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Abstract 

In analyzing ECG data, the main aim is to differentiate between the signal patterns 
of those of healthy subjects and those of individuals with specific heart conditions. 
We propose an approach for classifying multivariate ECG signals based on 
discriminant and wavelet analyzes. For this purpose we use multiple-scale wavelet 
variances and wavelet correlations to distinguish between the patterns of 
multivariate ECG signals based on the variability of the individual components of 
each ECG signal and the relationships between every pair of these components. 
Using the results of other ECG classification studies in the literature as references, 
we demonstrate that our approach applied to 12-lead ECG signals from a particular 
database, displays quite favourable performance.  We also demonstrate with real 
and synthetic ECG data that our approach to classifying multivariate time series out 
performs other well-known approaches for classifying multivariate time series. In 
simulation studies using multivariate time series that have patterns that are different 
from that of the ECG signals, we also demonstrate very favourably performance of 
this approach when compared to these other approaches. 
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1. Introduction

The classification of multivariate ECG signals is an important task in biomedical science. In order to determine
whether or not an individual has a specific heart condition, up to ten electrodes are attached to the individual
and the ECG signals obtained. Large databases exist for large numbers of patients and controls, and the task
for researchers is to develop automated methods of classification of such time series. Many authors have
proposed methods to this end with varying degrees of classification accuracy. In particular, Al-Naima and
Al-Timemy [1], De Chazel and Reilly [2] , Heden et al. ([3] and Bozzola et al. [4] have proposed methods that
been applied to 12-lead ECG signals.

In our study of 12-lead ECG signals , we are particularly interested in differentiating between patterns
of ECG signals of individuals with the heart condition, myocardial infarction, and of those without this
condition. To this end, Al-Naima and Al-Timemy [1] used Discrete Fourier Transform (DFT) coefficients and
Discrete Wavelet Transform (DWT) coefficients as the discriminating features with neural network classifiers.
Using 12-lead ECG data with a training set of 45 records (26 controls and 19 with myocardial infarction)
and a test set of 20 records (12 controls and 8 with myocardial infarction), the sensitivities achieved for the
test set were between 80% to 90%, while the specificity was 90%.

De Chazel and Reilly [2] used linear and quadratic discriminants with five features sets, including DWT
coefficients, standard cardiology features and time domain features. Using a database of 500 12-lead ECG
signals from 345 patients with different cardiac diseases, and from 155 controls, and multiple runs of ten-fold
cross-validation, they obtained sensitivities of 69-73%, 78-83% and 25-38% when they classified anterior,
inferior or combined myocardial infarction, while the specificity of their best classifier was 90%.

Heden et al. [3] conducted a study using 12-lead ECG records of a group of 1120 individuals with acute
myocardial infarction and a control group consisting of 10,352 cases. They used six time domain measure-
ments from each of the 12 leads as inputs in to artificial neural networks. Using a three-fold cross-validation
procedure, their method achieved sensitivities of 46.2%-65.9% and specificities of 86.3-95.4%.

Bozzola et al. [4] extracted a set of 8 time domain parameters from each of the 12-lead ECG records
and input these into a hybrid neuro-fuzzy system for the classification of myocardial infarction. They used
a training set of ECG records of 179 controls and 404 with myocardial infarction, and a test set of ECG
records of 60 controls and 135 with myocardial infarction. Their method achieved test set sensitivities of 72%
, 80-88% and 52-60% when they classified anterior, inferior or combined myocardial infarction and specificities
of 92-93%.

In all of the techniques employed by the above-mentioned authors, the components of the 12-lead ECG
signal are treated as if they were independent of each other. In practice, each 12-lead ECG signal can be
regarded as a 12-component multivariate time series. An important consideration in the analysis of multi-
variate time series is the relationship between the individual components of each series. Hence, given the
absence of this consideration in ECG classification literature, we are motivated to examine the inclusion of
these interrelationship features to assess whether they provide useful information, and thus lead to perhaps
more accurate classification results. In this paper, we therefore propose the discriminant analysis of the multi-
variate time series, namely, the 12-lead ECG signals, based on wavelet features of variances and correlations.
In using these features, our goal is to distinguish between the patterns of multivariate ECG signals based
on the variability of the individual components of each ECG signal, and the relationships between these
components. Taking into account the relationships between every pair of components is a novel approach,
and to our knowledge has not been considered before in multiple-lead ECG classification. Furthermore, an
advantage of using wavelet features is that the time series do not necessarily have to be mean or variance
stationary as in deed most ECG data are not. Using data from a publicly available ECG database, we show
that discriminant analysis based on the wavelet features of variance and correlations achieves exceptional
accuracy rates in differentiating between the 12-lead ECG records of healthy individuals and those with my-
ocardial infarction. Using simulated data we also demonstrate that our approach of classifying multivariate
time series outperforms other well- known methods

In Section 2, we will describe the tools required for our proposed method and the method itself. In Section 3,
we apply this method to the ECG data and evaluate its performance using the hold-out-one cross-validation
technique. In Section 4 we evaluate the performance of this approached using synthetic ECG data when
compared to the other approaches. In Section 5, we carry out other studies with simulated data to evaluate



E.A. Maharaj and A.M. Alonso/Discriminant analysis of multivariate time series 3

the performance of this method on multivariate time series that have different patterns to that of conventional
ECG signals. We conclude in Section 6.

