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Purpose: Standard image reconstruction methods for fluorescence Diffuse Optical Tomography

(fDOT) generally make use of L2-regularization. A better choice is to replace the L2 by a total vari-

ation functional that effectively removes noise while preserving edges. Among the wide range of

approaches available, the recently appeared Split Bregman method has been shown to be optimal

and efficient. Furthermore, additional constraints can be easily included. We propose the use of the

Split Bregman method to solve the image reconstruction problem for fDOT with a nonnegativity

constraint that imposes the reconstructed concentration of fluorophore to be positive.

Methods: The proposed method is tested with simulated and experimental data, and results are

compared with those yielded by an equivalent unconstrained optimization approach based on

Gauss Newton (GN) method, in which the negative part of the solution is projected to zero after

each iteration. In addition, the method dependence on the parameters that weigh data fidelity and

nonnegativity constraints is analyzed.

Results: Split Bregman yielded a reduction of the solution error norm and a better full width at

tenth maximum for simulated data, and higher signal-to-noise ratio for experimental data. It is also

shown that it led to an optimum solution independently of the data fidelity parameter, as long as the

number of iterations is properly selected, and that there is a linear relation between the number of

iterations and the inverse of the data fidelity parameter.

Conclusions: Split Bregman allows the addition of a nonnegativity constraint leading to improve

image quality.

Key words: diffuse optical tomography, L1-regularization, total variation, constrained optimization,

split Bregman

I. INTRODUCTION

Diffuse optical tomography in fluorescent mode (fDOT) is

becoming an important preclinical noninvasive technique for

small animal imaging.1–5 Tomographic algorithms are based

on modeling the propagation of light through biological tis-

sue which can be described by the diffusion approximation

since most biological tissues are highly-scattering media in

the near-infrared range.6 Solution to tomographic image

reconstruction can be tackled as a linear inverse problem of

the recovery of the concentration of fluorophore from fluo-

rescent boundary data and is usually addressed by means of

implicit regularization, using iterative methods like the alge-

braic reconstruction technique,3,7,8 or by unconstrained opti-

mization methods based on L2-regularization.9,10 While

these methods constitute the common choice for practical

applications, as they are easy to implement, it is well known

that they lead to over-regularized solutions, smoothing out

edges in the image. In contrast, the L1-norm of the gradient

of the image, the total variation (TV) functional, preserves

edges and has been termed as the proper norm for

images.11,12 However, since the TV functional is nonlinear

and nondifferentiable, it requires stable and efficient iterative

algorithms.
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Constrained optimization using conventional algorithms12,13

