representation is

Q̂α
n(x) =

(
Cn,α

x− c

)
3F3 (1− e1, 1− e2,−n− 1;−e1,−e2, α+ 1;x) . (4.12)
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4.2.3 The three term recurrence formula

Taking into account

xQ̂α
n(x) = Q̂α

n+1(x) + β̃nQ̂
α
n(x) + γ̃nQ̂

α
n−1(x) (4.13)

we get

β̃n =
〈xQ̂α

n(x), Q̂
α
n(x)〉M

||Q̂α
n||2M

= c+
〈(x− c) Q̂α

n(x), Q̂
α
n(x)〉M

||Q̂α
n||2M

= c+
〈(x− c) Q̂α

n(x), Q̂
α
n(x)〉α

||Q̂α
n||2M

.

But, from the connection formula, and after some tedious computations, the previous

expression becomes

β̃n = c+

〈
L̂α
n+1(x)−

(
an + γn

bn
an−1

)
L̂α
n(x) + γnbnL̂

α
n−1(x), Q̂

α
n(x)

〉
α

||Q̂α
n||2M

= c−
(
an
bn

+
γn
an−1

)
− M

||L̂α
n−1||2α

L̂α
n(c)L̂

α
n−1(c)

1 +MKn−1 (c, c)

= βn + an

(
1− 1

bn

)
− an−1

(
1− 1

bn−1

)
.

On the other hand

γ̃n =
bn
bn−1

γn.

Thus, as a conclusion

Proposition 4.2 The coefficients of the three term recurrence relation for the sequence

of monic orthogonal polynomials {Q̂α
n(x)}n≥0 are

β̃n = βn + an

(
1− 1

bn

)
− an−1

(
1− 1

bn−1

)
, (4.14)

γ̃n =
bn
bn−1

γn. (4.15)

Indeed,

β̃n
βn

= 1 +
an
βn

(
1− 1

bn

)
− an−1

βn

(
1− 1

bn−1

)
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= 1 +
1

βn

L̂α
n+1 (c)

L̂α
n (c)


M

(L̂α
n(c))

2

||L̂α
n ||2α

1 +MKn(c, c)


− 1

βn

L̂α
n (c)

L̂α
n−1 (c)


M

(L̂α
n−1(c))

2

||L̂α
n−1||2α

1 +MKn−1(c, c)


 .

But

ML̂α
n+1 (c) L̂

α
n (c)

||L̂α
n||2α +M (n+ 1)!n!

(
L̂α+1
n (c)

)2
(
1−

L̂α+1
n+1 (c)

L̂α+1
n (c)

L̂α+1
n−1 (c)

L̂α+1
n (c)

)

=

(
1−

L̂α+1
n+1 (c)

L̂α+1
n (c)

)(
1−

L̂α+1
n−1 (c)

L̂α+1
n (c)

)

||L̂α
n||2α

M (n+ 1)!n!
(
L̂α+1
n (c)

)2 +

(
1−

L̂α+1
n+1 (c)

L̂α+1
n (c)

L̂α+1
n−1 (c)

L̂α+1
n (c)

) . (4.16)

According to Perron’s formula (see also Appendix C)

L̂α+1
n (c)

L̂α+1
n−1 (c)

= 1 +

√
|c|√
n

+ O
(
n−1

)

the expression (4.16) becomes
(
−
√
|c|√

n+ 1
+ O

(
n−1

)
)(√

|c|√
n

+ O
(
n−1

)
)

1−
(
1 +

√
|c|√

n+ 1

)(
1−

√
|c|√
n

)

=

− |c|√
n
√
n+ 1

+ O
(
n−3/2

)

√
|c|√
n

−
√
|c|√

n+ 1
+ O

(
n−1/2

) = −2
√
|c|n1/2 + O

(
n−1/2

)
.

Thus

β̃n
βn

= 1 +
1

2n+ 1 + α

(
−2
√
|c|n1/2 + O

(
n−1/2

))

− 1

2n+ 1 + α

(
−2
√
|c| (n− 1)1/2 + O

(
(n− 1)−1/2

))

= 1−
√
|c|
2

n−3/2 + O

(
n−5/2

)
.
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On the other hand, from (4.14) and (4.5)

γ̃n
γn

=
bn
bn−1

,

again we take into account
1 +MKn(c, c)

1 +MKn−1(c, c)

= 1 +

M(L̂α
n(c))

2

||L̂α
n ||2α

1 +MKn−1(c, c)

= 1 +

(
L̂α
n(c)

)2

||L̂α
n||2α

M (n!)2
1 + (n+ α)

[(
L̂α+1
n−1 (c)

)2
− L̂α+1

n (c) L̂α+1
n−2 (c)

]

= 1 +

(
1− L̂α+1

n (c)

L̂α+1
n−1(c)

)2

||L̂α
n||2α

M (n!)2
(
L̂α+1
n−1(c)

)2 + (n+ α)

[
1− L̂α+1

n (c)

L̂α+1
n−1 (c)

L̂α+1
n−2 (c)

L̂α+1
n−1 (c)

]

∼= 1 +

|c|
n

+ O
(
n−3/2

)

(n+ α)

[
1−

(√
|c|√
n

+ 1 + O (n−1)

)(
−
√
|c|√

n− 1
+ 1 + O (n−1)

)]

= 1 +

|c|
n

+ O
(
n−3/2

)

(n+ α)

√
|c|

2n3/2

= 1 + 2
√
|c|n−1/2 + O

(
n−1

)
.

As a conclusion, we have

Proposition 4.3

β̃n
βn

= 1−
√
|c|
2

n−3/2 + O(n−5/2),

γ̃n
γn

= 1 + 2
√
|c|n−1/2 + O(n−1).
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4.2.4 Lowering and raising operators

From the connection formula (4.8) we get

(x− c)Q̂α
n(x) = (x+An − βn) L̂

α
n(x) + (Bn − γn) L̂

α
n−1(x). (4.17)

Notice that for x = c

(c+An − βn) L̂
α
n(c) = (γn −Bn) L̂

α
n−1(c).

Thus

c+An − βn = (γn −Bn)
1

an−1

and (4.17) becomes

(x− c)Q̂α
n(x) =

(
x− c+ (γn −Bn)

1

an−1

)
L̂α
n(x) + (Bn − γn) L̂

α
n−1(x)

=

(
x− c− an−1

(
1− 1

bn−1

))
L̂α
n(x) + γn (bn − 1) L̂α

n−1(x). (4.18)

On the other hand, introducing the shift n→ n− 1 , the above expression becomes

(x− c)Q̂α
n−1(x) =

(
x− c− an−2

(
1− 1

bn−2

))
L̂α
n−1(x) + γn−1 (bn−1 − 1) L̂α

n−2(x)

and, using the three term recurrence relation, we get

(x− c)Q̂α
n−1(x) =

(
x− c− an−2

(
1− 1

bn−2

)
+ (bn−1 − 1) (x− βn−1)

)
L̂α
n−1 (x)− (bn−1 − 1) L̂α

n(x). (4.19)

Thus, taking x = c, we obtain

(
−an−2

(
1− 1

bn−2

)
+ (bn−1 − 1) (c− βn−1)

)
L̂α
n−1(c) = (bn−1 − 1) L̂α

n(c)

i.e. (
−an−2

(
1− 1

bn−2

)
+ (bn−1 − 1) (c− βn−1)

)
= (bn−1 − 1) an−1.

Replacing it in (4.19) we get

(x− c)Q̂α
n−1(x) = (bn−1 (x− c) + an−1 (bn−1 − 1)) L̂α

n−1(x) + (1− bn−1) L̂
α
n(x). (4.20)
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As a conclusion, from (4.18) and (4.20) deduce the representation of Laguerre polyno-

mials in terms of Laguerre-type polynomials which will be very useful in the sequel.

L̂α
n(x) =

∣∣∣∣∣
(x− c) Q̂α

n(x) γn(bn − 1)

(x− c) Q̂α
n−1(x) bn−1(x− c) + an−1 (bn−1 − 1)

∣∣∣∣∣
∣∣∣∣∣∣
x− c− an−1(1−

1

bn−1
) γn(bn − 1)

1− bn−1 bn−1(x− c) + an−1 (bn−1 − 1)

∣∣∣∣∣∣

=

[
(x− c) + an−1

(
1− 1

bn−1

)]
Q̂α

n(x)−
a2n−1

bn−1

(
1− 1

bn−1

)
Q̂α

n−1(x)

(x− c)
, (4.21)

L̂α
n−1(x) =

∣∣∣∣∣∣
x− c− an−1

(
1− 1

bn−1

)
Q̂α

n(x)

(1− bn−1) Q̂α
n−1(x)

∣∣∣∣∣∣
bn−1 (x− c)

=

(
1− 1

bn−1

)
Q̂α

n(x) +
1

bn−1

[
(x− c)− an−1

(
1− 1

bn−1

)]
Q̂α

n−1(x)

(x− c)
. (4.22)

Next, taking derivatives in (4.18) and multiplying by x

xQ̂α
n(x) + x (x− c) [Q̂α

n]
′(x) = xL̂α

n(x) +

(
x− c− an−1

(
1− 1

bn−1

))
x [L̂α

n]
′(x)

+γn(bn − 1)x [L̂α
n−1]

′(x),

but, according to the lowering operator for Laguerre polynomials (2.27) and the three term

recurrence relation that they satisfy, the above expression becomes

xQ̂α
n(x) + x (x− c) [Q̂α

n]
′(x)

= xL̂α
n(x) +

(
x− c− an−1

(
1− 1

bn−1

))[
nL̂α

n(x) + γnL̂
α
n−1(x)

]
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+γn(bn − 1)
[
(n− 1) L̂α

n−1(x) + γn−1L̂
α
n−2(x)

]

= xL̂α
n(x) +

(
x− c− an−1

(
1− 1

bn−1

))[
nL̂α

n(x) + γnL̂
α
n−1(x)

]

+γn(bn − 1)
[
(n− 1 + x− βn−1) L̂

α
n−1(x)− L̂α

n(x)
]

=

[
(n+ 1)x− nc− nan−1

(
1− 1

bn−1

)
− n (n+ α) (bn − 1)

]
L̂α
n(x)

+γn

[
bnx− c− an−1

(
1− 1

bn−1

)
− (n+ α) (bn − 1)

]
L̂α
n−1(x).

Multiplying both hand sides by (x− c) and using (4.21) and (4.22) we get

x (x− c) Q̂α
n(x) + x (x− c)2 [Q̂α

n]
′(x) =

[
(n+ 1)x− nc− nan−1

(
1− 1

bn−1

)
− n (n+ α) (bn − 1)

]
(x− c) L̂α

n(x)

+γn

[
bnx− c− an−1

(
1− 1

bn−1

)
− (n+ α) (bn − 1)

]
(x− c) L̂α

n−1 (x) .

Introducing the parameter

cn = c+ an−1

(
1− 1

bn−1

)
− (n+ α) (bn − 1)

the above expression reads as

x (x− c) Q̂α
n(x) + x (x− c)2 [Q̂α

n]
′(x) =

[(n+ 1)x− ncn]

{[
(x− c) + an−1

(
1− 1

bn−1

)]
Q̂α

n(x)−
a2n−1

bn−1

(
1− 1

bn−1

)
Q̂α

n−1(x)

}

+γn [bnx− cn]

{(
1− 1

bn−1

)
Q̂α

n(x) +
1

bn−1

[
(x− c)− an−1

(
1− 1

bn−1

)]
Q̂α

n−1(x)

}
.

As a conclusion,

[
x (x− c)2

d

dx
+ x (x− c)− [(n+ 1)x− ncn]

(
x− c+ an−1

(
1− 1

bn−1

))

− γn [bnx− cn]

(
1− 1

bn−1

)]
Q̂α

n(x)



4.2. ANALYTIC PROPERTIES OF KRALL-LAGUERRE OPS 91

=

[
− [(n+ 1)x− ncn]

a2n−1

bn−1

(
1− 1

bn−1

)

+
γn
bn−1

[bnx− cn]

(
x− c− an−1

(
1− 1

bn−1

))]
Q̂α

n−1(x).

Thus, we get the expression for the lowering operator Ln

LnQ̂
α
n(x) = un (x) Q̂

α
n−1(x)

where

Ln = x (x− c)2
d

dx
− nx2 +Dnx+ En

and

Dn =
1

bn−1
(an−1 + γnbn) + γn − an−1 − 2 (γnbn − cn) ,

En = cn

(
(nan−1 + γn)

(
1− 1

bn−1

)
− cn

)
.

Notice that un(x) is a quadratic polynomial

un (x) = Fnx
2 +Gnx+Hn,

with

Fn = γn
bn
bn−1

,

Gn =

(
1

bn−1
− 1

)
a2n−1

bn−1
(n+ 1)− γn

bn−1

(
cn + bn

(
c−

(
1

bn−1
− 1

)
an−1

))
,

Hn = γncn
c−

(
1

bn−1
− 1
)
an−1

bn−1
− ncn

(
1

bn−1
− 1

)
a2n−1

bn−1
.

Taking into account the three term recurrence relation (4.13)

γ̃nLnQ̂
α
n(x) = un (x)

[(
x− β̃n

)
Q̂α

n(x)− Q̂α
n+1(x)

]
.

Thus, we get the raising operator

Rn = −γ̃nLn +
(
x− β̃n

)
un (x)

i.e

RnQ̂
α
n(x) = un (x) Q̂

α
n+1(x).
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Notice that, combining the former raising and lowering operators, we can obtain the

holonomic equation (3.36) from a different point of view. Let

1

un (x)
RnQ̂

α
n(x) = Q̂α

n+1(x).

Applying the lowering operator in the above expression yields

Ln+1

[
1

un (x)
Rn

](
Q̂α

n(x)
)
= un+1 (x) Q̂

α
n(x)

and thus, the holonomic equation satisfied by the Krall-Laguerre OPS follows directly.

4.3 Krall-Laguerre OPS: Asymptotics for one mass point

4.3.1 Outer relative asymptotics

In this section, we will obtain some results concerning the asymptotic behavior of Laguerre-

type orthogonal polynomials in the exterior of the positive real semi axis. Taking into

account (4.4),

Q̂α
n(x) = L̂α

n(x)−
ML̂α

n(c)

1 +MKn−1(c, c)
Kn−1(x, c),

by using the standard normalization for Laguerre polynomials (2.30), and dividing by

L
(α)
n (x) in both hand sides of the above expression, we get

Q
(α)
n (x)

L
(α)
n (x)

= 1− ML
(α)
n (c)

1 +MKn−1(c, c)

Kn−1(x, c)

L
(α)
n (x)

.

Using the Christoffel-Darboux formula, this expression becomes

Q
(α)
n (x)

L
(α)
n (x)

= 1−

ML
(α)
n (c)

||L̂α
n−1||2α +M

[
nL̂α+1

n−1 (c) L̂
α
n−1 (c)− (n− 1)L̂α+1

n−2 (c) L̂
α
n (c)

]

× L̂
α
n (x) L̂

α
n−1 (c)− L̂α

n−1 (x) L̂
α
n (c)

(x− c)L
(α)
n (x)
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= 1 +

Mn! (n− 1)!
(
L
(α)
n (c)

)2
(
L
(α)
n−1(c)

L
(α)
n (c)

−
L
(α)
n−1(x)

L
(α)
n (x)

)
1

x− c

||L̂α
n−1||2α +Mn! (n− 1)!

([
L
(α+1)
n−1 (c)

]2
− L

(α+1)
n−2 (c)L

(α+1)
n (c)

)

= 1 +

M

[
1− L

(α+1)
n (c)

L
(α+1)
n−1 (c)

]2(
L
(α)
n−1(c)

L
(α)
n (c)

−
L
(α)
n−1(x)

L
(α)
n (x)

)
1

x− c

||L̂α
n−1||2α

n! (n− 1)!
(
L
(α+1)
n−1 (c)

)2 +M
L
(α+1)
n−2 (c)

L
(α+1)
n−1 (c)

[
L
(α+1)
n−1 (c)

L
(α+1)
n−2 (c)

− L
(α+1)
n (c)

L
(α+1)
n−1 (c)

] . (4.23)

Next, applying Lemmas C.1 and C.2 in (4.23) we get

Q
(α)
n (x)

L
(α)
n (x)

∼= 1 +

M

(√
|c|√
n

)2(
1−

√
|c|√
n

− 1 +

√
−x√
n

)
1

x− c

M

(
−1−

√
|c|√
n

+ 1 +

√
|c|√

n− 1

)

∼= 1 + 2

√
|c|
(√

(−x)−
√
|c|
)

x− c

= 1− 2
√

|c| 1√
(−x) +

√
|c|

=

√
−x−

√
|c|

√
−x+

√
|c|

and the convergence is locally uniformly on C�R+. Notice that, according to the Hurwitz’s

theorem, the above result shows that the point x = c attracts one zero of Q
(α)
n (x) for n

large enough.

4.3.2 Mehler-Heine type formula

Concerning the Mehler-Heine formula, notice that from (4.23)

Q
(α)
n (x/n)

L
(α)
n (x/n)

= 1+
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M

[
1− L

(α+1)
n (c)

L
(α+1)
n−1 (c)

]2(
L
(α)
n−1(c)

L
(α)
n (c)

−
L
(α)
n−1(x/n)

L
(α)
n (x/n)

)
1

x

n
− c

||L̂α
n||2α

n! (n− 1)!
(
L
(α+1)
n−1 (c)

)2 +M
L
(α+1)
n−2 (c)

L
(α+1)
n−1 (c)

[
L
(α+1)
n−1 (c)

L
(α+1)
n−2 (c)

− L
(α+1)
n (c)

L
(α+1)
n−1 (c)

] .