2. Methods

2.1. Discriminant Analysis

In practice, a time series is known to belong to one of g groups. The task is to classify the time series into one
of these g groups in an optimal manner. Assumptions are made concerning the Gaussian probability density
function of the different groups. In linear discriminant analysis, it is assumed that the groups have equal
covariance matrices and differ only in their means. While in quadratic discriminant analysis, the covariance
matrices of the groups are not assumed to be equal. There are several ways to evaluate the performance
of a discriminant analysis procedure. One method is to split the sample into training and hold-out samples
and evaluate the error rate associated with the hold-out set which was not used in deriving the classification
rule. Another method is to use the hold-out-one technique of cross-validation which is particularly useful if
the samples sizes are not very large. This technique holds out the observation to be classified, deriving the
classification function from the remaining observations (see [5] for more details). The procedure is repeated
of each member of the sample and an overall error rate is determined.

When dealing with univariate time series, one can use features of the time series such as autocorrelations,
periodogram coefficients, wavelet features etc., in a standard discriminant analysis. Several authors have
proposed discriminant analysis of univariate time series. See for example, [6] and [7]. With multivariate time
series, the task is more complex because as well as taking into account the multiple series associated with
each object, one has to also take into account the relationships between the components of each multivariate
time series. Kakizawa et al. [8] developed approaches for classifying stationary multivariate time series using
spectral matrices with Kullback–Leibler (K–L) and Chernoff discrepancy measures. Shumway [9] extended
this with the Kullback–Leibler (K–L) discrepancy to locally stationary time series.

2.2. Wavelet Analysis and Wavelet Features

In what follows, using the notation of [10], we give a brief description of wavelet analysis and the associated
features of wavelet variances and wavelet correlations.

The Discrete Wavelet Transform (DWT), which is an orthonormal transform, re-expresses a time series of
length T in terms of coefficients that are associated with a particular time and with a particular dyadic scale
as well as one or more scaling coefficients. The j-th dyadic scale is of the form 2j−1 where j = 1, 2, . . . , J ,
and J is the maximum allowable number of scales.

The number of coefficients at the j-th scale is T/2j , provided T = 2J . In general the wavelet coefficients
at scale 2j−1 are associated with frequencies in the interval [1/2j+1 ,1/2j ]. Large time scales give more
low frequency information, while small time scales give more high frequency information about the time
series. It is possible to recover the time series Xt, t = 1, 2, . . . , T from its DWT by synthesis. That is, the
multi-resolution analysis (MRA) of a time series is expressed as

Xt =
J∑

j=1

dj + sJ , (2.1)

where dj is the wavelet detail (series of inverse wavelet coefficients at scale j) and sJ is the smooth series
which is the inverse of the series of scaling coefficients. Hence a time series and its DWT are actually two
representations of the same mathematical entity.

The maximum overlap discrete wavelet transform (MODWT) is a modification of the DWT. Under the
MODWT, the number of wavelet coefficients created will be the same as the number of observations in the
original time series. Because the MODWT decomposition retains all possible times at each time scale, the
MODWT has the advantage of retaining the time invariant property of the original time series. The MODWT
can be used in a similar manner to the DWT in defining a multi-resolution analysis of a given time series.
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In contrast to the DWT, the MODWT details and smooths are associated with zero phase filters making it
easy to line up features in a MRA with the original time series more meaningfully.

If {h̃j,l, l = 0, 1, . . . , Lj} is the j-level MODWT wavelet filter of length Lj , associated with scale τj ≡ 2j−1

then if {Xt} is a discrete parameter stochastic process and

Wj,t ≡
Lj∑
l=0

h̃j,lXt−l (2.2)

represents the stochastic process by filtering {Xt} with the MODWT filter {h̃j,l}, and if it exists and is finite,
the time independent MODWT wavelet variance at the j -th dyadic scale τj ≡ 2j−1 is defined as

ν2
X(τj) ≡ var{WX,j,t}. (2.3)

It can be shown that
∞∑

j=1

ν2
X(τj) = var{Xt}, (2.4)

i.e., the wavelet variance decomposes the variance of the stochastic process across scales (see [10], p296-298
for more details).

Given a time series xt, t = 1, 2 . . . , T , which is a realization of the stochastic process Xt, an unbiased
estimator of ν2

X(τj) is

ν̂2
X(τj) ≡

1
Mj

T−1∑
t=Lj−1

Ŵ 2
X,j,t, (2.5)

where Ŵ 2
j,t are the MODWT coefficients associated with the time series xt and Mj = N−Lj +1 is the number

of wavelet coefficients excluding the boundary coefficients that are affected by the circular assumption of the
wavelet filter.

Given two appropriate stochastic processes {Xt} and {Yt} with MODWT coefficients WXj,t and WY j,t,
respectively, the wavelet covariance is defined as

νXY (τj) ≡ cov{WXj,t,WY j,t}, (2.6)

and it gives the scale-based decomposition of the covariance between {Xt} and {Yt}. The wavelet covariance
can be standardized to yield the wavelet correlation

ρXY (τj) ≡
νXY (τj)

νX(τj)νY (τj)
. (2.7)

For time series xt and yt which are realizations of {Xt} and {Yt} respectively, replacing the wavelet
variances and covariance by their unbiased estimators, we get the estimated wavelet correlation

ρ̂XY (τj) ≡
ν̂XY (τj)

ν̂X(τj)ν̂Y (τj)
. (2.8)

In what follow, we will apply discriminant analysis to sets of multivariate time series via their wavelet
variances and wavelet correlations.