has been shown to lead to optimal image reconstruction. Never-

theless, due to its high computational cost and complicated

implementation, more simplified approaches are generally

adopted. A straightforward approach is to formulate an equiva-

lent unconstrained optimization problem.13 An alternative

approach is to convert the constrained problem into an equiva-

lent unconstrained optimization method and to impose the con-

straint using an iterative procedure. For example, in the so-

called continuation methods the regularization parameter is iter-

atively increased to enforce the constraint,13 yet they can be

inefficient and unstable. Since novel methods based on the

Bregman iteration enforce the constraints in an optimum way,

adding the Bregman iteration to the unconstrained problem

enforces the solution to converge to the solution of an equivalent

constrained problem.14 Exploiting this idea, the Split Bregman

(SB) method solves constrained optimization problems with

convex nondifferentiable functionals on an efficient and simple

manner.15,16 For instance, for L1-constraints such as the TV, the

SB method decouples L1- and L2-functionals, and minimizes

them separately, the L2-part by using conventional methods,

and the L1-part by straightforward shrinkage formulas. SB has

also a close connection to alternating splitting methods.17

TV, the Bregman iteration, and splitting methods have

been widely applied to image denoising and magnetic reso-

nance imaging.11,12,14,16,18 However, very few studies have

addressed their use for DOT and fDOT. Earlier implementa-

tions of TV for DOT were based on unconstrained methods,

such as a regularized least squares approach19 or a Gauss -

Newton (GN) method with anatomical prior.20 L1 and TV

were also applied to bioluminescence tomography using the

interior point method.21,22 Recent studies have applied an

iterated shrinkage method23 and an augmented splitting

Lagrangian approach24 to fDOT simulated data, and a split-

ting method based on anisotropic diffusion regularization

with anatomical prior to fDOT phantom and ex-vivo data.25

Furthermore, the Split Bregman formulation has been

employed to enforce a nonnegativity constraint for image

denoising with Poissonian statistics.26

The aim of this work is to validate the Split Bregman

method to minimize the TV of the image with a nonnegativ-

ity constraint for fDOT, and to test its performance using

simulated and experimental phantom data. Results are com-

pared with an equivalent unconstrained optimization

approach solved with a GN method, in terms of the solution

error norm and image quality. In addition, the ability to

enforce the nonnegativity constraint is analyzed and com-

pared with GN method projecting to zero the negative part

of the solution after each iteration.

II. METHODS

II.A. Forward problem

The propagation of light through tissue can be approxi-

mated by the diffusion equation, valid for weakly anisotropic

and highly-scattering media, for which the reduced scatter-

ing coefficient l0s is much larger than the absorption coeffi-

cient la.
6 Hence, in fluorescence diffuse optical tomography,

the excitation photon density Uex(r) and emission photon

density Uem(r) are given by the solution of a couple of diffu-

sion equations.9,27 The excitation photon density Uex(r) is

emitted by an external source q0(rs) and the emission photon

density Uem(r) comes from a fluorophore with fluorescent

yield u(rfl), which accounts for its quantum efficiency,

absorption parameter and concentration of fluorophore. In

constant-wave mode (zero frequency), excitation and emis-

sion photon densities are given by

�r � jðrÞrUexðrÞ þ laðrÞUexðrÞ ¼ q0ðrsÞ (1)

�r � jðrÞrUemðrÞ þ laðrÞUemðrÞ ¼ uðrflÞUexðrÞ: (2)

where j rð Þ ¼ 3 la rð Þ þ l0s rð Þð Þ½ � 1
is the diffusion coeffi-

cient, and for simplicity it is assumed that optical parameters

are equal at excitation and emission (they have close wave-

lengths) and that the absorption parameter is not influenced

by the presence of the fluorophore.

Let’s define a Green’s function G(r, r0), for a point source

located at r0, that solves

½�r � jðrÞr þ laðrÞ�Gðr; r0Þ ¼ dðr� r0Þ; (3)

then, photon densities that solve Eqs. (1) and (2) are given

by

UexðrÞ ¼
ð

dr0Gðr; r0Þq0ðr0Þ (4)

UemðrÞ ¼
ð

dr0Gðr; r0Þuðr0ÞUexðr0Þ: (5)

The fluorescent data are usually normalized to the excitation

data to reduce the dependence on the geometry and optical

coefficients.8,28,29 Hence, the fDOT data measured at the de-

tector position rd is defined as

gðrdÞ ¼
Umeas

em ðrdÞ
Umeas

ex ðrdÞ
: (6)

It can be shown that the Jacobian matrix Jij that relates each

measurement gi (the subindex i accounts for each source-

detector pair) to the concentration of fluorophore uj at the

element Xj of the discretized domain X is

Jij ¼
@gi

@uj
¼ 1

Umeas
ex

ð
Xj

drj
~Uðrj; rdÞUexðrj; rsÞ; (7)

where ~Uðrj; rdÞ is the adjoint field solved by considering a

source at the detector position in Eq. (4). Thus, the fDOT

problem can be expressed as a linear system9,27,30

g ¼ Ju; (8)

where J is a M�N-matrix, u is a N� 1-vector of fluoro-

phore coefficients, and g is a M� 1-vector, with N the num-

ber of voxels and M the number of measurements.

Light propagation was modeled using the TOAST finite

element package for diffuse optical tomography31,32 for both

data simulation and building the Jacobian.

II.B. Image reconstruction problem

Let X � R3 be the domain, @X the boundary of the do-

main, u 2 X the reconstructed image of concentration of
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fluorophore, g 2 @X the boundary data, and J : u7!g [Eq.