Proceeding as above

Q
(α)
n (x/n)

nα
∼= L

(α)
n (x/n)

nα
+

M
|c|
n

+ O
(
n3/2

)

||L̂α
n||2α

n! (n− 1)!
(
L
(α+1)
n−1 (c)

)2 +M
L
(α+1)
n−2 (c)

L
(α+1)
n−1 (c)

[
L
(α+1)
n−1 (c)

L
(α+1)
n−2 (c)

− L
(α+1)
n (c)

L
(α+1)
n−1 (c)

]

×
(−1

c

)(
L
(α)
n (x/n)

nα
− L

(α)
n (c)

L
(α)
n−1(c)

L
(α)
n−1(x/n)

nα

)

∼= L
(α)
n (x/n)

nα
−
M

|c|
n

1

c
L
(α)
n (c)

(
L
(α)
n (x/n)

nα
−
(
1 +

√
|c|√
n

)
L
(α)
n (x/n)

nα

)

M
√
|c|
(

1√
n− 1

− 1√
n

)

∼= L
(α)
n (x/n)

nα
− 2

L
(α)
n (x/n)

nα
= −x−α/2Jα

(
2
√
x
)
.

Notice that the addition of a mass point changes the sign in the Mehler-Heine formula

that the standard Laguerre polynomials satisfy.

In Figure 4.1 we present the convergence predicted by the above Mehler-Heine type

formulas. The first one shows the ratio L
(α)
n (x/n)�nα for three increasing values of n:

n = 60 (red solid), n = 100 (red dashed), and n = 170 (red dotted), with parameter α = 1.

The convergence is towards the thick black graph of the function x−α/2Jα (2
√
x). The

second one shows the ratio Q
(α)
n (x/n)�nα for α = 1 and other three different increasing

values of n: n = 50 (blue solid), n = 100 (red dashed), and n = 150 (red dotted).

Notice that, in this case, the convergence is towards the thick black graph of the

function −x−α/2Jα (2
√
x), showing how the addition of a mass point changes the sign in

the Mehler-Heine formula.
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Figure 4.1: Comparison between Mehler-Heine type formulas

4.4 Asymptotics for Krall-Laguerre OPS with m mass points

4.4.1 Outer relative asymptotics

In this section we need two useful lemmas concerning the rate of convergence of the ratio

of two classical Laguerre polynomials of different parameter and degree (see Appendix C)
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outside the support of the measure. Using these two lemmas, we deduce

L
(α)
n−1(ci)

L
(α)
n (ci)

−
L
(α)
n−1(cj)

L
(α)
n (cj)

=

√
|cj | −

√
|ci|√

n
+

|ci| − |cj |
2n

+ O(n−3/2),

L
(α+1)
n−1 (ci)

L
(α+1)
n−2 (ci)

− L
(α)
n (ci)

L
(α)
n−1(ci)

=
1

2n
+ O

(
n−3/2

)
.

(4.24)

On the other hand, from (3.59) we have

Q(α,m)
n (x) = L(α)

n (x)−
m∑

j=1

MjQ
(α,m)
n (cj)Kn−1(cj , x), (4.25)

where Q
(α,m)
n (x) = (−1)n

n! Q̂α,m
n (x). Dividing by L

(α)
n (x) in both hand sides of (4.25), we get

Q
(α,m)
n (x)

L
(α)
n (x)

= 1−
m∑

j=1

MjQ
(α)
n (cj)

Kn−1(cj , x)

L
(α)
n (x)

. (4.26)

Next, we will analyze

lim
n→∞

Q
(α,m)
n (x)

L
(α)
n (x)

(4.27)

when x ∈ C�R+. In order to prove the existence of such a limit, we will find the solutions

of the following linear system

[1 + akKn−1(ck, ck)]Q
(α,m)
n (ck) +

m∑

j=1
j 6=k

MjKn−1(cj , ck)Q
(α,m)
n (cj) = L(α)

n (ck) (4.28)

with k = 1, 2, . . . ,m, obtained from (4.25) where x is evaluated at c1, c2, . . . , cm. Let us

define

P (α)
n (cj , x) = −MjQ

(α,m)
n (cj)

Kn−1(cj , x)

L
(α)
n (x)

(4.29)

and

lim
n→∞

P (α)
n (cj , x) = p̄(α)(cj , x). (4.30)

From (4.26) and (4.27) we need to figure out the values of p̄(α)(c1, x), . . . , p̄
(α)(cm, x) to

obtain the outer relative asymptotic for Q
(α,m)
n (x). From Cramer’s rule, we see that

{Q(α,m)
n (cj)}mj=1 are affected by the location of all the m mass points. From (4.29) we have

Q(α,m)
n (cj) =

−L(α)
n (x)P

(α)
n (cj , x)

MjKn−1(cj , x)
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and then we replace for all j = 1, . . . ,m, these expressions in (4.28) to obtain the next

linear system in the unknowns P
(α)
n (c1, x), . . . , P

(α)
n (cm, x)

Φn(1, x)P
(α)
n (c1, x) + · · · + Ψn(1,m, x)P

(α)
n (cm, x) = −1

...
...

...
...

...
...

...

Ψn(m, 1, x)P
(α)
n (c1, x) + · · · + Φn(m,x)P

(α)
n (cm, x) = −1




, (4.31)

where

Φn(i, x) =
L
(α)
n (x)

L
(α)
n (ci)

1/ai +Kn−1(ci, ci)

Kn−1(ci, x)
(4.32)

Ψn(i, j, x) =
L
(α)
n (x)

L
(α)
n (cj)

Kn−1(ci, cj)

Kn−1(ci, x)
. (4.33)

No matter the number of equations of the previous system, in each of the m previous

equations we will have always only two different quantities. Only one (in each equation)

of the type Φn(i, x) and m− 1 of the type Ψn(i, j, x).

Next we estimate the rate of convergence of (4.32) and (4.33) as n→ ∞. Taking into

account

u− v = (
√

|v|+
√
|u|)(

√
|v| −

√
|u|), ∀u, v ∈ R−,

in (4.33) we obtain for x ∈ C�R+

Ψn(i, j, x) =
(
√
−x+

√
|ci|)

(
√
|cj |+

√
|ci|)

(
√
−x−

√
|ci|)

(
√
|cj | −

√
|ci|)

(
L
(α)
n−1(ci)

L
(α)
n (ci)

− L
(α)
n−1(cj)

L
(α)
n (cj)

)

(
L
(α)
n−1(ci)

L
(α)
n (ci)

− L
(α)
n−1(x)

L
(α)
n (x)

) , i 6= j.

From (4.24) we deduce Ψn(i, j, x) =
(
√
−x+

√
|ci|) + O(n−1/2)

(
√

|cj |+
√
|ci|) + O(n−1/2)

, and, as a consequence,

lim
n→∞

Ψn(i, j, x) =

√
−x+

√
|ci|√

|cj |+
√
|ci|

. (4.34)

On the other hand,

Φn(i, x) = (ci − x)

||L(α)
n ||2α

n·ai
(
L
(α)
n (ci)

)2 +
L
(α+1)
n−2 (ci)

L
(α)
n (ci)

L
(α)
n−1(ci)

L
(α)
n (ci)

(
L
(α+1)
n−1 (ci)

L
(α+1)
n−2 (ci)

− L
(α)
n (ci)

L
(α)
n−1(ci)

)

(
L
(α)
n−1(ci)

L
(α)
n (ci)

− L
(α)
n−1(x)

L
(α)
n (x)

)
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and using (4.24) we get

Φn(i, x) =
(
√
−x+

√
|ci|)(

√
−x−

√
|ci|) 1

2
√

|ci|
+ O(n−1/2)

(
√
−x−

√
|ci|) + O(n−1/2)

.

Thus,

lim
n→∞

Φn(i, x) =

√
−x+

√
|ci|

2
√
|ci|

. (4.35)

Next, from (4.30), (4.34), and (4.35), and taking limits, when n→ ∞, in both hand sides

of (4.31)
√
−x+

√
|c1|

2
√

|c1|
p̄(α)(c1, x) + · · ·+

√
−x+

√
|cm|√

|c1|+
√

|cm|
p̄(α)(cm, x) = −1

...
...

...
√
−x+

√
|c1|√

|cm|+
√

|c1|
p̄(α)(c1, x) + · · ·+

√
−x+

√
|cm|

2
√

|cm|
p̄(α)(cm, x) = −1





It is not difficult to prove that the m solutions of the above linear system are

p̄(α)(ci, x) =
−2
√
|ci|√

−x+
√
|ci|

m∏

j=1
j 6=i

(√
|ci|+

√
|cj |√

|ci| −
√
|cj |

)
, ∀i = 1, . . . ,m.

Now, from (4.29) and (4.30) we conclude that, if x ∈ C�R+, then

lim
n→∞

Q
(α,m)
n (x)

L
(α)
n (x)

= 1 +

m∑

i=1

lim
n→∞

(
−aiQ(α,m)

n (ci)
Kn−1(ci, x)

L
(α)
n (x)

)

= 1 +
m∑

i=1

p̄(α)(ci, x)

= 1 +

m∑

i=1




−2
√
|ci|√

−x+
√
|ci|

m∏

j=1
j 6=i

√
|ci|+

√
|cj |√

|ci| −
√
|cj |


 .

From the expression above, we obtain

Theorem 4.2

lim
n→∞

Q
(α,m)
n (x)

L
(α)
n (x)

=
m∏

k=1

(√
−x−

√
|ck|√

−x+
√

|ck|

)
(4.36)

uniformly on compact subsets of C�R+.
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Proof. The proof is based on the decomposition in partial fractions and the Residue

Theorem. To simplify the notation, we write ti =
√
|ci|, z =

√
−x. Thus (4.36) becomes

a rational function

lim
n→∞

Q
(α,m)
n (x)

L
(α)
n (x)

= r(z) =
qm(z)

pm(z)
,

where qm(z) and pm(z) are monic polynomials of degree m, i.e.

qm(z) =
m∏

j=1

(z − tj), pm(z) =
m∏

j=1

(z + tj).

Notice that
qm(z)

pm(z)
= 1 +

[qm(z)− pm(z)]

pm(z)
(4.37)

and the numerator in the above expression is a polynomial of degree at most m − 1. In

these conditions, r(z)−1 is a proper rational function, i.e. a ratio between two polynomials

such that the degree of the numerator is less than the degree of the denominator. Under

the above assumptions, when −ti are simple zeros of the polynomial pm(z), it is well known

that always exists a decomposition in partial fractions of (4.37) as

[qm(z)− pm(z)]

pm(z)
=

m∑

i=1

Ai

z + ti
, where Ai = lim

z→−ti
(z + ti)

[qm(z)− pm(z)]

pm(z)
.

Applying l’Hôpital’s rule we have

Ai =
[qm(−ti)− pm(−ti)]

p′m(−ti)
=

m∏

j=1

(−tj − ti)−
m∏

j=1

(tj − ti)

m∏

j=1
j 6=i

(tj − ti)

= −2ti

m∏

j=1
j 6=i

ti + tj
ti − tj

,

for all i = 1, . . . ,m. Thus, the proof is completed.

Remark 4.1 Notice that outer relative asymptotics for orthogonal polynomials with res-

pect to perturbations of measures supported on R+ or R (non–rescale case) have been

studied in connection with rational approximation. In [65], for orthogonal polynomials

normalized with the non-standard condition Qn(−1) = Ln(−1) = (−1)n, the author finds

the relative asymptotic behavior, that is an analog of our Theorem 4.2. Notwithstanding
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that the conditions on the measures are general, we infer the relative asymptotic behavior

for either monic orthogonal polynomials or orthonormal from [65, Th. 1] is an unsolved

problem. The same problem is studied in [66, Th. 3 and Th. 4], but under more restrictive

conditions on the modified weight functions. These conditions are not satisfied in our case

Remark 4.2 Notice that that according to Hurwitz’s theorem, each ck attracts exactly one

zero of the polynomial Q
(α)
n (x) for n large enough. In other words, we have exactly one

zero in each gap.



CHAPTER 5

Discrete Sobolev Orthogonal Polynomials

5.1 Introduction

In this chapter we deal with sequences of polynomials orthogonal with respect to the

discrete Sobolev inner product

〈f, g〉S =

∫ ∞

0
f(x)g(x)dµ(x) +Mf(c)g(c) +Nf ′(c)g′(c), (5.1)

where µ(x) is a general positive Borel measure supported on E = [0,+∞), c ∈ R−, and

M,N ∈ R+. Let {ŜM,N
n (x)}n≥0 denote the MOPS with respect to (5.1). They are known

in the literature as Sobolev-type or discrete Sobolev orthogonal polynomials. It is worth to

point out that many properties of the standard orthogonal polynomials are lost when an

inner product (5.1) is considered. In a more general framework, for measures supported

on the interval [0,+∞) the zeros can be complex or, if real, they can be located outside

[c,+∞).

First, we obtain the representation of these polynomials in terms of the MOPS with

respect to dµ(x) and (x − c)kdµ(x) (when k = 2, 4), and we analyze the distribution of

the zeros of the MOPS with respect to (5.1). Second, we study the asymptotic properties

and the zeros of the MOPS {ŜM,N
n (x)}n≥0, when dµ(x) is the standard Laguerre measure.

101
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Third, we provide a matrix interpretation of the Sobolev-type orthonormal polynomial

sequence.

In the second half of this chapter, we find several results when the modified measure is

the Laguerre classical measure. We obtain some asymptotic results and the zero behavior

for the Laguerre Sobolev-type OPS. Moreover, we consider an extremal characterization

of certain interesting polynomials which arise from the computations, and that it is quasi-

orthogonal of order 2 with respect to the modified Laguerre measure (x − c)2xαe−xdx.

The zeros of this polynomial are the limit of the zeros of {ŜM,N
n (x)}n≥0, when M = 0 and

N → ∞ in (5.1).

5.1.1 Auxiliary results

Next, we prove some useful results concerning k-iterated orthogonal polynomials to be

used in the sequel. We remind that these polynomials were introduced in Section 2.2.1.

Proposition 5.1 Let D
[k]
n−1 = det[a

[k]
ij ]0≤i,j≤n−1, where a

[k]
ij = d

[k]
i+j , k ∈ N. Then, the

following relation holds

D
[k]
n−1 = (−1)nD

[k−1]
n−1 P̂

[k−1]
n (c), (5.2)

with D
[0]
n−1 = ∆n−1.

Proof. For n ≥ 1 and k ∈ N,

P̂ [k−1]
n (x) =

1

D
[k−1]
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k−1]
0 d

[k−1]
1 · · · d

[k−1]
n

d
[k−1]
1 d

[k−1]
2 · · · d

[k−1]
n+1

...
...

. . .
...

d
[k−1]
n−1 d

[k−1]
n · · · d

[k−1]
2n−1

1 x · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣

, (5.3)

with P̂n = P̂
[0]
n . The determinant in (5.3) becomes (see [99, formula (2.2.9)])

P̂ [k−1]
n (x) =

(−1)n

D
[k−1]
n−1

∣∣∣∣∣∣∣∣∣∣

d
[k−1]
1 − d

[k−1]
0 x d

[k−1]
2 − d

[k−1]
1 x · · · d

[k−1]
n − d

[k−1]
n−1 x

d
[k−1]
2 − d

[k−1]
1 x d

[k−1]
3 − d

[k−1]
2 x · · · d

[k−1]
n+1 − d

[k−1]
n x

...
...

. . .
...

d
[k−1]
n − d

[k−1]
n−1 x d

[k−1]
n+1 − d

[k−1]
n x · · · d

[k−1]
2n−1 − d

[k−1]
2n−2x

∣∣∣∣∣∣∣∣∣∣

.

Now, by using (2.19), (5.2) follows.

Next we will compute some integrals involving P̂
[k]
n .
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Proposition 5.2 The following relations hold

(i)

∫ ∞

0
P̂ [k]
n (x)(x− c)k−1dµ(x) =

||P̂ [k−1]
n ||2µ,[k−1]

P̂
[k−1]
n (c)

=





||P̂n||2µ
P̂n(c)

, k = 1,

(−1)k−1

P̂
[k−1]
n (c)

k−1∏
i=1

P̂
[i−1]
n+1 (c)

P̂
[i−1]
n (c)

||P̂n||2µ, k ≥ 2;

(ii)

∫ ∞

0
P̂ [k]
n (x)(x− c)k−2dµ(x) =

[P̂
[k−2]
n+1 ]′(c)||P̂ [k−2]

n ||2µ,[k−2]

P̂
[k−1]
n (c)P̂

[k−2]
n (c)

=





[P̂n+1]
′(c)||P̂n||2µ

P̂n(c)P̂
[1]
n (c)

, k = 2,

(−1)k[P̂
[k−2]
n+1 ]′(c)

P̂
[k−1]
n (c)P̂

[k−2]
n (c)

∏k−2
i=1

P̂
[i−1]
n+1 (c)

P̂
[i−1]
n (c)

||P̂n||2µ, k ≥ 3.

Proof. (i) Using (2.19) in a recursive way, as well as some properties of determinants,

we have

D
[k]
n−1

∫ ∞

0
P̂ [k]
n (x)(x− c)k−1dµ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k]
0 d

[k]
1 d

[k]
2 · · · d

[k]
n

d
[k]
1 d

[k]
2 d

[k]
3 · · · d

[k]
n+1

...
...

...
. . .

...

d
[k]
n−1 d

[k]
n d

[k]
n+1 · · · d

[k]
2n−1

d
[k−1]
0 d

[k−1]
1 d

[k−1]
2 · · · d

[k−1]
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k−1]
1 d

[k−1]
2 d

[k−1]
3 · · · d

[k−1]
n+1

d
[k−1]
2 d

[k−1]
3 d

[k−1]
4 · · · d

[k−1]
n+2

...
...

