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Abstract

In this paper, we critically study whether social networks can explain the
emergence of cooperative behavior. We carry out an extensive simulation
program in which we study the most representative social dilemmas. For
the Prisoner’s Dilemma, it turns out that the emergence of cooperation is
very dependent on the micro-dynamics. On the other hand, network clus-
tering mostly facilitates global cooperation in the Stag Hunt game, whereas
degree heterogeneity promotes cooperation in Snowdrift dilemmas. Thus,
social networks do not promote cooperation in general, because the macro-
outcome is not robust under change of dynamics. Therefore, having specific
applications of interest in mind is crucial to include the appropriate micro-
details in a good model.

Introduction

More than thirty years ago, Schelling (1978) explored the relation between the be-
havior characteristics of the individuals comprising some social aggregate and the charac-
teristics of that aggregate. Such an analysis, as opposed to the more traditional perspective
of determining the effects of the collective properties on individual ones (Durkheim’s (1964)
social facts and forces), can be used in two different ways: predicting the aggregate behav-
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ior from the knowledge of the individual one (bottom-up) or, on the contrary, uncover the
possible individual mechanisms compatible with an observed aggregate pattern (top-down)
(Coleman, 1990). Both lines of research become complicated when the behavior of individ-
uals influences and is influenced by other individuals and even by the whole collectivity.

A specific sociological context where the micro-macro link is particularly relevant is
the study of social traps or dilemmas (Platt, 1973; Dawes, 1980). As Kollock (1998a) says
(p. 183), “social dilemmas are situations in which individual rationality leads to collective
wrrationality. That is, individually reasonable behavior leads to a situation in which every-
one is worse off than they might have been otherwise”. This issue is actually at the core of
long-standing problems such as the emergence of cooperation (Pennisi, 2005). Cooperation
is behavior that is costly for the individual while ultimately benefiting other individuals
or social aggregates. Paradigmatic models of cooperation within the framework of social
dilemmas are the Public Goods game (also known as the Tragedy of the Commons (Hardin,
1968)) and the Prisoner’s Dilemma (Axelrod, 1984). Both contain the game-theoretical in-
gredients of social dilemmas: a Nash equilibrium, a situation from which no player has
incentives to deviate unilaterally, that is deficient, i.e., there are other sets of strategies in
which everyone is better off (i.e., the Nash equilibrium is Rawls deficient (Rawls, 1971)).

One of the classical questions of social theory (Granovetter, 1985) is how behavior
and institutions are affected by social relations. Recently, there is a huge literature on the
role of social networks in the diffusion of behaviors and opinions in a society, and a variety
of mechanisms through which this influence is exerted have been identified. Examples of
these mechanisms include reciprocity and territoriality (Axelrod, 1984), reputation (Raub
& Weesie, 1990; Nowak & Sigmund, 1998), the establishment of a group identity (Brewer
& Kramer, 1986; Kollock, 1998b), social learning (Macy, 1991), trust (Buskens & Raub,
2002), projection (Kanazawa, 2007), group reciprocity (Karp, Jin, Yamagishi, & Shinot-
suka, 1993) and even group size (Olson, 1965; Dawes, 1980; Marwell & Oliver, 1993).
Other mechanisms, such as choice of partners (Yamagishi, Hayashi, & Jin, 1994), cost-
benefit analysis (Jackson & Wolinsky, 1996) or social plasticity (Eguiluz, Zimmermann,
Cela-Conde, & San Miguel, 2005), have led to the study of dynamic social networks, in
which the individuals can change their links as a result of their interactions with their
neighbors (see de Vos, Smaniotto, and Elsas (2001); Newman, Barabési, and Watts (2006)
or Jackson (2008) for reviews). Here we will restrict ourselves to the case of static networks,
that provide a good framework to study the problems arising with the micro-macro link,
and constitute a key step to proceed later to the dynamic problem.

This paper focuses on the “strateqy update rule” or ( “update rule” for short): the
manner in which individuals adapt their behavior as a function of that of their neighbors,
i.e., the micro-dynamics. We will consider agents with limited rationality, who do not
have memory, and whose communication with their neighbors is limited to observing their
actions and the payoffs they receive. This implies that there are no reputation, reciprocity
or identity effects. Admittedly, these are very simple rules, but their simplicity will allow
us to gain insight on the micro-macro link in the context of explanations of cooperative



behavior based on the existence of a social network. In fact, in the past few years, the
general belief that networks generally support cooperation has grown among researchers of
different fields (Cohen, Riolo, & Axelrod, 2001; May, 2006). Here we critically examine this
issue by considering a variety of update rules and of model networks. Our main research
questions can be posed as follows:

Question 1: Do social networks support or otherwise enhance the emergence of coopera-
tion among limited rationality agents?

Question 2: Does the observation of cooperation on models of social networks depend on
the type of network, the strategy update rule of the agents, or the interplay of both?