(7)], the linear operator that maps image into data; one aims

at the recovery of the image u from boundary data g such

that the image has a low total variation.

II.B.1. Total variation

Let u be a smooth function defined in a domain X, its total

variation R(u) is given by

RðuÞ ¼ kruk1 ¼
ð

X
drjruj; (9)

where kruk1 is the 1-norm of the gradient of u, which can

be understood as the sum over the domain of the absolute

variations of the function u.12 The nondifferentiability of the

absolute functional at the origin can be avoided by using an

approximation

RðuÞ ¼
ð

X
drWðjrujÞ; (10)

where the functional W(jruj) deals with the nondifferenti-

ability; in this work, we have used

WðjrujÞ ¼ ðrxuÞ2 þ ðryuÞ2 þ ðrzuÞ2 þ b2

q
(11)

where ri¼ @i and b is a small parameter.

Minimization of TV leads to an image with few oscilla-

tions while allowing for sharp discontinuities and thus pre-

serving edges. This can be understood from the gradient of

R(u), which being proportional to r � jru, where j is the

diffusion function

j ¼ W0ðjrujÞ
jruj ; (12)

preserves edges by decaying to zero as the absolute gradient

increases. Other approximations to the diffusion function lead

to different edge preserving functions, like Huber and Perona-

Malik.20 More details can be found in Refs. 11, 12, 20, and 25.

II.B.2. Unconstrained optimization

It is common to tackle the reconstruction problem using

an unconstrained optimization approach

min
u

HðuÞ ¼ min
u

RðuÞ þ k
2
kJu� gk2

2; (13)

where k is a parameter that weights the data constraint (this

would be the reciprocal of the commonly named regulariza-

tion parameter). Using a gradient-based approach, the solu-

tion at step kþ 1 is updated as

ukþ1 ¼ uk þ pk: (14)

An efficient minimization direction p is given by the GN

method33

p ¼ � H0

H00
; (15)

where H0 stands for the gradient and H00 for the Hessian.

II.B.3. Constrained optimization

The constrained inverse problem consists in the minimi-

zation of the total variation of the image R(u) subject to a

data constraint

min
u

RðuÞ such that kJu� gk2
2 � r2; (16)

where an error tolerance r2 is included to account for noisy

data.

However, the reconstructed concentration of fluorophore,

u, must be positive, which can be imposed using a nonnega-

tivity constraint that leads to the constrained optimization

problem

min
u

RðuÞ such that kJu� gk2
2 � r2; u � 0: (17)

The problems posed in Eqs. (16) and (17) can be solved by

using conventional constrained optimization algorithms,12,13

yet, for convex functionals, methods based on the Bregman

iteration have been shown to be computationally efficient

and easier to implement. In addition, they are faster and

more stable than other approximations like continuation

methods.16

II.B.4. The Bregman iteration: Data constraint

The Bregman iteration technique is based on the Bregman

distance that generalizes the concept of metric associating a

distance to a convex functional E not necessarily differentia-

ble. The Bregman distance between two images u and w is

defined as

DEðu;wÞ ¼ EðuÞ � EðwÞ � hs; u� wi; (18)

where s is the subgradient of E at w, a subderivative that

generalizes the concept of derivative to nondifferentiable

convex functionals, and that is equal to the gradient when

this exists; and h�; �i is the scalar product. Although it is not a

metric, as it does not satisfy symmetry nor the triangle in-

equality, it provides a generalized nonnegative measure of

distance. For instance, for the case of the 2-norm functional

E uð Þ ¼ kuk2
2 the Bregman distance reduces to the Euclidean

distance DE u;wð Þ ¼ ku� wk2
2. It can be shown that it also

generalizes the Mahalanobis distance, the Itakura-Saito dis-

tance, and the Kullback-Leibler divergence.34 For further

explanations we refer to Refs. 14 and 16.

In our case of interest, let E(u)¼R(u) be the total varia-

tion functional, then the constrained optimization problem

[Eq. (16)] in terms of the Bregman distance has the equiva-

lent formulation

ukþ1 ¼ min
u

DRðu; ukÞ þ k
2
jjJu� gjj22

skþ1 ¼ sk � kJTðJukþ1 � gÞ
(19)

where sk is the subgradient of the total variation functional at

the kth-iteration.