...
. . .

...

d
[k−1]
n d

[k−1]
n+1 d

[k−1]
n+2 · · · d

[k−1]
2n

d
[k−1]
0 d

[k−1]
1 d

[k−1]
2 · · · d

[k−1]
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)nD[k−1]
n .
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On the other hand,

||P̂ [k−1]
n ||2µ,[k−1] =

∫ ∞

0
xnP̂ [k−1]

n (x)(x− c)k−1dµ(x) =
D

[k−1]
n

D
[k−1]
n−1

and by using (5.2)

∫ ∞

0
P̂ [k]
n (x)(x− c)k−1dµ(x) =

(−1)nD
[k−1]
n−1 ||P̂ [k−1]

n ||2µ,[k−1]

D
[k]
n−1

=
||P̂ [k−1]

n ||2µ,[k−1]

P̂
[k−1]
n (c)

. (5.4)

On the other hand, we get (see [99, Theorem 2.5])

(x− c)P̂ [k]
n (x) = P̂

[k−1]
n+1 (x)−

P̂
[k−1]
n+1 (c)

P̂
[k−1]
n (c)

P̂ [k−1]
n (x). (5.5)

Therefore,

||P̂ [k]
n ||2µ,[k] = −

P̂
[k−1]
n+1 (c)

P̂
[k−1]
n (c)

||P̂ [k−1]
n ||2µ,[k−1]. (5.6)

By using the above relation in a recursive way we obtain

||P̂ [k]
n ||2µ,[k] = (−1)k

k∏

i=1

P̂
[i−1]
n+1 (c)

P̂
[i−1]
n (c)

||P̂n||2µ, k ≥ 2. (5.7)

Combining (5.4) and (5.7), our statement follows.

(ii) We have

[P̂
[k−2]
n+1 ]′(x) =

1

D
[k−2]
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k−2]
0 d

[k−2]
1 d

[k−2]
2 · · · d

[k−2]
n+1

d
[k−2]
1 d

[k−2]
2 d

[k−2]
3 · · · d

[k−2]
n+2

...
...

...
. . .

...

d
[k−2]
n d

[k−2]
n+1 d

[k−2]
n+2 · · · d

[k−2]
2n+1

0 1 2x · · · nxn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

, n ≥ 0. (5.8)
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Now, adding to the last column the n-th and (n − 1)-th columns multiplied by −2x and

x2 , respectively, and repeating this operation for each of the preceding columns, we obtain

[P̂
[k−2]
n+1 ]′(x) =

1

D
[k−2]
n

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k−2]
0 d

[k−2]
1 d

[k−2]
2 − 2xd

[k−2]
1 + x2d

[k−2]
0 · · · d

[k−2]
n+1 − 2xd

[k−2]
n + x2d

[k−2]
n−1

d
[k−2]
1 d

[k−2]
2 d

[k−2]
3 − 2xd

[k−2]
2 + x2d

[k−2]
1 · · · d

[k−2]
n+2 − 2xd

[k−2]
n+1 + x2d

[k−2]
n

...
...

...
. . .

...

d
[k−2]
n d

[k−2]
n+1 d

[k−2]
n+2 − 2xd

[k−2]
n+1 + x2d

[k−2]
n · · · d

[k−2]
2n+1 − 2xd

[k−2]
2n + x2d

[k−2]
2n−1

0 1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

=
1

D
[k−2]
n

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k−2]
2 − 2xd

[k−2]
1 + x2d

[k−2]
0 d

[k−2]
3 − 2xd

[k−2]
2 + x2d

[k−2]
1 · · · d

[k−2]
n+2 − 2xd

[k−2]
n+1 + x2d

[k−2]
n

d
[k−2]
3 − 2xd

[k−2]
2 + x2d

[k−2]
1 d

[k−2]
4 − 2xd

[k−2]
3 + x2d

[k−2]
2 · · · d

[k−2]
n+3 − 2xd

[k−2]
n+2 + x2d

[k−2]
n+1

...
...

. . .
...

d
[k−2]
n+1 − 2xd

[k−2]
n + x2d

[k−2]
n−1 d

[k−2]
n+2 − 2xd

[k−2]
n+1 + x2d

[k−2]
n · · · d

[k−2]
2n+1 − 2xd

[k−2]
2n + x2d

[k−2]
2n−1

d
[k−2]
0 d

[k−2]
1 · · · d

[k−2]
n

∣∣∣∣∣∣∣∣∣∣∣∣∣
(5.9)

On the other hand,

D
[k]
n−1

∫ ∞

0
P̂ [k]
n (x)(x− c)k−2dµ(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

d
[k]
0 d

[k]
1 · · · d

[k]
n

d
[k]
1 d

[k]
2 · · · d

[k]
n+1

...
...

. . .
...

d
[k]
n−1 d

[k]
n · · · d

[k]
2n−1

d
[k−2]
0 d

[k−2]
1 · · · d

[k−2]
n

∣∣∣∣∣∣∣∣∣∣∣∣∣

,

and by using (5.2), (5.7), and (5.9) we get

∫ ∞

0
P̂ [k]
n (x)(x− c)k−2dµ(x) =

D
[k−2]
n [P̂

[k−2]
n+1 ]′(c)

D
[k−2]
n−1 P̂

[k−1]
n (c)P̂

[k−2]
n (c)

=
[P̂

[k−2]
n+1 ]′(c) ||P̂ [k−2]

n ||2µ,[k−2]

P̂
[k−1]
n (c)P̂

[k−2]
n (c)
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=
(−1)k[P̂

[k−2]
n+1 ]′(c)

P̂
[k−1]
n (c)P̂

[k−2]
n (c)

k−2∏

i=1

P̂
[i−1]
n+1 (c)

P̂
[i−1]
n (c)

||P̂n||2µ.

Finally, we state some results concerning the zeros x
[k]
n,r, r = 1, . . . , n of P̂

[k]
n (x).

Proposition 5.3 (i) The zeros of P̂
[k]
n (x) interlace with both the zeros of P̂

[k−1]
n+1 (x) and

P̂
[k−1]
n (x), i.e.

x[k−1]
n,r < x[k]n,r < x

[k−1]
n+1,r+1, r = 1, 2, ..., n.

(ii) Between two consecutive zeros of P̂
[k−2]
n+1 , k ≥ 2, there is exactly one zero of P̂

[k]
n .

(iii) It holds

sign P̂ [k−2]
n (x

[k]
n−1,r) = (−1)n−r = −sign P̂ [k+2]

n−2 (x
[k]
n−1,r), r = 1, 2, ..., n− 1.

Proof. (i) Here we will use the same argument as in [15, p. 65] (see also Appendix B).

It is well known that the zeros of P̂
[k−1]
n+1 (x) interlace with the zeros of P̂

[k−1]
n (x), i.e.

0 < x
[k−1]
n+1,1 < x

[k−1]
n,1 < x

[k−1]
n+1,2 < · · · < x[k−1]

n,n < x
[k−1]
n+1,n+1 <∞.

From (5.2)
P̂

[k−1]
n+1 (c)

P̂
[k−1]
n (c)

< 0 and taking into account (5.5)

sign P̂ [k]
n (x

[k−1]
n+1,r) = sign P̂ [k−1]

n (x
[k−1]
n+1,r) = (−1)n−r+1, r = 1, 2, ..., n+ 1,

sign P̂ [k]
n (x[k−1]

n,r ) = sign P̂
[k−1]
n+1 (x[k−1]

n,r ) = (−1)n−r+1, r = 1, 2, ..., n,

Thus, there exist zeros x
[k]
n,r, r = 2, 3, ..., n, of P̂

[k]
n (x) satisfying

x[k−1]
n,r < x[k]n,r < x

[k−1]
n+1,r+1, r = 1, 2, ..., n.

(ii) Notice that this result was proved in Theorem 3.2 for k = 2. By using (5.5) and the

recurrence relation, we obtain

(x− c)2P̂ [k]
n (x) = (d1,nx+ d2,n)P̂

[k−2]
n+1 (x) + d3,nP̂

[k−2]
n (x).

Since P̂
[k−2]
n+1 (c) 6= 0 we have d3,n 6= 0. Now, the rest of the proof can be done in a similar

way as in [85, Lemma 6.1] (see also [86, Lemma 4.1]).
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(iii) From (ii)

x[k−2]
n,r < x

[k]
n−1,r < x

[k−2]
n,r+1, r = 1, 2, ..., n− 1.

Therefore,

sign P̂ [k−2]
n (x

[k]
n−1,r) = (−1)n−r.

Again, according to (ii)

x
[k+2]
n−2,r−1 < x

[k]
n−1,r < x

[k+2]
n−2,r, r = 1, 2, ..., n− 2,

x
[k+2]
n−2,n−2 < x

[k]
n−1,n−1.

Therefore,

sign P̂
[k+2]
n−2 (x

[k]
n−1,r) = (−1)n−r−1

and

sign P̂
[k+2]
n−2 (x

[k]
n−1,n−1) = 1.

As a conclusion,

sign P̂ [k−2]
n (x

[k]
n−1,r) = −sign P̂ [k+2]

n−2 (x
[k]
n−1,r), r = 1, 2, ..., n− 1.

5.2 Sobolev-type orthogonal polynomials

In this section we deal with general measures with unbounded support [0,+∞). The

Laguerre measure is a particular case of this type of measures, and later on, we will get

some results when µ is the Laguerre measure.

5.2.1 Some connection formulas

As we have seen in previous chapters, the connection formulas are the main tool to study

the analytical properties of new families of OPS, in terms of other families of OPS with

well-known analytical properties. Indeed, the problem of finding such expressions is called

“the connection problem”, and it is of great importance in this context.

In this subsection we will give three connection formulas which will be useful later.
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Connection formula (I)

The most common way to represent the Sobolev-type orthogonal polynomials is using the

kernel and its derivatives. We will prove the following

Theorem 5.1 (Connection formula (I)) Let {ŜM,N
n (x)}n≥0 be the MOPS with respect

to (5.1). Then the polynomials ŜM,N
n (x) can be represented by

(x− a)2ŜM,N
n (x) = A(x;n)P̂n(x) +B(x;n)P̂n−1(x),

where

A(x;n) = (x− c)2 − N [ŜM,N
n ]′(c)[P̂n−1]

′(c) +MŜM,N
n (c)P̂n−1(c)

||P̂n−1||2µ
(x− c)

−N [ŜM,N
n ]′(c)P̂n−1(c)

||P̂n−1||2µ
,

B(x;n) =
MŜM,N

n (c)P̂n(c) +N [ŜM,N
n ]′(c)[P̂n]

′(c)

||P̂n−1||2µ
(x− c) +

N [ŜM,N
n ]′(c)P̂n(c)

||P̂n−1||2µ
,

and

ŜM,N
n (c) =

∣∣∣∣∣
P̂n(c) NK

(0,1)
n−1 (c, c)

[P̂n]
′(c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣
∣∣∣∣∣
1 +MKn−1(c, c) NK

(0,1)
n−1 (c, c)

MK
(1,0)
n−1 (c, c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣

,

[ŜM,N
n ]′(c) =

∣∣∣∣∣
1 +MKn−1(c, c) P̂n(c)

MK
(1,0)
n−1 (c, c) [P̂n]

′(c)

∣∣∣∣∣
∣∣∣∣∣
1 +MKn−1(c, c) NK

(0,1)
n−1 (c, c)

MK
(1,0)
n−1 (c, c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣

.

Proof. Let {ŜM,N
n (x)}n≥0 denote the SMOP with respect to the discrete Sobolev inner

product (5.1), then we can expand the polynomial ŜM,N
n (x) as follows

ŜM,N
n (x) = P̂n(x) +

n−1∑

i=0

an,iP̂i(x), (5.10)
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where

an,j =
〈P̂j(x), Ŝ

M,N
n (x)〉µ

||P̂j ||2µ
, 0 ≤ j ≤ n− 1. (5.11)

Thus, using (2.3) and (2.9), (5.10) becomes

ŜM,N
n (x) = P̂n(x)−MŜM,N

n (c)Kn−1(x, c)−N [ŜM,N
n ]′(c)K(0,1)

n−1 (x, c). (5.12)

Next, we need to find expressions for ŜM,N
n (c) and [ŜM,N

n ]′(c). We first derive (5.12) with

respect to x

[ŜM,N
n ]′(x) = [P̂n(x)]

′ −MŜM,N
n (c)K

(1,0)
n−1 (x, c)−N [ŜM,N

n ]′(c)K(1,1)
n−1 (x, c) (5.13)

and x = c in (5.12) and (5.13) a linear system

[
1 +MKn−1(c, c) NK

(0,1)
n−1 (c, c)

MK
(1,0)
n−1 (c, c) 1 +NK

(1,1)
n−1 (c, c)

][
ŜM,N
n (c)

[ŜM,N
n ]′(c)

]
=

[
P̂n(c)

[P̂n]
′(c)

]

in the unknowns ŜM,N
n (c) and [ŜM,N

n ]′(c), whose solutions are

ŜM,N
n (c) =

∣∣∣∣∣
P̂n(c) NK

(0,1)
n−1 (c, c)

[P̂n]
′(c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣
∣∣∣∣∣
1 +MKn−1(c, c) NK

(0,1)
n−1 (c, c)

MK
(1,0)
n−1 (c, c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣

,

[ŜM,N
n ]′(c) =

∣∣∣∣∣
1 +MKn−1(c, c) P̂n(c)

MK
(1,0)
n−1 (c, c) [P̂n]

′(c)

∣∣∣∣∣
∣∣∣∣∣
1 +MKn−1(c, c) NK

(0,1)
n−1 (c, c)

MK
(1,0)
n−1 (c, c) 1 +NK

(1,1)
n−1 (c, c)

∣∣∣∣∣

.

On the other hand, we multiply both sides of (5.13) by (x− c)2

(x− a)2ŜM,N
n (x) =

(x− c)2P̂n(x)−MŜM,N
n (c)(x− c)2Kn−1(x, c)−N [ŜM,N

n ]′(c)(x− c)2K
(0,1)
n−1 (x, c).

Since (2.4) and (2.7), we have

(x− c)2K
(0,1)
n−1 (x, c) =
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P̂n(x)P̂n−1(c)

||P̂n−1||2µ
− P̂n−1(x)P̂n(c)

||P̂n−1||2µ
+ (x− c)

P̂n(x)[P̂n−1]
′(c)

||P̂n−1||2µ
− (x− c)

P̂n−1(x)[P̂n]
′(c)

||P̂n−1||2µ
and

(x− c)Kn−1(x, c) =
P̂n(x)P̂n−1(c)

||P̂n||2µ
− P̂n−1(x)P̂n(c)

||P̂n||2µ
.

Hence

(x− a)2ŜM,N
n (x) = A(x;n)P̂n(x) +B(x;n)P̂n−1(x),

where A(x;n) and B(x;n) are the following two polynomials

A(x;n) = (x− c)2 − N [ŜM,N
n ]′(c)[P̂n−1]

′(c) +MŜM,N
n (c)P̂n−1(c)

||P̂n−1||2µ
(x− c)

−N [ŜM,N
n ]′(c)P̂n−1(c)

||P̂n−1||2µ
,

B(x;n) =
MŜM,N

n (c)P̂n(c) +N [ŜM,N
n ]′(c)[P̂n]

′(c)

||P̂n−1||2µ
(x− c) +

N [ŜM,N
n ]′(c)P̂n(c)

||P̂n−1||2µ
,

of degree 2 and 1 respectively.

Connection formula (II)

Next we prove that the Sobolev-type orthogonal polynomials {ŜM,N
n (x)}n≥0 can be ex-

pressed in terms of polynomials orthogonal with respect to the measures dµ(x) and

(x − c)kdµ(x). Moreover, the behavior of the coefficients An,1 and An,2 is studied with

more detail.

Theorem 5.2 (Connection Formula (II)) LetM ≥ 0 and N ≥ 0. There are real cons-

tants An,1 and An,2 such that

ŜM,N
n (x) = P̂n(x) +An,1(x− c)P̂

[2]
n−1(x) +An,2(x− c)2P̂

[4]
n−2(x), (5.14)

where

An,1 =
NI2,n(c)[P̂n]

′(c)−MI3,n(c)P̂n(c)

I1,n(c)I3,n(c)−NI2,n(c)P̂
[2]
n−1(c)

,

An,2 =
MNP̂n(c)P̂

[2]
n−1(c)−NI1,n(c)[P̂n]

′(c)

I1,n(c)I3,n(c)−NI2,n(c)P̂
[2]
n−1(c)

,
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I1,n(c) = − P̂n(c)

Kn−1(c, c)
,

I2,n(c) =
P̂n−1(c)P̂

[1]
n−1(c)[P̂

[2]
n−1]

′(c)

P̂n−2(c)P̂
[1]
n−2(c)P̂

[2]
n−2(c)P̂

[3]
n−2(c)

||P̂n−2||2µ,

I3,n(c) = −
P̂n−1(c)P̂

[1]
n−1(c)P̂

[2]
n−1(c)

P̂n−2(c)P̂
[1]
n−2(c)P̂

[2]
n−2(c)P̂

[3]
n−2(c)

||P̂n−2||2µ.

Proof. We will prove that

〈ŜM,N
n , (x− c)k〉S = 0

for k = 0, 1, . . . , n− 1.For k ≥ 2 and n > k,

〈ŜM,N
n , (x− c)k〉S =

∫ ∞

0
ŜM,N
n (x)(x− c)kdµ(x)

=

∫ ∞

0
P̂n(x)(x− c)kdµ(x) +An,1

∫ ∞

0
(x− c)2P̂

[2]
n−1(x)(x− c)k−1dµ(x)

+An,2

∫ ∞

0
(x− c)4P̂

[4]
n−2(x)(x− c)k−2dµ(x)

= 0.

