Automated Method for Small-Animal PET Image Registration with Intrinsic Validation

Javier Pascau,¹ Juan Domingo Gispert,² Michael Michaelides,³,⁴,⁵ Panayotis K. Thanos,³,⁴,⁶ Nora D. Volkow,⁴ Juan José Vaquero,¹ Maria Luisa Soto-Montenegro,¹ Manuel Desco¹

¹Unidad de Medicina y Cirugía Experimental, Hospital General Universitario Gregorio Marañón, C/ Doctor Esquerdo 46, 28007, Madrid, Spain
²Institut d’Alta Tecnologia, CRC Corporació Sanitària, Parc de Recerca Biomèdica de Barcelona, Passeig Marítim, 25 29, 08003, Barcelona, Spain
³Behavioral Neuropharmacology & Neuroimaging Lab, Department of Medicine, Brookhaven National Laboratory, Building 490, Upton, NY 11973 5000, USA
⁴Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Department of Health and Human Services, National Institutes of Health, Park Building, 12420 Parklawn Drive, MSC 8115, Bethesda, MD 20892 8115, USA
⁵Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
⁶Departments of Psychology, Neuroscience and Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Abstract

Purpose: We propose and compare different registration approaches to align small-animal PET studies and a procedure to validate the results by means of objective registration consistency measurements.

Procedures: We have applied a registration algorithm based on information theory, using different approaches to mask the reference image. The registration consistency allows for the detection of incorrect registrations. This methodology has been evaluated on a test dataset (FDG-PET rat brain images).

Results: The results show that a multiresolution two-step registration approach based on the use of the whole image at the low resolution step, while masking the brain at the high resolution step, provides the best robustness (87.5% registration success) and highest accuracy (0.67-mm average).

Conclusions: The major advantages of our approach are minimal user interaction and automatic assessment of the registration error, avoiding visual inspection of the results, thus facilitating the accurate, objective, and rapid analysis of large groups of rodent PET images.

Key words: Image registration, Positron emission tomography (PET), Validation, Algorithm, Rats

Introduction

Statistical parametric methods (SPM) are commonly used for comparing positron emission tomography (PET) studies of different patients and groups [1]. This process can also be applied to small-animal studies in order to detect subtle changes between groups avoiding the need to manually segment regions of interest in every study. For this purpose, it is necessary to co-register all the images to a common space. High-dimensional warping techniques are used when registering human studies to PET templates [2, 3]. On the contrary, rigid body transformations, with no warping or scaling, are enough to register brains of rats,
given that their anatomy is quite similar within a certain weight range [4]. The use of previously created templates, a common practice on human studies, is of limited application when working with small animals since the experiments may be performed with different rat or mouse strains, weight range, or PET radiotracers. If the template does not correctly represent the population in terms of anatomy and expected intensity distribution, the alignment process may be less precise, as it has been described in humans [5]. This problem can be prevented by avoiding the use of any template and co-registering the dataset to one representative image selected as a reference [6]. The aligned dataset can then be analyzed using SPM methods.

Different registration algorithms have been proposed in the literature [7, 8], and some of them have been specifically applied to small-animal image alignment [4, 9–11]. Small-animal 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET studies do not show the same intensity distribution even for images acquired in similar conditions because the resulting image is influenced by several variables, which are not always completely under control, like blood glucose levels preceding the tracer injection or animal stress during FDG uptake (Fig. 1). In this situation, similarity measures based on information theory seem to be the most suitable cost functions for automatic image alignment [4], and the influence of undesired non-brain structures in the registration process can be minimized by masking the images. The main drawback of the alignment process as a whole is that no measurement of the registration error can be obtained. Provided that not all studies are always successfully registered with the automatic method, every aligned image pair must be visually checked and validated.

Fig. 1. Sagittal sections of two FDG-PET rat brain images (nose is up). Differences in contrast are observed: Both images show glucose metabolic activity in the brain, but image on the right displays a higher activity in the neck, while this area is almost cold in the image on the left. Slight animal condition differences during FDG uptake may be responsible for these differences.