For linear operators, J, the Bregman formulation given by

Eq. (19) has a simplified version
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ukþ1 ¼ min
u

RðuÞ þ k
2
kJu� gkk2

2

gkþ1 ¼ gk þ g� Jukþ1; (20)

with g0¼ g the initial data. The second line is the so-called

Bregman iteration, which can be explained as the requirement

that imposes the constraint by adding the error of the data mis-

fit back into the data constraint.14,16 Thus, the introduction of

the Bregman iteration into the unconstrained formulation

[Eq. (13)] makes its solution converge to the solution of the

constrained problem [Eq. (16)] as the number of iterations k
increases, for a sufficiently small weight parameter k. In com-

parison to an equivalent unconstrained formulation, it further

minimizes the solution error norm by constructing a sequence

of solutions that monotonically converges to the noise-free so-

lution, with the data constraint decreasing monotonically with

the iteration number.14,16 Moreover, for linear operators, one

does not need to solve the more difficult formulation given by

Eq. (19), using subgradient methods for the selection of the

subgradient, but can instead compute the simpler formulation

given by Eq. (20).

II.B.5. The Split Bregman method: Data and
nonnegativity constraints

We aim at the solution of the constrained problem

[Eq. (17)] with both a data and a nonnegativity constraint

using the Split Bregman formulation. SB allows the minimi-

zation of convex nondifferentiable functionals in an efficient

and easy manner. Thus, the SB method leads to a solution

update for which L2-functionals and the nonnegativity func-

tional are decoupled and solved separately. To achieve this

decoupling, a new variable v that will bear the nonnegativity

condition and will allow for the splitting is introduced. Let

P(v � 0) be the nonnegativity condition that restricts the so-

lution space to only positive values. Following the formalism

in Ref. 16, the constrained problem given by Eq. (17) is

rewritten as

min
u;v

Pðv � 0Þ þ RðuÞ such that

v ¼ u and Ju ¼ g; (21)

whose equivalent unconstrained formulation is

min
u;v

Pðv � 0Þ þ RðuÞ þ k
2
kJu� gk2

2 þ
a
2
kv� uk2

2; (22)

Defining now a Bregman distance associated to a functional

E(u,v)¼P(v)þR(u), and proceeding as in Eq. (19) yet for

two variables u and v, the constrained problem given by

Eq. (21) becomes

ðukþ1;vkþ1Þ ¼min
u;v

DEðu;uk;v;vkÞþk
2
kJu�gk2

2þ
a
2
jjv�ujj22

skþ1
u ¼ sk

u�kJTðJukþ1�gÞ�aðukþ1�vkþ1Þ
skþ1

v ¼ sk
v�aðvkþ1�ukþ1Þ: (23)

Using the Bregman iteration, Eq. (23) has the equivalent

formulation

ðukþ1; vkþ1Þ ¼ min
u;v

Pðv � 0Þ þ RðuÞ þ k
2
kJu� gkk2

2

þ a
2
jjv� u� bk

vjj
2
2

gkþ1 ¼ gk þ g� Jukþ1

bkþ1
v ¼ bk

v þ ukþ1 � vkþ1: (24)

with g
0¼ g, u

0¼ 0, v
0¼ 0. As the variables u

kþ1 and v
kþ1

are not coupled, they can be split and solved separately

ukþ1 ¼ min
u

RðuÞ þ k
2
kJu� gkk2

2 þ
a
2
jjvk � u� bk

vjj
2
2 (25)

vkþ1 ¼ min
v

Pðv � 0Þ þ a
2
jjv� ukþ1 � bk

vjj
2
2: (26)

Then, u in Eq. (25) is solved using conventional uncon-

strained optimization methods. The elements of vkþ1 in

Eq. (26) that are not coupled between each other are solved

independently using a shrinkage formula26

vkþ1 ¼ maxðukþ1 þ bk
v; 0Þ (27)

This is easily obtained by minimization of a quadratic

functional, a
2
jjv� ukþ1 � bk

vjj
2
2, whose minimizer is

v ¼ ukþ1 þbk
v, when ukþ1 þ bk

v > 0, and v¼ 0, when

ukþ1 þ bk
v < 0.