Now, let us consider k = 0 and n ≥ 1. We have

〈ŜM,N
n , 1〉S =

∫ ∞

0
ŜM,N
n (x)dµ(x) +MŜM,N

n (c)

= An,1

∫ ∞

0
(x− c)P̂

[2]
n−1(x)dµ(x) +An,2

∫ ∞

0
(x− c)2P̂

[4]
n−2(x)dµ(x) +MP̂n(c).

On the other hand, by using Proposition 5.2(i)

I1,n(c) =

∫ ∞

0
P̂

[2]
n−1(x)(x− c)dµ(x) = − P̂n(c)

P̂n−1(c)P̂
[1]
n−1(c)

||P̂n−1||2µ, (5.15)

taking derivatives in (5.5) and then substitute x = c, we get

P̂
[k]
n−1(c) = [P̂ [k−1]

n ]′(c)− P̂
[k−1]
n (c)

P̂
[k−1]
n−1 (c)

[P̂
[k−1]
n−1 ]′(c). (5.16)

Combining (2.5), (5.15), and (5.16), we get

I1,n(c) =
−P̂n(c)

Kn−1(c, c)
.
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Using Proposition 5.2(ii)

I2,n(c) =

∫ ∞

0
P̂

[4]
n−2(x)(x− c)2dµ(x) =

[P̂
[2]
n−1]

′(c)||P̂ [2]
n−2||2µ,[2]

P̂
[2]
n−2(c)P̂

[3]
n−2(c)

(5.17)

=
P̂n−1(c)P̂

[1]
n−1(c) [P̂

[2]
n−1]

′(c)

P̂n−2(c)P̂
[1]
n−2(c)P̂

[2]
n−2(c)P̂

[3]
n−2(c)

||P̂n−2||2µ.

Therefore,

〈ŜM,N
n , 1〉S = An,1I1,n(c) +An,2I2,n(c) +MP̂n(c).

In the same way, for k = 1 and n ≥ 2, we have

〈ŜM,N
n , (x− c)〉S =

∫ ∞

0
ŜM,N
n (x)(x− c)dµ(x) +N [ŜM,N

n ]′(c)

= An,2I3,n(c) +NAn,1P̂
[2]
n−1(c) +N [P̂n]

′(c),

where

I3,n(c) =

∫ ∞

0
(x− c)3P̂

[4]
n−2(x)dµ(x) =

||P̂ [3]
n−2||2µ,[3]
P̂

[3]
n (c)

= −
P̂n−1(c)P̂

[1]
n−1(c)P̂

[2]
n−1(c)

P̂n−2(c)P̂
[1]
n−2(c)P̂

[2]
n−2(c)P̂

[3]
n−2(c)

||P̂n−2||2µ.

Finally, using the expressions of An,1 and An,2, our statement follows.

Next, we will study the behavior of the coefficients An,1 and An,2.

Proposition 5.4 (i)

I1,n(c)I3,n(c)−NI2,n(c)P̂
[2]
n−1(c) = −I2,n(c)P̂ [2]

n−1(c) (N + αnβn) ,

where 0 < αn =
I1,n(c)

P̂
[2]
n−1(c)

< d
[1]
0 ,

d
[3]
0

d
[2]
0

<
−[P̂

[2]
n−1]

′(c)

P̂
[2]
n−1(c)

=
I2,n(c)

I3,n(c)
=

1

βn
< −n

c
,

(ii)

NI2,n(c)[P̂n]
′(c)−MI3,n(c)P̂n(c) = I2,n(c)[P̂n]

′(c) (N +Mβnγn) ,

where
d
[1]
0

m0
<

−[P̂n]
′(c)

P̂n(c)
=

1

γn
< −n

c
,
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(iii)

MNP̂n(c)P̂
[2]
n−1(c)−NI1,n(c)[P̂n]

′(c) = NP̂n(c)P̂
[2]
n−1(c)

(
M +

αn

γn

)
.

Proof. (i) From Christoffel-Darboux formula for polynomials {P̂ [2]
n }n≥0 we have

(x− c)
n∑

k=0

P̂
[2]
k (x)P̂

[2]
k (y)

||P̂ [2]
k ||2µ,[2]

−
n∑

k=0

P̂
[2]
k (x)

||P̂ [2]
k ||2µ,[2]

(y − c)P̂
[2]
k (y) (5.18)

=
1

||P̂ [2]
n ||2µ,[2]

(
P̂

[2]
n+1(x)P̂

[2]
n (y)− P̂ [2]

n (x)P̂
[2]
n+1(y)

)
.

If we multiply (5.18) by (y− c) and integrate on (0,∞) with respect to dµ, the evaluation

at x = c yields

−
n∑

k=0

P̂
[2]
k (c)

||P̂ [2]
k ||2µ,[2]

∫ ∞

0
P̂

[2]
k (y)(y − c)2dµ(y)

=
1

||P̂ [2]
n ||2µ,[2]

(
P̂

[2]
n+1(c)I1,n+1(c)− P̂ [2]

n (c)I1,n+2(c)
)
.

Since ∫ ∞

0
P̂

[2]
k (y)(y − c)2dµ(y) = 0, k = 1, 2, 3, . . . , n,

and P̂
[2]
0 = 1, the left hand side is negative. Therefore,

P̂
[2]
n+1(c)I1,n+1(c)− P̂ [2]

n (c)I1,n+2(c) < 0.

From (5.2)

sign P̂
[2]
n+1(c) = (−1)n+1,

sign P̂ [2]
n (c) = (−1)n.

Thus, P̂
[2]
n+1(c)P̂

[2]
n (c) is negative and, as a consequence,

I1,n+2(c)

P̂
[2]
n+1(c)

<
I1,n+1(c)

P̂
[2]
n (c)

.

By using the above relation in a recursive way, we get

I1,n(c)

P̂
[2]
n−1(c)

< I1,1(c) = d
[1]
0 .
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On the other hand, from (5.2) and (5.15)

sign I1,n(c) = (−1)n+1.

Therefore,

0 <
I1,n(c)

P̂
[2]
n−1(c)

< d
[1]
0 .

From (5.18)

0 <

n∑

k=0

(P̂
[2]
k (c))2

||P̂ [2]
k ||2µ,[2]

=
1

||P̂ [2]
n ||2µ,[2]

(
[P̂

[2]
n+1]

′(c)P̂ [2]
n (c)− [P̂ [2]

n ]′(c)P̂ [2]
n+1(c)

)
.

Since P̂
[2]
n+1(c)P̂

[2]
n (c) is negative this yields

[P̂
[2]
n+1]

′(c)

P̂
[2]
n+1(c)

<
[P̂

[2]
n ]′(c)

P̂
[2]
n (c)

.

By using the above relation in a recursive way, we have

[P̂
[2]
n+1]

′(c)

P̂
[2]
n+1(c)

<
[P̂

[2]
1 ]′(c)

P̂
[2]
1 (c)

= −d
[3]
0

d
[2]
0

.

Let 0 < x
[2]
n,1 < x

[2]
n,2 < · · · < x

[2]
n,n denote the zeros of P̂

[2]
n . Then

− [P̂
[2]
n ]′(c)

P̂
[2]
n (c)

=
1

x
[2]
n,1 − c

+
1

x
[2]
n,2 − c

+ · · ·+ 1

x
[2]
n,n − c

< −n
c
.

Statements (ii) and (iii) can be proved in the similar way as we did in (i).

Proposition 5.5 Let M,N ≥ 0 and not both zero. Then,

signAn,1 = −1,

signAn,2 = −1.

Proof. From (5.2) and Proposition 5.4

signAn,1 = −sign [P̂n]
′(c)

P̂
[2]
n−1(c)

= sign

(
− [P̂n]

′(c)

P̂n(c)

)
sign

P̂n(c)

P̂
[2]
n−1(c)

= −1.
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In a similar way,

signAn,2 = −sign
(
P̂n(c)

I2,n

)
= sign

(
−
P̂

[2]
n−1(c)

[P̂
[2]
n−1]

′(c)

)

× sign
P̂n(c)P̂n−2(c)P̂

[1]
n−2(c)P̂

[2]
n−2(c)P̂

[3]
n−2(c)

P̂n−1(c)P̂
[1]
n−1(c)P̂

[2]
n−1(c)

= −1.

Connection formula (III)

Next, let us obtain a third representation for the discrete Sobolev OPS in terms of the

polynomials orthonormal with respect to (x−c)2dµ(x). This expression will be very useful

to find a connection of these polynomials with the matrix orthogonal polynomials. Let

us denote {sM,N
n }n≥0, {pn}n≥0 the sequences of polynomials orthonormal with respect to

(5.1) and (1.2) respectively. Throughout the proof

sM,N
n = tnx

n + lower degree terms, tn > 0,

pn = rnx
n + lower degree terms, rn > 0,

p[k]n = r[k]n xn + lower degree terms, r[k]n > 0.

We first prove a couple of auxiliary results

Proposition 5.6 The sequence of discrete Sobolev orthonormal polynomials {sM,N
n (x)}n≥0

can be expressed as

sM,N
n (x) = η1(c, n)pn+1(x) + η2(c, n)pn(x)

−MsM,N
n (c)Kn+1(x, c)−N [sM,N

n ]′(c)K(0,1)
n+1 (x, c) (5.19)

where

η1(c, n) = N [sM,N
n ]′(c)[pn+1]

′(c) +MsM,N
n (c)pn+1(c),

η2(c, n) =
tn
rn

+MsM,N
n (c)pn(c) +N [sM,N

n ]′(c)[pn]
′(c).
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Proof. Using orthonormal polynomials, the formula (5.12) reads

sM,N
n (x) =

tn
rn
pn(x)−MsM,N

n (c)Kn−1(x, c)−N [sM,N
n ]′(c)K(0,1)

n−1 (x, c) (5.20)

and from the orthonormal version of the kernel (2.3), we have

Kn−1(x, c) = Kn+1(x, c)− pn+1(x)pn+1(c)− pn(x)pn(c),

K
(0,1)
n−1 (x, c) = K

(0,1)
n+1 (x, c)− pn+1(x)[pn+1]

′(c)− pn(x)[pn]
′(c).

Replacing in (5.20), we get

sM,N
n (x) =

(
N [sM,N

n ]′(c)[pn+1]
′(c) +MsM,N

n (c)pn+1(c)
)
pn+1(x)

+

(
tn
rn

+MsM,N
n (c)pn(c) +N [sM,N

n ]′(c)[pn]
′(c)

)
pn(x)

−MsM,N
n (c)Kn+1(x, c)−N [sM,N

n ]′(c)K(0,1)
n+1 (x, c),

which proves our statement.

Proposition 5.7 The sequence of polynomials {pn(x)}n≥0, orthonormal with respect to

dµ(x), can be expressed in terms of the 2−iterated orthonormal polynomials {p[2]n (x)}n≥0

as follows

pn(x) = φ1(c, n)p
[2]
n (x) + φ2(c, n)p

[2]
n−1(x) + φ3(c, n)p

[2]
n−2(x), (5.21)

where

φ1(c, n) =
r
[1]
n

r
[1]
n+1

rn
rn+1

p
[1]
n+1(c)

p
[1]
n (c)

pn+1(c)

pn(c)
,

φ2(c, n) =
−r[1]n−1

r
[1]
n

(
p
[1]
n (c)

p
[1]
n−1(c)

rn−1

rn
+

rn
rn+1

pn+1(c)

pn(c)

)
,

φ3(c, n) =
r
[1]
n−2

r
[1]
n−1

rn−1

rn
.

Proof. Using orthonormal polynomials, the Christoffel-Darboux formula (2.4) reads

Kn(x, y) =
n∑

k=0

pk(x)pk(y) =
rn
rn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

(x− y)
. (5.22)
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Hence, taking into account (2.17), it follows that, for k = 1, 2 we get

p[1]n (x) =
1

(x− c)

[
pn(x)−

pn(c)

pn+1(c)
pn+1(x)

]
, (5.23)

p[2]n (x) =
1

(x− c)

[
p[1]n (x)− p

[1]
n (c)

p
[1]
n+1(c)

p
[1]
n+1(x)

]
. (5.24)

Next, from (5.22)

pn(x) =
1

pn(c)
(Kn(x, c)−Kn−1(x, c))

=
rn−1

rn
p
[1]
n−1(x)−

rn
rn+1

pn+1(c)

pn(c)
p[1]n (x). (5.25)

Therefore, from (5.25) we get

pn(x) =
rn−1

rn
p
[1]
n−1(x)−

rn
rn+1

pn+1(c)

pn(c)
p[1]n (x)

=
r
[1]
n

r
[1]
n+1

rn
rn+1

p
[1]
n+1(c)

p
[1]
n (c)

pn+1(c)

pn(c)
p[2]n (x)

−
r
[1]
n−1

r
[1]
n

(
p
[1]
n (c)

p
[1]
n−1(c)

rn−1

rn
+

rn
rn+1

pn+1(c)

pn(c)

)
p
[2]
n−1(x) +

r
[1]
n−2

r
[1]
n−1

rn−1

rn
p
[2]
n−2(x),

which is our statement.

Proposition 5.8 Let {sM,N
n (x)}n≥0 be the sequence Sobolev-type polynomials orthonormal

with respect to (5.1), and let {p[2]n (x)}n≥0 be the sequence of polynomials orthonormal with

respect to the inner product (2.16) with k = 2. Then, the following expression holds

sM,N
n (x) = α(n, c)p[2]n (x) + β(n, c)p

[2]
n−1(x) + γ(n, c)p

[2]
n−2(x), (5.26)

where

α(n, c) =
tn

r
[2]
n

,

β(n, c) = η1(c, n)φ3(c, n+ 1) + η2(c, n)φ2(c, n),

γ(n, c) =
tn

r
[2]
n−2
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and

η1(c, n) = N [sM,N
n ]′(c)[pn+1]

′(c) +MsM,N
n (c)pn+1(c),

η2(c, n) =
tn
rn

+MsM,N
n (c)pn(c) +N [sM,N

n ]′(c)[pn]
′(c),

φ2(c, n) =
−r[1]n−1

r
[1]
n

(
p
[1]
n (c)

p
[1]
n−1(c)

rn−1

rn
+

rn
rn+1

pn+1(c)

pn(c)

)
,

φ3(c, n+ 1) =
r
[1]
n−1

r
[1]
n

rn
rn+1

.

Proof. For α(n, c), matching the leading coefficients of sM,N
n (x) and p

[2]
n (x), it is trivial

to see that

α(n, c) = 〈sM,N
n (x), p[2]n (x)〉[2] =

tn

r
[2]
n

.

For β(n, c) we need some more work. From (5.19)we have

β(n, c) = 〈sM,N
n (x), p

[2]
n−1(x)〉[2]

= η1(c, n)〈pn+1(x), p
[2]
n−1(x)〉[2]

+η2(c, n)〈pn(x), p[2]n−1(x)〉[2]
−MsM,N

n (c)〈Kn+1(x, c), p
[2]
n−1(x)〉[2]

−N [sM,N
n ]′(c)〈K(0,1)

n+1 (x, c), p
[2]
n−1(x)〉[2],

where, taking into account the reproductive property of the kernel

〈Kn+1(x, c), p
[2]
n−1(x)〉[2] = 0,

〈K(0,1)
n+1 (x, c), p

[2]
n−1(x)〉[2] = 0,

and using (5.21), we get

β(n, c) = η1(c, n)φ3(c, n+ 1) + η2(c, n)φ2(c, n).

For the last coefficient, as a straigtforward consequence of (5.1), we have

γ(n, c) = 〈sM,N
n (x), p

[2]
n−2(x)〉[2]

= 〈sM,N
n (x), (x− c)2p

[2]
n−2(x)〉S =

tn

r
[2]
n−2

.
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Finally, for 0 ≤ j ≤ n− 3, we have

〈sM,N
n (x), p

[2]
j (x)〉[2] = 〈sM,N

n (x), (x− c)2p
[2]
j (x)〉S

which vahishses for j ≤ n − 3. Hence, there is no more coefficients in (5.26), and it

completes the proof.

5.2.2 The five term recurrence relation

In this section, we will obtain the five term recurrence relation that the sequence of Sobolev-

type orthonormal polynomials {sM,N
n (x)}n≥0 satisfies. We are interested in using orthonor-

mal polynomials because with this normalization, all the matrices that we next obtain are

symmetric. Later on, we will derive an interesting relation between the pentadiagonal ma-

trix H associated with the multiplication operator by (x− c)2, and the tridiagonal Jacobi

matrix J[2], associated with the three term recurrence relation satisfied by the 2−iterated

orthonormal polynomials {p[2]n (x)}n≥0.

To do that, we will use the remarkable fact, which is a straightforward consequence of

(5.1), that the multiplication operator by (x− c)2 is a symmetric operator with respect to

the discrete Sobolev inner product (5.1). In other words, if p, q ∈ P

〈(x− c)2p, q〉S = 〈p, (x− c)2q〉S . (5.27)

First we will obtain the aforementioned five term recurrence relation. Let consider the

Fourier expansion of (x− c)2sM,N
n (x) in terms of {sM,N

n (x)}n≥0

(x− c)2sM,N
n (x) =

n+2∑

k=0

ρn,ks
M,N
k (x), (5.28)

where

ρn,k =
〈
(x− c)2sM,N

n (x), sM,N
k (x)

〉
S
, k = 0, . . . , n+ 2.

From (5.27)

ρn,k =
〈
sM,N
n (x), (x− c)2sM,N

k (x)
〉
S
, k = 0, . . . , n+ 2.