We find it helpful to advance our main conclusion here: We will argue that the emer-
gence of cooperation at the macro-level (social aggregate) due to an update rule (micro-
dynamics) is largely dependent on the details of the network (i.e., on its micro-structure),
and that different micro-structures may actually interact with the same update rule in
different directions (i.e., promoting cooperation or inhibiting it). To support this conclu-
sion, our paper is structured as follows: After a review of the most relevant precedents
of this work, we show analytically that when there is no social substrate, all the strategy
update rules we consider lead to the same collective behavior. We subsequently proceed
to the situation when there is structure in the society, which we illustrate by presenting
results from an extensive simulation program in which we study the most representative
social dilemmas (Prisoner’s Dilemma, Snowdrift, Stag Hunt (Kollock, 1998a)) under differ-
ent micro-dynamics and on different model networks. We will see that the same rule may
promote or inhibit cooperation depending on the type of network in which it acts; con-
versely, the same type of network may give rise to global cooperation or not depending on
the strategy update rule governing the agents’ behavior. Hence, the answer to question 1
will be that, generally speaking, it cannot be said that social networks support or promote
cooperation. In particular cases, networks can be a mechanism promoting the emergence
of cooperation but, and this answers question 2, such a promotion requires specifying the
micro-level dynamics, as the resulting behavior depends on the interplay of both.

Previous research

Our approach to the research questions posed above originates from the pioneering
work by Axelrod (1984). His description of the emergence of cooperation due to assortment
of cooperating individuals and subsequent spreading over a non-cooperative population is
worth quoting (p. 167):

Clusters of players were examined to see how the evolution of cooperation could
have gotten started in the first place. Clusters allow a newcomer to have at
least a small chance of meeting another newcomer, even though the newcomer
themselves are a negligible part of the whole environment of the natives. Even



if most of a newcomer’s interactions are with uncooperative natives, a small
cluster of newcomers who use reciprocity can invade a population of meanies.

In other words, if the invaders have even a small amount of social structure, they can prevail
over non-cooperative individuals. While Axelrod then goes on to study more sophisticated
social structures, including labels, reputation, regulation and territoriality, we will focus
on social structure simply understood as a network of contacts that governs who interacts
with whom. This is reminiscent of Giddens’s social structure (Giddens, 1979) conceived as
a pattern of interactions. It is also interesting to note that the emergence of cooperation
in an iterated Prisoner’s Dilemma through formation of clusters amounts to saying with
Granovetter (1985) (p. 505):

Insofar as rational choice arguments are narrowly construed as referring to
atomized individuals and economic goals, they are inconsistent with the em-
beddedness position presented here.

The idea of the network as a promoter of cooperation was later considered by Nowak
and May (Nowak & May, 1992). They considered agents without memory and with strate-
gies “always cooperate” or “always defect” placed on a two dimensional spatial array. In
each round they played the game only with their neighbors: the eight nearest ones (king’s
moves on a chessboard, or Moore neighborhood) and themselves. It is important to note
that the agents used the same strategy with all their neighbors. After the interaction, in-
dividuals updated their strategy by imitating the most succesful one in their neighborhood
if it yielded better payoff than their own (unconditional imitation, see below). Nowak and
May simulated this system with a Prisoner’s Dilemma with payoff matrix (payoffs for the
row player are given, and b > 1):

C D
C 1 0 (1)
D < b 0 > '
They found high cooperation even for large values of b, the temptation payoff received by
a defector exploiting a cooperator. When cooperators prevailed, a fraction of the lattice
sites were anyway occupied by defectors, who thrived in the perimeter of the cooperator
clusters as described by Axelrod. Therefore, the mechanism worked even if agents had
no memory, i.e., it appeared to be a direct consequence of the existence of a network of
interactions and the corresponding possibility for cooperators to aggregate in clusters.
Another interesting work is due to Lomborg (1996). He simulated individuals (with
short but nonzero memory) that played the Prisoner’s Dilemma and evolved /learned by a
proportional imitation rule (to be described below) applied to a subset of the population
(which introduces implicitly some structure, albeit dynamical and not spatial). A vast

majority of agents ended up belonging to one of two clusters: a large one of highly cooper-
ative strategies (called nucleus by Lomborg) and a smaller one of more cautious strategies



(referred to as shield). Such a split of the population was very long-lived not because of
the individual success of its strategies when considered alone but because together they
were able to prevail over the other.

Subsequently, Eshel, Samuelson, and Shaked (1998) analytically confirmed that co-
operators can survive when interactions are local if they group together, so the benefits of
cooperation are enjoyed primarily by other cooperators. They worked on simpler structures
(Prisoner’s Dilemma on one-dimensional rings) with unconditional imitation dynamics but
discussed that their results also applied when mutations were introduced. Note that their
choice for the update rule implies abandoning the rational agent paradigm of best response
rules and substituting it by imitative agents. Interestingly, Eshel et al. showed that high
costs of cooperation can lead to large cooperator density because for cooperation to succeed
large clusters of cooperators are required.