2.3. Remark

Assumptions of multivariate normality are made about the probability distribution of the group feature vari-
ables in linear and quadratic discriminant analysis. It can be shown that under the assumption of multivariate
normality, the sample linear and quadratic discriminant functions are asymptotically optimal in the presence
of homoscedasticity and heteroscedasticity, respectively (see [11]) .
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Table 1
Maximum allowable number of scales for T = 2J .

Wavelet filter DB2 DB4 DB6 DB8 SYM8 CF6
Number of Scales J J-1 J-2 J-2 J-2 J-2

In our application and simulation studies, the group feature variables of the time series, that are used
are MODWT wavelet variances and wavelet correlations. Serroukh et al. [12] have shown that MODWT
wavelet variance estimators are asymptotically normal for linear processes, while Serroukh and Walden [13]
have shown that for bivariate linear processes, the MODWT wavelet covariance estimators are asymptotically
normal. It follows that the MODWT wavelet correlation estimators are also asymptotically normal. While a
situation is which all variables under consideration are shown to exhibit univariate normality may help achieve
multivariate normality, it will not guarantee it. Thus, the group feature variables of the combined MODWT
wavelet variances and wavelet correlations may not necessarily be asymptotically multivariate normal.

In most real applications of discrimination analysis, the assumption of multivariate normality might not be
strictly met. Many authors have conducted studies on the robustness of the discriminant functions and have
found that some of them are fairly robust to departures from assumed models with little or no modification
(see e.g., [14], [15]. Furthermore since asymptotic normality of the MODWT wavelet variance and of the
MODWT wavelet covariance are based on the assumption that the underlying univariate and bivariate
processes are linear (see [12] and [13], this assumption of linearity will not necessarily be met for the ECG
data under consideration in Sections 3, 4 and 5. However, we will proceed with using the wavelet feature
variables in linear and quadratic discriminant analysis even though the multivariate normality assumption
may not be strictly satisfied by these feature variables.

3. Discriminant Analysis of ECG data

The data analyzed corresponds to the PTB Diagnostic ECG Database set available at the Physionet web-
site http://www.physionet.org/physiobank/database/ptbdb. The freely available data is a small subset of
the database used by cardioPATTERN - Telemedical ECG-Evaluation and Follow up that have a patented
procedure for ECG classification (see details in http://radib.dyndns.org).

In this application, we are interested in distinguishing between ECG signals of individuals with myocardial
infarction and those of healthy controls. The available dataset consists of 200 records of the conventional 12
leads (i, ii, iii, avr, avl, avf, v1, v2, v3, v4, v5, v6) for 148 patients with myocardial infarction and 52 healthy
controls.

For each record, we read the first 212 + 213 observations. We discard the first 212 observations since they
could have some exogenous anomalies. The remaining 213 = 8192 observations correspond to around eleven
heart beats. Figure 1 on page 6 and Figure 2 on page 7 present the 12-lead ECG signals for a patient with
myocardial infarction and for a healthy control, respectively. It is clear there are some difference between the
patterns of two type of signals.

Wavelet filters of lengths 2, 4, 6 and 8 of the Daubechies family (DB2, DB4, DB6, DB8), of length 8
from the Symmletts family (SYM8, and of length 6 from the Coiflets family (CF6) were used to generate the
MODWT coefficients, and hence the MODWT variances and correlations of the signal. For more details on
the wavelet filters refer to Chapter 4 of [10]. We used the stepwise implementation of [16] that selects the
relevant variables (in this case the variables being the wavelet variances and correlations from the various
scales) in order to minimize the misclassification error. We used the hold-out-one cross-validation technique
to evaluate the performance of our method.

First, we apply the proposed procedure to the 12-dimensional signal. Table 1 on page 5 shows the maximum
allowable number of scales for each of the filters for series length 2J (see [10] p. 136 for more details). This is
to ensure that the boundary coefficients which have an effect on the estimated scale by scale wavelet variance
and correlation coefficients are excluded. In this case J = 13.

Table 2 on page 8 shows the misclassification rates for patients with myocardial infarction, for healthy
controls and the overall misclassification rates using linear and quadratic discriminant analyses, with the
wavelet variances (var), wavelet variances and wavelet correlations (var-corr) and wavelet correlations (corr).
Table 2, also shows the results using the Kullback-Leibler discrimination information and the Chernoff

http://www.physionet.org/physiobank/database/ptbdb
http://radib.dyndns.org
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Fig 1. ECG of a patient with myocardial infarction.
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Fig 2. ECG of a healthy control.
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Table 2
Misclassification rates for stepwise discriminant analysis and for the Kullback-Leibler and the Chernoff information measures

applied to 12-lead ECG signals.

