Risk Premium, Variance Premium and the Maturity Structure of Uncertainty

First Draft: December 2009 This Draft: November 2011

Bruno Feunou Jean-Sébastien Fontaine
Bank of Canada Bank of Canada
Abderrahim Taamouti Roméo Tédongap
Universidad Carlos III de Madrid Stockholm School of Economics

Abstract

Theoretical risk factors underlying time-variations of risk premium across asset classes are typically unobservable or hard to measure by construction. Important examples include risk factors in Long Run Risk [LRR] structural models (Bansal and Yaron 2004) as well as stochastic volatility or jump intensities in reduced-form affine representations of stock returns (Duffie, Pan, and Singleton 2000). Still, we show that both classes of models predict that the term structure of risk-neutral variance should reveal these risk factors. Empirically, we use model-free measures and construct the ex-ante variance term structure from option prices. This reveals (spans) two risk factors that predict the bond premium and the equity premium, jointly. Moreover, we find that the same risk factors also predict the variance premium. This important contribution is consistent with theory and confirms that a small number of factors underlies common time-variations in the bond premium, the equity premium and the variance premium. Theory predicts that the term structure of higher-order risks can reveal the same factors. This is confirmed in the data. Strikingly, combining the information from the variance, skewness and kurtosis term structure can be summarized by two risk factors and yields similar level of predictability (i.e., R^2s). This bodes well for our ability to bridge the gap between the macro-finance literature, which uses very few state variables, and valuations in option markets.

Keywords: Equity Premium, Bond Premium, Variance Premium, Term Structure, Variance, Skewness, Kurtosis, Long-Run Risks.

JEL C22, G12, G17.

We thank Nour Meddahi, Bo-Young Chang, Alberto Romero and seminar participants at Duke University, the Bank of Canada, London School of Economics, CIRANO and the NFA 2011 conference for their comments and suggestions. Correspondence: jsfontaine@bankofcanada.ca.
1 Introduction

The equilibrium relationship between expected returns and risk varies whenever investors face time-varying investment opportunities (Merton (1973)). Consider a CRRA endowment economy where, in equilibrium, the Equity Premium, EP_t, is proportional to the conditional variance of wealth, σ_t^2,

$$EP_t = \gamma \sigma_t^2,$$

where γ is the coefficient of risk aversion. Unfortunately, the ex-ante conditional equity premium and conditional variance are not directly observable to the econometrician. This may explain why the evidence is remarkably uneven and why this risk-return paradigm has benefited from such longevity.\footnote{French et al. (1987), Campbell and Hentschel (1992), Ghysels et al. (2004), find a positive relation between volatility and expected returns. Turner et al. (1989), Glosten et al. (1993) and Nelson (1991) find a negative relation. Coefficient estimates are often statistically insignificant. Ludvigson and Ng (2005) find a strong positive contemporaneous relation between the conditional mean and conditional volatility and a strong negative lag-volatility-in-mean effect. Guo and Savickas (2006) also conclude that the risk-return relationship is positive for the index.}

In addition, the conditional volatility of wealth does not typically summarize all sources of risk. The broad class of Long-Run Risk [LLR] models (Bansal and Yaron 2004) provides many examples. It successfully match important stylized facts in finance by introducing small but persistent stochastic factors in the mean, the variance or higher-order moments of consumption growth. These factors are central to the theory but, again, almost by construction, they are unobservable to the econometrician.

1.1 Risk-returns trade-offs in long-run risk economies

We study multi-horizon risk-return trade-offs in the class of affine LRR economies (Eraker 2008) that generalizes the seminal paper of Bansal and Yaron (2004) to conditionally non-gaussian state variables. Note that a variation of the argument would obtain the same results starting from a reduced-form representation within the broad family of affine asset pricing models introduced in Duffie, Pan, and Singleton (2000). We show that in LRR economies, the bond premium, the equity premium and the variance premium\footnote{The variance premium is the difference between the expected variance under the historical measure and the risk-neutral measure, Q, which is given by $VRP(t, \tau) = E^Q_t[\sigma_{t+\tau}^2] - E_t[\sigma_{t+\tau}^2]$. This is analogous to the definition of the Equity Premium, $EP(t, \tau) = E_t[r_{t+\tau}] - E^Q_t[r_{t+\tau}]$.} at different horizon investments are linear functions of the same risk factors. But, as in Merton’s model, these factors are typically latent or unobservable to the econometrician. Nonetheless, we show analytically that the term structure of risk-neutral variance, which is measured accurately from option prices, can be used to reveal risk factors. All these models embody the theoretical prediction that risk factors form a basis for the term structures of risks. In other words, a small number of linear combination from the variance term structure can be used to span expected returns across asset classes. This prediction is at the heart of the empirical investigation that we conduct below. It also corresponds to what John Cochrane labeled the “Multivariate Challenge” to returns predictability in his presidential
address (Cochrane 2011). In particular, he asks “what is the factor structure of time-varying expected returns? The following provides a partial answer.

1.2 The variance term structure predicts the bond and equity risk premium

Our first empirical contribution is to show that the variance term structure can be used to reveal significant predictors of the bond premium and of the equity premium. We proceed in three steps. First, we show that, consistent with theory, the variance term structure exhibits a low-dimensional factor structure. Its first three principal components can be interpreted intuitively as level, slope and curvature factors, respectively, and together explain close to 95% of total variations. In practice, we follow the standard model-free approach from Bakshi and Madan (2000) to construct measures of variance from SP500 futures options across a range of maturities.

Second, we use the robust procedure of Cook and Setodji (2003) to estimate how many factors from the variance term structure are sufficient to summarize its predictive content for excess returns on bonds at different maturities and excess equity returns at different horizons, jointly. This dimension reduction procedure asks how many variance factors (i.e., linear combinations of variance) can summarize the multivariate projections of returns on the variance term structure. The test does not rely on any distributional assumption. It is also robust to departure from linearity. We find that two factors are sufficient to summarize the joint predictability of the bond premium and of the equity premium across maturities and across horizons.

In a third step, we estimate multivariate projections of returns on the variance term structure but where the coefficient matrix does not have full rank. This corresponds to multivariate Reduced-Rank Regressions (RRR) for which closed-form estimation and inference are available. The rank of the coefficient matrix corresponds to the number of linear combinations from the variance term structure that are common across expected returns. A rank-two coefficient matrix yields R^2's ranging from 5% to 7% for bond returns and from 3% to 6% for equity returns. Using a reduced-rank procedure is consistent with theory. It is also supported in the data since, as suggested by the results from Cook-Setodji tests, there is little gain from allowing for more than two factors. Finally, note that univariate regressions cannot be used to reveal the risk factors implicit in the variance term structure.

1.3 The factor structure extends to the variance premium

Our second empirical contribution is to show that, consistent with theory, the term structure of variance also provides a basis to forecast the Variance Premium. One approach would include excess variance along with excess returns in the multivariate projections above

3See Anderson (1951) and, more recently, Hansen (2008) as well as Reinsel and Velu (1998) for a textbook treatment.
and repeat the estimation.\footnote{The definition of excess variance is analogous to that of excess returns. Formally, excess variance, $xV_{t,t+\tau}$, is defined relative to the Variance Premium in a way that is analogous to the definition of excess returns, $xR_{t,t+\tau}$, relative to the Equity Premium. We have that $xR_{t,t+\tau} = r_{t,t+\tau} - E_t^Q[r_{t+1}]$ and $xV_{t,t+\tau} = \sigma_{t,t+\tau}^2 - E_t[\sigma_{t+\tau}^2]$, respectively.} Unfortunately, this presents important econometric difficulties.\footnote{The measurement errors in excess variance are likely to be correlated with the measurement errors in measures of risk-neutral variance since both use the same option prices. This induces spuriously high R^2s if we include the excess variance on the left-hand side to estimate the factors.} Instead, we use this additional prediction from theory as an out-of-sample check and ask whether the same two risk factors estimated from the variance term structure to predict the bond premium and the equity premium only can predict the variance premium also. We find that regressions of excess variance with horizons of 1, 2, 3, 6, 9, and 12 months on variance factors yield R^2s with an inverted U-shape, ranging from 6% to 10%, for horizons of one to six months, to 9% and 3% for horizons of nine and twelve months. Moreover, each of the factors plays an important role but at different horizons.

1.4 Information in the term structure of higher-order risks

The variance term structure may fail to reveal all risk factors. This may arise if some factors do not affect the variance, or if the effects are small relative to the measurement errors in the variance or relative to the innovations in returns.\footnote{This is yet another similarity with the term structure of interest rates. In principle, yields can reveal all state variables related to the future behavior of the short rate. However, specific cases arise where some factors have small or no impact on interest rates and remain hidden. See Duffee (2011).} In our final contribution, we show, within the same family of models as above, that all cumulants of multi-horizon returns, including the variance, are affine. Therefore, we can use the term structure of higher-order risks to discern further risk factors.\footnote{Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance, the third cumulant corresponds to the third central moment and provides a measure of skewness, while the fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides a measure of the tails. The use of the cumulant-generating function to characterize the effect of higher-order cumulants on properties of asset prices is also suggested by Martin (2010). The cumulant term structure has been neglected in the literature.} Empirically, we construct model-free measures of risk-neutral cumulants 3 and 4 (labeled as skewness and kurtosis hereafter). We find that each of the term structure of variance, skewness and kurtosis has a similar predictive content for the bond premium, the equity premium and the variance premium. Importantly, each term structure’s predictive content can be summarized by two factors. In each case, we first estimate the number factors and the factors themselves using the bond and equity returns and, in a second step, we confirm that the predictability extends to the variance premium. Strikingly, combining factors from the term structure of variance, skewness and kurtosis does not add to our ability to predict bond and equity returns. Moreover, two factors remain sufficient to summarize the entire predictive content of option prices for the bond premium, the equity premium and the variance premium. The same holds if we combine the entire term structure of variance, skewness and kurtosis.
1.5 Macro-Finance Models and Option Prices

A recent literature ask whether the variance premium can predict the equity premium (e.g., Bollerslev, Tauchen, and Zhou 2009, Drechsler and Yaron 2011). The variance premium is not observable to the econometrician and these authors resort to using proxies based on lagged observations.\(^8\) In contrast, our approach turns this view on its head and considers the predictability of the variance premium. We ask whether the components of bond and equity returns that are predictable from the variance term structure also predict the variance premium. Still, the key insight from Bollerslev, Tauchen, and Zhou (2009) still holds: the variance premium is tightly linked to fundamental risk-returns trade-offs.