Early in this century, Cohen et al. (2001) revisited this question. They studied lattices
and random networks, both fixed and dynamical, in which individuals interacted with their
four nearest neighbors only (von Neumann neighborhood). Their update rule was once
again unconditional imitation. From their analysis, they concluded that what they called
“context preservation” (the persistence of the interaction pattern) plays a more important
role in the promotion of cooperation than “clustering” (which, in their case, refers to
correlated interaction profiles instead of the widely accepted concept of transitivity).

Following these works, many other researchers undertook research along these lines.
Far from establishing that a network of interactions promoted cooperation, a large number
of papers have reported results which are to some extent contradictory. Interestingly, many
of these works have been carried out with a physics perspective and appeared in physics
journals, searching for a general pattern of behavior (recent reviews with many references
on this issue are Szabé and Féth (2007) and Roca, Cuesta, and Sédnchez (2009b)). What
we aim at showing here is that, for social dilemmas on spatial structures or, in general,
on networks, there is no such a pattern, and that the observations of cooperative behavior
depend intrinsically and fundamentally on the details of the model and, in particular, of
the interplay of strategy update rule and network.

Evolutionary games

Game-theoretical framework for social dilemmas

We will consider symmetric 2 X 2 games, i.e., games among two individuals who
choose between two strategies and with no difference in role. Using the same notation as

above, the payoff matrix is:
C D

S (h0)

The strategies are labeled C and D for cooperate and defect, although the precise in-
terpretation of what cooperation and defection mean depends on the specific social dilemma



we consider. Indeed, certain values of S and 1" undermine mutual cooperation in different
manners. To be specific, three scenarios are possible (Kollock, 1998a; Macy & Flache,
2002):

e When S < 0, a cooperator faces the risk of losing if the other player defects,
performing worse than with mutual defection. In this situation, cooperation is dangerous
and individuals are afraid of the consequences of being defected upon. When T' < 1, this is
the Stag-Hunt game (see Skyrms (2003) for a thorough discussion), that has two equilibria:
mutual cooperation, an optimal equilibrium (often called Pareto-dominant equilibrium),
and mutual defection, which is deficient (often called risk-dominant equilibrium). The key
issue in this dilemma is fear, i.e., whether the individuals can trust each other.

e When T > 1, a cooperator is tempted to defect and obtain a payoff larger than
that of mutual cooperation. The point is then that both individuals may then just do
nothing (defect) hoping that the other will give in and cooperate, which may result in the
worst possible outcome, mutual defection. Hence, the problem here is greed. When S > 0
this is the Snowdrift or Chicken game (Sugden, 2004).

e Both tensions, fear and greed, are present when the two conditions are simulta-
neously satisfied, and then we are faced with the Prisoner’s Dilemma (Axelrod, 1984).
On the contrary, when none of the conditions is met, we have the Harmony game (Licht,
1999), which poses no dilemma in so far as mutual cooperation is the best outcome and is
preferred by rational players.

Model

We will consider the above family of games in the context of a social network. In
such a setting, every agent interacts with its neighbors in the network, i.e., the agents to
whom it is linked. As in all previous works, the action taken by an agent is the same
for all her neighbors. The neighborhood is also the agents’ information set: they can see
the actions and payoffs of their neighbors, and ignore everything about the rest of the
agents in the network. Initially, agents will cooperate or defect with equal probability.
Agents do not have memory and therefore actions and strategies coincide. At a simulation
time step, all agents play the game simultaneously with all their neighbors and collect the
corresponding accumulated payoff (m;). After the game stage, agents proceed to update
their strategy, which they do by following a strategy update rule (to be described in the
next subsection). A time step is then complete and the iteration is repeated. The network
does not change during the simulation. This cycle is run as many times as it takes for
the system to converge to a fixed strategy for all agents or to a stationary state in which
the percentage of cooperators fluctuates around an approximately constant value. This
percentage of cooperators is the magnitude we will monitor in our simulations.

Strategy update/evolutionary rules

A detailed review of all possible update rules and their specific applications would
be beyond the scope of the present paper. For our present purposes we have decided to



focus on three rules that have been widely used in previous research and in particular in
the papers summarized above:

e Proportional imitation. This rule was first proposed by Helbing (1992) and Schlag
(1998) and can be described as follows: Let ¢ = 1... N label the individuals in the pop-
ulation. Let s; be the strategy of player ¢, m; her payoff and NV; her neighborhood, with
k; neighbors. One neighbor j € N; is chosen at random and agent ¢ adopts the strategy
of player j with a probability that depends on the difference between the payoffs they
obtained in the previous round through the expression

¢
¢ ¢ t+1 P P> T

Lo =P{st — st = J 3
Dij {_7 i } {0, téﬂg (3)

with ®;; = max(k;, kj)[max(1,7) — min(0, S)| to ensure that pi; € [0,1]. In case the
probabilistic decision turns out to be not to copy the neighbor’s strategy, the player repeats
her action in the next round. This is the rule used by Lomborg (1996).