Myocardial infarction Healthy controls Overall
Linear DB2 var 12.80 13.50 13.00

varcor 4.70 5.80 5.00
cor 4.70 5.80 5.00

DB4 var 12.20 15.40 13.00
varcor 4.10 3.80 4.00

cor 3.40 7.70 4.50
DB6 var 13.50 11.50 13.00

varcor 5.40 7.70 6.00
cor 6.10 7.10 6.50

DB8 var 14.90 14.90 13.50
varcor 5.40 5.40 5.80

cor 6.10 6.10 5.80
SYM8 var 14.90 14.90 13.50

varcor 5.40 5.40 5.80
cor 6.10 6.10 5.80

CF6 var 13.50 13.50 11.50
varcor 4.10 4.10 3.80

cor 5.40 5.40 9.60
Quadratic DB2 var 14.20 26.90 17.50

varcor 2.00 23.10 7.50
cor 6.10 11.50 7.50

DB4 var 10.80 26.90 15.00
varcor 3.40 28.80 10.00

cor 4.10 26.90 10.00
DB6 var 13.50 23.10 16.00

varcor 4.10 23.10 9.00
cor 4.10 30.80 11.00

DB8 var 12.20 25.00 15.50
varcor 4.10 19.20 8.00

cor 1.40 32.70 11.50
SYM8 var 12.50 25.00 15.50

varcor 4.10 19.20 8.00
cor 4.10 32.70 11.50

CF6 var 13.50 23.10 16.00
varcor 4.70 26.90 10.50

cor 3.40 34.60 11.50
Kullback–Leibler 9.60 43.90 35.00

Chernoff 1.90 93.90 70.00

information measures. These measures have been described in detail by Kakizawa et al. [8] and by Shumway
and Stoffer [17].

The best results were obtained by our approach when the wavelet variances and correlations were both the
input variables. When only wavelet variances were the input variables, the misclassification rates were much
higher. When only wavelet correlations were the input variables, in a few cases the misclassification rates
were similar to, or sometimes smaller than when both wavelet variance and correlations were input together.
It is clear that the wavelet correlations provide useful information about the relationships between the leads
of each ECG signal and hence make an important contribution to distinguishing between the patterns of
ECG signals of individuals with myocardial infarction, and those of healthy controls.

Regarding the overall classification rates, the linear procedure generally outperformed the quadratic pro-
cedure. Only in few cases does the quadratic procedure outperform the linear procedure when classifying
myocardial infarction ECGs. In general, the error rates were fairly similar for the different wavelet filters.
All wavelet-based discriminant procedures outperformed the Kullback-Leibler information and Chernoff in-
formation procedures. For Kullback-Leibler information and Chernoff information procedures, we consider
different values for the bandwidth used to estimate the spectral densities. The considered bandwidths were
in the range [0.001, 0.01] that corresponds to from 9 to 81 contiguous fundamental frequencies that are close
to the frequency of interest (see [17] p. 197 for more details).

These classification results imply sensitivities of 94.6-95.9% (95.3-98.0%) and specificities of 92.3-96.2%
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Table 3
Misclassification rates for stepwise discriminant analysis and for the Kullback-Leibler and the Chernoff information measures

applied to 3-factor ECG signals.

Myocardial infarction Healthy controls Overall
Linear DB2 var 18.20 23.10 19.50

varcor 18.20 21.20 19.00
cor 28.40 28.80 28.50

DB4 var 19.60 19.20 19.50
varcor 14.90 19.20 16.00

cor 24.30 28.80 25.50
DB6 var 23.00 21.20 22.50

varcor 16.20 21.20 17.50
cor 25.70 25.00 25.00

DB8 var 22.30 22.30 21.20
varcor 16.20 16.20 17.30

cor 27.00 27.00 30.80
SYM8 var 22.30 22.30 21.20

varcor 16.20 16.20 17.30
cor 27.00 27.00 30.80

CF6 var 24.30 24.30 21.20
varcor 14.20 14.20 17.30

cor 24.30 24.30 26.90
Quadratic DB2 var 9.50 50.00 20.00

varcor 22.30 25.00 23.00
cor 13.50 59.60 25.50

DB4 var 18.20 30.80 21.50
varcor 7.40 42.30 16.50

cor 9.50 55.80 21.50
DB6 var 14.20 42.30 21.50

varcor 6.10 51.90 18.00
cor 10.10 50.00 20.50

DB8 var 16.20 40.40 22.50
varcor 7.40 59.60 21.00

cor 9.50 57.70 22.00
SYM8 var 16.20 40.40 22.50

varcor 7.40 59.60 21.00
cor 9.50 57.70 22.00

CF6 var 14.90 46.20 23.00
varcor 8.80 46.20 18.50

cor 12.20 53.80 23.00
Kullback–Leibler 17.30 62.80 48.00

Chernoff 5.70 87.70 63.50

(73.1-80.8%) when using the linear (quadratic) procedure with wavelets variances and correlations together.
The procedures based on Kullback-Leibler information and Chernoff information have good sensitivities (90.4
and 98.1, respectively) but very poor specificities (56.1 and 6.1, respectively). The classification of a new signal
took, using a wavelet based procedure, around five seconds.

Second, it order to consider a low dimensional signal and to reduce the computational time, we performed
a dynamic factor analysis and we extracted the first three common factors for each ECG. Then, the proposed
procedure was applied to the 3-dimensional signals formed by the three extracted common factors.

Table 3 on page 9 shows the misclassification rates using linear and quadratic discriminant analyses,
respectively, with the wavelet variances, wavelet variances and correlation and wavelet correlations. This table
also shows the results using the Kullback-Leibler discrimination information and the Chernoff information
measure. In general, the results were better when we combined wavelets variances and wavelets correlations.
In this case, the linear procedure is clearly superior to the quadratic procedure. In fact, in some cases, the
quadratic procedure produces poor results.