Results based on the variance term structure are consistent with Bakshi, Panayotov, and Skoulakis (2011) who study the predictive content of the 1-month and 2-month forward variance implicit in option prices for SP500 and Treasury bill returns.\(^9\) They do not analyze the factor structure of returns but consider each asset and each horizon separately. Our results are also consistent with Leippold, Wu, and Egloff (2007) and Carr and Wu (2011), who use non-parametric methods, and Amengual (2009), who uses a parametric model. They find that two factors are needed to describe the variance premium dynamics.

We are the first to analyze the information content from the term structure of higher-order risks implicit in option prices. A recent macro-finance literature attempts to bridge the gap between consumption-based asset pricing and option prices. Backus, Chernov, and Martin (2010) compare the role of disaster probability measured from option prices with estimates obtained from international macroeconomic data. Although the risk of a disaster can in principle explains the large unconditional equity premium, they find that the required probability or magnitude are not consistent with the distribution implicit in option prices. We focus on conditional moments and provide further stylized facts from the option market. Our results bode well for general equilibrium models. We find that a small numbers of factors, perhaps 2, are sufficient to match time-variations of expected returns and of the variance premium.

The rest of the paper is organized as follow. Section 2 considers affine LRR economies and derives the multi-horizon cumulant-generating function of excess returns and excess variance. We then show how the term structure of uncertainty can be used to reveal fundamental risk factors. Section 3 introduces the data and measurement of risk from option prices. Section 4 evaluates the information content from the term structure of risk-neutral variance. Section 5 repeats the exercise but extending the information set to include the term structure of skewness and kurtosis. Section 6 concludes.

\(^8\)The Variance Premium is unobservable because the conditional expectation of integrated variance under the historical probability measure is unobservable to the econometrician. Our approach does away with the estimation of the conditional volatility under the historical measure.

\(^9\)Strictly speaking, they focus on the information content of payoffs contingent on the exponential of future integrated variance.
2 Variance Term Structure In Equilibrium

This Section studies the bond premium, the equity premium and the variance premium within the broad family of affine general equilibrium models described in Eraker (2008). This family builds on the insights from the long-run risk literature and nests existing specifications where the mean and volatility of consumption growth are stochastic, possibly with jumps, and follow affine processes (e.g. Bansal and Yaron 2004, Bollerslev, Tauchen, and Zhou 2009, Drechsler and Yaron 2011). We focus on the distribution of multi-period returns under the risk-neutral and historical measure, \(Q \) and \(P \), respectively, via their cumulant-generating function. In particular, we derive expressions for the multi-horizon equity premium and bond premium. We also derive expressions for the conditional variance of returns across investment horizons. We then show how to recover the equity premium and the bond premium from the term structure of variance.

We build our analysis in the framework of LRR model. Nevertheless, a variation of the argument would obtain the same results starting from a reduced-form representation of the economy in the family of asset pricing models with affine transform introduced in Duffie, Pan, and Singleton (2000). The essential component in the argument is that the joint Laplace transform of the state vector and of the change of measure is affine, or approximately so.\(^{10}\)

2.1 Long-Run Risk Economies

Consider an endowment economy where the representative agent’s preference ordering over consumption paths can be represented by a recursive utility function of the Epstein-Zin-Weil form,

\[
U_t = \left[(1 - \delta) C_t^{(1-\gamma)/\theta} + \delta \left(E_t \left[U_{t+1}^{1-\gamma} \right] \right)^{1/\theta} \right]^{\theta/(1-\gamma)}, \tag{2}
\]

with \(\theta \) defined as,

\[
\theta = \frac{1-\gamma}{1-1/\psi},
\]

where \(\delta \) is the agents’ subjective discount rate, \(\psi \) measures the elasticity of intertemporal substitution and \(\gamma \) determines risk aversion as well as the preference for intertemporal resolution of uncertainty. Assume, next, that the joint dynamics of the (log) consumption growth process, \(\Delta c_{t+1} \) and of \(K \) state variables in the economy, \(X_{t+1} \), has the following Laplace transform,

\[
E_t \left[\exp \left(u \Delta c_{t+1} + v^\top X_{t+1} \right) \right] = \exp \left(F_0 (u, v) + X_t^\top F_X (u, v) \right), \tag{3}
\]

\(^{10}\)Chamberlain (1988) provides an alternative argument based on a martingale representation argument. We thank Nour Meddahi for this suggestion.
where the scalar function $F_0(u,v)$ and the vector function $F_X(u,v)$ describe the exogenous dynamics of the process $Y_{t+1}^\top \equiv (\Delta c_{t+1}, X_{t+1}^\top)$ and must satisfy $F_0(0,0) = F_X(0,0) = 0$.

As discussed above, this nests existing General Equilibrium models based on Epstein-Zin-Wel preferences, with or without long-run risks.

Using the standard Campbell-Shiller approximation, $r_{t+1} = \kappa_0 + \kappa_1 w_{t+1} - w_t + \Delta c_{t+1}$, we have that the wealth-consumption ratio is given by

$$w_t = A_0 + A_X^\top X_t,$$

for values of w_t near its steady-state (see Appendix A.1.1). We show that the change of measure from the historical probability, \mathbb{P}, to the risk-neutral probability, \mathbb{Q}, is then given by:

$$Z_{t,t+1} = \exp \left(H_0 + H_X^\top X_t - \gamma \Delta c_{t+1} - p_X^\top X_{t+1} \right),$$

where $Z_0 = -F_0(-\gamma, -p_X)$, $H_X = -F_X(-\gamma, -p_X)$ and $p_X = (1 - \theta) \kappa_1 A_X$. This leads to Lemma 1 characterizing the joint conditional distribution of one-period returns and state variables.

Lemma 1 Excess returns Laplace transform

If the representative agent has utility given by Equation 2, and if the joint conditional Laplace transform of consumption growth Δc_{t+1} and the remaining K state variables X_{t+1} are given by Equation 3, then the joint conditional Laplace transform of excess returns xr_{t+1} and of X_{t+1} is given by

$$E_t^\mathbb{P} \left[\exp \left(u \: xr_{t+1} + v^\top X_{t+1} \right) \right] = \exp \left(F_0^\mathbb{P} (u,v) + X_t^\top F_X^\mathbb{P} (u,v) \right),$$

under the historical measure, \mathbb{P}, and the corresponding conditional Laplace transform under the risk-neutral measure, \mathbb{Q}, is given by

$$E_t^\mathbb{Q} \left[\exp \left(u \: xr_{t+1} + v^\top X_{t+1} \right) \right] = \exp \left(F_0^\mathbb{Q} (u,v) + X_t^\top F_X^\mathbb{Q} (u,v) \right),$$

for constant scalar u and K-dimensional vector v and where coefficients are given in Appendix A.1.1.

Lemma 1 shows that the conditional Laplace transform of excess returns is exponential-affine under \mathbb{P} and \mathbb{Q}. Essentially, this follows from the choice of historical dynamics for the state vector, given in Equation 3, and from the fact that the change of measure given by Equation 4 is also exponential affine. This result is instrumental in the characterization of multi-horizon excess returns given in Proposition 1. It applies Lemma 1 repeatedly and establishes that the cumulant-generating function of multi-horizon excess returns is affine for any investment horizon τ.
Proposition 1 Cumulants of multi-horizons excess returns

The cumulant-generating function of excess returns from the claim on aggregate consumption over an investment horizon τ,

$$x_{r,t+t} = \sum_{j=1}^{\tau} x_{r,t+j},$$

is given by

$$\log E_t^P \left[\exp (u \cdot x_{r,t+t}) \right] = F_{r,0}^P (u; \tau) + X_t^\top F_{r,X}^P (u; \tau),$$

under the P measure and by

$$\log E_t^Q \left[\exp (u \cdot x_{r,t+t}) \right] = F_{r,0}^Q (u; \tau) + X_t^\top F_{r,X}^Q (u; \tau),$$

under the Q measure with coefficients given in Appendix A.1.2.

2.2 Bond Premium, Equity Premium and Variance Premium

An immediate corollary of Proposition 1 is that the Bond Premium and the Equity Premium over any investment horizon τ, $BP(t, \tau)$ and $EP(t, \tau)$, respectively, are affine. We have that,

$$BP(t, \tau) \equiv E_t^P \left[x_{r,b,t+t} \right] = \beta_{b,0} (\tau) + \beta_{b}(\tau)^\top X_t,$$

(5)

and

$$EP(t, \tau) \equiv E_t^P \left[x_{r,e,t+t} \right] = \beta_{e,p,0} (\tau) + \beta_{e,p}(\tau)^\top X_t.$$

(6)

The bond premium and the equity premium are linear in the state variables whenever $\theta \neq 1$ and $A_X \neq 0$. These conditions implies that $p_X \neq 0$ in Equation 4, and, therefore, that the pricing kernel varies with X_t. Intuitively, the first condition implies that the agent has preference over the intertemporal resolution of uncertainty (i.e. $\gamma \neq \psi$). The second condition implies that X_{t+1} affects the conditional distribution of future consumption growth.\footnote{Strictly speaking, the prices of risk associated with innovations to X_{t+1} may differ from zero, with $\gamma \neq \psi$, but with a constant wealth-consumption ratio (and risk premium) if U_t/c_t varies with X_{t+1}. This arises in the knife-edge case where $\psi = 1$.} These two conditions are the fundamental ingredients of long-run risk models. The price of risk parameters p_X are generally left unrestricted in reduced-form representations.

Proposition 1 also implies that the Variance Premium over any investment horizon τ,
$VRP(t, \tau)$, is affine,

$$VRP(t, \tau) \equiv E_t^Q \left[\sum_{j=1}^{\tau} \sigma_{t+j}^2 \right] - E_t^P \left[\sum_{j=1}^{\tau} \sigma_{t+j}^2 \right] \tag{7}$$

$$= \beta_{vp,0}(\tau) + \beta_{vp}(\tau)^\top X_t, \tag{8}$$

where $\sigma_t^2 = \text{Var}_t(x_{rt,t+j})$. The coefficients $\beta_{vp,0}(\tau)$ and $\beta_{vp}(\tau)$ depend on the structure of the model. The Variance Premium is zero in a LRR economy when the second conditional moment of consumption is constant under both measures. Moreover, the Variance Premium differs from zero but remains constant whenever the volatility of consumption volatility is constant. Note that our solution contrasts with that of Bollerslev, Tauchen, and Zhou (2009) which is based on an additional log-linearization and only covers the special case $\tau = 1$.

