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Abstract The combinatorial clock-proxy auction is analyzed as a selling mecha-
nism of a portion of the “digital dividend” in an European country. We assumed bidders
with bounded rationality making their bidding decisions based on a system of recom-
mendation that learns from the environment. The auction outcome when all bidders
follow the proposed strategies was compared with the efficient outcome of the
auction. Although significant differences were found in the seller’s income, no signif-
icant variations were found in the distribution of spectrum licenses among bidders.
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1 Introduction

The process of digitizing television broadcasting signals is already under way around
the world. Indeed, many countries have established an early deadline for the “analogue
blackout”. Transmission of existing television channels in a digital format requires a
much smaller spectrum than does an analogue broadcast. Thus digital broadcasting
makes it possible to free up a sizeable portion of the spectrum for new services in spite
of new channels being added. These “new” available resources are referred to as the
“digital dividend”.
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The radio electric spectrum is a scarce resource, a resource for which demand is
growing quickly as the proliferation of innovative services that require spectrum for
operating continues. Furthermore, the UHF band offers a combination of coverage
and capacity (bandwidth) that makes it suitable for a wide range of different uses.
Therefore, allocation decisions of the digital dividend will involve trade-offs between
different potential uses. Traditionally, several procedures have been used to deal with
this task (lotteries, beauty contests, first-come-first-served, etc.) but none of them
simultaneously achieves the objectives of transparency, revenue maximization, and
efficiency. In this context, auctions turn out to be the best alternative, as they represent
a transparent method of allocation that promotes competition and reduces corruption.1

When assigning many related goods, such as radio spectrum frequency band seg-
ments, bidders’ values for an item might depend on the number of items already
won. Hence, subadditive and superadditive values or synergies among licenses arise
(Ausubel et al. 1997). In these circumstances, allowing bidders to make offers on com-
binations of items, known as packages or combinatorial auctions, is one of the best
possible allocation mechanisms because it permits bidders to fully express their prefer-
ences. A variety of different combinatorial auction formats can be selected. Probably,
the most popular auction format for allocating radio spectrum is the simultaneous
ascending auction (Cramton 2002). It has been used by the US Federal Communi-
cation Commission (FCC), Ofcom in the UK, the Australian Communications and
Media Authority in Australia, the Federal Network Agency for electricity, gas, tele-
communications, post and railway in Germany and others.

Recently, a new combinatorial auction format has been proposed for the sale of spec-
trum licenses: the clock-proxy auction (Ausubel et al. 2006). According to Cramton
(2007), the clock-proxy auction is an excellent alternative when packaging issues are
important and bidders exhibit complex preferences structures of substitute and com-
plement goods, just as it happens in the spectrum license market. In fact, this auction
format has already been successfully used in a spectrum auction for Trinidad and
Tobago in 2005, and it is being considered as an alternative for awarding the digi-
tal dividend in the UK (see Ofcom 2007). Nevertheless, research of the clock-proxy
auction in still quite incomplete.

The aim of this work is to investigate the clock-proxy auction as a selling mecha-
nism in the spectrum license market. To achieve this aim, we built a realistic model of a
European spectrum license market and a clock-proxy auction simulator. In this appli-
cation, the most difficult task was to simulate the bidders’ behavior. Finding the best
strategy in the selected environment using enumeration is computationally infeasible.
This is because there are a large number of strategies, and all strategies depend on bid-
ders’ preferences and rivals’ strategies (Reeves et al. 2005). To deal with this problem,
we assume bidders with bounded rationality making their bidding decisions based on
a genetic algorithm system. This system learns from the environment and improves
bidding behavior with experience of a large number of auctions. Experimental and

1 Bulow and Klemperer (2009) compared the results of allocating public goods by means of auctions con-
cluding that “the straightforward, level-playing-field competition that a simple auction creates is usually
more profitable for a seller than a sequential procedure that sometimes attract more bidders, but prevents
direct, simultaneous competition among all participants on equal terms”.
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validation tests were carried out to provide evidence of the appropriateness of the
proposed strategies. For a given environment, this experimental analysis was done
with different types of bidders and with changeable valuations and strategies. Finally,
the auction outcome when all bidders follow the genetic algorithm-based system was
also studied in terms of allocation and seller revenue and compared with the efficient
outcome of the auction.

The remainder of this article is structured as follows. Section 2 describes previous
work on combinatorial auctions, focusing on the specific combinatorial auction format
being studied: the clock-proxy auction. The description of the specific model built for
the experiments—that is, the characteristics of the digital dividend sale (radio spec-
trum to be auctioned and participant bidders)—is explained in Sect. 3. The bidding
decision system developed and the bidding strategies tested both in the clock phase
and in the proxy phase are described in detail in Sect. 4. The results are analyzed and
discussed in Sect. 5. Finally, in last section, the main conclusions and future work are
outlined.