While the classification of a new signal takes less than one second, i.e., the computational time was
considerably reduced, it is clear that the overall misclassification rates for the 3-factor ECG signals were not
as good when using the 12-dimensional signal. Reducing the 12-lead signals to 3-factor signals appears to result
in the loss of useful information. The classification results for the 3-dimensional signals imply sensitivities of
81.8-85.8% and specificities of 78.8-82.7% when using linear procedure with wavelet variances and correlation
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Table 4
Parameters of the synthetic ECG model.

Index(i) 1 2 3 4 5 6 7 8 9 10 11
αx

i (mV) 0.03 0.08 -0.13 0.85 1.11 0.75 0.06 0.10 0.17 0.39 0.03
bx
i (rad) 0.09 0.11 0.05 0.04 0.03 0.03 0.04 0.60 0.30 0.18 0.50

θx
i (rad) -1.09 -0.83 -0.19 -0.07 0.00 0.06 0.22 1.20 1.42 1.68 2.90

αy
i (mV) 0.04 0.02 -0.02 0.32 0.51 -0.32 0.04 0.08 0.01

by
i (rad) 0.07 0.07 0.04 0.06 0.04 0.06 0.45 0.30 0.50

θy
i (rad) -1.10 -0.90 -0.76 -0.11 -0.01 0.07 0.80 1.58 2.90

αz
i (mV) -0.03 -0.14 -0.04 0.05 -0.40 0.46 -0.12 -0.20 -0.35 -0.04

bz
i (rad) 0.03 0.12 0.04 0.40 0.05 0.05 0.80 0.40 0.20 0.40

θz
i (rad) -1.10 -0.93 -0.70 -0.40 -0.15 0.10 1.05 1.25 1.55 2.80

together. Again, the procedures based on Kullback-Leibler information and Chernoff information have good
sensitivities (82.7% and 94.3%, respectively) but very poor specificities (37.2% and 12.3%, respectively).

The cardioPATTERN procedure, using a database of 8500 ECGs from 3781 patients with different cardiac
diseases, and 4719 normal persons, obtained a sensitivity of 72% and a specificity of 80% when classifying
myocardial infarction (http://radib.dyndns.org/ekg/fverfahren 9 1e.html). Although this database as well as
those used by [4], [3], [2] and [1] are not comparable with the PTB database, we can use their sensitivity
and specificity results as reference values. Clearly, the results obtained with our procedure with the 12-lead
ECG signals are quite favourable. Furthermore, given that for most of the time we achieved our best results
when both wavelet variances and correlations were input together in the discriminant procedures, it is clearly
an indication that the relationships between the components of the multi-lead ECG signals provide useful
information for classification.

4. Discriminant Analysis of Synthetic ECG data

In this section, we evaluate the performance of the discriminant analysis with the wavelet features using
synthetically generated ECG data. We use the generator available at the Open-Source Electrophysiological
Toolbox (http://www.oset.ir/) that implements the dynamic model developed by McSharry et al. [18] and
extended to multichannel ECG by Sameni et al. [19] and Clifford et al. [20]. The model is a three-dimensional
formulation of single dipole of the heart:

θ̇ = ω
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∑

i
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i ω
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i
)2 ∆θx

i exp
[
−(∆θx

i )2

(bx
i
)2
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i
)2
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(by
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∑
i

αz
i ω
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i
)2 ∆θz

i exp
[
−(∆θz

i )2

(bz
i
)2

]
,

Figure 3 on page 11 shows a three lead ECG generated by this procedure.
In order to generate two different population using this procedure, we generate a sample of random ECG

signals with the parameters in Table 4 and another sample using the same parameters with the exceptions
of ax

10 = 0.39 ∗ λ, ay
8 = 0.08 ∗ λ and az

9 ∗ λ with λ > 1.
Figure 4 on page 12 illustrates the differences in the two generated signals using λ = 1 and λ ∈

{1.25, 1.5, 1.75, 2}. The signals generated with λ > 1 show a hyperacute T wave which is the first manifesta-
tion of acute myocardial infarction. For each population, we generate 100 ECG of length T = 212 = 4096 and
we apply the different discriminant procedures with the wavelet features and the Kullback-Leibler discrimina-
tion information and the Chernoff information procedures. As in the previous section, for the wavelet-based
procedures we used wavelet filters from the Daubechies family (DB2, DB4, DB6, DB8), from the Symmletts
family (SYM8) and from the Coiflets family (CF6) to generate the MODWT coefficients, and hence the
MODWT variances and correlations.

Refer to Table 1 on page 5 for the maximum allowable number of scales for each of the filters for series
of lengths T = 212. As before we used the stepwise implementation of [16]. One hundred simulations were
carried out each time and an average overall misclassification rate was determined.

http://radib.dyndns.org/ekg/fverfahrenprotect global let unhbox voidb@x kern .06emvbox {hrule width.3em}9protect global let unhbox voidb@x kern .06emvbox {hrule width.3em}1e.html
http://www.oset.ir/
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Fig 3. Synthetic ECG signals.
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Fig 4. Single beat of a synthetic ECG signals: Normal and Acute Myocardial Infarction.
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Table 5
Overall average misclassification rates for stepwise discriminant analysis and for the Kullback-Leibler and the Chernoff

information measures applied to synthetic ECG signals.