2.3 Variance Term Structure

Equations 5 and 6 characterize the equilibrium risk-return trade-offs in a broad class of economies with long-run risks. Different LRR models emphasize different risk factors, X_t, and imply different patterns of risk loadings, $\beta_{ep,X}$ but the risk premium dynamics are linear in every case. The coefficients of that relationship could be estimated directly via OLS if the risk factors, X_t were observable. This would provide a test to discriminate across different specifications, or serving as guidance to investors. However, the risk factors proposed in the literature, including in reduced-form specifications, are latent or difficult to measure. For example, the expected consumption growth (Bansal and Yaron (2004)), the volatility of consumption volatility (Bollerslev et al. (2009)) or time-varying jump intensity (Drechsler and Yaron (2011), Eraker (2008)) all escape direct measurement.

In contrast, the term structure of risk-neutral variance can be measured from option prices. Moreover, Proposition 1 implies that the conditional variance of excess returns over an horizon τ is also affine. It is given by:

$$\text{Var}_t^Q(\tau) = \beta_{vr,0}(\tau) + \beta_{vr}(\tau)^\top X_t, \tag{9}$$

with coefficients given in Appendix A.1.2. This implies that measures of variance at different maturities display a factor structure with dimension K. This is similar to interest rates models where yields at different maturities sum the contributions of the real rate, inflation and compensation for risk. In most models, these are determined by a small set of economic variables (e.g. wealth, technology, habits) that are often not observed directly, at least at the desired frequency. But the unobservable economic variables can be revealed via their effects on yields. This important insight is applicable in our context.
2.4 Revealing Risk Factors

The risk-neutral variance can reveal the effect of risk factors. However, the measured risk-neutral variance differs from the true value, $\hat{\text{Var}}_t^Q(\tau) = \text{Var}_t^Q(\tau) + \nu_t(\tau)$, where we assume that the measurement error, $\nu_t(\tau)$, is uncorrelated with $\hat{\text{Var}}_t^Q(\tau)$. In other words, in contrast with computation of bond yields from bond prices, measurement errors cannot be neglected when computing variance from option prices. Stacking measurements across horizons $\tau = \tau_1, \ldots, \tau_q$, and using Equation 9, we have that,

$$\hat{\text{Var}}_t^Q + \nu_t = B_{0, vr} + B_{vr} X_t$$

where the $q \times 1$ vector, $B_{0, vr}$, stacks the constant, $\beta_{vr,0}(\tau)$, and the $q \times K$ matrix B_{vr} stacks the corresponding coefficients, $\beta_{vr}(\tau) \top$. Note that we typically have more observations along the term structure than there are underlying factors (i.e., $q > K$). We can then write,

$$\hat{X}_t = -\hat{B}_{vr} B_{0, vr} + \hat{B}_{vr} \hat{\text{Var}}_t^Q(t) + \hat{B}_{vr} \nu_t,$$

where the $K \times q$ matrix $\hat{B}_{vr} = (B_{vr \top} B_{vr})^{-1} B_{vr \top}$ is the left-inverse of B_{vr}.\(^{12}\)

Using Equations 5 and 6, and stacking across horizons, we have that,

$$BP_t = \Pi_{bp,0} + \Pi_{bp} \hat{\text{Var}}_t^Q + \nu_{bp}$$

$$EP_t = \Pi_{ep,0} + \Pi_{ep} \hat{\text{Var}}_t^Q + \nu_{ep},$$

so that we can use the variance term structure as a signal for the underlying risk factors. Each line of the vector $\Pi_{ep,0}$ and of the matrix Π_{ep} is given by,

$$\Pi_{ep,0}(\tau) = \beta_{ep,0}(\tau) - \beta_{ep}(\tau) \top \hat{B}_{vr} B_{0, vr}$$

$$\Pi_{ep}(\tau) = \beta_{ep}(\tau) \top \hat{B}_{vr},$$

respectively. The definitions of $\Pi_{bp,0}$ and Π_{bp} are analogous. In practice, we do not observe the Bond Premium or the Equity Premium, but we can only measure ex-post excess returns,

$$\xi_{t,t+\tau}^e = EP(t, \tau) + \epsilon_{t,t+\tau}^e$$

$$\xi_{t,t+\tau}^b = BP(t, \tau) + \epsilon_{t,t+\tau}^b,$$

\(^{12}\)The left-inverse exists since we consider cases with $q > K$ and B_{vr} has full (column) rank. If the latter conditions is not satisfied, then the loadings of the conditional variance, $\text{Var}^Q(t, \tau)$ on the risk factors $X_{t,k}$ are not linearly independent. This implies that less than K linear combinations of the risk factors can be revealed from the variance term structure. In other words, some linear combinations of the risk factors are unspanned by the variance term structure. In this case, we redefine the risk vector in Equation 10 to be $X_{t, vr}$ that only contain those $K_{vr} < K$ linear combinations that are spanned. This issue also arises in the interest rate literature and as been discussed in Duffee (2011).
which can be re-written as:

\[
x_{r_t+}^b = \Pi_{b,0} + \Pi_{b} Var^{Q}_t + (\nu_t^b + \epsilon_t^b) \quad (14)
\]

\[
x_{r_t+}^e = \Pi_{e,0} + \Pi_{e} Var^{Q}_t + (\nu_t^e + \epsilon_t^e), \quad (15)
\]

where the \(x_{r_t+}\) notation signals that we have stacked ex-post excess returns at different horizons.

Equations 14-15 form the basis of our empirical investigation below. Note, however, that these are not standard OLS regressions since the matrix \(\Pi_{e}\) is not in general of full rank. Only a few linear combinations from \(Var^{Q}_t\) should be sufficient to link the variance term structure to compensation for risk. Before we address this, the next Section introduces the data.

3 Data and Measurement

3.1 Excess Returns

We use the CRSP data set to compute end-of-the-month equity returns on the SP500 at horizons of 1, 2, 3, 6, 9 and 12 months. Longer-horizon returns are obtained from summing monthly returns. We use the Fama-Bliss zero coupon bond prices from CRSP to compute bond excess returns. Excess returns are computed using risk-free rates from CRSP.

3.2 Excess Variance

As in the case of returns, longer-horizon realized variance are obtained from summing monthly realized variance. We follow Britten-Jones and Neuberger (2000) to compute ex-ante expected realized variance under the risk-neutral measure (see Equation 7) from option prices. The excess variance is the difference between the realized variance under the historical measure and the ex-ante measure of conditional variance under the risk-neutral measure. This definition is completely analogous to the definition of excess returns. Explicitly, the excess variance is given by:

\[
x_{v_t+}^e = \tilde{E}_t^Q \left(\sum_{j=1}^{T} \sigma_{r,t+j}^2 \right) - \sum_{j=1}^{T} \sigma_{r,t+j}', \quad (16)
\]

where \(\sigma_{r,t+j}^2\) is the realized variance in period \(t + j\) and \(\tilde{E}_t^Q \left(\sum_{j=1}^{T} \sigma_{r,t+j}^2 \right)\) is measured ex-ante from option prices.

13The Fama-Bliss T-bill file covers maturities from 1 to 6 months. We use the 1-year rate from the Fama-Bliss zero-coupon files. The 9-month T-bill rate is interpolated when necessary.

14We thank Hao Zhou for making end-of-the-month SP500 realized variance data available on his web site.
3.3 Risk-Neutral Variance

We use the OptionMetrics database of European options written on the SP 500 index. We first construct a weekly sample of closing bid and ask prices observed each Wednesday. This mitigates the impact of intra-weekly patterns but includes 328,626 observations. Consistent with the extant literature, we restrict our sample to out-of-the-money call and put options. We also exclude observations with no bid prices (i.e. price is too low), options with less than 10 days to maturity, options with implied volatility above 70% and options with zero transaction volume. Finally, we exclude observations that violate lower and upper bounds on call and put prices. The OptionMetrics database supplies LIBOR and EuroDollar rates. To match an interest rate with each option maturity, we interpolate under the assumption of constant forward rates between available interest rate maturities. We also assume that the current dividend yield on the index is constant through the options’ remaining maturities.15 Finally, we restrict our attention to a monthly sample (see Appendix A.2). This yields 85,385 observations covering the period from January 1996 to October 2008. Table 1 contains the number of option contracts across maturity and moneyness groups. The sample provides a broad coverage of the moneyness spectrum at each maturity.

3.4 Summary Statistics

We then rely on the non-parametric approach of Bakshi and Madan (2000) to measure the conditional variance implicit in option prices at maturities of 1, 2, 3, 6, 9, 12, and 18 months. These corresponds to the maturity categories available on the exchange (see Appendix A.3).16 Table 2 provides summary statistics of variance across maturities. Risk-neutral variance is persistent with autocorrelation coefficients between 0.73 and 0.87 across maturities. The term structure is upward sloping on average but with an inverted U-shape. The volatility of risk-neutral variance peaks at 2 months and then gradually declines with maturity. In other words, the average variance of stock returns increases with maturity but, on the other hand, the conditional variance itself is less volatile for longer returns horizons. It is also more symmetric and has smoother tails for longer horizons.

3.5 Principal Components

Variance measures are highly correlated across maturities (not reported). For example, the correlation between 1-month ahead and 2-month risk-neutral variances (i.e. $\text{Var}^Q(t, 1)$ and $\text{Var}^Q(t, 2)$) is 0.88 while the correlation between 1-month ahead and the 1-year ahead variance is 0.69. This suggests that a few systematic factors can explain most of variations across maturities. Panel B of Table 2 reports the results from a Principal Component

15See OptionMetrics documentation on the computation of the index dividend yield.

16We originally included the 24-month maturity category. However, its summary statistics contrast with the broad patterns drawn in other categories. For this maturity, risk-neutral variance is more skewed to the right, has fatter tail and is less persistent. Moreover, it is less correlated with other maturities. We consider these results a reflection of higher measurement errors and exclude this category in the following.
Analysis (PCA), which is a simple way to summarize this factor structure. The first three principal components explains 88%, 6% and 3% of the term structure of the risk-neutral variance, respectively, and together explain 97.4% of total variations.