2 Combinatorial Auctions: The Clock-Proxy Auction

Some research has studied the problem of simulating bidding behaviors in combina-
torial auctions.2 The study of Parkes (1999) and Parkes and Ungar (2000a) describes
a combinatorial ascending-price auction called iBundle that assumes bidders follow a
myopic best-response bidding strategy in response to current allocation and ask prices.
Myopically rational agents maximize their utility with no anticipation of their rivals’
strategies. Hence, bidders bid as low as possible until the ask price is greater than the
bidders’ valuation of the bundle. These authors also tested this strategy in an i Bun-
dle auction with proxy agents and price-adjustment (Parkes and Ungar 2000b). Other
researchers have developed autonomous bidders that interact in multiple, simultaneous
auctions for related goods (Stone et al. 2003). These authors calculate optimal bids by
predicting eventual prices of goods based on previous auctions. They use a machine-
learning approach (a boosting-based algorithm) to examine previous prices according
to certain basic features, such as the number of minutes remaining in the game, current
ask price for items that have not closed, and so on [further information about price
prediction can be found in Wellman et al. (2004)]. One important related study is that
described in Reeves et al. (2005). These authors study the simultaneous ascending
auction in the presence of complementarities when bidders pursue particular strate-
gies. They select a set of candidate strategies, called the sunk-aware strategy family.
A sunk-aware agent bids as if the incremental cost for the items currently up for sale
is somewhere between zero (k = 0) and the current bid price (k = 1, or the straight-
forward bidding strategy; it is also referred to as myopic best response), with k as the
sunk-awareness parameter. Bidders select the sunk-awareness parameter according
to information from the current auction round, thus acting as reflex agents respond-
ing to prices and winning items. The strategies’ performances are evaluated against

2 Hailu and Thoyer (2010) analysed bidding strategies in multi-unit multiple-bid auctions by means of
computational experiments.
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each other through an evolutionary game statistical simulation, and poor strategies are
weeded out. The authors’ main conclusion emphasizes the feasibility of exploring stra-
tegic issues in a simultaneous auction through the parameterization of a strategy space,
sampling-based simulation and evolutionary search. Moreover Avenali and Bassanini
(2007), employed automated agents in a combinatorial first-price, multi-round auc-
tion that posits a model of bidders’ beliefs about their opponents. In this model, the
highest bids in each round are stored and subsequently used by players to compute a
probability density function for the valuation of each bundle that has been bid upon
by rivals. Each bidder maximizes his/her profits considering the expected offers for
the next round.

The clock-proxy auction (Ausubel et al. 2005, 2006) is a combinatorial auction
with two phases. In the first phase, or clock phase, bidders ask for a package of items
in a multi-round clock auction. Afterwards, in the proxy phase, the auction ends with
a final proxy round. Consider that there are n bidders (i = 1, . . . , n) participating in a
radio spectrum auction. Before the auction starts, the auctioneer describes the bands
(� = 1, . . . , m) to be auctioned: different types of bands (m ≥ 1), the number of lots
included in each type of band, 3 the bandwidth of the lot and the initial round price per
lot. Then the auction begins. Since the clock-proxy auction is a sophisticated model,
Fig. 1 includes a flowchart diagram which summarizes the entire process.

2.1 The Clock Phase

When the clock phase begins, the auctioneer announces a price vector indicating the
price per lot of each band in that round (r ): (Pr

1 , . . . , Pr
m). Then each bidder i submits

one single package bid by selecting a quantity vector Qi,r = Qi,r
1 , . . . , Qi,r

m indicating
the number of lots of each band that he is willing to buy at the current prices in round
r . The total price that bidder i is offering for his/her package in round r is calculated
according to Eq. 1:

Pi,r =
m∑

k=1

Pr
k Qi,r

k (1)

A package bid in round r of the clock phase is a tuple Bi,r = (Qi,r , Pi,r ), where
Qi,r ⊂ � is the package (or single item) selected by bidder i and Pi,r is the price
for the complete package (or single item). With all the bids submitted in one round,
the auctioneer determines whether the sum of the requested quantities per band is less
than or equal to the available lots in each band (Qk); see Eq. 2:

n∑

i=1

Qi,r
k ≤ Qk (2)

3 Lots in the same band are identical or close substitutes. Lots among different bands exhibit differences.
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Fig. 1 Flow-chart diagram of the clock-proxy auction mechanism
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The auctioneer then increases prices for bands with excess demand, and bidders sub-
mit bids again in a new round. Bidders are informed about new prices and quantities
of excess demand in the previous round and can submit new bids in the round r + 1.
This process continues until there is no band with excess demand. The clock phase
finishes when all band lots have been cleared.

To avoid insincere bidding in the clock phase, an activity rule between rounds must
be determined.4 Ausubel et al. (2006) proposed the revealed-preference (RP) activity
rule for which a quantity vector Qi,r = (Qi,r

1 , . . . , Qi,r
m ) is a valid bid only if the

inequality (Eq. 3) holds:

(Pr − Ps)(Qi,r − Qi,s) ≤ 0, for all s < r (3)

For the case of a single good, the RP activity rule requires that as prices goes up
quantity cannot increase. Nevertheless, when there are many goods the RP gives bid-
ders some flexibility. In the presence of substitutes goods it allows bidders to shift
quantities toward the relatively cheap product. In the case of perfect complements, as
prices increases the bidder can maintain the same demand or decrease the quantities
in the desired ratio, but he/she can never increase quantities. Hence, the RP rule works
properly in the presence of substitutes and complements goods.