λ=1.25 λ=1.50 λ=1.75 λ=2.00
Linear DB2 var 25.66 8.42 2.61 0.66

varcor 23.97 8.62 2.98 0.70
cor 38.12 27.72 20.85 15.46

DB4 var 23.76 7.05 1.86 0.37
varcor 22.15 6.65 1.78 0.39

cor 38.80 28.47 22.15 16.82
DB6 var 23.71 7.00 1.66 0.39

varcor 21.20 6.02 1.36 0.35
cor 39.91 29.20 22.92 17.45

DB8 var 23.79 6.95 1.67 0.39
varcor 20.78 5.81 1.44 0.33

cor 39.93 29.53 22.92 17.72
SYM8 var 23.79 6.95 1.67 0.39

varcor 20.78 5.81 1.44 0.33
cor 39.93 29.53 22.92 17.72

CF6 var 23.94 7.00 1.77 0.43
varcor 22.16 6.52 1.76 0.40

cor 39.92 28.79 22.51 17.09
Quadratic DB2 var 35.23 13.41 4.64 1.13

varcor 31.03 12.00 3.91 1.06
cor 43.68 31.60 23.19 15.67

DB4 var 33.32 12.03 3.51 0.74
varcor 29.05 9.63 2.52 0.54

cor 44.05 32.90 24.95 16.95
DB6 var 32.96 11.86 3.23 0.73

varcor 28.39 8.62 2.13 0.47
cor 44.64 33.61 25.49 18.49

DB8 var 32.97 11.66 3.13 0.65
varcor 27.73 8.39 2.23 0.50

cor 44.50 33.75 26.09 19.05
SYM8 var 32.97 11.66 3.13 0.65

varcor 27.73 8.39 2.23 0.50
cor 44.50 33.75 26.09 19.05

CF6 var 33.67 12.16 3.31 0.75
varcor 29.48 9.62 2.57 0.53

cor 44.69 33.54 25.26 17.08
Kullback–Leibler 46.47 39.12 33.88 27.94

Chernoff 47.41 41.09 36.35 30.98

In Table 5 on page 13 we show the average misclassification rates for the synthetic ECG signals using
linear and quadratic discriminant analyses, respectively, with the wavelet variances (var), wavelet variances
and wavelet correlations (var-corr) and wavelet correlations (corr) and also using the Kullback-Leibler dis-
crimination information and the Chernoff information measures. From this table, we observe that the best
results were obtained by using the wavelet variances and correlations together. In this case, when only wavelet
correlations were the input variables, the misclassification rates were much higher. However, wavelet correla-
tions provide useful information to discriminate since the combined results are better than results using only
wavelet variances. All wavelet based discriminant procedures outperformed the Kullback-Leibler information
and Chernoff information procedures. For Kullback-Leibler information and Chernoff information procedures,
we consider different values for the bandwidth used to estimate the spectral densities. The considered band-
widths were in the range [0.001, 0.01] that corresponds to from 5 to 41 contiguous fundamental frequencies
that are close to the frequency of interest (see [17] p. 197 for more details).

In Figure 5 on page 14, we present the boxplots of the misclassification rate estimates for λ = 1.25 and 1.5
which are the most challenging scenarios. We present the results for linear and quadratic methods using the
wavelet variances and correlations together. The figure illustrates the stable behavior of the proposed methods
across the different wavelet filters. Also, linear procedures seems preferable to quadratic procedures. Kullback-
Leibler information and Chernoff information procedures are outperformed by wavelet based procedures. As
expected, Table 5 on page 13 and Figure5 on page 14 show that all methods improve when λ increases.



E.A. Maharaj and A.M. Alonso/Discriminant analysis of multivariate time series 14

DB2 DB4 DB6 DB8 SYM8 CF6 KL CH
0

0.1

0.2

0.3

0.4

0.5

0.60.6

DB2 DB4 DB6 DB8 SYM8 CF6 KL CH
0

0.1

0.2

0.3

0.4

0.5

0.60.6

λ = 1.25

λ = 1.50

Fig 5. Boxplots with the misclassification rates of the simulation with synthetic ECG signals.
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5. Other Simulation Studies

In order to evaluate the performance of the use of discriminant analysis with the wavelet features when
applied to multivariate time series with patterns different from that of ECG signals, we conducted two sets
of simulation studies in which we used the stepwise implementation of Strauss [16] in linear and quadratic
discriminant procedures. For the first study, 50 pairs of bivariate time series of lengths T = 29 = 512 and
T = 211 = 2048 were generated from each of a vector autoregressive model of order one , VAR(1),

Xt = ΦXt−1 + εt,1, (5.1)

where Φ =
[

0.5 0.1
0.7 0.5

]
and from a vector autoregressive moving average model, VARMA(1,1),

Xt = ΦXt−1 + Θεt−1 + εt,2, (5.2)

where Φ =
[

0.5 0.1
0.7 0.5

]
and Θ =

[
−0.2 0.1
0.3 0.1

]
.

The noises εt,j with j = 1 and 2 are bivariate N(0,Σj). We considered three noise structures in generating
the bivariate time series, viz.,

1: Σ1 = Σ2 =
[

1 0
0 1

]
.

2: Σ1 = Σ2

[
1 0.5

0.5 1

]
.

3: Σ1 =
[

1 0.5
0.5 1

]
and Σ2 =

[
1 0.75

0.75 1

]
.

As in the previous two sections, wavelet filters from the Daubechies family (DB2, DB4, DB6, DB8), from
the Symmletts family (SYM8) and from the Coiflets family (CF6) were used to generate the MODWT
coefficients, and hence the MODWT variances and correlations. Refer to Table 1 for the maximum allowable
number of scales for each of the filters for series of lengths T = 29 = 512 and T = 211 = 2048.