e Unconditional imitation, which makes each player choose the strategy of the neigh-
bor with the largest payoff, provided this payoff is greater than the player’s. This is a
deterministic rule, in contrast to the previous one, which is stochastic. This is the rule
used by Nowak and May (1992), Eshel et al. (1998) and Cohen et al. (2001).

e Best response. This rule was introduced by Matsui (1992) and Blume (1993).
Contrary to the previous two rules, that are imitative, i.e., in best response every player
chooses her strategy as a best response to what her neighbors did in the last round with
probability p or leaves it unchanged with probability 1 — p (p can be set to 1 to make the
rule deterministic). Thus, best response schemes are a next step of sophistication in player
capabilities as compared to simple imitation. In addition, best response is an innovative
rule, as it allows extinct strategies to be reintroduced in the system whereas imitative
dynamics cannot do that.

Unstructured populations

When there is no structure in the population, the classic framework to study the
evolution of populations of cooperators and defectors is the replicator dynamics (Hofbauer
& Sigmund, 1998; Gintis, 2000), which assumes that every individual plays with every
other (or, equivalently, that the social network of interactions is the complete graph). Let
x be the density of cooperators, and f. and f; the fitness of a cooperator and a defector,
respectively. The replicator dynamics posits that « evolves as (Hofbauer & Sigmund, 1998)
(2 stands for dx/dt)

& =z(1—x)(fe— fa) (4)

Then, if cooperators are doing better than defectors their density rises accordingly, and
the opposite occurs if they are doing worse.

For our social dilemmas, provided that the initial density of cooperators x° is differ-

ent from 0 and 1, the asymptotic outcome of the evolution is, for each game (z* represents
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Figure 1: Standard results given by the replicator equation, Eq. (4), in infinite well mixed
populations, for different initial conditions (cooperator densities 1/3, 1/2, 2/3). The lines
in plot (b) indicate the parameter regions that will be discussed in the remainder of the
paper. The regions corresponding to each of the dilemmas are marked with initials: PD
(Prisoner’s Dilemma), SD (Snowdrift), SH (Stag Hunt), the remaining region corresponding
to the Harmony Game (HG) where no dilemma appears.

the asymptotic density of cooperators) (Hofbauer & Sigmund, 1998): Harmony, full coop-
eration, x* = 1; Prisoner’s Dilemma, full defection, * = 0; Stag Hunt, full cooperation
if 20 > z., or full defection if 2° < z.; Snowdrift, mixed population with z* = z., re-
gardless of the initial density 2°. For both Stag Hunt and Snowdrift games the coexistence
equilibrium z., which is unstable for Stag Hunt but stable for Snowdrift games, has a value

__ 5 (5)
S+T -1

As a reference, Figure 1 shows the outcome of evolution under replicator dynamics
for the four dilemmas presented above, depicted in the space of parameters S and T'. It also
displays the lines that correspond to the game parameterizations that will be considered
below.

The replicator equation is closely related to the proportional imitation rule, which
we will use on structured populations. Proceeding as in (Lomborg, 1996; Gintis, 2000),
it is straightforward to calculate the evolution with this update rule on an unstructured
population. Let n be the number of cooperators in a population of N individuals, 0 <
n < N. In one time step, the variation of n will be given by the number of defectors
that become cooperators minus the number of cooperators becoming defectors. Then, the
expected value of the variation in the number of cooperators is'

n(fe—fa)+  N-—n(fa—fo)+
N o N o (6)
T)Jr::cifxzo,and(:c)+:01f:c<0.

Te

E[An] = (N —n)




Defining do = An/N and dt = &1, it results

i) = a(1 —z)(fe — fa) (7)

which is equivalent to Eq. (4) up to a time scale factor. Notice that the use of expected
values means that, strictly speaking, this argument is only valid in the limit N — oo.
For populations of finite size, the time evolution of z will differ of Eq. (7) in a stochastic
term, which in practice, however, is only relevant for very small population sizes (Traulsen,
Claussen, & Hauert, 2005), specially in what concerns the asymptotic state.

To study the case of an unstructured population driven by the unconditional imi-
tation rule, it is enough to realize that, on a complete network, (i) all cooperators and
all defectors obtain, respectively, the same payoff, and (ii) all players “scan” all others to
identify the player with the maximum payoff and adopt her strategy. Hence, the popula-
tion reaches a stationary state of full cooperation (full defection) if f. > f4 (fe < fa), in
only one time step. Taking into account that the sign of & in Eq. (7) is determined by
the term (f. — fq), it is easy to conclude that this asymptotics is the same than the one
induced by replicator dynamics in the Harmony game, the Prisoner’s Dilemma and the
Stag Hunt game. The behavior with the Snowdrift game presents an anomaly because the
population “overreacts” when approaching the mixed equilibria at x., ending up in full
cooperation (full defection) if 2° < . (2° > z.). This pathology can be formally solved
introducing a probability p < 1 of changing strategy, which slows down this extremely
fast dynamics, making the asymptotic fraction of cooperators fluctuate around x., with an
amplitude bounded approximately by max(z.,1 — x.)p.