Hence, ρn,k = 0 for k = 0, . . . , n− 3. Taking into account that

[
(x− c)2sM,N

n (x)
]
|x=c =

[
(x− c)2sM,N

n (x)
]′ |x=c = 0,
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and using theorem (5.2) we get

〈
(x− c)2sM,N

n (x), sM,N
k (x)

〉
S
=
〈
sM,N
n (x), sM,N

k (x)
〉
[2]

Next, using connection formula (5.26) we have

ρn,n+2 =
〈
(x− c)2sM,N

n (x), sM,N
n+2 (x)

〉
S
=
〈
sM,N
n (x), sM,N

k (x)
〉
[2]

= α(n, c)γ(n+ 2, c)
〈
p[2]n (x), p[2]n (x)

〉
[2]

= α(n, c)γ(n+ 2, c),

ρn,n+1 =
〈
(x− c)2sM,N

n (x), sM,N
n+1 (x)

〉
S
=
〈
sM,N
n (x), sM,N

n+1 (x)
〉
[2]

= α(n, c)β(n+ 1, c)
〈
p[2]n (x), p[2]n (x)

〉
[2]

+β(n, c)γ(n+ 1, c)
〈
p
[2]
n−1(x), p

[2]
n−1(x)

〉
[2]

= α(n, c)β(n+ 1, c) + β(n, c)γ(n+ 1, c),

ρn,n =
〈
(x− c)2sM,N

n (x), sM,N
n (x)

〉
S
=
〈
sM,N
n (x), sM,N

n (x)
〉
[2]

= α2(n, c)
〈
p[2]n (x), p[2]n (x)

〉
[2]

+ β2(n, c)
〈
p
[2]
n−1(x), p

[2]
n−1(x)

〉
[2]

+γ2(n, c)
〈
p
[2]
n−2(x), p

[2]
n−2(x)

〉
[2]

= α2(n, c) + β2(n, c) + γ2(n, c),

ρn,n−1 =
〈
(x− c)2sM,N

n (x), sM,N
n−1 (x)

〉
S
=
〈
sM,N
n (x), sM,N

n−1 (x)
〉
[2]

= α(n− 1, c)β(n, c)
〈
p
[2]
n−1(x), p

[2]
n−1(x)

〉
[2]

+ β(n− 1, c)γ(n, c)
〈
p
[2]
n−2(x), p

[2]
n−2(x)

〉
[2]

= α(n− 1, c)β(n, c) + β(n− 1, c)γ(n, c),

ρn,n−2 =
〈
(x− c)2sM,N

n (x), sM,N
n−2 (x)

〉
S
=
〈
sM,N
n (x), sM,N

n−2 (x)
〉
[2]

= α(n− 2, c)γ(n, c)
〈
p
[2]
n−2(x), p

[2]
n−2(x)

〉
[2]

= α(n− 2, c)γ(n, c).
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Rearranging index, we can rewrite the above coefficients as

ρn,n−2 = an, ρn,n+2 = an+2,

ρn,n−1 = bn, ρn,n+1 = bn+1,

ρn,n = cn.

Hence, (5.28) becomes

(x− c)2sM,N
n (x) =

an+2s
M,N
n+2 (x) + bn+1s

M,N
n+1 (x) + cns

M,N
n (x) + bns

M,N
n−1 (x) + ans

M,N
n−2 (x), (5.29)

where, by convention

sM,N
−2 (x) = sM,N

−1 (x) = 0.

The matrix representation of (5.29) is

(x− c)2s̄M,N = Hs̄M,N , (5.30)

where H is the pentadiagonal semi-infinite symmetric matrix

H =




c0 b1 a2 0 · · ·
b1 c1 b2 a3 · · ·
a2 b2 c2 b3

. . .

0 a3 b3 c3
. . .

...
...

. . .
. . .

. . .




, (5.31)

and

s̄M,N =
[
sM,N
0 (x) sM,N

1 (x) sM,N
2 (x) · · ·

]T
.

On the other hand, the matrix analog to (5.26) can be stated as

s̄M,N = Tp̄[2] (5.32)

where T is the lower tridiagonal, semi-infinite, and invertible matrix

T =




α(0, c) 0 0 0

β(1, c) α(1, c) 0 0

γ(2, c) β(2, c) α(2, c) 0

0
. . .

. . .
. . .



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and

p̄[2] =
[
p
[2]
0 (x) p

[2]
1 (x) p

[2]
2 (x) · · ·

]T
.

Next, we show that the pentadiagonal matrix H associated with the five term re-

currence relation (5.29) can be given in terms of the pentadiagonal matrix J[2] − cI. The

matrix J[2] is the tridiagonal Jacobi matrix associated with the three term recurrence rela-

tion which verify the family of 2−iterated OPS {p[2]n (x)}n≥0. Note that this is a standard

OPS, so therefore

xp̄[2] = J[2] p̄
[2],

which in turn implies

(x− c)2 p̄[2] =
(
J[2] − cI

)2
p̄[2]. (5.33)

Combining (5.30) with (5.32), we get

T(x− c)2p̄[2] = HTp̄[2]. (5.34)

Substituting (5.33) into (5.34)

T
(
J[2] − cI

)2
p̄[2] = HTp̄[2].

Hence,

Proposition 5.9 The semi-infinite pentadiagonal matrix H, associated with the operator

(x− c)2 can be obtained from the matrix
(
J[2] − cI

)2
as follows

H = T
(
J[2] − cI

)2
T−1. (5.35)

5.2.3 Zeros of Sobolev-type orthogonal polynomials

In this subsection, we will analyze the zeros of the polynomials ŜM,N
n . The techniques are

the same as those used by Meijer in [85] and [86].

Theorem 5.3 The discrete Sobolev orthogonal polynomial ŜM,N
n has n real simple zeros

and at most one of them is outside [c,∞).

Proof. For N = 0, ŜM,N
n is a standard orthogonal polynomial. In the sequel we will

consider the cases when N > 0 and M ≥ 0. Let denote by νn,r, r = 1, 2, ..., n, the zeros
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of ŜM,N
n (x) on (c,∞) with odd multiplicity in an increasing order. Let us introduce the

polynomial

φ(x) = (x− νn,1)(x− νn,2) · · · (x− νn,k).

Notice that φ(c) and φ′(c) have opposite sign and φ(x)ŜM,N
n (x) does not change sign on

[c,∞). If deg φ ≤ n− 2, then

0 = 〈φ, ŜM,N
n 〉S =

∫ ∞

0
φ(x)ŜM,N

n (x)dµ(x) +M φ(c)ŜM,N
n (c) +N φ′(c)[ŜM,N

n ]′(c),

0 = 〈(x− c)φ, ŜM,N
n 〉S =

∫ ∞

0
(x− c)φ(x)ŜM,N

n (x)dµ(x) +N φ(c)[ŜM,N
n ]′(c).

This means that φ′(c)[ŜM,N
n ]′(c) and φ(c)[ŜM,N

n ]′(c) have the same sign, and therefore φ′(c)

and φ(c) have the same sign. This yields a contradiction.

As a conclusion, either deg φ = n− 1 or deg φ = n, which proves our statement.

Next, we prove that the zeros of ŜM,N
n (x) interlace with the zeros of P̂

[2]
n−1(x) if Ŝ

M,N
n (x)

has a zero outside [c,∞). Notice that, by Theorem 5.2, ŜM,N
n (c) 6= 0.

Theorem 5.4 Let denote by νn,r, r = 1, 2, ..., n, the zeros of ŜM,N
n (x) in an increasing

order. Suppose that νn,1 < c. Then, 2c− x
[2]
n−1,1 < νn,1 < c and

c < νn,2 < x
[2]
n−1,1 < · · · < νn,n < x

[2]
n−1,n−1.

Proof. From Theorem 5.2

ŜM,N
n (x

[2]
n−1,r) = P̂n(x

[2]
n−1,r) +An,2

(
x
[2]
n−1,r − c

)2
P̂

[4]
n−2(x

[2]
n−1,r), r = 1, 2, . . . , n− 1.

Then from Proposition 5.3(iii) and Proposition 5.5 we get

sign ŜM,N
n (x

[2]
n−1,r) = (−1)n−r, r = 1, 2, . . . , n− 1,

On the other hand, from (5.2) and Theorem 5.2

sign ŜM,N
n (c) = sign P̂n(c) = (−1)n.

Therefore, every interval (c, x
[2]
n−1,1) and

(
x
[2]
n−1,r, x

[2]
n−1,r+1

)
, r = 1, . . . , n− 2, contains an

odd number of zeros of ŜM,N
n (x). Since ŜM,N

n has n real zeros and at most one of them is

outside of (c,∞), then

c < νn,2 < x
[2]
n−1,1 < · · · < νn,n < x

[2]
n−1,n−1.
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Now, we will prove that 2c− x
[2]
n−1,r+1 < νn,1 < c. Let

ŜM,N
n (x) = (x− νn,1)(x− νn,2) · · · (x− νn,n).

By Theorem 5.2 and Proposition 5.4

[ŜM,N
n ]′(c) = [P̂n]

′(c) +An,1P̂
[2]
n−2(c) =

βnP̂n(c)(M + αn
γn

)

N + αnβn
.

Therefore,

sign [ŜM,N
n ]′(c) = sign P̂n(c) = sign ŜM,N

n (c)

and

0 <
[ŜM,N

n ]′(c)

ŜM,N
n (c)

=
1

c− νn,1
− 1

νn,2 − c
− · · · − 1

νn,n − c
.

Hence

1

c− νn,1
>

1

νn,2 − c
⇒ x

[2]
n−1,1 − c > νn,2 − c > c− νn,1 ⇒ 2c− x

[2]
n−1,1 < νn,1.

Our statement follows.

5.3 Connection with Matrix Orthogonality

Next, we will establish a connection between the Sobolev-type orthonormal polynomials

{sM,N
n }n≥0 and orthogonal matrix and vector polynomials. Concerning the matrix or-

thogonality, we will show that the five term recurrence relation (5.29) can be expressed

in terms of orthonormal matrix polynomials for which the coefficients are 2× 2 matrices.

This construction is due to A. Durán and W. Van Assche and is a nice picture of the

Sobolev-type orthogonality from a different point of view. Here we only apply this theory

to our particular case of Sobolev-type polynomials. For a treatment of a more general case

we refer to the reader to [21].

Set h(x) = (x− c)2. We will use the following basis in the linear space of polynomials

P {
1, x, (x− c)2, x(x− c)2, (x− c)4, x(x− c)4, . . .

}
.

Let Σ = {0, 1}. The polynomial sM,N ∈ P of degree 2k+l, 0 ≤ l < 2 can then be expanded

in this basis as

sM,N (x) =
∑

σ∈Σ

k∑

m=0

aσ,mx
σhm(x).
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Next, let

Rh,σ(p)(x) =
k∑

m=0

aσ,mx
m, p ∈ P, σ ∈ Σ,

such that it takes from p those terms of the form aσ,mx
σhm and then it removes the common

factor xσ and changes h(x) to x. With {sM,N
n }n≥0 satisfying the five term recurrence

relation (5.29), the polynomial sM,N
n is equivalent (and we will write sM,N

n (x) ≡ sM,N
n ),

modulo h(x), with the vector polynomial given by

sM,N
n =

[
Rh,0(s

M,N )(h(x)) Rh,1(s
M,N )(h(x))

]
.

Furthermore, under these assumptions, we can write the polynomials sM,N
2k+l(x), of degree

2k + l, 0 ≤ l < 2 as

sM,N
2k+l(x) = Rh,0(s

M,N
2k+l(h(x))) + xRh,1(s

M,N
2k+l(h(x))).

The main Theorem in [21, Section 2] states that the inner product (5.1) can be easily

rewritten as

〈f, g〉S =

∫ ∞

0

[
Rh,0(f)(h(x)) Rh,1(g)(h(x))

]
dM(x)

[
Rh,0(g)(h(x))

Rh,1(g)(h(x))

]

+
[
Rh,0(f)(0) Rh,1(g)(0)

]
L

[
Rh,0(g)(0)

Rh,1(g)(0)

]
,

where M is the 2× 2 matrix of measures

dM(x) =

[
dµ(x) xdµ(x)

xdµ(x) x2dµ(x)

]
,

and L is the 2× 2 matrix

L = M

[
1

c

] [
1 c

]
+N

[
1

1

] [
1 1

]

=

[
M +N Mc+N

Mc+N Mc2 +N

]
.

Under the conditions stated above, the Sobolev-type polynomials sM,N
n (x) orthogonal

with respect to (5.1) yield the matrix polynomials

SM,N
n (x) =

[
Rh,0(s

M,N
2n )(x) Rh,1(s

M,N
2n )(x)

Rh,0(s
M,N
2n+1)(x) Rh,1(s

M,N
2n+1)(x)

]
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orthonormal with respect to the matrix of measures M(h−1), perturbed with a “matrix

mass point” given by the matrix L at x = 0.

The matrix of measures satisfies

∫
F (x)dM(h−1(x)) =

∫
F (h(x))dM(x),

where F : R → R2 is a vector function such that F (h(x)) ∈ L1(M).

Moreover, the matrix orthogonal polynomials SM,N
n (x) satisfy the three term recurrence

relation

xSM,N
n (x) = Dn+1S

M,N
n (x) + EnS

M,N
n (x) +DnS

M,N
n−1 (x),

where Dn and En are the 2 × 2 matrices (Dn being a lower triangular matrix different

from the zero matrix O2×2)

Dn =

[
a2n 0

b2n a2n+1

]
, En =

[
c2n b2n+1

b2n+1 c2n+1

]
,

whose entries are in terms of the coeffients an, bn and cn in the five term recurrence relation

(5.29) for the Sobolev-type OPS {sM,N (x)}n≥0.

5.4 Laguerre Sobolev-type orthogonal polynomials

5.4.1 k-iterated Laguerre polynomials

Let {L(α),[k]
n }n≥0, k ∈ N, denote the OPS with respect to the modified Laguerre measure

(x − c)kdµ(x), c < 0, normalized by the condition that L
(α),[k]
n has the same leading

coefficient (−1)n

n! as the classical Laguerre orthogonal polynomial L
(α)
n = L

(α),[0]
n . With the

notation {L̂α,[k]
n }n≥0 we have the same monic modified Laguerre orthogonal polynomials,

i.e.

L(α),[k]
n (x) =

(−1)n

n!
L̂α,[k]
n (x).

Next we summarize some asymptotic properties of polynomials L
(α),[k]
n (x), which will

be used in the sequel.

Proposition 5.10 ([29])
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1. Normalization

L(α),[k]
n (x) =

(−1)n

n!
L̂α,[k]
n (x).

2. (Outer relative asymptotics) From the Perron’s formula (2.33), we get

lim
n→∞

L
(α),[k]
n (x)

nk/2L
(α)
n (x)

=
1

(
√
−x+

√
|c|)k

, (5.36)

uniformly on compact subsets of C\[0,∞).

3. (Mehler-Heine type formula) Uniformly on compact subsets of C

lim
n→∞

L
(α),[k]
n (x/(n+ j))

nα+k/2
=

1
(√

|c|
)k x

−α/2Jα(2
√
x) (5.37)

where j ∈ N ∪ 0 and Jα is the Bessel function of the first kind.

4. Plancherel-Rotach type outer asymptotics for L
(α),[k]
n

lim
n→∞

L
(α),[k]
n ((n+ j)x)

L
(α)
n ((n+ j)x)

=

(
φ((x− 2)/2) + 1

x

)k

, (5.38)

holds uniformly on compact subsets of C\[0, 4] and uniformly on j ∈ N ∪ {0}, where
φ is the conformal mapping of C\[−1, 1] onto the exterior of the unit circle

φ(x) = x+
√
x2 − 1, x ∈ C\[−1, 1],

with
√
x2 − 1 > 0 when x > 1.

Proposition 5.11 It holds

[L(α),[2]
n ]′(c) ∼= n

4c
L(α+1)
n (c).

Proof. Using integration by parts we have

∫ ∞

0
[L(α),[2]

n ]′(x)L(α+1),[3]
k (x)(x− c)3xα+1e−xdx =




0, if k ≤ n− 3,

n(n− 1)||L̂α,[2]
n ||2α,[2], if k = n− 2.

Therefore,

[L(α),[2]
n ]′(x) = −L(α+1),[3]

n−1 (x) +HnL
(α+1),[3]
n−2 (x),
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where

Hn =
n(n− 1)||L̂α,[2]

n ||2α,[2]
||L̂α+1,[3]

n−2 ||2α+1,[3]

.

Using (5.5), (2.33) and (5.36)

Hn =
(n+ 1)2(n+ α)

(n− 1)3
L
(α+1),[2]
n−2 (c)

L
(α+1),[2]
n−1 (c)

2∏

i=1

L
(α+1),[i−1]
n−2 (c)

L
(α+1),[i−1]
n−1 (c)

L
(α),[i−1]
n+1 (c)

L
(α),[i−1]
n (c)

=
L
(α+1),[2]
n−2 (c)

L
(α+1),[2]
n−1 (c)

2∏

i=1

L
(α+1),[i−1]
n−2 (c)

L
(α+1),[i−1]
n−1 (c)

L
(α),[i−1]
n+1 (c)

L
(α),[i−1]
n (c)

+ O
(
n−1

)
.

On the other hand, from [29, Proposition 2.2]

[L(α),[2]
n ]′(x) = −L(α),[3]

n−1 (x) + FnL
(α+1),[3]
n−2 (x), (5.39)

where

Fn = Hn − n3

(n− 1)3

3∏

i=1

L
(α+1),[i−1]
n−2 (c)

L
(α+1),[i−1]
n−1 (c)

L
(α),[i−1]
n (c)

L
(α),[i−1]
n−1 (c)

=
3∏

i=1

L
(α+1),[i−1]
n−2 (c)

L
(α+1),[i−1]
n−1 (c)

(
L
(α)
n+1(c)L

(α),[1]
n+1 (c)

L
(α)
n (c)L

(α),[1]
n (c)

− L
(α)
n (c)L

(α),[1]
n (c)L

(α),[2]
n (c)

L
(α)
n−1(c)L

(α),[1]
n−1 (c)L

(α),[2]
n−1 (c)

)
+ O

(
n−1

)
.