In the experiments done in this research, the bidders’ behavior simulated in the
clock phase (described in Sect. 4), always satisfies the RP activity rule, as bidders bid
on the most profitable package in every round (Cramton 2007).

2.2 The Proxy Phase or Sealed Bid Phase

Once the clock phase is over, the auction ends with a final proxy round in which bidders
report their offers to a proxy agent who bids on behalf of the real bidder. In this study,
we assumed that proxy bidding is mandatory and unchangeable. Thus, we have solved
the proxy round through a sealed-bid package auction.5 In this last round, bidders are
able to submit sealed bids for all the packages they are interested in. Each bid made
by bidder i is a pairBi = (Qi , Pi ), where Qi ⊂ � is a package of lots and Pi ≥ 0 the
amount that bidder i offers for that package Qi . This phase allows bidders to make
offers for packages of lots they did not bid for in the previous phase, and to increase
the offers made in the clock phase. The set of sealed bids made in this phase by bidder
i must satisfy the following constraint: if a bidder submits a bid for a selection of lots
already included in the clock phase, the total offer of the sealed bid must exceed the
amount of any bid submitted by that bidder in the clock phase (monotonicity activity
rule).

4 The most frequent activity rule in clock auction is monotonicity in quantity: as prices goes up, quantities
cannot increase. A weaker activity rule is a monotonicity of aggregate quantity across a group of lots.
5 “An auction process with mandatory proxy bidding -and in which a bidder is not allowed to make changes
to the flexible bid information that is used by its proxy agents- is observationally equivalent to a sealed-bid
auction” (Ausubel et al. 2005).
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2.3 Awarding the Items

All bids submitted in the clock and proxy phases are considered together to compute the
winners of the auction. Hence, bids submitted in the clock phase Bi,r = (Qi,r , Pi,r )

are converted into package bids. However, winning bidders can only win with a single
bid, that is, bids are mutually exclusive and are described using XOR bidding language.
With all bids submitted by bidders in both phases, the auctioneer must determine the
feasible allocation of lots that maximizes his/her revenues, which means solving the
Winner Determination Problem (WDP). In this auction, as several bands with dif-
ferent number of lots have been auctioned, the feasibility constraint implies that the
total quantity vectors in the winning bids per band must not exceed the available
quantities. According to Ausubel et al. (2005), the specification of the WDP for these
requirements correspond to the maximization problem described in Eq. 4:

Maximize
n∑

i=1

P̃i subject to : (4)

• At most, one winning bid (Q̃i , P̃i ) is selected for each bidder i = 1, …, n;
• If bidder i is a winning bidder, then P̃i is the price in his/her winning bid;
• If bidder i is a losing bidder, then P̃i = 0; and
• ∑n

i=1 Q̃i
k ≤ Qk (feasibility constraint)

Solving the WDP is a NP-complete problem (Sandholm 2002). Hence, advanced com-
putational techniques must be used to deal with this task. In this study, the A* search
algorithm, based on a branch on bids (BOB) formulation, was used.6 After solving
the WDP, the auctioneer determines the winning bids and bidders pay their bids for
the awarded lots, according to the pay-your-bid pricing rule.7

3 The Selected Environment: Selling the Digital Dividend
in a European Country

Historically, regulators have decided who may use the spectrum, what services they
may provide, and what technologies they may use. However, spectrum management is
changing to put greater emphasis on market mechanisms (Feijóo et al. 2009). The dig-
ital dividend offers an ideal opportunity to introduce criteria in an attempt to increase

6 The A* algorithm is a widely-used informed search technique mostly used in path-finding and graph
traversal. In the proposed formulation, a tree of bids is built and searched with this algorithm (for more
details about this implementation, see Saez et al. 2008).
7 The pay-your-bid pricing rule is a simple way for bidders to understand the final payment. Nevertheless,
the bidder-optimal core pricing rule could also be implemented, see Day and Raghavan (2007). As Ausubel
and Cramton (2008) stated, with the bidder-optimal core pricing rule (also called the second-price rule)
“payments are determined so as to yield outcomes that are optimal from the bidders’ perspective among all
outcomes that satisfy the core constraints. Core constraints require that the winning assignment maximizes
total value, and assure that there is no coalition of bidders that can object that they bid more than the
announced payments but did not win”.
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efficiency in the use of the spectrum. The USA has already auctioned part of its dig-
ital dividend. Moreover, some European countries have announced their intention of
allocating this resource through auctions. The use of auctions is not unknown in the
telecommunications sector. The essential difference auctioning the digital dividend
lies in service neutrality: previous allocation auctions have served to select operators,
but services and technologies for which the specific band was to be used were strictly
regulated. That has not been the case for the digital dividend auction in the USA, and
many other countries would probably follow this scheme.8

This model aims to simulate a digital dividend of a size that could fit in most Euro-
pean countries. The total spectrum to be auctioned corresponds to 96 MHz, which is
divided into three types of bands (m = 3). Each type of band is apportioned in the
following lots: �1 = 1 lot of 40 MHz, �2 = 2 lots of 16 MHz and �3 = 3 lots of
8 MHz.