II.B.6. Algorithms implementation

We compared the following algorithms.

a: GN) The unconstrained problem given by Eq. (13)

solved using a GN step [Eq. (15)]

ukþ1¼� R00ðukÞþkJTJ
� � 1

R0ðukÞþkJTðJuk�gÞ
� �

: (28)

b: GN-P0) The unconstrained problem given by Eq. (13)

solved using a GN step and projecting to zero the negative

part of the solution at each iteration (GN-P0)

ukþ1 ¼ � R00ðukÞ þ kJTJ
� � 1

R0ðukÞ þ kJTðJuk � gÞ
� �

ukþ1 ¼ 0 for ukþ1 < 0: (29)

c: SB) The Split Bregman solution [Eqs. (24 26)] that itera-

tively converges to the solution of the constrained problem

given by Eq. (17) with both data and nonnegativity

constraints

ukþ1 ¼ kJTJþ R00ðukÞ þ aI
� � 1

�R0ðukÞ þ kJTðJuk � gkÞ � aðvk � uk � bk
vÞ

� �
vkþ1 ¼ maxðukþ1 þ bk

v; 0Þ
gkþ1 ¼ gk þ g� Jukþ1

bkþ1
v ¼ bk

v þ ukþ1 � vkþ1; (30)

where ukþ 1 corresponds to a GN minimization step of

Eq. (25).

Procedures to compute the first and second derivatives of

the total variation functional, R0(u) and R00(u), can be found

in Ref. 20.
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II.C. Method comparison

Reconstruction methods GN, GN-P0, and SB were com-

pared using simulated and experimental data.

II.C.1. fDOT data acquisition and data sets

The fDOT system is based on a noncontact parallel plate

configuration.35,36 The sample is illuminated with a 675 nm

constant-wave laser beam, focusing at desired points (source

locations) using two mirrors moved by galvanometers, and

the transmitted light is recorded with a CCD camera. Fluo-

rescence and excitation images are separately recorded by

using 10-nm bandwidth filters centered at 720 nm and 675

nm for fluorescent and excitation light, respectively. For

each source, a distribution of detectors is selected over the

CCD sensor field of view at the desired points on the sample

surface. All the components of the set-up are placed inside a

light-shielded box. The acquisition process is controlled by

in-house developed software hosted in a PC workstation.

Experimental and simulated data corresponded to a 10 mm

thick slab-geometry phantom with a cylindrical fluorophore

target (Fig. 1). An experimental solid phantom was built with

polyester resin, titanium oxide powder and India ink37

(la¼ 0.01 mm 1, l0s ¼ 0:8 mm 1). A cylindrical hole of 5

mm diameter was drilled and filled with a matching fluid

made of intralipid and India ink38 mixed with Alexa fluor 750.

Computer-simulated data were generated using a fine fi-

nite element mesh (145000 nodes) (Fig. 1). A coarser mesh

(55000 nodes) resampled onto a uniform mesh of

20� 20� 20 voxels was used for the reconstruction. A 5 %

additive white Gaussian noise was added to the simulated data.

The acquisition protocol used a configuration of 9 by 9

sources and detectors located at the lower and upper planes,

respectively, covering a surface of 12 by 12 mm2.

II.C.2. Criteria for the comparison of methods

Previous to the comparison between methods, two param-

eters needed to be selected for all methods, the data fidelity

parameter k and the number of iterations k; in addition, for

SB, there is another parameter a that weights the nonnegativ-

ity constraint. For all the methods, we used the parameter set

that provided the best solution, in terms of the relative solu-

tion error norm for simulated data, and in terms of the sig-

nal-to-noise ratio for experimental data. The relative

solution error norm at each iteration k was computed as12

errk ¼ ku
k � uk

truek2

kuk
truek2

; (31)

where utrue is the projection on the reconstruction mesh of

the target solution.