Again, from [29, Proposition 2.2]

L
(α)
n+1(c)L

(α),[1]
n+1 (c)

L
(α)
n (c)L

(α),[1]
n (c)

=
L
(α)
n+1(c)L

(α−1),[1]
n+1 (c)

L
(α)
n (c)L

(α),[1]
n (c)

+
L
(α−1)
n+2 (c)

L
(α−1)
n+1 (c)

+ O
(
n−1

)
,

L
(α)
n (c)L

(α),[1]
n (c)L

(α),[2]
n (c)

L
(α)
n−1(c)L

(α),[1]
n−1 (c)L

(α),[2]
n−1 (c)

=
L
(α)
n (c)L

(α),[1]
n (c)L

(α−1),[2]
n (c)

L
(α)
n−1(c)L

(α),[1]
n−1 (c)L

(α),[2]
n−1 (c)

+
L
(α−1)
n+1 (c)L

(α−1),[1]
n+1 (c)

L
(α−1)
n (c)L

(α−1),[1]
n (c)

+ O
(
n−1

)
,

and

L
(α−1)
n+2 (c)

L
(α−1)
n+1 (c)

−
L
(α−1)
n+1 (c)L

(α−1),[1]
n+1 (c)

L
(α−1)
n (c)L

(α−1),[1]
n (c)

=
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L
(α−2)
n+2 (c)

L
(α−1)
n+1 (c)

+ 1−
L
(α−1)
n+1 (c)L

(α−2),[1]
n+1 (c)

L
(α−1)
n (c)L

(α−1),[1]
n (c)

−
L
(α−2)
n+2 (c)

L
(α−2)
n+1 (c)

+ O
(
n−1

)

=
L
(α−2)
n+2 (c)

L
(α−1)
n+1 (c)

−
L
(α−1)
n+1 (c)L

(α−2),[1]
n+1 (c)

L
(α−1)
n (c)L

(α−1),[1]
n (c)

−
L
(α−3)
n+2 (c)

L
(α−2)
n+1 (c)

+ O
(
n−1

)

Therefore, by (2.33) and (5.36) √
nFn

∼= −
√
|c|.

and, taking into account, (5.39) the result follows.

5.4.2 Laguerre Sobolev-type OPS: Asymptotics

Let {S(α,M,N)
n (x)}n≥0 denote the sequence of polynomials orthogonal with respect to the

discrete Sobolev inner product (5.1), where dµ(x) = xαe−xdx and c < 0, normalized by the

condition that S
(α,M,N)
n (x) has the same leading coefficient (−1)n

n! as the classical Laguerre

orthogonal polynomial L
(α)
n (x). With this normalization we get

Theorem 5.5 Let M ≥ 0 and N ≥ 0. There are real constants Bn,0, Bn,1, and Bn,2 such

that

S(α,M,N)
n (x) = Bn,0L

(α)
n (x) +Bn,1(x− c)L

(α),[2]
n−1 (x) +Bn,2(x− c)2L

(α),[4]
n−2 (x), (5.40)

where Bn,0 =
1

1 +An,1 +An,2
, Bn,1 = − An,1

n(1 +An,1 +An,2)
, Bn,2 =

An,2

n(n− 1)(1 +An,1 +An,2)
.

Moreover,

(i) If M > 0 and N > 0, then

Bn,0
∼= 8cnα

M
(
L
(α)
n (c)

)2 , Bn,1
∼= −32c

√
|c|nα−1/2

M
(
L
(α)
n (c)

)2 , Bn,2
∼= 1

n2
. (5.41)

(ii) If M = 0 and N > 0, then

Bn,0
∼= 1

4
√
|c|n

, Bn,1
∼= − 1

n
, Bn,2

∼= 1

4n2
√
|c|n

.

(iii) If M > 0 and N = 0, then

Bn,0
∼=

√
|c|

Mn1/2−α
(
L
(α)
n−1(c)

)2 , Bn,1
∼= − 1

n
, Bn,2 = 0.
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Proof. From Theorem 5.2

S(α,M,N)
n (x) =

(−1)nŜα,M,N
n (x)

n!(1 +An,1 +An,2)

and, as a consequence,

S(α,M,N)
n (x) = Bn,0L

(α)
n (x) +Bn,1(x− c)L

(α),[2]
n−1 (x) +Bn,2(x− c)2L

(α),[4]
n−2 (x),

where Bn,0 =
1

1+An,1+An,2
, Bn,1 = − An,1

n(1+An,1+An,2)
, Bn,2 =

An,2

n(n−1)(1+An,1+An,2)
.

Now, from Proposition 5.4 we can obtain the behavior of the coefficients Bn,0, Bn,1

and Bn,2 for n large enough. In order to estimate An,1 and An,2, first we compute αnβn,

αn/γn, βnγn and I2,n(c). From (5.15) and Proposition 5.10

αnβn = − I1,n(c)

[L̂
α,[2]
n−1 ]

′(c)
=

L̂α
n(c)

L̂α
n−1(c)L̂

α,[1]
n−1(c)[L̂

α,[2]
n−1 ]

′(c)
||L̂α

n−1||2α

= −Γ(n+ α)

Γ(n)

nL
(α)
n (c)

L
(α)
n−1(c)L

(α),[1]
n−1 (c)

(
L
(α),[2]
n−1

)
(c)

∼= 8(−c)3/2nα−1/2

L
(α)
n (c)L

(α+1)
n (c)

,

αn

γn
= −I1,n(c)[L̂

α
n]

′(c)

L̂α
n(c)L̂

α,[2]
n−1(c)

=
[L̂α

n]
′(c)

L̂α
n−1(c)L̂

α,[1]
n−1(c)L̂

α,[2]
n−1 (c)

||L̂α
n−1||2α

=
Γ(n+ α)

Γ(n)

nL
(α+1)
n−1 (c)

L
(α)
n−1(c)L

(α),[1]
n−1 (c)L

(α),[2]
n−1 (c)

∼= 8(−c)3/2nα−1/2L
(α+1)
n (c)

(
L
(α)
n (c)

)3 ,

βnγn = αnβn
γn
αn

∼=
(

L
(α)
n (c)

L
(α+1)
n (c)

)2

∼= − c

n
,

I2,n(c) ∼= (−1)n−1(n− 2)!nα+3 L
(α)
n−1(c)L

(α),[1]
n−1 (c)[L

(α),[2]
n−1 ]′(c)

L
(α)
n−2(c)L

(α),[1]
n−2 (c)L

(α),[2]
n−2 (c)L

(α),[3]
n−3 (c)

∼= 8c(−1)n−1(n− 2)!nα+2

L
(α)
n (c)

.
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Next, we will analyze the following three situations.

(i) Let M > 0 and N > 0. Then,

An,1
∼= − [L̂α

n]
′(c)

L̂
α,[2]
n−1(c)

=
n[L

(α)
n ]′(c)

L
(α),[2]
n−1 (c)

= −
nL

(α+1)
n−1 (c)

L
(α),[2]
n−1 (c)

∼= −4
√
|c|n,

An,2
∼= −ML̂α

n(c)

In,2(c)
∼=
M
(
L
(α)
n (c)

)2

8cnα
.

Therefore,

Bn,0
∼= 8cnα

M
(
L
(α)
n (c)

)2 , Bn,1
∼= 32c

√
|c|nα−1/2

M
(
L
(α)
n (c)

)2 , Bn,2
∼= 1

n2
.

(ii) Let M = 0 and N > 0. Then,

An,1
∼= −4

√
|c|n,

An,2 = − L̂α
n(c)

In,2(c)

αn

γn
∼= −1.

Therefore,

Bn,0
∼= − 1

4
√
|c|n

, Bn,1
∼= − 1

n
, Bn,2

∼= 1

4n2
√
|c|n

.

(iii) Let M > 0 and N = 0. Then,

An,1 =
ML̂α

n(c)

In,1(c)
= −

ML̂α
n−1(c)L̂

α,[1]
n−1(c)

||L(α)
n−1||2α

∼= −Mn1/2−α

√
|c|

(
L
(α)
n−1(c)

)2
,

An,2 = 0.

Therefore,

Bn,0
∼= −

√
|c|

Mn1/2−α
(
L
(α)
n−1(c)

)2 , Bn,1
∼= − 1

n
, Bn,2 = 0.
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Outer relative asymptotics

Finally, we deduce several asymptotic properties for discrete Laguerre-Sobolev polynomials

when M,N ≥ 0.

Theorem 5.6 Uniformly on compact subsets of C\[0,∞) we get

(a) If M > 0 and N > 0, then

lim
n→∞

S
(α,M,N)
n (x)

L
(α)
n (x)

=

(√
−x−

√
|c|

√
−x+

√
|c|

)2

.

Notice that, according to the Hurwitz’s theorem, the point c attracts two negative

zeros of S
(α,M,N)
n (x) for n large enough.

(b) If M = 0 and N > 0 or M > 0 and N = 0, then

lim
n→∞

S
(α,M,N)
n (x)

L
(α)
n (x)

=

√
−x−

√
|c|

√
−x+

√
|c|
.

Notice that, according to the Hurwitz’s theorem, the point c attracts one negative

zero of S
(α,M,N)
n (x) for n large enough.

Proof. We will prove the theorem when M > 0 and N > 0. The proofs of the other cases

can be done in a similar way.

From (5.40)

S
(α,M,N)
n (x)

L
(α)
n (x)

= Bn,0 + nBn,1(x− c)
L
(α),[2]
n−1 (x)

nL
(α)
n (x)

+ n2Bn,2(x− c)2
L
(α),[4]
n−2 (x)

n2L
(α)
n (x)

.

Now, (5.36) and (5.41) yield

lim
n→∞

S
(α,M,N)
n (x)

L
(α)
n (x)

= (x− c)2 lim
n→∞

L
(α),[4]
n−2 (x)

n2L
(α)
n (x)

=

(√
−x−

√
|c|

√
−x+

√
|c|

)2

.
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Mehler-Heine type formula

Theorem 5.7 Mehler-Heine formula

(a) If M > 0 and N > 0

lim
n→∞

S
(α,M,N)
n (x/n)

nα
= x−α/2Jα(2

√
x),

(b) If M = 0 and N > 0 or M > 0 and N = 0

lim
n→∞

S
(α,M,N)
n (x/n)

nα
= −x−α/2Jα(2

√
x),

uniformly on compact subsets of C.

Proof. We will prove the theorem when M > 0 and N > 0. The proofs of the other cases

can be done in a similar way.

Scaling the variable as x→ x/n in (5.40) then dividing by nα we get

S
(α,M,N)
n (x/n)

nα
= Bn,0

L
(α)
n (x/n)

nα
+nBn,1(x/n−c)

L
(α),[2]
n−1 (x/n)

nα+1
+n2Bn,2(x/n−c)2

L
(α),[4]
n−2 (x/n)

nα+2
.

Now, (5.37) and (5.41) yield

lim
n→∞

S
(α,M,N)
n (x/n)

nα
= (−c)2 lim

n→∞
L
(α),[4]
n−2 (x)

nα+2
= x−α/2Jα(2

√
x).

Plancherel-Rotach type outer asymptotics

Theorem 5.8 • If M ≥ 0 and N ≥ 0, then

lim
n→∞

S
(α,M,N)
n (nx)

L
(α)
n (nx)

= 1,

uniformly on compact subsets of C\[0, 4].
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Proof. Dividing (5.40) by L
(α)
n (x) and scaling the variable as x→ nx we get

S
(α,M,N)
n (nx)

L
(α)
n (nx)

= Bn,0 + nBn,1
nx− c

n

L
(α),[2]
n−1 (nx)

L
(α)
n−1(nx)

L
(α)
n−1(nx)

L
(α)
n (nx)

+ n2Bn,2
(nx− c)2

n2
L
(α),[4]
n−2 (nx)

L
(α)
n−2(nx)

L
(α)
n−2(nx)

L
(α)
n (nx)

.

From (2.35), (5.38) and (5.41)

lim
n→∞

S
(α,M,N)
n (nx)

L
(α)
n (nx)

= x2
(
φ((x− 2)/2) + 1

x

)4 1

(φ((x− 2)/2))2
.

Now, using the fact that

(φ(z) + 1)2 = 2(z + 1)φ(z), |z| > 1,

we get our result.

5.4.3 Laguerre Sobolev-type OPS: Zeros

In this subsection, we analyze the behavior of the zeros of the discrete Laguerre-Sobolev

polynomials S
(α,M,N)
n (x) when M = 0, i.e. S

(α,0,N)
n (x) = S

(α,N)
n (x). We are interested to

find results concerning the monotonicity and speed of convergence of the zeros of S
(α,N)
n (x)

in terms of their dependence on N . We also get the interesting fact that the mass point

c does not attract any zero of Ŝα,N
n (x) when N → ∞ and the exact value for which the

least zero of S
(α,N)
n (x) is located outside [0,+∞).

For this purpose we will need the useful Lemma B.1 (see Appendix B) concerning the

behavior and the asymptotics of the zeros of a polynomial that is a linear combination of

two polynomials of the same degree with interlacing zeros. Let us introduce the nth-degree

monic polynomial,

Ĝα
n,c(x) = lim

N→∞

(
L̂α
n(x)−N

[L̂α
n]

′(c)

1 +NK
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c)

)

= L̂α
n(x)−

[L̂α
n]

′(c)

K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c), (5.42)

To characterize these polynomials, first we will observe that they are quasi-orthogonal of

order 2 (see [11, Definition 1]) with respect to the modified measure (x−c)2xαe−xdx, which



5.4. LAGUERRE SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS 135

is the 2-iterated Christoffel perturbation of the Laguerre measure. It means that Ĝα
n,c(x)

is a linear combination of three consecutive polynomials of the sequence {L̂α,[2]
n (x)}n≥0 of

monic polynomials orthogonal with respect to (x− c)2xαe−x. Indeed, for n ≥ 2,

Ĝα
n,c(x) = L̂α,[2]

n (x) +BnL̂
α,[2]
n−1 (x) + CnL̂

α,[2]
n−2(x),

where Bn and Cn 6= 0 are real numbers. Since

Cn =

∫∞
0 Ĝα

n,c(x)L̂
α,[2]
n−2 (x)(x− c)2xαe−xdx

||L̂α,[2]
n−2 ||2α,[2]

we have

Proposition 5.12 If c is a real negative number, then Cn is positive for every n ≥ 2.

Proof. We only need to study the sign of the numerator. According to (5.42)

∫ ∞

0
Ĝα

n,c(x)L̂
α,[2]
n−2(x)(x− c)2xαe−xdx =

∫ ∞

0
L̂α
n(x)L̂

α,[2]
n−2 (x)(x− c)2xαe−xdx− [L̂α

n]
′(c)

K
(1,1)
n−1 (c, c)

∫ ∞

0
K

(0,1)
n−1 (x, c)L̂

α,[2]
n−2(x)(x− c)2xαe−xdx

= ||L̂α
n||2α − [L̂α

n]
′(c)

K
(1,1)
n−1 (c, c)

∫ ∞

0
K

(0,1)
n−1 (x, c)L̂

α,[2]
n−2(x)(x− c)2xαe−xdx.

From (2.3) and (2.6) it follows immediately that

K
(0,1)
n−1 (x, c) = K(0,1)

n (x, c)− L̂α
n(x)[L̂

α
n]

′(c)

||L̂α
n||2α

,

hence ∫ ∞

0
K

(0,1)
n−1 (x, c)L̂

α,[2]
n−2(x)(x− c)2xαe−xdx =

∫ ∞

0
K(0,1)

n (x, c)L̂
α,[2]
n−2(x)(x− c)2xαe−xdx− [L̂α

n]
′(c)

||L̂α
n||2α

∫ ∞

0
L̂α
n(x)L̂

α,[2]
n−2 (x)(x− c)2xαe−xdx.

The second integral in the right-hand side is
∫ ∞

0
L̂α
n(x)L̂

α,[2]
n−2(x)(x− c)2xαe−xdx = ||L̂α

n||2α,
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while the first one vanishes because deg K
(0,1)
n (x, c) = deg L̂

α,[2]
n−2(x)(x − c)2 = n, and

therefore we can apply the property (2.10)

∫ ∞

0
K(0,1)

n (x, c) q (x) dµα = q′ (c) .

If we denote q (x) = L̂
α,[2]
n−2(x)(x− c)2, then q′(x) = [L̂

α,[2]
n−2 ]

′(x) (x − c)2 + 2(x− c)L̂
α,[2]
n−2(x)

and consequently q′ (c) = 0. Therefore

∫ ∞

0
Ĝα

n,c(x)L̂
α,[2]
n−2 (x)(x− c)2xαe−xdx = ||L̂α

n(x)||2α +

(
[L̂α

n]
′(c)
)2

K
(1,1)
n−1 (c, c)

.

Thus,

Cn =

∫∞
0 Ĝα

n,c(x)L̂
α,[2]
n−2 (x)(x− c)2xαe−xdx

||L̂α,[2]
n−2 ||2α,[k]

> 0, for every n ≥ 2.