The next step is to model bidders participating in the auction. Almost all service
and application providers using the radio electric spectrum would be interested in par-
ticipating in sharing this “newly available” spectrum in a band as appealing as UHF.
Therefore, the list of possible services the digital dividend could be allocated to is
long: digital terrestrial television, mobile multimedia, mobile communications; low
power device-related services, such as medical telemetry, Radio Frequency Identifica-
tion (RFID) or Near Field Communications (NFC); and noncommercial services, such
as defense, security, emergencies or other public services. However, in a commercial
auction, such as the one to be simulated (with licenses awarded for a national cov-
erage and 8–40 MHz lots), only the three services first mentioned could have actual
possibilities of obtaining a spectrum: television (new channels in standard or high def-
inition), multimedia services (interactive television, on-demand video, music, radio)
for mobile devices, and mobile communications (high-bandwidth data services and
voice). The simulation exercise models the participation of seven different bidders.
These bidders may be interested in operating in more than one market and may exhibit
both complements and substitute preferences among licenses. The values participants
place on each lot have been adapted from the estimations made by the British regulator
(Ofcom) to identify incremental producer and consumer value generated from the use
of spectrum (Ofcom 2006). These values are the maximum amount each bidder will
be willing to pay for each lot.9 For each possible use of the spectrum, a maximum and

8 Moreover, Bykowsky et al. (2010) show the validity of market mechanisms (auctions) even to allocate the
spectrum between licensed and unlicensed use. In such an auction, participating firms would fall into two
distinct categories as a result of differences in their business models. The business model of “traditional”
firms involves constructing the necessary infrastructure and earning a return on that investment based on
revenue obtained from subscribers. Consequently, they strongly prefer to acquire a spectrum with licensing
rules that enable them to exclude nonpayers and to receive protection from harmful interference. However,
another type of bidder would have a preference for licensing rules that promote free, open access to the
spectrum. Rather than deriving revenue from subscribers, this class of firms earns revenue from advertisers
and/or retail customers that sell good/services to customers via the Internet.
9 The valuations refer to an optimum amount of spectrum which is specified in (or can be deduced from)
the scenarios designed for each service by Ofcom. Additionally, for some services there exists a minimum
amount of lots (the service cannot be provided with less lots) or a maximum amount of lots (additional lots
would be unnecessary under the current market conditions) as stated in Table 1, colum “desired amount
of spectrum”.
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Table 1 Characteristics of simulated bidders

Bidder Market View on the Desired amount Bidder
target market of spectrum (MHz) “label”

1 Secondary TV broadcaster DTT (SD) Conservative 24–96 Weak

2 Leading TV broadcaster DTT (HD) Conservative 24–96 Weak

3 Leading TV
broadcaster

DTT (SD)/MobM-
Media

Unenthusiastic/
Conservative

8–96 Average

4 Incumbent mobile
operator

MobComm/
MobMMedia

Unenthusiastic/
Conservative

8–96 Strong

5 Alternative mobile
operator

MobComm Conservative 8–96 Weak

6 New entrant MobComm Optimistic 8–64 Average

7 New entrant MobMMedia Optimistic 8–48 Strong

DTT digital terrestrial television—standard (SD) or high (HD) definition, MobMMedia mobile multimedia,
MobComm mobile communications

a minimum value have been calculated according to the characteristics of the markets
themselves, the position of each participant (incumbent/leading, established alterna-
tive/secondary operator or new entrant) and views on the future profitability of those
markets (optimistic, conservative or unenthusiastic). Table 1 summarizes bidders’ fea-
tures. Obviously, the model does not try to capture every possible market player profile.
However, the characteristics of the simulated participants listed in Table 1 match the
description of some of the agents that would participate in a European auction of
spectrum. This lends realism to the model, yielding more relevant results.

The right-hand column of Table 1 needs clarification. Taking into consideration val-
uation intervals made by participants, bidders have been classified into three groups,
labeled as “strong”, “average” and “weak”. A priori, a strong bidder would bid high,
whereas a weak bidder would submit modest bids. Note, however, that, as will be
explained later, final values fluctuate within interval limits and, moreover, bids are not
equal to values. Nevertheless, this classification will be conceptually helpful for the
sake of analyzing different strategies. A summary of the simulated model tested in
next section is described in Table 2.