In this paper, we proposed and compared registration approaches that differed in the use of a brain mask on the reference image and described a procedure to validate the registration results by means of objective consistency measurements [12]. To confirm the ability of registration consistency index to assess registration success and accuracy, we tested this methodology on a study group of FDG-PET rat brain images. The results showed that the proposed methodology permitted an intrinsic validation, avoiding the need to visually check the registration quality of every study.

Materials and Methods

Registration Algorithm

FDG PET images of rat brains usually show similar contrast in brain tissues but large differences in other regions surrounding the brain, as for instance the neck or the tongue. These differences can prevent the use of cost functions like summed of squared (or absolute) differences or correlation functions. For this reason, similarity measures based on information theory seem more adequate for addressing the problem; in this work, we have tested normalized mutual information [13] calculated according to the following formula:

\[
NMI = \frac{H(A) + H(B)}{H(A, B)},
\]

where \(H(A)\) and \(H(B)\) are the entropies of images A and B, and \(H(A, B)\) is the joint entropy of both images.

There are several implementation issues that become important when working with these kind of similarity measures in order to achieve a correct registration of the images. Our implementation details are the following:

Multiresolution strategy: The registration process consists of two steps performed at different resolutions, in which the reference image is sub sampled when creating the joint histogram. The sub sampling frequency in the final (high resolution) step must match the actual device resolution, which is approximately 1.7 mm for the PET scanner in our study. The reconstructed images will always have voxel sizes smaller than the actual device resolution, so the final step will not require sampling of all image pixels to match the described criteria. Since the images in our study have matrix sizes of \(128 \times 128 \times 63\) and voxel size of \(0.845\, \text{mm} \times 0.845\, \text{mm} \times 1.21\, \text{mm}\), the multiresolution scheme that we have used sub samples every \(4,4,2\) voxels in \([x,y,z]\) coordinates, for the first step (low resolution) and every \([2,2,1]\) in the last step (high resolution). Histogram interpolation: A joint histogram was used to estimate the joint and marginal entropies. Partial volume interpolation was applied when updating the histogram values because it smoothes the cost function as described in [14]. The correct choice of histogram bins is known to be related to the number of pixels available in the images. Taking into account the matrix sizes for small animal PET studies and the sub sampling factors...
used, it is not advisable to use the typical value of 256 bins for the joint histogram because in the worst case ([4,4,2] sub sampling) there would only be one pixel per histogram entry on average, producing local minima on the cost function [15]. On the other hand, a very low number of bins would eliminate the contrast differences of the original images preventing the correct estimation of the cost function. In an attempt to balance both needs, we selected 64 bins for the joint histogram estimation.

Image resampling: Interpolation artifacts are a well known source of problems when deriving information theory measures from the joint histogram. Previous works [16] have showed that if the images to be co registered have pixel grids that can be aligned, periodical local maxima appear in the cost function, making more difficult the optimization process. These artifacts can easily be avoided by resampling one of the images to a different voxel sizes [17]. We applied this resampling procedure to the reference image.

Optimization method: Powell optimization was used as this method is not the fastest but assures good convergence [18].

Reference image masking: As we have explained (Fig. 1), FDG PET animal studies show differences in image intensity distribution for structures outside the brain. This could drive the algorithm toward a solution that may not be optimum in terms of strict brain alignment. Since this intensity distribution can vary depending on the particular study, it seems adequate to mask the brain tissue in the reference image so that pixels outside the mask do not contribute to the cost function value. The mask is generated in a semi automatic fashion by an expert user, by means of an in house developed software that combines region growing techniques with some manually placed boundaries [19].

Masking Approaches Tested

The drawback of masking the reference image is that the algorithm convergence may decrease if there is a large transformation between the studies to be registered. That is because the small amount of pixels inside the mask that are used to evaluate the cost function cause a decrease of the algorithm capture range (the portion of the parameter space in which the algorithm is cost function). Hence, the algorithm capture range amount of pixels inside the mask that are used to evaluate the convergence may decrease if there is a large transformation outside the mask. Because of these contrast differences, the registration success of the whole image dataset may depend on the image selected as the reference. Typically, the registration results have to be visually inspected to detect failures, which can still be registered again with some manual interaction. To automate this validation process, we measure the registration consistency, following the idea initially proposed by Woods et al. [12]. This method was also used by Holden et al. [21] to compare similarity measures in serial MRI/MRI registration. It uses three images and their three pairwise registrations and compares one of the transformations with the composition of the other two. In the case of any imperfect registration, the direct transformation will not be equivalent to the composed one, and this difference will serve as an estimate of the registration error.