The signal-to-noise ratio was calculated as

SNR ¼ 10log10

kuðrtargetÞk2

kuðrbkndÞk2
; (32)

FIG. 1. Finite element model corresponding to the physical slab geometry

phantom with a cylindrical region filled with fluorophore.

FIG. 2. Comparison of methods in terms of (a) minimum solution error norm for a range of the data fidelity parameter k, and (b) relative solution error versus

iteration number, for the parameter k that minimizes the error in Fig. (a).
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where utrue and u(rbknd) are the solutions at target and back-

ground locations. The target location was approximated by

selecting a small region centered at the expected location of

the target, and the background location was defined by the

first and last slices on the z-axis and the area surrounding the

cylinder in Fig. 1.

Methods were compared in terms of minimum solution

error, signal-to-noise ratio, convergence, the negative part of

the solution, and image quality. Convergence was analyzed

by displaying the solution error versus the iteration number.

To assess for the nonnegativity constraint a negative relative

norm was defined as

kuðu < 0Þk2=kuk2: (33)

In addition, axial, coronal, and sagittal views of recon-

structed images and profiles along two axes are shown. The

negative part of displayed images was set to zero, as nega-

tive values of concentration have no physical meaning.

III. RESULTS

III.A. Comparison of methods

III.A.1. Computer-simulated phantom data

The best solution for each method was selected by choos-

ing the data fidelity parameter k (from the range 10 5 to 10)

that provided the minimum solution error norm [Fig. 2(a)].

For all possible solutions, SB yielded better solution error

norm than GN. GN with projection to zero yielded lower

error than GN. GN converged with a fewer number of itera-

tions than SB, whereas SB led to better solution error

[Fig. 2(b)].

In terms of the negative relative norm [Eq. (33)], SB led

to a solution with a noticeably lower number of negative

voxels than GN-P0 (Fig. 3).

For SB, a linear relation existed between the inverse of

the data fidelity parameter and the number of iterations

required for convergence [Fig 4(a)]. Furthermore, SB

yielded an optimum solution (with minimum error) inde-

pendently of the data fidelity parameter as long as this was

small enough [k � 10 3 in Fig. 2(a)].

Note that, while GN depends on k, SB depends, in addi-

tion to k, on the nonnegativity fidelity parameter a. The

behavior of the error versus both parameters is plotted in

Fig. 4(b).

Reconstructed images and image profiles are shown in

Figs. 5 and 6. SB led to better results, with an improved

FIG. 3. Comparison of methods in terms of the negative relative part of the

solution, ku u < 0ð Þk2= k uk2 (33), versus the iteration number, for simu

lated phantom data (same results as Fig. 2).

FIG. 4. Performance of SB for simulated phantom data. (a) Behavior of the optimum iteration number that led to optimum results (in terms of the solution error

norm) versus the inverse of the data fidelity parameter k, for a fixed value of the nonnegativity parameter (a 10 1). (b) Solution error norm versus k and a
(same results as in Figs. 2 and 3 for SB).

Medical Physics, Vol. 38, No. 11, November 2011
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recovery of the target profile as compared to GN. For

instance, the full width at tenth maximum of the image pro-

file along the z-axis [Fig. 6(b)] was 5 mm for SB and 6.25

mm for GN. In terms of image quality, GN and GN-P0

yielded not distinguishable results, so GN-P0 was discarded

for the comparison using experimental data.

III.A.2. Experimental data

In terms of SNR, the best solution for GN corresponded

to k¼ 0.52, selected from 15 parameters k logarithmically

spaced in the range 10 3 to 10; the next best solution corre-

sponded to k¼ 0.32 (the higher the data fidelity parameter k,

the better fit to the data and the less smoothing of the image).

These two solutions were compared to SB.

SB led to higher SNR than GN as the number of iterations

increased [Fig. 7(a)], and provided better result in terms of

the negative part of the solution [Fig. 7(c)].