On the other hand, let {ηn,k}nk=1 ≡ ηn,1 < ηn,2 < ... < ηn,n be the zeros of Ŝα,N
n (x)

and {xn,k}nk=1 ≡ xn,1 < xn,2 < ... < xn,n be the zeros of L̂α
n(x). Notice that these zeros

are real and simple (see [73], Proposition 3.2). Thus

Proposition 5.13 ([73], Proposition 6.2) The polynomial Ĝα
n,c(x) has n real and simple

zeros {yn,k}nk=1 ≡ yn,1 < yn,2 < ... < yn,n. The inequalities

yn,1 < c < xn,1 < yn,2 < xn,2 < · · · < yn,n < xn,n (5.43)

hold for every n ≥ 2, n ∈ N.

Notice that Ŝα,N
1 (x) = L̂α

1 (x).

Next, we express Ŝα,N
n (x) in a proper way, in order to use Lemma B.1 to study the

behavior of their zeros in terms of the mass N .

Proposition 5.14 The polynomials {S̃α,N
n (x)}n≥0 , with S̃α,N

n (x) = λn−1Ŝ
α,N
n (x), can be

represented as

S̃α,N
n (x) = L̂α

n(x) +NK
(1,1)
n−1 (c, c) Ĝα

n,c (x) , (5.44)

where

λn−1 = 1 +NK
(1,1)
n−1 (c, c) .
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Proof. First, we express the Laguerre Sobolev-type polynomials in terms of the standard

Laguerre orthogonal polynomials L̂α
n(x) and the Kernel polynomial (2.8). Taking into

account the Fourier expansion

Ŝα,N
n (x) = L̂α

n(x) +
n−1∑

k=0

an,kL̂
α
k (x),

we obtain, for k = 0, 1, 2, ..., n− 1,

an,k =
−N [Ŝα,N

n ]′(c)[L̂α
k ]

′(c)

||L̂α
k ||2α

.

Thus

Ŝα,N
n (x) = L̂α

n(x)−N [Ŝα,N
n ]′(c)

n−1∑

k=0

[L̂α
k ]

′(c)L̂α
k (x)

||L̂α
k ||2α

and, from (2.6),

Ŝα,N
n (x) = L̂α

n(x)−N [Ŝα,N
n ]′(c)K(0,1)

n−1 (x, c). (5.45)

Our next step is to find [Ŝα,N
n ]′(c). In order to do that, we take the derivative in the former

expression and evaluate it at x = c, so

[Ŝα,N
n ]′(c) =

[L̂α
n]

′(c)

1 +NK
(1,1)
n−1 (c, c)

,

and therefore

Ŝα,N
n (x) = L̂α

n(x)−N
[L̂α

n]
′(c)

1 +NK
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c). (5.46)

Next, Replacing (5.42) in (5.44)

λn−1Ŝ
α,N
n (x) = L̂α

n(x) +N K
(1,1)
n−1 (c, c)

(
L̂α
n(x)−

[L̂α
n]

′(c)

K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c)

)
,

(
1 +NK

(1,1)
n−1 (c, c)

)
Ŝα,N
n (x) =

(
1 +NK

(1,1)
n−1 (c, c)

)
L̂α
n(x)−N [L̂α

n]
′(c)K(0,1)

n−1 (x, c),

Ŝα,N
n (x) = L̂α

n(x)−N
[L̂α

n]
′(c)

1 +NK
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (x, c),

which is the connection formula (5.46).

We point out the fact the Laguerre Sobolev-type polynomial Ŝα,N
n (x) appears as a

linear combination of two polynomials of degree n. Thus, from (5.44), (5.43), and Lemma

B.1, we immediately conclude
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Theorem 5.9 If c ∈ R−, then

yn,1 < ηn,1 < xn,1 < yn,2 < ηn,2 < xn,2 < · · · < yn,n < ηn,n < xn,n.

Moreover, each ηn,k is a decreasing function of N and, for each k = 1, . . . , n,

lim
N→∞

ηn,k = yn,k,

as well as

lim
N→∞

N [ηn,k − yn,k] =
−L̂α

n(yn,k)

[Ĝα
n,c]

′(yn,k)
.

Notice that the mass point c does not attract any zero of Ŝα,N
n (x), when N → ∞, as in

the standard case (i.e. when M = N = 0, see [43]). The least zero of Ŝα,N
n (x) is attracted

by the least zero of the polynomial Ĝα
n,c(x). Next, we are going to look closely at this

polynomial. Notice that [Ĝα
n,c]

′(c) = 0. We are interested to give an interesting enough

extremal characterization of Ĝα
n,c(x).

Let

R̂n(x) = xn + lower degree terms

be a monic polynomial and consider the optimization problem with constrains

minimize





||R̂n||2α =
∫∞
0 |R̂n(x)|2xαe−xdx

with R̂n(x) = xn + lower degree terms

and [R̂n]
′(c) = 0.

(5.47)

It can be solved in the following way. Let

R̂n(x) = L̂α
n(x) +

n−1∑

k=0

an,k ℓ
α
k (x),

[R̂n]
′(x) = [L̂α

n]
′(x) +

n−1∑

k=0

an,k [ℓ
α
k ]

′(x), (5.48)

where {ℓαk (x)}k≥0 is the orthonormal Laguerre polynomial sequence. Then,

||R̂n||2α = ||L̂α
n||2α +

n−1∑

k=0

|an,k|2. (5.49)



5.4. LAGUERRE SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS 139

On the other hand, taking x = c in (5.48),

[R̂n]
′(c) = [L̂α

n]
′(c) +

n−1∑

k=0

an,k [ℓ
α
k ]

′(c) = 0,

−[L̂α
n]

′(c) =
n−1∑

k=0

an,k [ℓ
α
k ]

′(c).

Next, using the Cauchy-Schwarz inequality we get

∣∣∣[L̂α
n]

′(c)
∣∣∣
2
≤

n−1∑

k=0

|an,k|2
n−1∑

k=0

∣∣[ℓk]′(c)
∣∣2

or, equivalently, ∣∣∣[L̂α
n]

′(c)
∣∣∣
2

K
(1,1)
n−1 (c, c)

≤
n−1∑

k=0

|an,k|2.

Thus, taking into account (5.49), the infimum of (5.47) is

||L̂α
n||2α +

∣∣∣[L̂α
n]

′(c)
∣∣∣
2

K
(1,1)
n−1 (c, c)

that is attained by the polynomial Ĝα
n,c(x).

The Minimum Mass

When c ∈ R−, at most one of the zeros of Ŝα,N
n (x) is located outside [0,+∞). Next we

provide the explicit value N0 of the mass such that for N > N0 this situation appears, i.e,

one of the zeros is located outside [0,+∞).

Corollary 5.1 If c ∈ R−, then the least zero ηn,1 = ηn,1(c) satisfies

ηn,1 > 0, for N < N0,

ηn,1 = 0, for N = N0,

ηn,1 < 0, for N > N0,

where

N0 = N0(n, α, c) =

(
[L̂α

n]
′(c)

L̂α
n(0)

K
(0,1)
n−1 (0, c)−K

(1,1)
n−1 (c, c)

)−1

> 0. (5.50)
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Proof. It suffices to use (5.46) together with the fact that Ŝα,N
n (0) = 0 if and only if

N = N0

Ŝα,N
n (0) = L̂α

n(0)−N0
[L̂α

n]
′(c)

1 +N0K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (0, c) = 0,

L̂α
n(0) = N0

[L̂α
n]

′(c)

1 +N0K
(1,1)
n−1 (c, c)

K
(0,1)
n−1 (0, c),

N0 = N0(n, α, c) =

(
[L̂α

n]
′(c)

L̂α
n(0)

K
(0,1)
n−1 (0, c)−K

(1,1)
n−1 (c, c)

)−1

.

Notice that, according to the Hurwitz’s theorem, for n large enough, only one zero of

Ŝα,N
n is located outside of [0,+∞) and it is attracted by c.

Next we show some numerical experiments using Mathematicar software, dealing with

the least zero of Laguerre Sobolev-type polynomials. We are interested to show the location

and behavior of this least zero. In the first two tables we recover the results in [89] when

the mass point is located at x = 0, for n = 2, 3 and α = −1/2, 1, 5. (Notice that in this

work the authors label the zeros in a reverse order).

N η2,1(−1/2) N η2,1(1) N η2,1(5)

1/2 0.115964 3/2 0.271499 710 0.0419159

N0 =
√
π/2 0 N0 = 2 0 N0 = 720 0

1 −0.0313955 5/2 −0.230139 730 −0.0414199

N η3,1(−1/2) N η3,1(1) N η3,1(5)

1/4 0.00211646 1/5 0.407703 79 0.0251697

N0 =
√
π/7 0 N0 = 2/5 0 N0 = 80 0

1/2 −0.133233 3/2 −0.275762 81 −0.0248324

In the next two tables, we show the position for the first and second zeros of Laguerre

Sobolev-type polynomial of degree n = 15 and α = 0, for some choices of the mass N . For

N = 0 obviously we recover the least zero and the second zero of the classical Laguerre

polynomials (in bold). When the mass point is located at c = 0 we get

η15,k N = 0 N = 5.0 · 10−12 N = 5.0 · 10−8 N = 5.0 · 10−4 N = 5.0 · 10−2

k = 1 0.0933078 0.0933078 0.0933046 0.0620821 −0.146205

k = 2 0.492692 0.492692 0.492682 0.417657 0.263754
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as well as when the mass point is located at c = −1.

η15,k N = 0 N = 5.0 · 10−12 N = 5.0 · 10−8 N = 5.0 · 10−4 N = 5.0 · 10−2

k = 1 0.0933078 0.0933076 0.0915341 −1.35377 −1.36544

k = 2 0.492692 0.492691 0.485200 0.148587 0.148434

In the next two tables we provide numerical evidences in support of Corollary 5.1,

where the exact values of N0 are calculated for two specific cases. For this purpose we

begin by analyzing the least zero of the Laguerre Sobolev-type polynomials of degree n = 7,

α = 2 and with the mass point located at c = −2. Calculations show that for the values

of N0 given by (5.50), we have N0 = 3.21582 · 10−4 ∈ (3.0 · 10−4, 4.0 · 10−4).

η7,k : N = 0 N = 5.0 · 10−5 N = 3.0 · 10−4 N = 4.0 · 10−4 N = 5.0 · 10−3

k = 1 0.783096 0.705892 0.0636699 −0.775950 −2.70450

The table below shows that, with the mass point located at c = −1, we need larger

values of N0 to get the least zero as a negative real number. Now the estimate is 1.0·10−3 <

N0 < 2.0 · 10−3, according to the exact value N0(7, 2,−1) = 1.88442 · 10−3.

η7,k : N = 0 N = 5.0 · 10−4 N = 1.0 · 10−3 N = 2.0 · 10−3 N = 5.0 · 10−2

k = 1 0.783096 0.603763 0.384610 −0.0452617 −1.81059

Another interesting question is to study, for a fixed value N , the behavior of zeros

of Laguerre Sobolev-type polynomials in terms of the parameter α. Notice that, for a

fixed value of α we can loose its negative zero, as it occurs in the standard case (see

[23]). We show the behavior of the first two zeros to give more information about their

relative spacing. For instance, let us show the first two zeros of the Laguerre Sobolev-type

polynomials of degree n = 12, when N = 1.5 ·10−7 and the mass point is located at c = −3

η12,k : α = −1/2 α = 0 α = 2 α = 3 α = 5

k = 1 −2.81937 −2.52014 −0.0397219 0.625246 1.29029

k = 2 0.0716143 0.164964 0.855437 1.54668 2.57453

and again, the first two zeros when N = 5.0 · 10−5 and c = −1.

η12,k : α = −1/2 α = 0 α = 2 α = 3 α = 5

k = 1 −0.16977 −0.185167 0.242738 0.600667 1.27787

k = 2 0.137987 0.272018 1.0244 1.53932 2.55799
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Finally, we show the graph of the Laguerre Sobolev-type polynomial of degree 3,

S
(0,N)
3 (x) for several values of the mass N , located at c = −3. Obviously, when N = 0

we recover the standard Laguerre polynomial of degree 3, L
(0)
3 (x), showed in the picture

with black graph. Using the formula (5.50) we get the value N0(3, 0,−3) = 0.0136986.

For N < N0, the least zero of S
(0,N)
3 (x) is still positive (red graph). For the exact value

N = N0(3, 0,−3), we have x̃3,1 = 0 (blue graph) and with slightly higher values of N > N0,

we get x̃3,1 < 0 (green graph). Further increasing the value of N we get x̃3,1 out of the

interval [c,+∞) (yellow graph).

-4 -2 0 2 4 6

-4

-2

0

2

4

N

a =-3 N=0.15
N=0.04
N=0.0136986
N=0.008
N=0



APPENDIXA

Conclusions and Future Research

A.1 Main contributions

Here we summarize the contributions of this dissertation.

• For the first time a comprehensive study of the behavior of zeros of polynomials

orthogonal with respect to Uvarov and Christoffel perturbed measures is done. The

behavior of the zeros is given in terms of the parameter M , which determines how

important the perturbation on the classical measure is. So far, significant progress

in this direction have been done through semiclassical approximations, as in [3] and

only concerning the behavior of the mean average properties of zeros using the WKB

method.

• Asymptotic results for the MOPS with respect to the Uvarov transformation of

the Laguerre measure, as a canonical example of unbounded supported measure, are

deduced when the mass point is located outside the support of the Laguerre measure.

Up to date, the mass points were located at the boundary/boundaries of the support

of the measure.

• In case of a finitely many mass points outside the support of the Laguerre measure,

143
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an electrostatic model is provided. To date, the only similar work is considering a

single mass point at the origin. We describe the behavior of zeros of Krall-Laguerre

polynomials in terms of the zeros of a polynomial of degree 2m (being m the num-

ber of Dirac masses on the measure), which are sources of a short range potential

field in the location of the zeros of the Krall-Laguerre OPS as critical points in the

equilibrium problem.

• Asymptotic properties of Laguerre Sobolev-type MOPS, when the mass point is

located outside the support of the Laguerre measure are deduced. Up to date, the

mass points were located at the boundary/boundaries of the support of the measure.

The original results contained in this memoir have been published in several inter-

national research Journals, all of them indexed in the Journal of Citation Reportsr, as

follows (the numbers in square brackets means the order in which the corresponding work

appear in the bibliography)

[23] H. Dueñas, E. J. Huertas, and F. Marcellán, Analytic properties of Laguerre-type

orthogonal polynomials, Integral Transforms Spec. Funct. 22 (2011), 107-122.

[24] H. Dueñas, E. J. Huertas, and F. Marcellán, Asymptotic properties of Laguerre-

Sobolev type orthogonal polynomials, Numer. Algorithms 60 (1), (2012), 51-73.

[32] F. Marcellán, R. Xh. Zejnullahu, B. Xh. Fejzullahu, and E. J. Huertas, On ortho-

gonal polynomials with respect to certain discrete Sobolev inner product, Pacific J.

Math. 257 (1), (2012), 167-188.

[43] E. J. Huertas, F. Marcellán and F. R. Rafaeli, Zeros of Orthogonal Polynomials

Generated by Canonical Perturbations of Measures, Appl. Math. Comput. 218,

(2012), 7109-7127.

[44] E. J. Huertas, F. Marcellán, and H. Pijeira, An Electrostatic Model for Zeros of

Laguerre Polynomials. Submitted to Proceedings of the American Mathematical

Society, December 2011. Under review.
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A.2 Open problems

Finally, we discuss some related work as well as we propose a set of open problems for a

future research.

P1. Infinitely many mass points

Let {Q(α,m)
n (x)}n≥0 be the sequence of Krall-Laguerre orthogonal polynomials considered

in Chapter 3. The problem is to describe the behavior ofQ
(α,m)
n (x), relative to the Laguerre

OPS {L(α)
n (x)}n≥0, when an infinite number of mass points is added in the negative real

semiaxis R−, i.e. m → +∞. Namely, we would like to evaluate the limit as m → ∞ in

(4.36)

lim
n→∞

Q
(α,m)
n (x)

L
(α)
n (x)

=
m∏

k=1

√
−x−

√
|ck|√

−x+
√
|ck|

. (A.1)

Notice that we deal with a nonincreasing sequence {ck}mk=1 as k = 1, . . . ,m.

P2. Mass points inside the support of the Laguerre measure

The results of Chapters 4 and 5 for Krall-Laguerre and Laguerre-Sobolev-type orthogonal

polynomials were obtained when the mass points are located outside the support of the

Laguerre measure. It will be of interest to study the zeros and the asymptotic behavior

for this measure when the mass points belong to (0,+∞).

P3. Electrostatic model in more general Sobolev cases

Find electrostatic models for the zeros of polynomials orthogonal with respect to the

following discrete Sobolev inner products

〈f, g〉S =

∫ ∞

0
f(x)g(x)dµ+Mf (j)(c)g(j)(c), c /∈ [0,+∞), M ∈ R+, j ∈ N, (A.2)

and

〈f, g〉S,m =

∫ ∞

0
f(x)g(x)dµ+

m∑

k=0

Mk f
(j)(ck)g

(j)(ck), {ck}mk=0 /∈ [0,+∞), Mk ∈ R+.

(A.3)
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P4. General positive Borel measures with unbounded support

Let study the above questions for general positive Borel measures µ supported on R.

P5. Geronimus transformation of measures

Given the Geronimus canonical transformation of a positive Borel measure (2.14), it would

be interesting to explore the behavior of the zeros of polynomials orthogonal with respect

to the inner product

〈f, g〉G =

∫

E
f(x)g(x)

1

x− c
dµ+Mf(c)g(c), c /∈ E, M ∈ R+

in terms of M .

P6. Connection with vector orthogonality

Motivated by the recent work [10], the analysis of the matrix orthogonality provided

in section (5.3) would be a nice approach to study analytic properties of such matrix

orthogonal polynomials generated from the Sobolev type orthogonality. In particular, an

interesting problem would be to analyze if they satisfy ordinary linear differential equations

with matrix polynomials as coefficients.