Considering finally the third update rule, best response, a similar reasoning indi-
cates that the best response for the current population state is simply the strategy that is
achieving the highest payoff. Thus, as with unconditional imitation, the population reaches
immediately a stationary state of full cooperation (full defection) if f. > fq (fe < f4). As
before, there are no differences with the asymptotics of replicator dynamics for the Har-
mony game, the Prisoner’s Dilemma and the Stag Hunt game. With the Snowdrift game,
the first time step drives the population to a state of full cooperation or full defection as
in unconditional imitation, but instead of remaining fixed there, all the population keeps
switching to the other strategy once per time step. As before, the formal solution is the
introduction of a probability p of change, which stabilizes the global fraction of cooperators
around the mixed equilibrium, with the fluctuation bounded.

Thus, we have proven that the asymptotics reached on an unstructured population,
i.e. on a complete network, with all the three strategy update rules is the same than with
the replicator dynamics. Note, however, that proportional imitation is the only rule that
also recovers the temporal evolution of replicator dynamics (recall, for instance, that for
unconditional imitation we have shown above that convergence takes just one iteration).
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Figure 2: Cooperation asymptotics in a regular lattice of degree k = 8 (Moore neigh-
borhood), as a function of the intensity of dilemma r, for different social dilemmas. Top
panel: Stag Hunt. Middle panel: Prisoner’s Dilemma. Bottom panel: Snowdrift. Each
panel shows results for three update rules: unconditional imitation (filled circles), pro-
portional imitation (filled squares) and best response (empty diamonds). The results for
well-mixed populations are shown as a solid line without symbols in Stag Hunt and Snow-
drift games (for Prisoner’s Dilemma the result is % = 0 for all the range of 7). Other lines
are a guide to the eye. For details on the simulations see Appendix.
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Spatial networks

We have run simulations (see Appendix for details of our numerical procedures) on
square lattices of degree k = 8, and our results are summarized in Fig. 2. Each panel of the
figure presents results for a different region of the ST-plane corresponding to a different
game. Specifically, for the Stag Hunt game we chose (0 <r <1)

T=r 8=—-r (8)
for the Snowdrift game we chose
T=1+r,S=1-r, (9)
and finally, for the Prisoner’s Dilemma, we took
T=1+7r5=—r (10)

These parameterizations of the game correspond to the three lines depicted in Fig. 1. The
rationale for exploring along those lines is to increase the tensions in the different games
by increasing the parameter r. Note that when r» = 0, in all three cases we are at the
Harmony game, and proceed to stronger tensions as we take r — 1.

As can be seen clearly from Fig. 2, the outcome of the simulations strongly depends
on the strategy update rule, in all the three dilemmas. Thus, with unconditional imitation
cooperation is enhanced in all cases (compare with the dashed line, which represents the
well-mixed population, for reference; note that it overlaps with the r axis for the Prisoner’s
Dilemma as the predicted cooperation is zero in that case), except for a minor region
of large r values in the Snowdrift game. With proportional imitation, cooperation is
clearly enhanced in Stag Hunt, albeit to a lesser extent than in the unconditional imitation
dynamics. In Snowdrift, cooperation is inhibited (except for low r) in Snowdrift, and it
is promoted in Prisoner’s Dilemma also only for low r. Finally, best response dynamics
leads to results which are in general very similar to the well-mixed population, with both
small promotion and inhibition of cooperation in the Stag Hunt and Snowdrift games, and
a slight promotion for low r in the Prisoner’s Dilemma. Hence, we see that the effects of
the micro-dynamics are most relevant is the Stag Hunt game, and that the promotion of
cooperation in the Prisoner’s Dilemma depends on the micro-dynamics, being maximum
under unconditional imitation.

The reason for the sensitivity of the Stag Hunt to the dynamics is the existence of
two competing equilibria in that case. In the well mixed population, convergence to a
specific equilibrium depends on the amount of each of the strategies present in the initial
population, and subsequently the convergence is global, i.e., all agents end up playing
the same strategy. On the contrary, in the presence of spatial structure clusters converge
locally to any of the two equilibria. Those regions where many cooperators are together

11



yield them higher payoffs (they coordinate in the efficient equilibrium) and bring over the
neighboring agents as time progresses.