4 A Decision Bidding System for the Clock-Proxy Auction

In auctions, as in games, finding an optimal strategy by enumeration is, in most cases,
computationally unfeasible, and best response behavior is highly sensitive to partici-
pants’ values and to the strategies used by other participants (Reeves et al. 2005). This
problem is even more complex in intricate environments where bidders present both
substitutes and complements among items, just as happens in spectrum license mar-
kets. As modeling such rational decision-making is extremely difficult, conventional
mathematical models are inadequate. To deal with this problem, we assume bidders
with bounded rationality using an evolutionary computation-based system that leads
to intelligent bidding strategies and works as a decision support tool. This system
learns from the environment and improves bidding behavior with experience. As a
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Table 2 Summary of the constrained simulated model

Parameters

Auction format Clock-proxy auction

Bandwidth of the total spectrum 96 MHz

to be auctioned

Types of bands in which the spectrum m = 3

is divided in (�)

Number of lots included in each �1 = 1 (40 MHz)

type of band

�2 = 2 (16 MHz)

�3 = 3 (8 MHz)

Number of bidders 7

Operators’ value for each
item and package
(maximum value willing to
pay)

A value from a normal
distribution between a
max. and a min. value
calculated according to
Ofcom’s estimations

The model simulates an auction of a digital dividend portion in a European country using realistic parameters

result, it proposes for each type of bidder—strong, average and weak—the best bid-
ding decision. To assess the quality of the recommended strategies, we carried out an
experimental validation. Finally, we studied the auction outcome (spectrum alloca-
tion and seller’s revenue) when all bidders behave according to the decision system
eventually developed and compared it to the efficient outcome of the auction.10

4.1 Developing a Decision Bidding System

The clock-proxy is a combinatorial auction format with two phases: the clock phase
and the proxy phase. The possible combinations of bidding strategies both in the
clock and proxy phase are immense. Hence, specific assumptions have been made
about bidders’ behavior.

Bidding in the Clock Phase

We assume that bidders in the clock phase follow a limited straightforward bidding
strategy. According to Ausubel and Milgrom (2002), bidders adopting this strategy
bid in each round on the package that has the highest profit potential, as long as the
potential profit is greater than some target amount. This strategy is implemented by
the “semi-sincere strategy,” as bidders shade their bids in the clock phase and only
reveal a percentage of their personal value (t). To test a wide range of strategies, the
system implements this behavior for the following values of t : 20, 30, 40, 50, 60,

10 The strategy proposed by the genetic algorithm (GA) is, in fact, what should be expected that an informed
rational bidder plays to try to maximize his/her expected profit. Hence, by simulating all bidders following
this strategy the seller and the participants can have some hints about the auction outcome.
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Fig. 2 Interval considered for choosing a strategy

70, 80 and 90%. When developing the decision system, we assume that all bidders
select the same value of t and that it only changes from one experiment to another.
Afterwards, for validating the system, the value of t changes randomly among bidders
in each run.

Bidding in the Proxy Phase

In the proxy phase, bidders submit a sealed bid for all packages they are interested
in, and packages are priced by bidders instead of being assigned additive prices on
individual lots as in the clock phase. For making their final bids, bidders take advan-
tage of price discovery during the clock phase by bidding some value between the
final clock price and their value. The number of possible bids might be enormous,
which makes it impossible to test all of them. Hence, we propose several candidate
strategies. The possible bids bidder i can make for the package (or single item) Qi ,
are calculated according to Eq. 5:

Pi
(

Qi
)

=
[
vi

(
Qi

)
− P̂ L

(
Qi

)]
g + P̂ L

(
Qi

)
(5)

where vi (Qi ) is the value for a specific package Qi (or single item), Qi ⊂ � being
the package (or single item) selected by bidder i . This value is the maximum amount
bidder i is willing to pay forQi .P̂ L(Qi ) is the final clock price for the specific package
Qi (or single item); and g is a parameter which determines the different strategies to
be tested: 0 ≤ g < 1 with intervals of 1/10. Deciding the final bids implies choosing
the value of g for each package. Hence, packages are classified in different intervals
(Di (Qi )) according to the difference between value and final clock price (see Eq. 6
and Fig. 2).

Di
(

Qi
)

=
[
vi

(
Qi

) − P̂ L
(
Qi

)]

P̂ L
(
Qi

) (6)

4.2 Optimizing the Decision System by Means of Genetic Algorithms

The goal of the decision system is to determine the best value of g for each inter-
val. This can be handled by a genetic algorithm (GA), which is a non-deterministic
evolutionary computation technique, based on the mechanics of natural selection and
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natural genetics, which is recommended for searching solutions in dynamic, noisy
and heterogeneous environments, according to Dasgupta and McGregor (1992) and
Cobb and Grefenstette (1993). Moreover, GAs have been used in scientific literature
devoted to auctions. Some examples are Andreoni and Miller (1995), Dawid (1999),
Numnonda and Annakkage (1999), Wen and David (2001), Anthony and Jennings
(2002, 2003), Cliff (2003), Saez et al. (2007) and Sun and Vora (2009).

Essentially, a GA is an iterative procedure that maintains a population of structures
that are candidate solutions for specific domain challenges. During each generation,
the structures in the current population are rated for their effectiveness as solutions.
Based on these evaluations, a new population of candidate structures is formed, using
specific “genetic operators”, such as reproduction, crossover, and mutation. Cross-
over and mutation, which represent solutions, are simple procedures for individuals to
modify their genetic code to evolve and improve in the following generations. Cross-
over allows an individual to create a new strategy by borrowing parts of previously
successful solutions. Mutation allows an individual to make small modifications in
past solutions in hopes of finding something better. For further details of how this
algorithm works, see Mitchell (1998).