These components reflect systematic variations across the variance term structure. The first component’s loadings range from 0.31 to 0.44 with an inverted U shape across maturities. In other words, most of the variations in the risk-neutral variances can be summarized by a change in the level and curvature of its term structure. Next, the second component is similar to a slope factor. Its loadings increase, from -0.57 to 0.49, and pivot around zero near the 6-month maturity. The third component’s loadings draw a curvature pattern. The correlation between the first component and a measure of the level, $L_t = \tilde{Var}_Q(t, 6)$, is 0.98, the correlation between the second component and a measure of the slope, $S_t = \tilde{Var}_Q(t, 18) - \tilde{Var}_Q(t, 1)$ is -0.90, and the correlation between the third component and a measure of the curvature, $C_t = 2\tilde{Var}_Q(t, 6) - \tilde{Var}_Q(t, 18) - \tilde{Var}_Q(t, 1)$, is 0.80.

4 Variance Risk-Returns Trade-Offs

Section 2 shows that a broad family of affine general equilibrium models, or affine reduced-form models, contains in its core the implication that a few linear combinations from the term structure of variance can be used to predict compensation for risk. Consistent with the theory, Section 3 shows that the term structure of variance can be summarized by its leading principal components. This Section analyzes the relationship between the variance factors and the compensation for risk.

4.1 Estimating how many factors can the variance term structure reveal

We first ask how many linear combinations from the variance term structure summarize its information content for the bond and the equity premium. In other words, we want to estimate the rank of the coefficient matrix, Π, in multivariate regressions with the following general form

$$Y_{t+} = \Pi \tilde{Var}_t^Q + \Psi Z_t + \epsilon_{t+}. \quad (17)$$

This nests Equations 14 and 15 where Y_t is a vector of excess returns, \tilde{Var}_t^Q is $q \times 1$ vector of risk-neutral variance and the vector Z_t contains any other regressors, including the constant. Recall that Equation 13 shows that Π does not generally have full rank. The statistical literature on Sufficient Dimension Reduction provides a useful approach to estimating this rank.

Cook and Setodji (2003) introduces a model-free test of the null hypothesis that the rank is k (i.e., $H_0 : \text{rank} \Pi = k$) against the alternative that the rank is strictly larger. The modified Cook and Setodji test-statistics, \hat{A}_k, is available in closed-form and has a χ^2
asymptotic distribution with known degrees of freedom. In particular, this test does not require that the innovations in Equation 17 are Gaussian. The test is also robust against departure from linearity.\footnote{\ref{eq:chi2_dist}} Cook and Setodji (2003) then propose the following iterated algorithm as an estimator for the rank of \(\Pi \).

1. Initialize the null hypothesis with \(H^{(0)}_0 : \text{rank} \Pi = k^{(0)} = 0 \).
2. For the hypothesis \(H^{(i)}_0 \), compare the \(\tilde{\Lambda}_{k^{(i)}} \) statistics with the chosen cut-off from the \(\chi^2_g \) distribution, e.g., 5%.
3. If the probability of observing \(\tilde{\Lambda}_{k^{(i)}} \) is lower than the cut-off, then reject the null, conclude that \(\text{rank} \Pi > k^{(i)} \), and repeat the test under a new null hypothesis where the rank is incremented, i.e., \(k^{(i+1)} = k^{(i)} + 1 \).
4. Otherwise, conclude that \(\text{rank} \Pi = k^{(i)} \). That is, there is insufficient evidence against \(\text{rank} \Pi = k^{(i)} \) but, yet, we have rejected \(\text{rank} \Pi < k^{(i)} \).

4.2 Estimating reduced-rank multivariate regressions

As stated above, Equations 14 and 15 form the basis of our empirical investigation and, for a given rank, \(k \), they correspond to multivariate Reduced-Rank Regressions (RRR) for which estimators and the associated inference theory are available since at least Anderson (1951). In particular, for a given estimate of the rank, \(k \), the \(p \times q \) matrix, \(\Pi \), can be rewritten as a product, \(\Pi = A \Gamma \), where \(A \) and \(\Gamma \) have dimensions \((p \times k) \) and \((k \times q) \), respectively, and where \(k < \min(p, q) \).\footnote{\ref{eq:reinsel_velu}} Then, we can re-write Equation 17 as,

\[
Y_t = A \Gamma \tilde{\text{Var}} Q_t + \Psi Z_t + \epsilon_t, \tag{18}
\]

and the RRR estimators of \(A \), \(\Gamma \) and \(\Psi \) are given from the solution to

\[
\arg \min \text{trace} \left(\sum_{t=1}^{T} \epsilon_t \epsilon_t^\top \right), \tag{19}
\]

with closed-form expressions given in Appendix A.4. Note that that the estimated factors, \(\hat{\Gamma} \tilde{\text{Var}} Q_t \), can be very different than the leading principal components of \(\tilde{\text{Var}} Q_t \).\footnote{\ref{eq:cox}} Finally, \(A \) \footnote{\ref{eq:chi2_dist}} has a \(\chi^2 \) asymptotic distribution with \(g \) degrees of freedom, where \(\tilde{\Lambda}_k \) and \(g \) depend on the data and are available in closed-form. If \(E[Y_t|X_t] \) is not linear in \(X_t \), in contrast with Equation 17, then inference about the rank of \(\Pi \) from estimates of Equation 17 may still be used to form inference about the dimension of the Central Mean Subspace (CMS) of \(Y_t|X_t \). A subspace \(\mathcal{M} \) of \(\mathbb{R}^q \) is a mean subspace of \(Y_t|X_t \) if \(E[Y_t|X_t] \) is a function of \(\mathcal{M}^\top X_t \) where the \(q \times k \) matrix \(M \) is a basis for \(\mathcal{M} \). The CMS is the intersection of all mean subspaces. See Cook and Setodji (2003).

\footnote{\ref{eq:chi2_dist}} See Reinsel and Velu (1998) for a textbook treatment of RRR and a discussion of existing applications in tests of asset pricing models (e.g. Bekker et al. (1996) and Zhou (1995)). Anderson (1999) provides a theory of inference under general (e.g. not Gaussian) conditions. Hansen (2008) provides a recent formulation of the estimator. The OLS regression emerges when \(k = \min(p, q) \) or, trivially, when \(k = 0 \) and the regressors are irrelevant.

\footnote{\ref{eq:cox}} See, for example, the discussion by Dennis Cook in his Fisher Lecture (Cook 2007) and in particular, this quote from Cox (1968) “... there is no logical reason why the dependent variable should not be closely
and Γ are not separately identified, and we choose that rotation which yields orthogonal factors. This is analogous to the standard identification choice in Principal Component Analysis.

4.3 The advantages of reduced-rank regressions

Our methodological approach imposes the factor structure predicted by theory but remains agnostic regarding other structural assumptions. This approach is in line with Cochrane (2011) who emphasizes the need to uncover the factor structure behind time-varying expected returns. It is also closely related to Cochrane and Piazzesi (2008) who show that a single factor from forward rates is sufficient to summarize the predictability of bonds with different maturities.

In this spirit, we test the joint hypothesis of linearity and reduced-rank structure without any other joint hypothesis about the number and the dynamics of state variables, the conditional distribution of shocks, or the preference of the representative agent. Otherwise, test will over-reject the null hypothesis of a given low number of factors, even if it holds in the data, when these maintained hypothesis are not supported by the data. Similarly, estimation based on the Kalman filter will be severely biased if the maintained structural or distributional assumptions are not supported in the data. In contrast, our approach does need additional hypothesis but, instead, exploits the fundamentally multivariate nature of the problem.\(^{20}\)

4.4 Predictability Results

4.4.1 Excess Returns Predictability

Formally, we consider different versions of a joint model for the bond premium, the equity premium, and the variance premium,

$$x_{rt+} = \Pi_0 + \Lambda \tilde{V} \var{Q}_{rt} + \epsilon_{rt+},$$

where we stack Equations 14 and 15. Panel A of Table 3 displays the p-values associated with the Cook-Setodji statistics, $\tilde{\Lambda}_k$, for different ranks ranging from 1 to q. The tests reject that rank $\Pi = 0$ or rank $\Pi = 1$. But we do not reject that rank $\Pi = 2$. The results suggest that 2 risk factors are sufficient to summarize the predictive content of the variance term structure.

Panel B reports the R^2s of predictability regressions of bond excess returns across different rank hypothesis. In particular, the R^2s in the case where the rank is $k = 2$ are 7.3%, tied to the least important principal component of the predictors." (Cochrane and Piazzesi 2005) is a case in point in Finance in the context of bond returns predictability. Their returns-forecasting factor is a linear combination of forward rates that is only weakly spanned by the leading principal components of forward rates.

\(^{20}\)In particular, our testing and estimation procedure could not be applied to each line of Equation 17 separately.
6.6%, 5.9% and 5.5% for annual returns on bonds with 2, 3, 4, and 5 years to maturity, respectively. Compare with the case where \(k = 7 \) and where the model corresponds to standard OLS predictive regressions. The \(R^2 \)s in this case are 11.5%, 10.1%, 8.8% and 7.9%, respectively. Similarly, Panel C reports \(R^2 \)s for equity returns predictability. For \(k = 2 \), the \(R^2 \)s are 3.1% and 6.3% for 1-month and 2-month excess returns. It then declines smoothly 3.6% at the 12-month horizon. In all cases, there is little gain from increasing the rank from \(k = 2 \) to \(k = 7 \) given the large increase in the number of parameters.

Estimation of the 14 unrestricted univariate regressions on 7 variance measures use 98 parameters. In contrast, allowing for a factor structure in expected returns is parsimonious and yields disciplined results. Estimation of the multivariate system with only two linear combinations of variance reduces the number of parameters to 42. It is also more informative relative to OLS. The standard OLS inference, based on \(F \)-statistics, rejects the null hypothesis that the variance term structure is irrelevant (unreported). The Cook-Setodji statistics above also leads to a rejection that that the rank is \(k = 0 \). But the standard OLS misses the factor structure in expected returns. We conclude, in addition, that two factors are sufficient and that the increased predictive power of unrestricted regressions (\(k = 7 \)) can be attributed to sampling variability.

4.4.2 Excess Variance Predictability

Equation 7 relates the variance premium to \(X_t \) and provides a revealing way to check whether the estimated risk factors truly reflects compensation for risks. We can write the variance risk premium in terms of the variance term structure,\

\[
x_{v_t}^e + (\tau) = \Pi_{v_{rp},0}(\tau) + a_{1,v_{rp}}(\tau)\hat{\Gamma} V\hat{ar}_t^Q + a_{2,v_{rp}}(\tau)\hat{\Gamma}_2 V\hat{ar}_t^Q + \epsilon_{t+}(\tau),
\]

where the definitions of \(\Pi_{v_{rp},0} \) and \(\Pi_{v_{rp}} \) are analogous to those given in Equation 13 for excess returns and \(x_{v_t}^e \) is the ex-post excess variance over an horizon \(\tau \). Theory predicts that the same risk factors can be used to predict excess returns and excess variance. We can then combine Equation 21 with the linear combinations of variance estimated above, \(\hat{\Gamma} V\hat{ar}_t^Q \), and check that they also predict excess variance. This is akin to an out-of-sample robustness check since the excess variance was not used to estimate these factors.