The mechanism that explains the emergence of cooperation is the aggregation of
cooperators facilitated by the spatial structure of the population, which leads to the for-
mation and growth of clusters of cooperators. However, the key point we want to hightlight
in this work is that this aggregation is very dependent on the update rule. With uncon-
ditional imitation clusters grow deterministically one network link each time step, and as
consequence it is easy to see analytically that planar interfaces determine the conditions
for cluster growth almost independently of the initial conditions. On the contrary, propor-
tional imitation dynamics induces a much slower cluster growth with rough interfaces, that
requires less tension (lower r) to develop. In this case, the result turns out to depend on
the initial density of cooperators, in contrast to what occurs with unconditional imitation.
Finally, with the best response rule, clusters are not stable from the start, because this
rule is innovative and can reintroduce strategies that are not present within a cluster or a
neighborhood at a given time.

Another important insight on the behavior of social dilemmas is the influence of
clustering on the emergence of cooperation, in particular for proportional imitation. Indeed,
the effect of this kind of regular lattices, along with imitative update rules, is directly linked
to the first order correlation in the network, i.e. with the existence of triangles or clustering
(defined as the ratio of the number of triangles present in the network over the number of
all possible triangles that could be formed). The fact that neighbors of an individual are
neighbors themselves is then crucial. To appreciate the effects of clustering, we present
results for a random network of degree £ = 8 on the top panel of Fig. 3, which must be
compared with the top panel of Fig. 2. Whereas the results for unconditional imitation and
best response do not change much, for the random network the behavior under proportional
imitation is basically the same as for the well mixed population. On the contrary, when
the degree of both the square lattice and the random network is k = 4 (implying zero
clustering for both, i.e., no common neighbors), the results are comparable for all the
dynamics [middle and bottom panels of Fig. 3].

The preceding comments do not contradict Cohen et al.’s discussion (Cohen et al.,
2001) of clustering because they characterized clustering in terms of the average number
of neighbors within a certain distance in order to highlight the existence of correlations
within the network. They did not look at clustering understood as transitivity or existence
of common neighbors: As a matter of fact, all their networks are k = 4 lattices or are built
in a random manner with the same average degree, and therefore they have zero clustering
when measured by the density of triangles. In general, the effect of a reduced average
distance between nodes is a shorter time of convergence to a very similar stationary state,
and hence the asymptotic outcome for every social dilemma does not change (the interested
reader is referred to (Roca, Cuesta, & Sénchez, 2009a) for a discussion in depth of these
issues).

12
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Figure 3: Cooperation asymptotics in Stag Hunt games on random networks and square
lattices. Top panel: Random network, & = 8. Middle panel: Square lattice, k& = 4.
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line without symbols. Other lines are a guide to the eye.
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Degree-heterogeneous populations

The work summarized in the previous section was focused on spatially structured
populations (lattices) and random networks. The common feature to all these networks
is that they are degree-homogeneous, meaning that they are regular (i.e., all nodes have
exactly the same number of neighbors) or almost regular. In this section, we address
the opposite case of highly heterogeneous networks, taking scale free networks (Albert &
Barabasi, 2002) as our working example. Recent work has pointed out that these networks
can be very favorable to cooperation (Santos, Pacheco, & Lenaerts, 2006; Poncela, Gémez-
Gardenes, Floria, & Moreno, 2007) and can even self organize if they grow by incorporating
new individuals who choose their neighbors depending on the payoffs of a game (Poncela,
Goémez-Gardenes, Florfa, Sdnchez, & Moreno, 2008). Therefore, analyzing the micro-macro
link on degree heterogeneous networks is an important subject that deserves attention both
on its own and for its possible applications.

We carried out simulations for the three social dilemmas with the same parameters
as in the preceding section. We generated scale free networks using a Barabasi-Albert
preferential attachment algorithm (Albert & Barabdsi, 2002) with new nodes entering the
network by connecting to m = 4 preexisting individuals resulting on an average degree
k = 8. Our results are collected in Fig. 4. Contrary to our observations for spatial
structure, in this case the game most severely affected is Snowdrift. On the other hand, the
effect depends once again on the rule: Cooperation levels are dramatically increased with
respect to the well mixed population, both for unconditional imitation and for proportional
imitation; the latter leads to a smaller promotion than the former, but it is still quite large.
Furthermore, there is also a noticeable effect on the Prisoner’s Dilemma, which, albeit weak,
is stronger than on Stag Hunt games. It is very interesting that in this case proportional
imitation is the rule that leads to higher cooperation. Finally, as in degree-homogeneous
networks, best response dynamics is the one that induces less differences with respect to
the well mixed population.

We thus see very clearly that the effect of this kind of scale-free networks is qualita-
tively very different from that of spatial lattices, but in turn very dependent on the update
rule. The reason for such a difference is the heterogeneity of degree, as we have checked
that qualitatively similar results are obtained for other degree-heterogeneous networks.
The basic microscopic mechanism that underlies this effect is a bias induced in the transi-
tions from cooperator to defector, and viceversa, which are typical of Snowdrift games. In
homogeneous networks these transitions happen with equal probability. In heterogeneous
networks, however, for more connected individuals the transition from defection to coop-
eration becomes more probable than the opposite transition. The final result is that more
connected individuals usually end up as the leaders of stable cooperative hubs. An impor-
tant detail in this mechanism is that .S must be positive, i.e. there should not be risk in
cooperation, for this effect to take place, which explains why the influence of heterogeneous
networks is mostly concentrated on Snowdrift games. A detailed analytical study of this
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issue for a toy model of cooperator and defector hubs separated by a set of individuals and
with proportional imitation dynamics has been recently published (Floria, Gracia-Lazaro,
Gardenes, & Moreno, 2009).