The developed GA used in this study is an improved version of the one described
in Mochon et al. (2009). A flow-chart diagram of how the system works can be seen
in Fig. 3. The aim of the GA is to find a set of bidding strategies that maximize the
payoff for the bidder; the GA then maps the strategic variable g onto the chromosome,
and each gene represents the recommended strategy for each interval (Di (Qi )) (see
Fig. 4). The possible values of each gene, or allele, range from 0 to 9 (base 10). The
population is made of 50 candidate strategies, which are randomly initialized. There is
no information exchange between bidders other than the amount of profit, which is the
fitness value. In a competitive complex game like this one, playing a specific strategy
can yield different outcomes, depending on rivals’ preferences and strategies played.
To overcome this problem we have decided to evaluate each individual in 100 auctions
with a predefined set of strategies arbitrarily generated for the rest of the participants.
The fitness value of that generation is the average profit obtained by this bidder during
these 100 auctions. This predefined set of g values stays constant until the last gener-
ation to guarantee that identical genotypes lead to the same fitness during evolution.
Once a population of individuals with calculated fitness values arises, the tournament
selection operator is applied (10% of the population is selected for each tournament).
After the selection, a uniform crossover is applied to all the selected individuals, and
finally, the mutation operator is instituted, changing 15% of the genetic material ran-
domly. At this point, the new population is created, and the process starts again with
the evaluation procedure. The GA reaches the stop criteria after 100 generations, and
we have run 10 different experiments for each value of t from the clock phase strategy.
This is done to find a robust bidding pattern that is able to maximize average profits
in many different situations. The developed GA uses nonoverlapping populations and
elitism is on, meaning that the best individual from each generation is carried over to
the next generation.

All the parameters used in the GA were determined empirically, based on the
recommendations found in Goldberg (1989), and are summarized in Table 3 for rep-
lication purposes. Nevertheless, when the algorithm was tested with other parameters
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Fig. 3 Flow-chart diagram for the developed system

13



Fig. 4 Scheme of chromosome which contains the bidding strategies used by the GA for each interval

Table 3 GA Parameters used

GA Parameters Values

Number of generations 100

Population size 50

Chromosome length 10

Alleles 1.10

Selection operator Tournament, 10%

Crossover operator Uniform, 100%

Mutation rate 15%

Elitism On, 1 individual

(population size, mutation rates and selection types), the results found were similar
(only minor differences in outcomes were found).

4.3 Validating the Decision System

When the GA is finished, a vector with the recommended strategies for each inter-
val and type of bidder is proposed. These strategies is what should be expected that
an informed rational bidders plays in order to maximize his/her expected profits. To
support the results obtained, an exhaustive validation test bed was carried out, and to
provide more robustness, the following variables that were fixed previously are now
detached:

• In the clock phase, each bidder randomly selects the value of t (from 20 to 90%),
which differs among bidders in each run.

• In the proxy phase, all bidders except the considered one randomly select their
strategy vector for each run.

The candidate solutions offered by the system for each interval were verified looking
at the average outcome obtained by the selected bidder under two assumptions. Under
the first, the bidder follows the final vector strategies proposed by the GA for each
interval. Under the second, the bidder behaves just like the other bidders; that is, he
randomly selects the value of g [this is similar to the random walk hypothesis for stock
market prices Cootner (1964)]. Then the profits obtained under both assumptions are
compared.
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Table 4 Strategy proposed by the GA for each interval and type of bidder

I II III IV V VI VII VIII IX X

Strong 0.4 0.3 0.4 0.4 0.4 0.5 0.5 0.4 0.5 0.5

Average 0.3 0.4 0.5 0.5 0.5 0.5 0.6 0.6 0.5 0.6

Weak 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.8 0.9

5 Analysis of the Results

The experiments conducted with the system developed under the selected environment
produced a large number of results. These results illuminate several topics:

5.1 About Bidding Strategies

We assume bidders with bounded rationality following a limited straightforward bid-
ding strategy in the clock phase. Thus, the GA must search for the best strategy per type
of bidder per interval in the proxy phase (value of g). This search implies a strategic
decision that takes into consideration that a tradeoff exists between the probability of
winning a lot and the potential for earning profits. If the GA proposes a strategy close
to 0.9, the bidder has more chances to be awarded with some package, but profits
would be lower. On the other hand, if the GA proposes a strategy close to 0.1, the like-
lihood is less that the bidder will win a package, but if it happens, he will earn higher
profits. After all the simulations are done, the strategy vector that the GA proposes
for the strong, average and weak bidder for each interval is represented in Table 4.
Hence, to calculate the final bid for each package, the bidder will first determine the
interval it belongs to. Then the g value proposed by the GA is included in Eq. 5 to
obtain the bid. The values of g proposed for each interval are the strategies that yield
higher average profits for each type of bidder.