Specifically, Table 4 reports estimates and \(R^2 \)s from the following OLS regressions,\

\[
x_{v_t}^e(\tau) = \Pi_{v_{rp},0}(\tau) + a_{1,v_{rp}}(\tau)\hat{\Gamma} V\hat{ar}_t^Q + a_{2,v_{rp}}(\tau)\hat{\Gamma}_2 V\hat{ar}_t^Q + \epsilon_{t+}(\tau),
\]

where we use estimates of \(\hat{\Gamma} \) obtained above in the case with \(k = 2 \). The results are striking. Together, the two linear combinations that were estimated to predict the equity premium and the bond premium also predict the variance premium with \(R^2 \)s ranging from 6.2%, 9.5%, 9.0% and 10.1% at horizons of 1, 2, 3 and 6 months, respectively, and then to 8.7% and 2.7% at horizons of 9 and 12 months, respectively. Looking at individual coefficients
shows that each of the estimated linear combination plays an important role. The first plays a significant role in the variations of the variance premium at relatively short horizons, up to three months ahead, while the second linear combination plays a significant role at longer horizons, beyond three months.

It may appear tempting to use Equation 21 along with bond returns and equity returns in a RRR regression. However, the excess variance equation presents an econometric difficulty. The measurement errors in excess variance that arise because we measure \(\tilde{E}_t^Q \left(\sum_{j=1}^t \sigma_{t+j}^2 \right) \) from option prices are correlated with the measurement errors in \(\tilde{\text{Var}}_t^Q \), which is also obtained from option prices. Therefore, this equation cannot be used directly at estimation.\(^{21}\)

5 Term Structure of Higher-Order Cumulants

We show that measures of higher order risks can also be used to reveal risk factors. Empirically, we find that, the skewness and kurtosis term structures predict the bond premium, the equity premium and the variance premium. Their predictive content is similar to that of the variance term structure and can be summarized by 2 risk factors. Consistent with theory, combining measures of variance, skewness and of kurtosis improves predictability only marginally and, strikingly, the predictive content of this broad information set can still be summarized by two factors.

5.1 Higher-Order Cumulants in Equilibrium

The variance term structure may fail to reveal all risk factors. This may arise if some factors do not affect the variance, or if their effects are small relative to the measurement errors in the variance or to the innovations in returns. It may be possible to increase the efficiency of our estimates and parse the variance term structure to find additional factors. But this neglects low-hanging fruits. An alternative way is to broaden the information set include other measurements where the effect of other risk factors may be more easily seen. Looking back, Proposition 1 implies that every cumulant\(^{22}\) of returns is affine in the state vector,

\[
M_{t,n}^Q (\tau) = \beta_{n,0} (\tau) + X_\tau^\top \beta_{n,X} (\tau),
\]

\(^{21}\)Stambaugh (1988) provides a similar example where measurement errors due to bid-ask spreads in bond prices leads to over-rejection of small factor structure and wrongly favors larger factor structure (his Section 4.4, p.58).

\(^{22}\)Recall that the first cumulant corresponds to the mean, the second cumulant corresponds to the variance, the third cumulant corresponds to the third central moment and provides a measure of skewness, while the fourth cumulant corresponds to the fourth central moments minus 3 times the squared variance and provides a measure of the tails.
for any returns horizon τ, and where coefficients depend on the underlying model.23 Then, an argument similar to Section 2.4 shows that higher-order cumulants can also be used reveal X_t,

$$
\tilde{X}_t = -\bar{B}_n B_{0,n} + \bar{B}_n \bar{M}_{t,n}^Q + \bar{B}_n \nu_{n,t}.
$$

(23)

In the following, we follow a path parallel to the previous section and construct model-free measures of returns cumulants of order 3 and 4(see Appendix A.3). We also exchange a slight abuse of terminology for ease in the exposition and label these cumulants skewness and kurtosis, respectively.24

5.2 Summary Statistics and Factor Structure

Panel A and Panel B of Table 5 presents summary statistics of the conditional skewness and kurtosis of returns, respectively. The average distribution of returns implicit in index option is left-skewed and has fat tails. The average skewness lies below zero and slopes downward with the horizon. On the other hand, the average tail is fatten at longer horizons. Skewness and kurtosis are persistent, especially at intermediate horizons.

The correlation matrices (Panel C and Panel D) suggest a low-dimensional factor structure as in the case of risk-neutral variance. Panel E and Panel F present PCA results for the term structure of skewness and kurtosis, respectively. The first three principal components of skewness explain 67%, 15% and 12% of total variations, respectively, and together explain 93%. Similarly, the first three principal components of kurtosis explains 65%, 19% and 12% of total variation, respectively. As for the variance, the loadings of reveal that the leading components of skewness and kurtosis have a systematic effect on their respective term structure.

5.3 Predictability results

We estimate different variations of the following multivariate regression,

$$
x_{r,t+} = \Pi_0 + A\Gamma F_t + \epsilon_{t+}
$$

(24)

where, as above, $x_{r,t+}$ stacks 4 excess bond returns and 6 excess equity returns. We consider different combinations of the variance, skewness and of kurtosis term structure to construct the regressors, F_t.

23The scalar coefficient, $\beta_{n,0}(\tau)$, and the vector coefficient, $\beta_{n,X}(\tau)$, are defined as

$$
\beta_{n,0}(\tau) = D^n F_{r,0}^Q (0; \tau) \quad \text{and} \quad \beta_{n,X}(\tau) = D^n F_{r,X}^Q (0; \tau),
$$

where the matrix jacobian operator D^n is defined in Appendix A.1. These can typically be computed in closed-form, up to the usual recursions on τ.

24The conventional measure of skewness and kurtosis are not affine in the risk factors.
We first consider each term structure separately. Panel A of Table 6 presents results. First, model $V(2)$ uses the term structure of variance as predictors (i.e., $F_t = \tilde{\text{Var}} Q_t$). This reproduces a subset of the results presented above (Table 3) and provides a point of comparison for models using skewness or kurtosis as predictors. Second, Model $S(2)$ only includes the term structure of skewness (i.e., $F_t = \tilde{\text{Skew}} Q_t$). Third, model $K(2)$ only includes the term structure of kurtosis (i.e., $F_t = \tilde{\text{Kurt}} Q_t$). In model $S(2)$, the p-value is 6.1% for the null that $r = 1$ and 38.2% for the null that $r = 2$. Similarly, for the $K(2)$ model, the p-value is 7.9% for the null that $r = 1$ and 32.2% for the null that $r = 2$. Hence, the test based on each of these higher moments come close to reject the rank-one restrictions in favor of a higher rank while the rank-two restrictions is clearly not rejected. Nonetheless, we report estimation results based on $r = 2$ for comparison because more general models combining information from different term structures consistently reject the case $r = 1$ (see below). The results show that the ability to predict bond and equity excess returns, as measured by the R^2s, is strikingly similar whether we use any one of the variance, skewness and kurtosis term structures. This is consistent with theory. If anything, skewness and kurtosis appear to be slightly more informative about bond returns while variance appears to be slightly more informative about equity returns.

5.3.2 Combining variance, skewness and kurtosis term structure

The VSK(2,2) model combines the two risk factors estimated separately from each of the variance, skewness and kurtosis term structure. Hence, this uses 6 predictors and asks whether these risk factors add up to more than two factors when combined in the same model. The evidence is unambiguous. The p-value is 1.1% for the null that $r = 1$ and 32.6% for the null that $r = 2$. Again, this is consistent with theory. The predictive content available from the term structure of different risk measures is broadly overlapping. As expected, estimation in the case $r = 2$ yields R^2s that are very close to the highest value obtain above. Of course, we could (at least) reach these values by setting $r = 6$. What is unexpected is that we can summarize these 6 risk factors into two at almost no loss of predictive ability.

The VSK(2,2) is a second-stage estimation that uses factors obtained in a first-stage procedure. Model VSK(7,2) brings together the entire variance, skewness and kurtosis term structures. This is an alternative way to ask whether the risk factors measured from different term structures add up to more than two factors. Model VSK(7,2) model is estimated in one step but, on the other hand, it is more exposed to over-fitting given the large number of regressors. Nonetheless, these model yield consistent evidence. The p-value is 1.1% for the null that $r = 1$ and 32.6% for the null that $r = 2$. Two factors can summarize the information content of the term structure of risks. Moreover, there is a substantial increase in predictability, with R^2s ranging from 17% to 22% in the case of bond returns (compare
to the 9%-10% of more parsimonious models) and from 6% to 18% in the case of equity returns (compare to the 3%-8%).

5.3.3 Excess variance

We also check that the in-sample predictability obtained from bond and stock returns extends to the variance premium. Panel A of Table 6 presents results of excess variance predictability regressions. The results are broadly consistent across all models, the R^2s have an inverted U-shape across horizons, reaching a maximum close to 10% at intermediate horizons between 3 and 6 months. This holds whether the risk factors were extracted from the variance, skewness or kurtosis term structure. Once again, the theoretical prediction is supported in the data. In particular, there is no improvement in excess variance predictability for the VSK(7,7) model. Hence, this out-of-sample exercise suggests that some of the increased excess returns predictability obtained above for the VSK(7,7) model is due to in-sample over-fitting.