Discussion and conclusions

The most important conclusion of this work is that macro-level outcomes (emergence
of cooperation, convergence to a given equilibrium) are very sensitive to changes in the evo-
lutionary dynamics in the presence of a spatial or social structure in the population. This is
in contrast with what we have seen in well mixed populations, i.e., in populations that lack
social structure governing who interacts with whom, where the outcome is independent of
the dynamics. However, as soon as the social structure is included in the model in terms of
a network of interactions, each different micro-dynamics leads to a specific macro-outcome.
This finding has very serious implications: In particular, it challenges the belief that social
or spatial structures are in general supportive of global cooperative behavior, in so far as
any promotion of cooperation is seen to depend on the micro-dynamics.

Regarding imitative dynamics, we have shown that they yield different results de-
pending on their deterministic or stochastic nature. On degree homogenous networks,
unconditional imitation, a deterministic rule, allows clusters of cooperators to grow until
the cooperative behavior dominates the population even in a range of parameters of the
Prisoner’s Dilemma. On the contrary, with proportional imitation the promotion of coop-
erative behavior is clearly lower in the Prisoner’s Dilemma, and even changed to inhibition
in Snowdrift. The main influence of proportional imitation is then limited to the Stag Hunt
game, due to the fact that in this dilemma there are two possible outcomes as discussed
above.

On degree-heterogeneous (scale free) networks, the topology does not allow the
formation of clusters, and another mechanism intervenes in the outcome of the micro-
dynamics: the formation of cooperative groups around highly connected individuals or
hubs. Under both imitative dynamics, these individuals end up being cooperators, and are
henceforth able to bring their neighbors along to a cooperative state. Such a mechanism
allows for a large promotion of cooperation in the Snowdrift game, reaching into a region
of the Prisoner’s Dilemma, with qualitative differences depending on the imitation rule
considered. Cooperation in coordination games such as the Stag Hunt does not benefit
much from this kind of networks under any of the imitative dynamics.

Therefore, clustering (understood as density of triangles or transitivity) and degree
heterogeneity seem to be the two more important topological features of population struc-
ture with an impact on social dilemmas. Furthermore, these two characteristics lead to
changes in the macro-outcome which are not the same under different update rules. This
result has important consequences: If we only observe a given macro-state (say, global co-
operation in a a Prisoner’s Dilemma) we can not know whether models based on a degree-
heterogeneous network under proportional imitation dynamics or on a degree-homogeneous
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network under unconditional imitation are the correct ones to describe our observations.
Further research would then be needed to ascertain what is the individual behavior and
the social structure underlying the aggregate of individuals.

Under best response dynamics, the social structure does not seem to play much of a
role: Populations of all types tend to converge to the Nash equilibrium of the individual
game. As this does not agree with observations of real systems and with many experiments,
then we are faced with a puzzle: Either best response, with its alleged cognitive improve-
ment with respect to imitation, is not well suited to model individual interactions, or the
models need some rethinking. The absence of network effects under best response implies
that the stability and efficiency of the two mechanisms we have discussed for the promotion
of cooperation, namely cluster formation and cooperative hubs, requires imitation. This is
so because innovative rules such as best response lead to strategy changes in the inner core
of the cluster or on the hubs that eventually spread defection to the surroundings.

From the above discussion, a testable hypothesis emerges: a particular dynamics
at the micro-level implies a non-trivial dependence of the macro-outcome on the kind of
game and the concrete topology of the social network. Imitative update rules are only
compatible, and hence verifiable in experiments, with the following behavior: games on
lattices only display a clear influence of the network in the case of Stag Hunt games,
whereas games on degree-heterogeneous networks do so only in Snowdrift games. In case
experiments would provide positive evidence in this direction, then it would be possible
to test the temporal evolution of the population, verifying the formation of clusters of
cooperators with Stag Hunt games and the existence of cooperative hubs for Snowdrift
games. A similar testable hypothesis can be posed for best response rules: best response
as a micro-level dynamics implies a lack of influence of social structure for most games,
they being Prisoner’s Dilemmas, Stag Hunt or Snowdrift games.

Very recently, some experiments have dealt with the behavior of people playing the
Prisoner’s Dilemma on small (Kirchkamp & Nagel, 2007; Traulsen, Semmann, Sommerfeld,
Krambeck, & Milinski, 2010) and large (Grujié¢, Fosco, Aratijo, Cuesta, & Sanchez, 2010)
lattices, yielding new insights about the micro-dynamics which individuals actually follow.
While there is not complete agreement between the interpretation of the three experiments,
the fact that very low (but nonzero) levels of cooperation are observed in all of them makes
very likely that unconditional imitation can be ruled out as a description of the way players
update their strategies. Experiments designed to test other games are badly needed to make
progress on this issue.