From the data misfit [Fig 7(b)] it is shown that GN con-

verged to a different plateau for each value of k. In contrast,

SB continued minimizing the data misfit till it fits the noise,

as a result of the Bregman iteration (explained above), and

so a stopping criterion was required. A reasonable stopping

criterion is a threshold on the data misfit that corresponds

to the noise level. However, since an optimum threshold

selection was not pursued, for the comparison we chose as

FIG. 5. Reconstructions of computer simulated phantom data with the different methods (same results as in Figs. 2 and 3). Axial, coronal, and sagittal slices

(columns from left to right) for (a c) target in the reconstruction mesh, reconstructions with (d f) GN, (g i) GN P0, and (j l) SB. The negative part of images

has been set to zero.

FIG. 6. Profiles along y and z axes of reconstructed images (Fig. 5) using GN, GN P0 and SB.

7



threshold the data misfit given by GN at convergence.

Images reconstructed with GN and SB are shown in Fig. 8.

IV. DISCUSSION

We have validated the Split Bregman algorithm as a

method to reconstruct fDOT studies minimizing the total

variation of the image with a nonnegativity constraint. The

method has been tested on simulated and experimental phan-

tom data. We compared SB with an equivalent unconstrained

optimization approach based on a Gauss Newton step with

projection to zero of the negative part of the solution after

each iteration. Overall, SB was superior in terms of the solu-

tion error norm, enforcing the nonnegativity constraint, and

improving image quality.

For simulated data, we found that the Bregman iteration

allowed further minimization of the solution error norm.

This agrees with previous reports on convergence.14,16,17 In

Ref. 14 it is explained that the Bregman iteration enforces

the data constraint producing a sequence of solutions that do

not stop at solving the unconstrained problem, but get closer

to the true solution. Besides, we have also verified that the

Bregman iteration yielded optimum results independently of

the data fidelity parameter k, for a sufficiently small parame-

ter (which ensures large smoothing at the first iterations). In

Ref. 39 it was pointed out that for a small parameter the

noise is removed in the first iterations and then the fine

FIG. 7. Reconstruction of experimental phantom data with GN, for two data fidelity parameters (k 0.32 and k 0.52); and with SB, for a data fidelity param

eter k 10 3 and a nonnegativity weighting parameter k 10 2. a) Signal to noise ratio (SNR), b) data misfit k Ju gk2, and c) the relative nonnegativity

norm of the image versus the number of iterations [Eq. (33)].
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scales of the image are recovered before the noise. More-

over, we verified that there is a linear relationship between

the number of iterations needed to obtain optimum results

and the inverse of the data fidelity parameter, which agrees

with the results presented in Refs. 14 and 16.

Regarding the stopping criterion, for an equivalent uncon-

strained optimization problem convergence of the data misfit

is reached at a different level for each k, which requires opti-

mum selection of k. For SB, as long as the parameter k is

small enough, the optimum solution does not depend on the

chosen k but on the number of iterations. A stopping crite-

rion that thresholded on the data misfit was previously used

for SB.16 Since we did not aim for an optimum stopping cri-

terion for our experimental data, we provided two data misfit

thresholds for comparison with Gauss Newton. Therefore,

future implementations on experimental data would need to

define an optimum stopping criterion which may differ from

standard methods applied to unconstrained optimization

approaches.

The main advantages of the Split Bregman method with

respect to standard constrained optimization approaches are

the easier implementation and computational efficiency

derived from the decoupling of L1- and L2-norms. In this

work we have enforced a nonnegativity constraint. Further-

more, while here we have computed first and second deriva-

tives of the total variation functional, this can be avoided

using the Split Bregman formulation as indicated in Ref. 16.

Thus, adding other L1-constraints like the TV and Besov-

norm is straighforward. In addition, Split Bregman could be

applied to the complex linear reconstruction problem in

Ref. 40 and to the nonlinear simultaneous recovery of fluo-

rescence and background optical parameters,41 in frequency-

domain fDOT.9

In conclusion, we have validated the Split Bregman

method for the reconstruction of simulated and experimental

fDOT data, minimizing the total variation of the image with

a nonnegativity constraint. Split Bregman led to an improve-

ment in comparison to an equivalent unconstrained optimi-

zation approach, in terms of solution error and image

quality.
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