6 Conclusion

The Long-Run Risk literature emphasizes slowly moving factors that affect the future conditional distribution of consumption growth. But, almost by construction, these factors are difficult to measure from the macro data. Similarly, reduced-form parametrizations of the stock returns process introduce latent variations in stochastic volatility or jump intensity. In each case, the risk-returns trade-offs are difficult to measure and present a challenge to the econometrician. On the other hand, model-free measures of risk-neutral variance, and higher-order moments, are available from option prices. This paper shows how the term structure of these risk measures can be used to reveal risk factors that are important driver of bond premium, equity premium and variance premium variations. In particular we use test and estimation methods that do not rely on maintained structural assumptions. Consistent with theory, we find that a small number of factors, two, summarize the relationship between the equity premium, the bond premium and the variance implicit in option prices.
References

A Appendix

A.1 Risk-Neutral Moments in Equilibrium

A.1.1 Affine General Equilibrium Models

We consider an Affine General Equilibrium Model (AGEM) similar to Eraker (2008). Suppose that the state of the economy can be summarized by a Markov process \(Z_{t+1} \equiv (\Delta c_{t+1}, X_{t+1}^\top) \), where \(\Delta c_{t+1} \) is the consumption growth process and \(X_{t+1} \) is a vector of \(K \) (observed and unobserved) state variables independent of consumption growth. The moment-generating function of this state vector under the physical measure is given by

\[
E_t \left[\exp \left(x \Delta c_{t+1} + y^\top X_{t+1} \right) \right] = \exp \left(F_0 (x, y) + X_t^\top F_X (x, y) \right),
\]

where the scalar function \(F_0 (x, y) \) and the vector function \(F_X (x, y) \) describe the exogenous dynamics of the vector process \(Z_{t+1} \). Assume, further, that the representative agent has recursive preferences of Epstein-Zin-Weil type. Consequently, the logarithm of the intertemporal marginal rate of substitution is given by

\[
s_{t,t+1} = \theta \ln \delta - \frac{\theta}{\psi} \Delta c_{t+1} - (1 - \theta) r_{t+1},
\]

where \(r_{t+1} \) is the return to the aggregate consumption claim. Using the standard Campbell-Shiller approximation, \(r_{t+1} = \kappa_0 + \kappa_1 w_{t+1} - w_t + \Delta c_{t+1} \), the log price-consumption ratio \(w_t \) can be well-approximated by an affine function of the vector state variable \(X_t \) as

\[
w_t = A_0 + A_X^\top X_t,
\]

where the scalar coefficient \(A_0 \), and the vector coefficient \(A_X \) depend on model and preference parameters. Solving for these coefficients is standard in the literature. The (log) stochastic discount factor can then be re-written as

\[
s_{t,t+1} = \theta \ln \delta - (1 - \theta) \left(\kappa_0 + (\kappa_1 - 1) A_0 - A_X^\top X_t \right)
- \gamma \Delta c_{t+1} - (1 - \theta) \kappa_1 A_X^\top X_{t+1},
\]

and the model-implied log risk-free rate is given by,

\[
r_{f,t+1} = B_0 + B_X^\top X_t,
\]

where the scalar coefficient \(B_0 \) and the vector coefficient \(B_X \) depend on the exogenous dynamics and preference parameters,

\[
B_0 = -\theta \ln \delta + (1 - \theta) \left(\kappa_0 + (\kappa_1 - 1) A_0 \right) - F_0 (-\gamma, - (1 - \theta) \kappa_1 A_X)
B_X = - (1 - \theta) A_X - F_X (-\gamma, - (1 - \theta) \kappa_1 A_X).
\]

It follows that, in this economy, the change-of-measure from the historical probability to the risk-neutral probability is given by

\[
Z_{t,t+1} = \exp (s_{t,t+1} + r_{f,t+1}) = \exp \left(H_0 + H_X^\top X_t - \gamma \Delta c_{t+1} - p_X^\top X_{t+1} \right),
\]

where

\[
H_0 = -F_0 (-\gamma, -p_X), \quad H_X = -F_X (-\gamma, -p_X) \quad \text{and} \quad p_X = (1 - \theta) \kappa_1 A_X.
\]

A.1.2 Cumulants Term Structure

To compute risk-neutral cumulants of the excess return, \(x r_{t+1} \), from the claim on aggregate consumption, it suffices to know the moment-generating function of the vector process \((x r_{t+1}, X_{t+1}^\top) \) under the risk-neutral measure. This moment-generating function is given by

\[
E_t^Q \left[\exp \left(x r_{t+1}^\top + y^\top X_{t+1} \right) \right] = \exp \left(F_{r,0}^Q (x, y) + X_t^\top F_{r,X}^Q (x, y) \right)
\]
where the scalar function $F_{r,0}^Q (x,y)$ and the vector function $F_{r,X}^Q (x,y)$ are defined by

\[
F_{r,0}^Q (x,y) = H_0 - xG_0 + F_0 (-\gamma + x, -p_x + y + x\kappa_1A_X)
\]
\[
F_{r,X}^Q (x,y) = H_X - xG_X + F_X (-\gamma + x, -p_x + y + x\kappa_1A_X),
\]

and x_{t+1} is given by

\[
x_{t+1} = r_{t+1} - \mu_t^Q = -G_0 - G_X^T X_t + \Delta c_{t+1} + \kappa_1A_X^T X_{t+1},
\]

where $\mu_t^Q = E_t^Q [x_{t+1}]$ is given by

\[
\mu_t^Q = \kappa_0 + (\kappa_1 - 1) A_0 + G_0 + (G_X - A_X)^T X_t,
\]

with coefficients,

\[
G_0 = DF_0 (-\gamma, -p_x) \left(\begin{array}{c} 1 \\ \kappa_1A_X \end{array} \right) \quad \text{and} \quad G_X = DF_X (-\gamma, -p_x) \left(\begin{array}{c} 1 \\ \kappa_1A_X \end{array} \right).
\]

The operator D defines the Jacobian matrix of a real matrix function of a matrix of real variables.25 Formally, for a given function Υ defined over $\mathbb{R}^m \times \mathbb{R}^n$ and with values in $\mathbb{R}^p \times \mathbb{R}^q$, which associates to the $m \times n$ matrix ξ the $p \times q$ matrix $\Upsilon (\xi)$, we have that $D\Upsilon (\xi)$ is the $pq \times mn$ matrix defined by

\[
D\Upsilon (\xi) = \frac{\partial vec(\Upsilon (\xi))}{\partial vec(\xi)} \quad \text{and} \quad D\Upsilon (\xi^*) = \frac{\partial vec(\Upsilon (\xi^*))}{\partial vec(\xi^*)}. \tag{38}
\]

where the operator D_i is analogue, but the derivative is taken with respect to the ith argument of a function.

To derive the term-structure of all risk-neutral moments, it suffices to compute the conditional moment-generating function of aggregate returns, given by,

\[
F_t^Q \left[\exp \left(x \sum_{j=1}^{\tau} x_{r+j} \right) \right] = \exp \left(F_{r,0}^Q (x;\tau) + X_\tau^T F_{r,X}^Q (x;\tau) \right) \tag{39}
\]

where the sequence of functions $F_{r,0}^Q (x;\tau)$ and $F_{r,X}^Q (x;\tau)$ satisfy the following recursions,

\[
F_{r,0}^Q (x;\tau) = F_{r,0}^Q (x;\tau - 1) + F_{r,0}^Q (x, F_{r,X}^Q (x;\tau - 1))
\]
\[
F_{r,X}^Q (x;\tau) = F_{r,X}^Q (x, F_{r,X}^Q (x;\tau - 1)) \tag{40}
\]

with initial conditions $F_{r,0}^Q (x;1) = F_{r,0}^Q (x,0)$ and $F_{r,X}^Q (x;1) = F_{r,X}^Q (x,0)$. Then, the nth order cumulants of excess returns denoted, $M_n^Q (t,\tau)$, is the derivative with respect to x of the log moment-generating function of aggregate returns, and evaluated at $x = 0$,

\[
M_n^Q (t,\tau) = \beta_{n,0} (\tau) + X_\tau^T \beta_{n,X} (\tau),
\]

where

\[
\beta_{n,0} (\tau) = D^n F_{r,0}^Q (0;\tau) \quad \text{and} \quad \beta_{n,X} (\tau) = D^n F_{r,X}^Q (0;\tau). \tag{42}
\]

The scalar (drift) coefficient $\beta_{n,0} (\tau)$, and the vector (slope) coefficient $\beta_{n,X} (\tau)$ obtain in closed-form. For the particular case of risk-neutral variance ($n = 2$), we show that these coefficients may be recursively and explicitly expressed as follows:

\[
\beta_{2,0} (\tau) = \beta_{2,0} (\tau - 1) + D_2 F_{r,0}^Q (0,0) \beta_{2X} (\tau - 1)
\]
\[
+ \left(\begin{array}{c} 1 \\ \beta_{1X} (\tau - 1) \end{array} \right)^\top D_2^2 F_{r,0}^Q (0,0) \left(\begin{array}{c} 1 \\ \beta_{1X} (\tau - 1) \end{array} \right) \tag{43}
\]

25See e.g. See Magnus and Neudecker (1988), Ch. 9, Sec. 4, P. 173.
with \(\beta_{2,0} (1) = D_1^2 F^Q_0 (0, 0) \), for the drift coefficient, and

\[
\beta_{2,X} (\tau) = D_2 F^Q_X (0, 0) \beta_{2,X} (\tau - 1) + \left(\begin{array}{c} 1 \\ \beta_{1,X} (\tau - 1) \end{array} \right) \otimes I_K \right)^\top D^2 F^Q_X (0, 0) \left(\begin{array}{c} 1 \\ \beta_{1,X} (\tau - 1) \end{array} \right),
\]

(44)

with \(\beta_{2,X} (1) = D_1^2 F^Q_X (0, 0) \), for the slope coefficient, and where

\[
\beta_{1,0} (\tau) = \beta_{1,0} (\tau - 1) + D F^Q_0 (0, 0) \left(\begin{array}{c} 1 \\ \beta_{1,X} (\tau - 1) \end{array} \right)
\]

\[
\beta_{1,X} (\tau) = D F^Q_X (0, 0) \left(\begin{array}{c} 1 \\ \beta_{1,X} (\tau - 1) \end{array} \right)
\]

(45)

with \(\beta_{1,0} (1) = D_1 F^Q_0 (0, 0) \) and \(\beta_{1,X} (1) = D_1 F^Q_X (0, 0) \).

A.2 Constructing A Monthly Sample

Option settlement dates follow a regular pattern though time: contracts are available for 3 successive months, then for the next 3 months in the March, June, September, December cycle and, finally for the next two months in the June and December semi-annual cycle. This leads to maturity groups with 1, 2 or 3 months remaining to settlement and then between 3 and 6, between 6 and 9, between 9 and 12 months, between 12 and 18 and between 18 and 24 months remaining to settlement. We group option prices at the monthly frequency using their maturity date, so that enough observations are available within each group to construct non-parametric measures. To see why this is a natural strategy, note first that each contract settles on the third Friday of a month. Consider, then, all observations intervening between two successive (monthly) settlement dates. Each of these observations can be unambiguously attributed to one maturity date. Moreover, within that period, each contract will be attributed to the same maturity group.\(^{26}\) While a higher number of observations reduce sampling errors in our estimates of risk-neutral moments, it may also increase noise if there is large within-month time-variations in the distribution of stock returns at given maturities. To mitigate this effect, we always use the most recent observation when the same contract (i.e. same maturity and strike price) is observed more than once.