Regarding other choices for the update rules, we believe that they will all reflect the
influence of different networks in idiosyncratic manners. For instance, work by Buskens
and Snijders (2008) shows that simulations on small networks are not very sensible to
their structure for a rule based on propensities to cooperate driven by instantaneous best
responses, in line with our results here on larger networks. However, very different update
rules, with a clear learning interpretation, lead to other outcomes. It is worth quoting
work in progress by Galan, Izquierdo, Santos, and Séanchez (2010), who elaborate on previ-
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ous research on two-player games (Izquierdo, Izquierdo, Gotts, & Polhill, 2007; Izquierdo,
Izquierdo, & Gotts, 2008) with reinforcement learning dynamics as used by Macy and
Flache (2002): Using the Prisoner’s Dilemma as an example, they observe that the asymp-
totic state of a two-player game with this dynamics is full cooperation for both players
with transients around a mixed strategy equilibrium. On the contrary, the presence of a
network of players renders the fully cooperative equilibrium unreachable for practical pur-
poses. Interestingly, reinforcement learning leads to an outcome that is completely different
from those we have reported for our three rules, further supporting our main conclusion.
Research on whether other learning-type update rules, such as belief learning (Cheung &
Friedman, 1997) or experience-weighted attraction learning (Camerer & Ho, 1999), lead to
different outcomes from that of reinforcement learning would be a big step towards making
a universal claim along the lines of our conclusion. In such a context, an interesting issue
would be the possibility of distinguishing between reinforcement and belief learning on a
social network, in the direction found for 2 x 2 games by van der Horst, van Assen, and
Snijders (2010).

In this study, the information and interaction set are the same, i.e., agents interact
with a given set of neighbors and have information about their actions and payoffs in the
previous round. In general these two sets may differ. Recent work by Ohtsuki, Nowak, and
Pacheco (2007) has shown that when two different networks are used, one for interaction
(playing the game) and one for information (updating the strategy), the results change.
It is worth noting that they report that the optimum setting for cooperation to emerge is
when both graphs coincide. In the context of this paper, they use three different update
rules (birth-death, death-birth and imitation) and once again find that the evolutionarily
asymptotic state depends on the rule even within this generalized picture, in line with our
claims here. Therefore, we believe that the fact that in this work we have only looked at
the case in which the information and interaction sets are the same does not suppose any
limitation to our main conclusion.

Finally, when model networks are substituted in the simulations of social dilemmas by
real social networks obtained from empirical data, results are different even if the networks
have the same global statistical features (Lozano, Arenas, & Sénchez, 2008b, 2008a), a
surprising result that has been shown to arise from the existence of topological traps on the
network, mesoscopic structures similar to bottlenecks that make it difficult for successful
strategies to propagate. All this points in the direction that modelling social interactions
on social networks is by no means a straightforward task: it requires clear and specific
questions and a precise specification of the scope of applicability of the results (what type
of social aggregates, what type of dilemma involved, etc.). A promising avenue for research
on social dilemmas using evolutionary games may be to let all relevant features coevolve,
including the update rules themselves (Moyano & Sénchez, 2009). With such an approach
one might be able to show that some of the micro-dynamics or the social structures which
are in principle possible do not actually appear or are not relevant in an evolutionary
context, thus narrowing down the range of choices for the modeller. This is of course a
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highly speculative conjecture, but we believe it is worth exploring it in order to shed light
on the dependence of the macro-outcomes on the micro-level.
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Appendix
Appendix: Simulation details

All the simulations were performed for a population size of N = 10%. The initial
density of cooperators was 20 = 0.5 and the update of strategies was done synchronously.
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With synchronous update, all the individuals in the population play the game once with
all their neighbours, compare their payoff with them and decide the new strategy for the
next time step. Then, they all update their strategy at once and their payoff is set to zero
before the next step. Using asynchronous updates does not change qualitatively the results
except for a minor region of parameters in the Snowdrift game near the boundary with the
Prisoner’s Dilemma (Roca et al., 2009a).

The time of convergence in the simulations was 7" = 10* rounds of the game per
individual. If the population did not reach full cooperation or defection, an average of
the cooperator density during the last tenth of the time evolution was used to obtain the
asymptotic cooperator density. We checked that this time of convergence is enough to
reach a steady state. For each choice of game parameters, 100 realizations were performed
to obtain a final average value for the asymptotic density of cooperators.

Each realization started from a newly generated population, with strategies randomly
assigned and the network, when applicable, also randomly built. The homogeneous random
networks were built directly, assigning links randomly in the population, while ensuring an
equal number of links for every individual. All the regular lattices were built with periodic
boundary conditions.
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