We considered the three scenarios for input variables for each time series into the stepwise discriminant
analysis procedure in order to select the optimal number of variables, which would produce the smallest
overall error rate in the hold-out-one cross-validation procedure for discriminating between the two sets of
bivariate time series. The total number of input variables for the first scenario were wavelet variances only;
for the second, wavelet variances and scale by scale correlations; for the third scenario only the wavelet
correlations. One-hundred simulations were carried out each time and an average overall misclassification
rate was determined.

For the second simulation study, the same procedures as for the first simulation study were carried out,
except that we introduced non-stationarity in the variance in the VAR and VARMA processes from which
the time series were generated. This was done by multiplying each component of each bivariate time series
by an exponential function, viz.,

Yt = Dt ×Xt, (5.3)

where

Dt = exp
−(t− 5002)

2× 2002 . (5.4)

Figure 6 on page 16 and Figure 7 on page 16 show single realizations of the bivariate time series generated
with the third noise structure from each study. While, at a glance, there does not appear to be much difference
between the overall patterns of the time series generated from the VAR(1) and VARMA(1,1) processes,
differences over specific time period can be observed.

Table 6 on page 17 and Table 7 on page 18 show the average misclassification rates using linear and
quadratic discriminant analyses for T = 512 and T = 2048 respectively, with the wavelet variances (var),
wavelet variances and wavelet correlations (var-corr) and wavelet correlations (corr) and also using the
Kullback-Leibler discrimination information and the Chernoff information measures.
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Fig 6. Components of a mean and variance stationary bivariate series.
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Table 6
Overall average misclassification rates for stepwise discriminant analysis and for the Kullback-Leibler and the Chernoff

information measures applied to bivariate stationary time series: T=512 .

Wavelet Filter Feature Stationary Non-stationary
Noise 1 Noise 2 Noise 3 Noise 1 Noise 2 Noise 3

Linear DB2 var 2.08 3.69 0.43 8.34 9.73 2.71
varcor 0.08 0.02 0.00 1.24 0.54 0.24

cor 0.58 0.10 0.15 3.81 1.35 1.49
DB4 var 4.13 6.56 0.80 13.28 14.89 4.09

varcor 0.85 0.23 0.17 4.64 2.50 1.31
cor 0.96 0.34 0.58 5.81 2.14 2.16

DB6 var 2.03 3.64 0.53 8.14 10.00 3.23
varcor 0.09 0.02 0.00 1.41 0.60 0.25

cor 0.58 0.07 0.09 3.70 1.34 1.03
DB8 var 3.34 5.60 0.59 11.57 13.79 4.27

varcor 0.58 0.17 0.10 4.20 2.24 1.01
cor 0.93 0.23 0.27 5.07 1.93 1.38

SYM8 var 1.94 3.67 0.52 7.70 10.03 3.24
varcor 0.10 0.03 0.00 1.25 0.56 0.23

cor 0.57 0.08 0.10 3.70 1.41 0.98
CF6 var 2.60 4.93 0.47 10.32 12.95 3.70

varcor 0.27 0.10 0.02 3.04 1.64 0.51
cor 0.74 0.18 0.14 4.49 1.99 0.85

Quadratic DB2 var 2.02 3.82 0.59 7.90 10.31 3.44
varcor 0.10 0.03 0.00 1.25 0.62 0.23

cor 0.59 0.09 0.08 3.71 1.44 0.91
DB4 var 2.74 5.12 0.52 10.34 13.24 3.82

varcor 0.31 0.11 0.02 3.14 1.72 0.53
cor 0.75 0.20 0.14 4.43 2.03 0.85

DB6 var 2.02 3.82 0.59 7.90 10.31 3.44
varcor 0.10 0.03 0.00 1.25 0.62 0.23

cor 0.59 0.09 0.08 3.71 1.44 0.91
DB8 var 2.74 5.12 0.52 10.34 13.24 3.82

varcor 0.31 0.11 0.02 3.14 1.72 0.53
cor 0.75 0.20 0.14 4.43 2.03 0.85

SYM8 var 1.87 3.42 0.45 7.52 9.84 2.94
varcor 0.09 0.03 0.00 1.23 0.52 0.22

cor 0.53 0.07 0.11 3.62 1.37 1.07
CF6 var 2.52 4.66 0.44 10.06 12.36 3.43

varcor 0.24 0.08 0.03 2.91 1.53 0.52
cor 0.70 0.14 0.19 4.43 1.80 0.88

Kullback–Leibler 7.53 7.83 7.17 8.53 7.80 8.07
Chernoff 8.33 8.30 7.79 12.12 10.87 12.18
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Table 7
Overall average misclassification rates for stepwise discriminant analysis and for the Kullback-Leibler and the Chernoff

information measures applied to bivariate stationary time series: T=2048.