Because of the structure of his/her values, the strong bidder11 has many chances
to win some package (or single item). Hence, bidding very close to his/her personal
value would reduce his/her profits. The best strategies the system proposes for this
bidder are always between 0.3 and 0.5. Moreover, the value of g tends to increase as
the interval increases. The strategy that the system proposes for the average bidder12

is quite similar to the strong one. He also has quite a lot of opportunities to win some
package (or single item). His/her best strategy is in the range from 0.3 to 0.6. For this
bidder, the value of g also increases as the interval grows. Finally, the weak bidder13 is
unlikely to be awarded with a package (or single item). Therefore, his/her best strategy
in the proxy phase is to bid very close to his/her personal value for any given interval.

11 In this section, the chosen strong bidder is an incumbent mobile operator (number 4 in Table 1).
12 In this section, the chosen average bidder is a new entrant interested in operating in the mobile commu-
nications market (number 6 in Table 1).
13 In this section, the chosen weak bidder is a leading TV broadcaster interested in broadcast HD channels
(number 2 in Table 1).
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Table 5 Results obtained with GA and random strategies

GA strategy RND strategy Difference (%)

Strong bidder

Total experiments 100,000 100,000

Percentage of experiments with positive profits 83.80 88.38 −5

Average profit (in 1MMe) 117 66 77

Average profit when earning at least a lot (in 1MMe) 139 74 87

Average bidder

Total experiments 100,000 100,000

Percentage of experiments with positive profits 63.33 69.21 −8

Average profit (in 1MMe) 79 46 72

Average profit when earning at least a lot (in 1MMe) 125 66 88

Weak bidder

Total experiments 100,000 100,000

Percentage of experiments with positive profits 1.79 0.79 126

Average profit (in 1MMe) 0.72 0.32 123

Average profit when earning at least a lot (in 1MMe) 40 41 −1

In all experiments, bidders follow a limited straightforward bidding strategy in the clock phase. In the proxy
phase the results are compared for two strategies: bidders select the value of g according to the GA versus
a random selection of the value of g (RND).

Hence, the decision support system discovers for this bidder strategies that range from
0.7 to 0.9.

5.2 About the Effectiveness of the GA

Strategies proposed by the decision system in the proxy phase are scored against a
random selection of g for all bidder types tested. Table 5 shows the results obtained
by each type of bidder when they follow the GA strategy versus a random (RND)
decision (in the clock phase bidders always follow a limited straightforward bidding
strategy). This validation was run 100,000 times in an environment where participants’
bids differ from one run to another. As said previously, bidders’ values are bounded
between a minimum and a maximum value consistent with a realistic hypothesis. A
value between these two is selected for each run according to a normal distribution
function. Afterwards, the percentage of the personal value up to which bidders are
interested in bidding on in the clock phase (value of t) is selected randomly.

The results show that the system developed is able to offer a vector of strategies for
each type of bidder that markedly increases his/her average profit. The strong bidder
improves his/her average profits by 77%; the average bidder by 72%; and the weak
bidder by 123%. Moreover, the non-parametric Wilcoxon rank-sum test reveals that
the differences in average profits obtained by each behavior is statistically significant
(p = 0.0) for the bidders considered.

For the strong and average bidder, the strategy proposed by the system yields higher
average profits, although the number of times that the bidder earns positive profits is
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Table 6 Seller’s income progress

Sellers’ average
income (in 1MMe)

Difference respect to
efficient outcome (%)

Efficient outcome 2,126

All bidders RND strategy in proxy phasea 1,653 −22.24

Weak bidder GA strategy in proxy phasea 1,640 −22.87

Average bidder GA strategy in proxy phasea 1,622 −23.72

Strong bidder GA strategy in proxy phasea 1,610 −24.27

All bidders GA strategy in proxy phasea 1,535 −27.81
aBidders follow a limited straightforward bidding strategy in the clock phase

slightly lower (5 and 8% respectively). This means that the recommendation system
chooses more risky strategies to try to increment potential profits. Hence, if we only
consider the average profits the bidder earns when he/she wins some items, the dis-
covered strategy yields even better results. Bidders improve their average profits by 87
(strong bidder) and 88% (average bidder). For the weak bidder, the system proposes a
different strategy. As he has not many chances to win, the GA prefers strategies which
involve higher winning probability and lower potential profits (less risk). Thus, when
comparing both results for this bidder, the recommended strategy wins more times,
although the average profits when he wins some lots are similar.

Playing the proposed strategy also affects the seller’s outcome. Table 6 shows the
seller’s income progress as bidders use the recommended strategy. The results reveal
that the sellers’ income decreases with respect to the efficient outcome as bidders
learn to bid with the developed system, and the reduction is higher as the bidder gets
stronger.

5.3 Auction Outcome under GA-Based Strategies

Another important aspect to analyze is how the radio spectrum is allocated among
bidders when they all follow a limited straightforward bidding strategy in the clock
phase and behave according to the GA strategies in the proxy phase. To this end, we
considered the “bidders label” shown in Table 1.

Figure 5 shows how the entire spectrum auctioned (96 MHz) is distributed among
types of bidders. The results show that the 2 strong bidders earn 51.02% (48.97 MHz) of
the total spectrum, the average bidder 42.36% (40.66 MHz) and the weak bidders only
win 6.63% (6.36 MHz). With this behavior, the seller’s average income is 1.535 MM
Euros, a reduction of 7.16% in respect to the same value if all bidders select the value
of g randomly (see Table 6).