A.3 Cumulants

We rely on the non-parametric approach of Bakshi and Madan (2000) to measure the conditional variance implicit in option prices. Any twice-differentiable payoff, \(H(S(t + \tau)) \), contingent on the future stock price, \(S(t + \tau) \), can be replicated by a portfolio of stock options. The portfolio allocations across option strikes are specific to each payoff function evaluated at the corresponding strike price. Following Bakshi and Madan, we take

\[
H(S(t + \tau)) \equiv (r_{t,t+\tau})^n = \ln \left(\frac{S(t + \tau)}{S(t)} \right)^n,
\]

so that the fair value, at time \(t \), of a contract paying the second moments of returns over the next \(\tau \) periods ahead, \(V_2^Q(t, \tau) \equiv E^Q_t [e^{-r\tau} (r_{t,t+\tau})^2] \), is given by

\[
\frac{V_2^Q(t, \tau)}{2} = \int_0^{S(t)} \frac{1 - \ln(K/S(t))}{K^2} P(t, \tau, K) dK + \int_{S(t)}^{\infty} \frac{1 - \log(K/S(t))}{K^2} C(t, \tau, K) dK,
\]

and can be directly computed from the relevant European call and put option prices, \(C(t, \tau, K) \) and \(P(t, \tau, K) \), with maturity \(\tau \) and strike price \(K \). Finally, the risk-neutral variance at maturity \(\tau \) is given by

\[
Var^Q(t, \tau) = e^{r\tau} V_2^Q(t, \tau) - \mu^Q(t, \tau)^2,
\]

\(^{26}\)Take any contract, on any observation date. This contract is assigned to the 1-month maturity group if its settlement date occurs on the following third-Friday, to the 2-month group if it occurs on the next to following third-Friday, etc. This grouping does not change until we reach the next settlement date.
where we follow Bakshi et al. (2003) to compute $\mu^Q(t, \tau)$. Similarly, option-implied risk-neutral returns cumulants are given by

$$
\begin{align*}
M_1^Q(t, \tau) &\equiv \mu^Q(t, \tau) \approx e^{rt} - 1 - \frac{e^{rt}}{2} V_2^Q(t, \tau) - \frac{e^{rt}}{6} V_3^Q(t, \tau) - \frac{e^{rt}}{24} V_4^Q(t, \tau) \\
M_2^Q(t, \tau) &\equiv \text{Var}^Q(t, \tau) = e^{rt} V_2^Q(t, \tau) - \mu^Q(t, \tau)^2 \\
M_3^Q(t, \tau) &\equiv e^{rt} V_3^Q(t, \tau) - 3\mu^Q(t, \tau)e^{rt} V_2^Q(t, \tau) + 2\mu^Q(t, \tau)^3 \\
M_4^Q(t, \tau) &\equiv e^{rt} V_4^Q(t, \tau) - 4\mu^Q(t, \tau)e^{rt} V_3^Q(t, \tau) + 6\mu^Q(t, \tau)^2 e^{rt} V_2^Q(t, \tau) - 3\mu^Q(t, \tau)^4,
\end{align*}
$$

where we closely followed Bakshi et al. (2003) in the computation of μ^Q. Recall that the first cumulant is the mean, the second cumulant is the variance, the third cumulant is the third centered moment, and the fourth cumulant is the fourth centered moment minus 3 times the squared variance.

A.4 Reduced-Rank Regressions

A multivariate reduced-rank regression model can be written as

$$
Y_t = A \Gamma^\top F_t + \Psi Z_t + \epsilon_t \quad t = 1, \ldots, T,
$$

where A and Γ have size $(p \times K)$ and $(q \times K)$, respectively. The RRR estimators are given from the solution to

$$
\min_{A, \Gamma, \Psi} \sum_{t=1}^T \epsilon_t \epsilon_t^\top,
$$

and closed-form expressions are given in Theorem 5 of Hansen (2008). In his notation, define the moment matrix,

$$
M_{yf} = T^{-1} \sum_{t=1}^T Y_t F_t^\top,
$$

and define the matrices M_{yy}, M_{yz}, M_{ff} similarly. Also, define

$$
S_{yy} = M_{yy} - M_{yz} M_{zz}^{-1} M_{zy} \\
S_{yf} = M_{yf} - M_{yz} M_{zz}^{-1} M_{zf},
$$

and define S_{ff} and $S_{uf} = S_{fy}^\top$ similarly. Then, the estimator of A, Γ and of Ψ are given by,

$$
\begin{align*}
\hat{\Gamma}^\top &= [\hat{v}_1, \ldots, \hat{v}_K] \phi \\
\hat{A} &= S_{yf} \hat{B}(\hat{B}^\top S_{ff} \hat{B})^{-1} \\
\hat{\Psi} &= M_{yz} M_{zz}^{-1} - \hat{A} \hat{B} M_{zf} M_{zz}^{-1}
\end{align*}
$$

where $[\hat{v}_1, \ldots, \hat{v}_K]$ are the eigenvectors corresponding to the largest K eigenvalues of,

$$
[\lambda S_{ff} - S_{fy} S_{yy}^{-1} S_{uf}] = 0,
$$

and ϕ is an arbitrary ($K \times K$) matrix with full rank. It is a normalization device and corresponds to the choice of a particular basis for the subspace spanned by the rows of $\hat{\Gamma}$.

25
Table 1: Option Sample Summary Statistics

Number of observations (out-of-the-money puts and calls) in each maturity (months) and moneyness (K/S) group. SP 500 futures option data from January 1996 to October 2008.

<table>
<thead>
<tr>
<th></th>
<th>< 0.90</th>
<th>0.90 – 0.95</th>
<th>0.95 – 0.975</th>
<th>0.975 – 1</th>
<th>1 – 1.025</th>
<th>1.025 – 1.05</th>
<th>> 1.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3173</td>
<td>3498</td>
<td>2229</td>
<td>2435</td>
<td>2429</td>
<td>2178</td>
<td>2638</td>
</tr>
<tr>
<td>2</td>
<td>4849</td>
<td>3350</td>
<td>2115</td>
<td>2423</td>
<td>2435</td>
<td>2098</td>
<td>3938</td>
</tr>
<tr>
<td>3</td>
<td>3077</td>
<td>1789</td>
<td>1151</td>
<td>1423</td>
<td>1371</td>
<td>1029</td>
<td>2649</td>
</tr>
<tr>
<td>6</td>
<td>4248</td>
<td>1694</td>
<td>987</td>
<td>1056</td>
<td>917</td>
<td>789</td>
<td>2957</td>
</tr>
<tr>
<td>9</td>
<td>2679</td>
<td>1020</td>
<td>635</td>
<td>645</td>
<td>484</td>
<td>405</td>
<td>2049</td>
</tr>
<tr>
<td>12</td>
<td>1621</td>
<td>598</td>
<td>368</td>
<td>417</td>
<td>375</td>
<td>264</td>
<td>1507</td>
</tr>
<tr>
<td>18</td>
<td>1504</td>
<td>500</td>
<td>279</td>
<td>313</td>
<td>267</td>
<td>169</td>
<td>1107</td>
</tr>
<tr>
<td>24</td>
<td>890</td>
<td>259</td>
<td>176</td>
<td>235</td>
<td>149</td>
<td>103</td>
<td>703</td>
</tr>
</tbody>
</table>

Table 2: Risk-Neutral Variance Summary Statistics

Summary statistics (Panel A) and principal component analysis (Panel B) of conditional risk-neutral variance across maturities from 1 to 18 months. Risk-neutral variance measures at each maturity constructed using the model-free method of Bakshi and Madan (2000). Option data from January 1996 to October 2008.

Panel A Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.037</td>
<td>0.045</td>
<td>0.046</td>
<td>0.049</td>
<td>0.047</td>
<td>0.044</td>
<td>0.044</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.024</td>
<td>0.027</td>
<td>0.027</td>
<td>0.026</td>
<td>0.022</td>
<td>0.021</td>
<td>0.022</td>
</tr>
<tr>
<td>Skewness</td>
<td>1.484</td>
<td>1.193</td>
<td>1.047</td>
<td>0.888</td>
<td>0.549</td>
<td>0.847</td>
<td>0.478</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>5.332</td>
<td>4.066</td>
<td>3.725</td>
<td>3.579</td>
<td>2.497</td>
<td>3.559</td>
<td>2.932</td>
</tr>
<tr>
<td>ρ(1)</td>
<td>0.738</td>
<td>0.730</td>
<td>0.788</td>
<td>0.820</td>
<td>0.871</td>
<td>0.812</td>
<td>0.809</td>
</tr>
</tbody>
</table>

Panel B Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadings</td>
<td>0.36</td>
<td>0.44</td>
<td>0.43</td>
<td>0.42</td>
<td>0.35</td>
<td>0.31</td>
<td>0.31</td>
</tr>
<tr>
<td></td>
<td>0.49</td>
<td>0.38</td>
<td>0.20</td>
<td>-0.06</td>
<td>-0.28</td>
<td>-0.42</td>
<td>-0.57</td>
</tr>
<tr>
<td></td>
<td>-0.75</td>
<td>0.33</td>
<td>0.28</td>
<td>0.26</td>
<td>-0.01</td>
<td>-0.41</td>
<td>-0.41</td>
</tr>
<tr>
<td></td>
<td>-0.23</td>
<td>0.16</td>
<td>0.12</td>
<td>0.02</td>
<td>0.15</td>
<td>0.08</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
<td>-0.41</td>
<td>-0.07</td>
<td>0.32</td>
<td>0.70</td>
<td>-0.81</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>-0.05</td>
<td>-0.61</td>
<td>0.52</td>
<td>-0.76</td>
<td>0.37</td>
<td>-0.23</td>
<td>-0.42</td>
</tr>
<tr>
<td></td>
<td>-0.03</td>
<td>0.60</td>
<td>-0.63</td>
<td>-0.27</td>
<td>0.40</td>
<td>0.09</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>0.88</td>
<td>0.06</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>R²</td>
<td>0.88</td>
<td>0.94</td>
<td>0.97</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Cum. R²</td>
<td>0.88</td>
<td>0.94</td>
<td>0.97</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 3: Excess Return and the Variance Term Structure

Rank test p-values and R^2s in multivariate regressions, $Y_t = \Pi_0 + \Pi F_t + \epsilon_t$ where each component of Y_t is an excess bond or equity returns, $x_{r,t+\tau}$, and where $F_t = \{\hat{\text{Var}}^Q(t,\tau)\}_{r=1,...,q}$ is a $q \times 1$ vector of risk-neutral variance measures. We consider annual excess returns for bonds with maturities of 2, 3, 4 and 5 years, and SP 500 excess returns at horizons 1, 3, 6, 9 and 12 months. Panel A displays p-values associated with the Cook and Setodji modified statistics, $\hat{\Lambda}_r$, in a test of the null hypothesis that the rank of the matrix Π is r. Panel B displays the R^2 associated with each of the individual bond returns predictability regression obtained via multivariate reduced-rank regression (RRR) estimation but for different hypothesis on the rank of the matrix Π. Panel C displays the R^2 associated with each of the individual equity returns predictability regression. Risk-neutral variance measures at each maturity constructed using the model-free method of Bakshi and Madan (2000). Monthly Returns and Option data from January 1996 to October 2008.