Wavelet Filter Feature Stationary Non-stationary
Noise 1 Noise 2 Noise 3 Noise 1 Noise 2 Noise 3

Linear DB2 var 0.01 0.01 0.00 2.60 3.79 0.54
varcor 0.00 0.00 0.00 0.06 0.01 0.01

cor 0.00 0.00 0.00 0.51 0.09 0.17
DB4 var 0.09 0.12 0.01 5.91 9.38 1.68

varcor 0.01 0.00 0.00 0.67 0.33 0.26
cor 0.00 0.01 0.02 1.76 0.80 1.19

DB6 var 0.02 0.01 0.00 2.27 3.78 0.56
varcor 0.00 0.00 0.00 0.09 0.00 0.01

cor 0.00 0.00 0.00 0.59 0.09 0.14
DB8 var 0.03 0.07 0.00 5.11 8.34 1.41

varcor 0.00 0.00 0.00 0.80 0.44 0.30
cor 0.00 0.00 0.01 1.53 0.59 0.78

SYM8 var 0.02 0.02 0.00 2.02 4.11 0.55
varcor 0.00 0.00 0.00 0.12 0.02 0.03

cor 0.00 0.00 0.00 0.63 0.10 0.12
CF6 var 0.04 0.06 0.00 4.05 7.07 0.97

varcor 0.00 0.00 0.00 0.97 0.36 0.23
cor 0.00 0.00 0.01 1.30 0.46 0.48

Quadratic DB2 var 0.02 0.03 0.00 2.05 4.23 0.57
varcor 0.00 0.00 0.00 0.12 0.03 0.02

cor 0.00 0.00 0.00 0.63 0.11 0.13
DB4 var 0.04 0.06 0.00 4.10 7.27 1.08

varcor 0.00 0.00 0.00 1.01 0.36 0.19
cor 0.00 0.00 0.01 1.35 0.46 0.51

DB6 var 0.02 0.03 0.00 2.05 4.23 0.57
varcor 0.00 0.00 0.00 0.12 0.03 0.02

cor 0.00 0.00 0.00 0.63 0.11 0.13
DB8 var 0.04 0.06 0.00 4.10 7.27 1.08

varcor 0.00 0.00 0.00 1.01 0.36 0.19
cor 0.00 0.00 0.01 1.35 0.46 0.51

SYM8 var 0.02 0.01 0.00 2.03 3.86 0.52
varcor 0.00 0.00 0.00 0.12 0.01 0.02

cor 0.00 0.00 0.00 0.62 0.07 0.13
CF6 var 0.03 0.05 0.00 4.04 6.74 0.88

varcor 0.00 0.00 0.00 0.83 0.30 0.19
cor 0.00 0.00 0.01 1.20 0.41 0.45

Kullback–Leibler 0.01 0.00 0.00 0.40 0.14 0.15
Chernoff 0.00 0.00 0.00 1.90 0.96 1.01
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For T = 512 for both linear and quadratic methods, for both stationary and variance non-stationary
series, and for all noise structures, across the different wavelet filters, the average misclassification rates were
always smallest when both the wavelet variances and correlations were input together as the discrimination
variables than when only wavelet variances or only wavelet correlations were the input variables. In particular,
for this scenario, the misclassification rates ranged between 0% and 0.85% with the linear discriminant for
stationary series and between 0.24% and 4.64% for variance non-stationary time series. With the quadratic
discriminant the misclassification rates ranged between 0% and 0.31% for stationary series and between
0.22% and 3.14% for variance non-stationary series. The misclassification rates were generally lower for the
third noise structure compared to the other noise structures for all combinations of linear and quadratic
discriminators and stationary and variance non-stationary series. All wavelet based discriminant procedures
clearly outperformed the Kullback-Leibler information and Chernoff information procedures.

For T = 2048 for stationary series with both linear and quadratic discriminators, across all noise structures,
all wavelet-based methods as well as the Kullback-Leibler information and Chernoff information procedures.
achieved 0% or close to 0% misclassification rates. On the other hand for non-stationary series amongst the
wavelet-based methods, the misclassification rates were always smallest when both the wavelet variances and
correlations were input together as the discrimination variables than when only wavelet variances or only
wavelet correlations were the input variables. In particular, across the three noise structure and different
wavelet filters, the misclassification rates ranged between 0.1% and 0.97% with the linear discriminator and
between 0.02% and 0.83% with the quadratic discriminator. The Kullback-Leibler information procedure
was quite competitive achieving misclassification rates of between 0.15% and 0.40% whereas the Chernoff
information procedure achieved higher misclassification rates of between 0.96% and 1.90%

In summary for both studies, the best results were generally achieved when both wavelet variances and
wavelet correlations were input together as the discriminating variables. As was also the case in the studies
in Sections 3 4, when only wavelet variances were the input variables, the overall misclassification rates
were generally higher. It is therefore clear that wavelet correlations provide useful information about the
interrelationship between the components of each multivariate time series for the purposes of classification
when combined with the wavelet correlations.

6. Concluding Remarks

We proposed a method of classifying multivariate ECG signals based on conventional discriminant analysis
with wavelet features, namely, wavelet variances and wavelet correlations as the discriminating variables. We
demonstrated in the application to ECG data, the study with synthetic ECG data, and in the other simulation
studies, that when both wavelet variances and correlations were used as the discriminating variables, this
method produces much better results that when only wavelet variances were used or in most cases when
only wavelet correlations were used. We also demonstrated that overall, our procedure outperforms the other
multivariate discriminant procedures proposed by Kakizawa et al. [8]. Using the results of other ECG data
classifying methods as reference values, it is clear our method displays very favourable performance. Hence, the
main contributions of this paper are i) the inclusion of the interrelationship features between components of
the ECG signals in the form of wavelet correlations provides useful information for the purposes of classifying
myocardial infarction; ii) the generally favourable performance of our approach when compared to the other
well-known methods for classifying multivariate time series.
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