APPENDIXB

Interlacing Lemma

The following Lemma deals with the behavior of the zeros of a linear combination of two

polynomials with interlacing zeros. For the convenience of the reader, since this is central

to understand some results of this thesis, we reproduce here the complete proof. The best

general references here are [90, p. 31-33], [12, Lemma 1] or [19, Lemma 3]. This proof is

due to C. Bracciali, D. Dimitrov and S. Ranga.

Lemma B.1 Let hn(x) = a(x− x1) · · · (x− xn) and gn(x) = b(x− y1) · · · (x− yn) be two

polynomials with real zeros, where a and b are positive constants.

(i) If

y1 < x1 < · · · < yn < xn,

then, for any real constant c > 0, the polynomial

f(x) = hn(x) + cgn(x)

has n real zeros η1 < · · · < ηn which interlace with the zeros of hn(x) and gn(x) as

follows

y1 < η1 < x1 < · · · < yn < ηn < xn.
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Moreover, each ηk = ηk(c) is a decreasing function of c, and for every k = 1, . . . , n,

lim
c→∞

ηk = yk and

lim
c→∞

c[ηk − yk] =
−hn(yk)
g′n(yk)

(ii) If

x1 < y1 < · · · < xn < yn,

then, for any real constant c > 0, the polynomial

f(x) = hn(x) + cgn(x)

has n real zeros η1 < · · · < ηn which interlace with the zeros of hn(x) and gn(x) as

follows

x1 < η1 < y1 < · · · < xn < ηn < yn. (B.1)

Moreover, each ηk = ηk(c) is an increasing function of c, and for every k = 1, . . . , n,

lim
c→∞

ηk = yk and

lim
c→∞

c[yk − ηk] =
hn(yk)

g′n(yk)

(B.2)

Proof. It is enough to prove (ii) because the case (i) is similar. Since hn(x) and gn(x)

are monic polynomials with

x1 < y1 < · · · < xn < yn,

we have

sign f(xk) = sign gn(xk) = (−1)n−k+1, k = 1, . . . , n.

Hence, there exist n− 1 zeros η1, . . . , ηn−1 of f(x) such that

x1 < η1 < x2 < . . . < xn−1 < ηn−1 < xn.

The existence of ηn > xn follows from f(xn) < 0 and the fact that f(x) → +∞ as

x→ +∞. Since similar arguments apply to the case

η1 < y1 < · · · < ηn < yn,
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we conclude that (B.1) is true.

To prove the monotonicity of zeros of in terms of c, we define the polynomial

fε(x) = hn(x) + (c+ ε)gn(x),

with ε ≥ 0, and let denote its zeros by η1(ε) < · · · < ηn(ε). It is easy to check that

ηk = ηk(0) and

fε(x) = f(x) + εgn(x).

Therefore, fε(ηk) = εgn(ηk) and then, for ε > 0,

sign fε(ηk) = sign gn(ηk) = (−1)n−k+1

because the interlacing property (B.1). Thus, ηk < ηk(ε), i.e. every zero ηk is an increasing

function of c.

For the proof of the limits (B.2), we define the polynomial q(x) by

q(x) =
1

c
hn(x) + gn(x).

Notice that the zeros of f(x) and q(x) coincide for each c. Since

lim
c→∞

q(x) = gn(x),

by the Hurwitz’s theorem (see [99]), the zeros ηk of f(x) converge to the zeros yk of gn(x)

when c tends to infinity.

Next, by the Mean Value Theorem, there exist real real numbers θk ∈ (ηk, yk), k =

1, . . . , n, such that
cgn(yk)− cgn(ηk)

yk − ηk
= cg′n(θk)

or, equivalently,

c[yk − ηk] =
hn(ηk)

g′n(θk)
.

On the other hand, hn(x) and gn(x) are polynomials with simple zeros. Since g′(yk) 6= 0,

then there exists δ1 > 0 such that

mk = min{|g′n(x)| : x ∈ [yk − δ1, yk]} 6= 0.
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Let ε > 0. Hence, there exists δ2 > 0, with δ2 < δ1, such that

|hn(x)− hn(yk)| <
εmk

2
, |gn(x)− gn(yk)| <

εm2
k

2|hn(yk)|
,

when x ∈ [yk − δ2, yk]. Since ηk, θk → yk as c → ∞, then there exists c0 > 0 such that,

for all c > c0, ηk, θk ∈ [yk − δ2, yk]. Thus, for c > c0

∣∣∣∣
hn(ηk)

g′n(θk)
− hn(yk)

g′n(yk)

∣∣∣∣ =

∣∣∣∣
hn(ηk)g

′
n(yk)− hn(yk)g

′
n(θk)

g′n(θk)g′n(yk)

∣∣∣∣

≤ |hn(ηk)− hn(yk)|
1

|g′n(θk)|
+ |g′n(θk)− g′n(yk)|

|hn(yk)|
|g′n(θk)||g′n(yk)|

≤ |hn(ηk)− hn(yk)|
1

mk
+ |g′n(θk)− g′n(yk)|

|hn(yk)|
m2

k
< ε.

Hence,

lim
c→∞

c[yk − ηk] = lim
c→∞

hn(ηk)

g′n(θk)
=
hn(yk)

g′n(yk)
,

and the proof is complete.
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Rate of Convergence

In this appendix, from the Perron’s formula (2.33) we prove two lemmas concerning the rate

of convergence of the ratio of two standard Laguerre polynomials as n→ ∞. Throughout

this dissertation, we have needed to compute several ratios of Laguerre polynomials with

different parameters and degrees, and this is the reason why these Lemmas will be useful.

Taking p = 3 in (2.33) we have

L(α)
n (x) =

1

2
π−1/2ex/2 (−x)−α/2−1/4 nα/2−1/4e2(−nx)1/2

×
{
C0(α;x) + C1(α;x)n

−1/2 + C2(α;x)n
−1 + O

(
n−3/2

)}
,

where every Cν(α;x) is independent of n, but depends on α. Thus,

L
(α)
n+j(x)

L
(β)
n+k(x)

= (−x)−α/2+β/2

[
(n+ j)α/2−1/4

(n+ k)β/2−1/4

]
e[2(−(n+j)x)1/2−(2(−(n+k)x)1/2)] (C.1)

×C0(α;x) + C1(α;x)(n+ j)−1/2 + C2(α;x) (n+ j)−1 + O
(
(n+ j)−3/2

)

C0(β;x) + C1(β;x)(n+ k)−1/2 + C2(β;x) (n+ k)−1 + O
(
(n+ k)−3/2

) .

First, we study the term inside the square brackets. From (n+ j)
α
2
− 1

4 = n
α
2
− 1

4

(
1 + j

n

)α
2
− 1

4
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and (n+ k)
β
2
− 1

4 = n
β
2
− 1

4

(
1 + k

n

)β
2
− 1

4 , we obtain

[
(n+ j)α/2−1/4

(n+ k)β/2−1/4

]
=
n

α
2
− 1

4

(
1 + j

n

)α
2
− 1

4

n
β
2
− 1

4

(
1 + k

n

)β
2
− 1

4

= n
α
2
−β

2

(
1 + j

n

)α
2
− 1

4

(
1 + k

n

)β
2
− 1

4

. (C.2)

Next, using the expansion

(1 + z)y = 1 + yz + O
(
z2
)
, |z| < 1,

for both y = α
2 − 1

4 with z = j
n and y = −

(
β
2 − 1

4

)
with z = k

n , we obtain

(n+ j)α/2−1/4

(n+ k)β/2−1/4
= n

α
2
−β

2

[
1 +

j

n

(
α

2
− 1

4

)
+ O

(
1

n2

)]
×
[
1− k

n

(
β

2
− 1

4

)
+ O

(
1

n2

)]
.

The product of the last two square brackets yields

1 +
j

n

(
α

2
− 1

4

)
− k

n

(
β

2
− 1

4

)
+ O

(
1

n2

)
.

As a conclusion, (C.2) becomes

(n+ j)α/2−1/4

(n+ k)β/2−1/4
= n

α
2
−β

2

(
1 +

[
j

(
α

2
− 1

4

)
− k

(
β

2
− 1

4

)]
1

n
+ O

(
1

n2

))
. (C.3)

On the other hand, in (C.1)

e[2(−(n+j)x)1/2−(2(−(n+k)x)1/2)] = e2
√
−x((n+j)1/2−(n+k)1/2). (C.4)

But

(n+ j)1/2 − (n+ k)1/2 = n1/2

((
1 +

j

n

)1/2

−
(
1 +

k

n

)1/2
)

=
1

2
(j − k)n−1/2 + O(n−3/2).

Therefore, (C.4) becomes

e2
√
−x((n+j)1/2−(n+k)1/2) = exp

[√−x√
n

(j − k) + O(n−3/2)

]
,
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and using

exp z = 1 + z +
1

2
z2 + O

(
z3
)
,

we can write

e2
√
−x((n+j)1/2−(n+k)1/2) = 1 +

√
−x√
n

(j − k)− x

2n
(j − k)2 + O(n−3/2). (C.5)

Multiplying (C.3) and (C.5) we can rewrite (C.1) as

L
(α)
n+j(x)

L
(β)
n+k(x)

= (−x)−α
2
+β

2 n
α
2
−β

2×

(
1 +

√
−x√
n

(j − k) +

[(
α

2
− 1

4

)
j −

(
β

2
− 1

4

)
k − x

2
(j − k)2

]
1

n
+ O(n−3/2)

)
(C.6)

×C0(α;x) + C1(α;x)(n+ j)−1/2 + C2(α;x) (n+ j)−1 + O
(
(n+ j)−3/2

)

C0(β;x) + C1(β;x)(n+ k)−1/2 + C2(β;x) (n+ k)−1 + O
(
(n+ k)−3/2

) .

Next we will state two useful lemmas considering some particular values of the parameters

α, β, j and k.

Lemma C.1 Given two standard Laguerre polynomials of the same parameter α and dif-

ferent degree, the following statement holds. For x ∈ C�R+

L
(α)
n+j(x)

L
(α)
n (x)

= 1 +

√
−x√
n
j +

[(
α

2
− 1

4

)
j − x

2
j2
]
1

n
+ O(n−3/2)

where
√
−x must be taken real and positive if x < 0.

Proof. Letting α = β and k = 0 in (C.6) yields

L
(α)
n+j(x)

L
(α)
n (x)

=

(
1 +

√
−x√
n
j +

[(
α

2
− 1

4

)
j − x

2
j2
]
1

n
+ O(n−3/2)

)
(C.7)

×C0(α;x) + C1(α;x)(n+ j)−1/2 + C2(α;x) (n+ j)−1 + O
(
(n+ j)−3/2

)

C0(α;x) + C1(α;x)n−1/2 + C2(α;x)n−1 + O
(
n−3/2

) .

In the numerator of (C.7) we have

C0(α;x) + C1(α;x)(n+ j)−1/2 + C2(α;x) (n+ j)−1 + O((n+ j)−3/2)
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= C0(α;x) + C1(α;x)n
−1/2

(
1 +

j

n

)−1/2

+ C2(α;x)n
−1

(
1 +

j

n

)−1

+ O

(
n−3/2

)

Thus

C0(α;x) + C1(α;x)(n+ j)−1/2 + C2(α;x) (n+ j)−1 + O
(
(n+ j)−3/2

)

C0(α;x) + C1(α;x)n−1/2 + C2(α;x)n−1 + O
(
n−3/2

)

= 1 + O(n−3/2) (C.8)

Under these conditions, this shows that there are no terms of order either O
(
n−1/2

)

or O
(
n−1

)
in the expansion (C.8). Thus, we can rewrite (C.7) as

L
(α)
n+j(x)

L
(α)
n (x)

=

(
1 +

√
−x√
n
j +

[(
α

2
− 1

4

)
j − x

2
j2
]
1

n
+ O(n−3/2)

)
×
(
1 + O

(
n−3/2

))

= 1 +

√
−x√
n
j +

[(
α

2
− 1

4

)
j − x

2
j2
]
1

n
+ O(n−3/2).

Lemma C.2 Given two standard Laguerre polynomials of equal degree n and different

parameter, the following statements hold. For x ∈ C�R+

L
(α)
n (x)

L
(α+1)
n (x)

=

√
−x√
n

+

[(
α

2
+

1

4

)
+
x

2

]
1

n
+ O(n−3/2),

L
(α)
n (x)

L
(α+2)
n (x)

=
−x
n

+ O(n−3/2),

where
√
−x must be taken real and positive if x < 0.

Proof. Using (2.25) and proceeding by induction, it is easy to see that

L(α)
n (x) =

ℓ∑

ν=0

(−1)ν
(
ℓ

ν

)
L
(α+ℓ)
n−ν (x), ℓ = 1, 2, . . .

and therefore

L
(α)
n (x)

L
(α+ℓ)
n (x)

=

ℓ∑

ν=0

(−1)ν
(
ℓ

ν

)
L
(α+ℓ)
n−ν (x)

L
(α+ℓ)
n (x)

.
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Next we can use Lemma C.1 with parameter α + ℓ and j = −ν in order to evaluate the

last ratios as follows

L
(α+ℓ)
n−ν (x)

L
(α+ℓ)
n (x)

= 1−
√
−x√
n
ν −

[(
α+ ℓ

2
− 1

4

)
ν +

x

2
ν2
]
1

n
+ O(n−3/2).

Hence
L
(α)
n (x)

L
(α+ℓ)
n (x)

= (C.9)

ℓ∑

ν=0

(−1)ν
(
ℓ

ν

)(
1−

√
−x√
n
ν −

[(
α+ ℓ

2
− 1

4

)
ν +

x

2
ν2
]
1

n

)
+ O(n−3/2).

Taking ℓ = 1 in (C.9)

L
(α)
n (x)

L
(α+1)
n (x)

=

√
−x√
n

+

[(
α

2
+

1

4

)
+
x

2

]
1

n
+ O(n−3/2).

If ℓ = 2 we have
L
(α)
n (x)

L
(α+2)
n (x)

=
−x
n

+ O(n−3/2).
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tionnelle. Application aux polynômes de Laguerre-Hahn, Ann. Polon. Math. 52 (1990),

175–185.

[21] A. Durán and W. Van Assche, Orthogonal matrix polynomials and higher-order re-

currence relations, Linear Algebra Appl. 219 (1995), 261–280.
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[40] F. A. Grünbaum, L. Haine, and E. Horozov, On the Krall-Hermite and Krall-Bessel

polynomials, Internat. Math. Res. Notices 19 (1997), 956–966.
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résultats de plusieurs observations, dans lequel on examine les avantages de cette
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[99] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. Series,

vol 23, Amer. Math. Soc. Providence, RI, 1975.

[100] V. B. Uvarov, The connection between systems of polynomials that are orthogonal

with respect to different distribution functions, J. Comput. Math. and Math. Phys. 9

(1969), 25–36.

[101] G. Valent and W. Van Assche, The impact of Stieltjes’s work on continued fractions

and orthogonal polynomials, J. Comput. Appl. Math. 65 (1995), 419–447.

[102] G. J. Yoon, Darboux transforms and orthogonal polynomials, Bull. Korean Math.

Soc. 39 (2002), 359–376.

[103] A. Zhedanov, Rational spectral transformations and orthogonal polynomials. J. Com-

put. Appl. Math. 85 (1997), 67–83.



Index

Asymptotics

Mehler-Heine type, 29, 80, 93, 94, 127,

133

outer relative, 80, 92, 95, 96, 127, 132

outer strong, 29

Plancherel-Rotach type, 30, 127, 133

Canonical perturbation

Christoffel, iii, 22, 24, 143

Geronimus, 23

of a linear functional, 22

Uvarov, iii, 22, 79, 143

Christoffel-Darboux formula, 19

Dirac delta, 22

Discrete Sobolev, 101

Electrostatic model, 34

for m mass points, 68, 69

for one mass point, 49

Favard’s Theorem, 18

Five term recurrence relation, 119

Gram-Schmidt process, 41

Holonomic equation, 34, 69, 92

for m mass points, 71

holonomic equation

for one mass point, 53

Hurwitz’s theorem, 93, 132, 140, 149

Hypergeometric representation, 27, 83

Ismail, 37, 51, 54

Laguerre polynomials, 27, 29, 48, 57, 73, 79,

83, 89, 92, 94, 95

Linear functional, 18, 22

class of, 26, 27

Logarithmic potential, 34, 37, 73, 79

long range, 56, 60, 65, 68, 75, 76

short range, 56, 60, 65, 68, 75

Moment functional, 16

Orthonormal polynomials, 6, 138

Pearson equation, 25, 30, 50, 55, 59, 63, 67

Quasi-definite linear functional, 22, 25

Quasi-definite moment functional, 17–19, 22

167



168 INDEX

Second order linear differential

equation, 31, 44, 48, 53, 73

operator, 27, 37

Semiclassical

linear functional, 25, 26

measure, 49

moment functional, 25

orthogonal polynomials, 25, 27

weight function, 50

Sobolev-type OP, 101

Three term recurrence relation, 18, 38, 51,

85, 88, 91, 106

for Jacobi OPS, 30, 66

for Laguerre OPS, 28, 57, 70, 89

Uvarov, 33

Zeros of orthogonal polynomials, 18, 33, 36,

37, 99

behavior, 36

convergence, 41

Jacobi polynomials, 45

Krall-Jacobi polynomials, 63

Krall-Laguerre polynomials, 47, 55, 61,

62

Laguerre polynomials, 49

Laguerre Sobolev-type polynomials, 134,

141

monotonicity of zeros, 45, 48, 134

Sobolev-type polynomials, 101, 122