Panel A - Rank test p-values

<table>
<thead>
<tr>
<th>p-val</th>
<th>$H_0: r = 0$</th>
<th>$H_0: r = 1$</th>
<th>$H_0: r = 2$</th>
<th>$H_0: r = 3$</th>
<th>$H_0: r = 4$</th>
<th>$H_0: r = 5$</th>
<th>$H_0: r = 6$</th>
<th>$H_0: r = 6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>4.3</td>
<td>22.9</td>
<td>64.8</td>
<td>82.3</td>
<td>81.4</td>
<td>73.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Panel B - Bond returns R^2s

<table>
<thead>
<tr>
<th>r=1</th>
<th>r=2</th>
<th>r=3</th>
<th>r=4</th>
<th>r=5</th>
<th>r=6</th>
<th>r=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.3</td>
<td>7.3</td>
<td>9.2</td>
<td>11.1</td>
<td>11.4</td>
<td>11.4</td>
</tr>
<tr>
<td>3</td>
<td>6.6</td>
<td>6.6</td>
<td>7.8</td>
<td>9.6</td>
<td>9.9</td>
<td>10.0</td>
</tr>
<tr>
<td>4</td>
<td>5.7</td>
<td>5.9</td>
<td>6.6</td>
<td>8.2</td>
<td>8.7</td>
<td>8.7</td>
</tr>
<tr>
<td>5</td>
<td>5.0</td>
<td>5.5</td>
<td>5.8</td>
<td>7.3</td>
<td>7.8</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Panel C - Equity returns R^2s

<table>
<thead>
<tr>
<th>r=1</th>
<th>r=2</th>
<th>r=3</th>
<th>r=4</th>
<th>r=5</th>
<th>r=6</th>
<th>r=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.9</td>
<td>3.1</td>
<td>3.1</td>
<td>3.3</td>
<td>3.4</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>6.3</td>
<td>7.2</td>
<td>8.8</td>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>3</td>
<td>5.4</td>
<td>6.3</td>
<td>7.5</td>
<td>10.7</td>
<td>11.1</td>
<td>11.1</td>
</tr>
<tr>
<td>6</td>
<td>3.3</td>
<td>5.3</td>
<td>7.6</td>
<td>9.0</td>
<td>9.0</td>
<td>9.1</td>
</tr>
<tr>
<td>9</td>
<td>3.5</td>
<td>4.2</td>
<td>7.9</td>
<td>10.1</td>
<td>10.1</td>
<td>10.1</td>
</tr>
<tr>
<td>12</td>
<td>3.5</td>
<td>3.6</td>
<td>10.5</td>
<td>11.0</td>
<td>11.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>

Table 4: Excess Variance Predictability

Results from multi-horizon predictability regressions of the excess variance over an horizon of of τ, $x_{\tau,t+\tau}$, with $\tau = 1, 2, 3, 6, 9$ and 12 months, respectively. The predictors include a constant and $\hat{\Pi}F_t$, the risk factors obtained from the multivariate reduced-rank regression of bond and equity excess returns on the variance term structure (See Table 3). Newey-West t-statistics with lags corresponding to the investment horizon plus 3 months in parenthesis and R^2 reported in percentage. Risk-neutral variance measures at each maturity constructed using the model-free method of Bakshi and Madan (2000). Monthly Variance and Option data from January 1996 to October 2008.

<table>
<thead>
<tr>
<th>$\hat{\Gamma}_1 Var^Q_t$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(-2.15)</td>
<td>(-1.94)</td>
<td>(-1.55)</td>
<td>(-1.35)</td>
<td>(-0.49)</td>
<td>(-0.42)</td>
</tr>
<tr>
<td>$\hat{\Gamma}_2 Var^Q_t$</td>
<td>(-1.23)</td>
<td>(-1.78)</td>
<td>(-1.74)</td>
<td>(-2.21)</td>
<td>(-2.51)</td>
<td>(1.56)</td>
</tr>
<tr>
<td>R^2</td>
<td>6.2</td>
<td>9.5</td>
<td>9.0</td>
<td>10.1</td>
<td>8.7</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Table 5: Summary Statistics - Term Structure of Higher Order Moments

<table>
<thead>
<tr>
<th>Panel A - Skewness summary statistics</th>
<th>Panel B - Kurtosis summary statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.003</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.002</td>
</tr>
<tr>
<td>Skewness</td>
<td>-2.036</td>
</tr>
<tr>
<td>$\rho(1)$</td>
<td>0.509</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel C - Skewness correlations</th>
<th>Panel D - Kurtosis correlations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mean</td>
<td>1.00</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.76</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.66</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.62</td>
</tr>
<tr>
<td>$\rho(1)$</td>
<td>0.51</td>
</tr>
<tr>
<td>0.20</td>
<td>0.42</td>
</tr>
<tr>
<td>0.18</td>
<td>0.37</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel E - Skewness PCA</th>
<th>Panel F - Kurtosis PCA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loadings</td>
<td>1</td>
</tr>
<tr>
<td>Mean</td>
<td>0.08</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>0.21</td>
</tr>
<tr>
<td>Skewness</td>
<td>0.26</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>0.46</td>
</tr>
<tr>
<td>$\rho(1)$</td>
<td>0.43</td>
</tr>
<tr>
<td>0.38</td>
<td>-0.10</td>
</tr>
<tr>
<td>0.58</td>
<td>0.76</td>
</tr>
<tr>
<td>R^2</td>
<td>0.67</td>
</tr>
<tr>
<td>Cum. R^2</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Loadings	1	2	3	4	5	6	7
Mean	0.03	-0.02	0.08	0.07	0.10	0.39	-0.91
Std. Dev.	0.08	-0.07	0.20	0.29	0.13	0.83	0.41
Skewness	0.12	-0.06	0.26	0.35	0.82	-0.33	0.01
Kurtosis	0.32	-0.26	0.43	0.55	-0.53	-0.23	-0.06
$\rho(1)$	0.33	0.04	0.67	-0.66	0.03	0.02	0.03
0.40	-0.81	-0.36	-0.21	0.10	0.03	0.01	
0.78	0.52	-0.34	0.08	0.01	0.02	-0.00	
R^2	0.65	0.19	0.12	0.03	0.01	0.00	0.00
Cum. R^2	0.65	0.84	0.96	0.99	1.00	1.00	1.00
Table 6: Predictive Content of Higher Order Moments

Panel A displays \(p \)-values of rank tests and \(R^2 \)'s in multivariate regressions, \(Y_t = \Pi_0 + \Pi F_t + \epsilon_t \) where each component of \(Y_t \) is an excess bond or equity returns, \(x_{rt+t+r} \), and where \(F_t \) with different combinations of risk-neutral variance, skewness and of kurtosis at horizons 1, 3, 6, 9, 12 and 18 months. Model \(V(2) \) assumes \(r = 2 \) and includes the term structure of variance in \(F_t \). Models \(S(2) \) and \(K(2) \) also assume \(r = 2 \). Model \(S(2) \) includes the term structure of skewness and model \(K(2) \) includes the term structure of kurtosis. Model \(VSK(2,2) \) combines the two risk factors estimated from each of the variance, skewness and kurtosis term structure and assumes \(r = 2 \). Model \(VSK(7,2) \) assumes \(r = 2 \) and combines all measures from the variance, skewness and kurtosis term structure. We report \(p \)-values associated with the Cook and Setodji modified statistics, \(\tilde{\Lambda}_r \), for tests of the null hypothesis that the rank of the matrix \(\Pi \) is \(r = 2 \) and the of the null that the rank is \(r = 3 \). Panel B displays \(R^2 \)'s from multi-horizon predictability regressions of the excess variance, \(x_{vt+t+r} \), on a constant and \(\hat{\Gamma} F_t \), the risk factors obtained from the multivariate reduced-rank regression. Annual excess returns for bonds with maturities of 2, 3, 4 and 5 years, SP 500 excess returns at horizons 1, 3, 6, 9 and 12 months, and excess variance at horizons 1, 3, 6, 9 and 12 months. Risk-neutral variance, skewness and kurtosis measures at each maturity constructed using the model-free method of Bakshi and Madan (2000). Monthly returns, realized variance and option data from January 1996 to October 2008.

Panel A - Bond and equity premium

<table>
<thead>
<tr>
<th>Model</th>
<th>Rank Test H0</th>
<th>Bond Maturity</th>
<th>Equity return horizons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(H_0 : r = 1)</td>
<td>(H_0 : r = 2)</td>
<td>2</td>
</tr>
<tr>
<td>(V(2))</td>
<td></td>
<td></td>
<td>4.3</td>
</tr>
<tr>
<td>(S(2))</td>
<td></td>
<td></td>
<td>6.1</td>
</tr>
<tr>
<td>(K(2))</td>
<td></td>
<td></td>
<td>7.9</td>
</tr>
<tr>
<td>(SVK(2, 2))</td>
<td></td>
<td></td>
<td>1.1</td>
</tr>
<tr>
<td>(SVK(7, 2))</td>
<td></td>
<td></td>
<td>1.4</td>
</tr>
</tbody>
</table>

Panel B - Variance premium

<table>
<thead>
<tr>
<th>Model</th>
<th>Returns horizons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(V(2))</td>
<td>6.2</td>
</tr>
<tr>
<td>(S(2))</td>
<td>1.1</td>
</tr>
<tr>
<td>(K(2))</td>
<td>2.0</td>
</tr>
<tr>
<td>(SVK(2, 2))</td>
<td>5.8</td>
</tr>
<tr>
<td>(SVK(7, 2))</td>
<td>1.7</td>
</tr>
</tbody>
</table>