The registration of the whole dataset to a single reference does not provide enough redundancy to calculate registration consistency, so we selected two reference images and made use of a known transformation between them to assess the quality of the registration for every image in the dataset. An expert user selected two images from the dataset to serve as the references, avoiding images with poor contrast, animal movement, or low quality. These references, \(r_1 \) and \(r_2 \), were manually registered using six pairs of anatomical landmarks [22], and the average fiducial registration error (FRE), as defined in [23], was calculated. We call this reference transformation \(T_{r_1/r_2} \) and the associated matrix \(M_{r_1/r_2} \). Since this transformation is known to be correct, it will allow assigning the error calculated from the registration consistency for every image in the dataset to the automatic registrations.

The same user segmented the brain in both images, thus creating a binary mask used for the registration approaches M2 and M3, applying region growing techniques implemented in an in house developed software [19] as described in “Registration Algorithm”. Note that only the two reference images need to be segmented; all the other images in the dataset do not need to be processed.

Every image \(I_j \) in the dataset was registered to every reference image, obtaining transformations \(T_{r_1/I_j} \) and \(T_{r_2/I_j} \) and the associated homogeneous matrices \(M_{r_1/I_j} \) and \(M_{r_2/I_j} \). This process was repeated for every registration approach M1, M2, and M3. In the absence of registration error, being \(x \) the composition of transformations, \(T_{r_1/I_j} \times T_{r_2/I_j} \times T_{r_2/I_j} \) should correspond to the identity transformation. Thus, the difference between \(M_{r_1/I_j} \times M_{r_2/I_j} \) and the identity matrix \(I \) estimates the registration error:

\[
\Delta M_j = M_{r_1/I_j} \times M_{r_2/I_j} \times M_{r_2/I_j} - I.
\]

In an attempt to represent this error with a single number, we selected a bounding box containing our volume of interest (the brain) and calculated the average error in the eight vertices of this box \((p(i) \times [x,y,z]) \) \(i = 1...N, N = 8 \):

\[
RCI_j = 1/N \sum_{i=1,N} ||\Delta M_j \times p(i)||.
\]
This registration consistency index (RCI) measures the registration consistency for image I_j and reference images r_1 and r_2. To classify the registration of image I_j with both references as either successful or not, the actual resolution of the system (scanner plus reconstruction algorithm) is used as a threshold, assuming that the registration accuracy should be smaller than that value. Consequently, if RCI_j is lower than the actual system resolution, the registration is classified as successful, and when it is larger, the registration result is labeled as failure.

Test Dataset
Twenty male adult Zucker rats (7 months old) were used to evaluate the methodology described in the preceding sections. This dataset was part of a study on obesity and food restriction [24]. Each animal was scanned twice at two different experimental conditions. All animals were placed in a head holder (David Kopf Instruments; CA, USA) in a prone position on the bed of the scanner, but stereotaxic measurements were not taken into account. Scanning time was 80 min, with a 40 min FDG uptake (~0.8 mCi). The small animal scanner was a Concorde microPET R4, and all images were reconstructed using the OSEM3D MAP algorithm [25] provided by the manufacturer that claims for an approximate resolution of 1.7 mm [26]. Reconstructed images had a matrix size of $128 \times 128 \times 63$ and a voxel size of $0.845 \text{ mm} \times 0.845 \text{ mm} \times 1.21 \text{ mm}$.

Two reference images (r_1 and r_2) were selected; the brain was segmented on both reference images with the semi automatic procedure previously described and were manually co-registered using anatomical landmarks. All images from the dataset were then automatically registered to both references, following the procedure described in previous sections. These automatic registrations were performed three times applying the M1, M2, and M3 masking schemes described in “Registration Algorithm”, and the RCI_j value was computed for every image and every scheme. Registration results with RCI_j lower than 1.7 mm (PET scanner actual resolution) were classified as successful, and failure otherwise.

The automatic validation process proposed depends on the manual co-registration of the reference images r_1 and r_2. In order to demonstrate the repeatability of this step, it was repeated by three different users independently, and average fiducial registration error was calculated for every co-registration.