5.4 About the Efficient Outcome of the Clock-Proxy Auction

To study the clock-proxy auction outcome in terms of revenue maximization and effi-
cient allocation, we calculated the efficient outcome of the auction (the assignment
that maximizes total value). When bidders follow the GA bidding strategy, the seller’s
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Fig. 5 Final allocation of the radio spectrum among types of bidders (all bidders playing GA strategies)

Table 7 Spectrum Allocation

Efficient allocation
(MHz)

All bidders GA
strategy in proxy
phase (MHz)

Difference (MHz)

Three weak bidders 1.03 6.37 5.34

Two average bidders 38.59 40.66 2.07

Two strong bidders 56.38 48.97 −7.41

Total Spectrum 96.00 96.00

income decreases by 27.80% in respect to the efficient outcome (see Table 6). The
divergence between the efficient outcome and the outcome obtained when bidders
make their decisions based on the GA in the proxy phase are probably influenced by
the pricing rule selected (pay-your-bid). The advantage of this pricing rule is that is
simple for bidders to understand and implement, but bidders must focus on the bidding
strategy to maximize their profits. Hence, using the GA decision system improves their
profits as they learn to play their best strategies, which reduce the seller’s income. Nev-
ertheless, these differences would have been probably smaller using the second-price
rule, or the bidder-optimal core pricing rule, as the pricing rule provides incentive
for truthful bidding and bidders can concentrate on valuing the packages rather than
focusing on a bidding strategy (Ausubel and Cramton 2008).

Finally, the efficient allocation of the radio spectrum was also been compared with
respect to the outcome when all bidders make their decisions based on the GA (see
Table 7). The distribution among bidders of the total spectrum does not reflect signif-
icant differences, as only 7.72% of the total spectrum is reallocated (7.41 MHz out of
96 MHz). The average bidders only earn 2.07 additional MHz with the GA strategies.
The weak bidders are the ones that take more advantages of the GA decision system.
As these bidders have the lowest valuations, focusing on their bidding strategies yields
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important improvements (5.34 additional MHz). For strong bidders, the GA proposes
strategies that reduce their chances to win but increases profits, so they lose 7.41 MHz.

6 Conclusions and Future Work

The digital dividend award process is a key decision that governments worldwide
must face in the coming years. Using combinatorial auctions to allocate radio spec-
trum is becoming a frequently used mechanism in many countries, as it represents a
transparent and efficient allocation process. In this study, we have simulated an auc-
tion of a portion of the digital dividend. The format selected for the auction was the
clock-proxy auction; studies in the auction field have advised using this format and
Ofcom is considering it as a candidate auction formats. Moreover, we have designed a
realistic model for bidders’ characteristics and preferences—including complements
and substitute licenses—that could fit in most European countries.

The main goal of this study has been to analyze the clock-proxy auction as a selling
mechanism for the spectrum license market. To this end, the behavior of three types of
bidders with different expected values that characterize them as strong, average and
weak bidders was studied. These bidders represent three particular types of compa-
nies who will most probably be present in any European auction that sells spectrum
licenses derived from the digital dividend.

We assume bidders with bounded rationality following a limited straightforward
bidding strategy in the clock phase. Then a search for the best strategies in the proxy
phase was performed using a GA-based system. The GA explores several candidate
strategies which depend on the parameter g and the difference between the bidders’
value and the final clock price for each item or package. The values of this differ-
ence were grouped into ten different intervals. The GA is in charge of discovering an
optimal value of g for each interval—that is, a vector of strategies that yields higher
average profits to the selected bidder. To validate the strategies proposed by the GA,
an exhaustive test bed was run. For this, average outcomes for the bidder that fol-
lows GA-based strategies have been compared with those obtained when the bidder
behaves according to a random selection of strategies in the proxy phase. For all the
tests done, the proposed solution always yields higher average profits. Finally, we cal-
culated the efficient outcome of the auction and compared it to our results. The seller’s
income decreases by 27.80% in respect to the efficient outcome when all bidders make
their bidding decisions according to the GA. These differences are probably apparent
because of the pricing rule selected: pay-your bid. With this pricing rule, the bidding
strategy plays a key role, so bidders take advantage of the GA decision system devel-
oped to maximize their profits. An interesting work for the future would be to compare
these differences when the bidder-optimal core pricing rule is selected. Regarding the
efficient allocation of the spectrum, there were no significant differences found in the
distribution of the spectrum among bidders, which suggests the clock proxy auction
is an adequate mechanism for allocating licenses in this market.

In intricate games such as combinatorial auctions with complex structures of pref-
erences, an optimal strategy for all bidders is unlikely to be found in any environ-
ment. Nevertheless, evolutionary computational techniques are an effective tool for
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carrying out meticulous simulation studies and discovering bidding patterns in partic-
ular models. In this sense, the results gain relevance if a realistic model is assumed
and potential participants can take advantage of this outcome to support their future
decisions. Besides, these techniques are also an interesting tool for studying auction
outcomes.
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