Visual Validation
To confirm the ability of the registration consistency index to assess registration success and accuracy, every registered image pair (I_j registered with every reference and for every registration approach M1, M2, and M3) was visually checked by an expert who, depending on the registration quality in the brain tissue (which is the structure of interest), classified the registration as either successful or failure. These registration quality results were then combined, so for every image I_j, both registration results (with both reference images r_1 and r_2) had to be correct to classify the experiment as successful.

Results
Results from the different users who preformed the manual registration (transformation $T_{r_1 r_2}$) of both reference images are summarized in Table 1. Every user manually registered images r_1 and r_2 once. The users achieved similar registration parameters and FRE. This latter parameter provides an estimate of the manual registration accuracy. All users obtained an average FRE around 0.5 mm. Inter-user differences were below 0.5 mm in translations and 2° in rotations.

To quantify these differences with a single value, we used the registration consistency index, as defined in Eq. 3, but this time applied to inter-user comparisons, and we obtained values of 0.7602 mm for the User1–User2 comparison, 0.7003 mm for the User1–User3, and 0.6906 mm for the User2–User3. These figures are lower than half the actual system resolution (~1.7 mm) and indicate that inter-user variability for this manual step can be neglected. Parameters obtained by User1 were selected as reference transformation $T_{r_1 r_2}$. The average time needed for manual registration was 5 min.

Table 2 summarizes the registration results obtained with the image dataset for each of the automatic registration approaches (M1, M2, and M3). The number of successful and failed experiments, as classified by the expert (first column) and according to registration consistency (second column), are shown. The third column displays the average of the consistency error values for every row, as a measure of accuracy. Lower values correspond to better accuracy.

Figure 3 displays five cases after a successful registration with reference r_1 using M3 approach, showing how the brain tissue is correctly aligned in all the cases despite the different...
intensity distribution of structures outside the brain in every image.

The registration average time per case (registering a single image pair), including both multiresolution steps, was 8, 9, and 8 s, respectively, for methods M1, M2, and M3. These figures demonstrate the high speed of the process. The whole dataset (40 images) is registered to both references in a maximum of 12 min. The total time of registration and intrinsic validation includes image selection (5 min), brain segmentation (about 10 min), and manual registration (5 min) of both reference images. All the steps together take less than 35 min in our test dataset with 40 scans.

Discussion

Results are discussed for every registration approach.

- M1: The use of the whole image without any masking during the registration process produces a low success rate, the worst accuracy for the good registrations (1.06 mm), and a low agreement between visual and automatic methods for calculating registration quality. If the whole image is used to guide the registration process, structures outside the brain may become aligned instead of the brain itself, thus decreasing the registration accuracy in the brain tissue. When these wrong alignments are similar for both reference images, the registration consistency is good, but the visual validation shows an incorrect alignment in the brain tissue. For this reason, successful registration figures are different for both (visual and consistency based) validations. Because of this discrepancy, the accuracy figures for failed registrations (2.68 mm) may not indicate low error, but they can be related to both references producing similar incorrect alignments.

- M2: The approach that masks the reference image at both steps of the registration process has the lowest success rate. This result is consistent with the problem described in the “Materials and Methods” section: The use of a brain mask makes the registration algorithm less stable, and consequently in some cases, it converges to an incorrect transformation. In contrast, those results classified as good show high accuracy because the algorithm ignores any structures outside the brain. Visual and automatic quality checking are in good agreement with this approach; this indicates that when the algorithm works, it converges to the optimum solution.

- M3: This approach combines the advantages of M1 and M2. The use of the whole image at the low resolution step provides robustness, while masking the brain at the high resolution step assures accuracy. The results show the highest success rate (87.5% successful registrations) with similar accuracy than M2. The agreement between both procedures for checking the successful registrations is also good.

The results show that the M1 registration approach converges to incorrect results in most cases. Structures outside the brain can be aligned in a similar incorrect way for both reference images because the brain is not being masked. For this reason, the value of RCI calculated in this approach is not correctly indicating the registration quality because in some cases, a low RCI corresponds to incorrect registrations. M2 is accurate inside the brain tissue but has a low success rate. Finally, M3 combines a rough alignment from the low resolution step with a precise registration in the brain tissue during the last step. Despite the different average consistency of approaches M2 and M3, we cannot conclude that M2 is a more accurate approach than M3 because of the low success rate when using M2.

Although M3 appeared as the best approach for registering FDG-PET rat brain images, even in this case, there were still five registration failures automatically and correctly identified by RCI. These images were manually pre-aligned and registered again, obtaining a good registration (according to visual checking) in all the five cases.

Other authors have registered PET images of the rat brain from different specimens but, to our knowledge, the proposed validation has never been applied to these kind of studies: In [4], the authors validated the results using visual assessment only, and in [27], they estimated the accuracy by applying known misalignments to registered scans and measuring the error for the recovered transformation. This latter method was in fact computing the robustness of the registration algorithm to the applied misalignments, but not the accuracy itself, because it first registers the datasets with the algorithm they propose and then tries to recover this solution after a certain misalignment. This evaluation assumes that the first registration is correct but does not measure its accuracy. The validation procedure proposed in the present study has showed that, when using the M3 approach, the accuracy measured using registration consistency is a good estimate of registration quality. This

| Translations (Tx, Ty, Tz) in mm and rotations (Rx, Ry, Rz) in degrees. FRE: average fiducial registration error |
|---|---|---|---|---|---|---|---|
| User1 | −1.479 | −0.110 | −4.127 | 0.008 | 1.583 | 0.009 | 0.420 |
| User2 | −1.119 | −0.561 | −4.130 | −0.187 | −0.208 | −1.150 | 0.498 |
| User3 | −1.225 | −0.370 | −4.439 | −1.808 | 1.127 | −0.292 | 0.411 |
validation should be used when aligning small animal image datasets since it only requires the user to select two reference images and to segment and manually co-register them. As a result, the procedure provides the registered dataset as well as an estimate of the registration quality for every image. Our results are limited to FDG-PET studies, widely used in small-animal imaging. Further validation would be necessary to apply the proposed methodology to other radiotracers.

Conclusion

This paper compares three different approaches for co-registering small-animal FDG-PET scans, making use of registration consistency for automatically validating the results. The major advantages of our approach over previous ones are (1) minimal user interaction (only the registration checking for the reference images and their brain mask segmentation) and (2) automatic assessment of the registration error for each study. We have shown that the best results, in terms of success rate and registration accuracy, were obtained by the approach that co-registered the whole images in low resolution in a first step and then masked the brain of the reference image during a second high resolution step. Our methodology makes it unnecessary to visually

Table 2. Registration results for the whole image dataset for each approach (M1, M2, and M3 as described in the text)

<table>
<thead>
<tr>
<th></th>
<th>Visual check</th>
<th>Consistency</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1: no mask used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>27</td>
<td>14</td>
<td>2.68</td>
</tr>
<tr>
<td>Success</td>
<td>13</td>
<td>26</td>
<td>1.06</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>M2: mask always used</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>29</td>
<td>29</td>
<td>18.07</td>
</tr>
<tr>
<td>Success</td>
<td>11</td>
<td>11</td>
<td>0.47</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>M3: mask used in 221 step</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failure</td>
<td>5</td>
<td>5</td>
<td>18.63</td>
</tr>
<tr>
<td>Success</td>
<td>35</td>
<td>35</td>
<td>0.67</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Number of experiments classified as success or failure according to visual inspection (first column) and using registration consistency (second column) are showed. The third column shows the average accuracy of every group of experiments (success or failure), estimated by registration consistency index.

Fig. 3. Sagittal, coronal, and trans-axial views of the reference image r_1 (first column) and five example cases of registered images using M3 approach. Axes represent the same position for all the registered images. Notice the good alignment in the brain tissue despite the different intensity distribution outside this structure.
inspect and check every registration result and provides an objective assessment of accuracy. This method will thus facilitate the accurate, objective, and rapid analysis of large groups of rodent PET images.

Acknowledgements. This work was supported by projects CIBER CB06/01/0079 (Ministerio de Sanidad y Consumo) and CDTEAM (CENIT program, Ministerio de Industria). Further support came from NIAAA Intramural Research Program (AA 11034 and AA07574, AA07611) and the US Department of Energy (DE-AC02-98CH10886).

References