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1. INTRODUCTION 

 Short-term load forecasting has long been a major issue of interest for the 

electricity industry. Traditionally, hourly forecasts with a lead time of one hour to seven 

days are required for the scheduling and control of power systems. From the perspective 

of the system operators and regulatory agencies, they are a primary input for the safe 

and reliable operation of the system. For producers, they are a basic tool for determining 

the optimal utilization of generators and power stations, as some facilities are more 

efficient than others. Since the rise of free electricity markets that followed the 

deregulation of the power industry in the nineties, more agents became interested in 

load forecasting. Nowadays there is a huge variety of market participants, bidding 

strategies are more and more complex, and a number of financial derivatives have been 

developed. Commercial success depends on the ability to submit competitive bids, and 

even marginal improvements in forecasting the load can lead to substantial increases in 

trading profits. Nevertheless, the fact that a widespread demand for load forecasts exists 

does not entail that all agents are concerned with the same issues, as each organization 

seeks particular aims, and making explicit the actual needs of information of the 

organization is a prerequisite to set up fully adequate forecasting devices. 

 This paper describes the forecasting experience at Red Eléctrica de España 

(REE), based on different modelling projects developed by the authors since 1988. Load 

forecasting is a central activity within REE, and the search for a forecasting system able 

to encompass all short-term load forecasting tasks has long been a priority. Forecasting 

success is important and a necessary condition for validating any model. But the models 

are also internal tools that have to adapt to the operational features of REE and play a 

leading role in the acquisition, sharing, and use of knowledge within the organization 
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(Schultz 1992, Nevis et al 1995, Cancelo and Espasa 2001). As such, they are at the end 

of a sequence that begins by identifying the needs of REE, the kind of information 

forecasts are asked to provide, critical origins and lead times, and how to implement 

forecasting tools to promote organizational learning, i.e., the capacity to improve 

performance based on experience. In this sense, models are not aimed to produce 

tentative estimates that should be further elaborated by the control operator in duty to 

derive the final predictions of the load. On the contrary, the forecasting procedures seek 

to capture the knowledge of the qualified staff of the organization, and hence their 

implication in developing and monitoring the models is a major necessary condition for 

their success. 

 The paper is organized as follows. Section 2 summarizes the stylized features of 

the load data for mainland Spain to give a general view of the forecasting problem. 

Section 3 reviews the foundations of the models that integrate REE's forecasting system. 

After a general introduction, we sketch their main characteristics, report some estimated 

effects, and compare REE's approach to other procedures that have been suggested in 

the literature. Section 4 evaluates forecasting performance. Section 5 concludes. 

 

 2. LOAD DATA IN MAINLAND SPAIN: STYLIZED FACTS 

 The main features of load series have been extensively reported in the literature: 

trend, superimposed levels of seasonality, short-term dynamics, special days, nonlinear 

effects of meteorological variables, possible nonlinear time dependence, etc., see for 

instance Espasa et al (1996) in a general context of daily series of economic activity. 

Such features are not independent, observed series displaying a great variety of profiles 

according to the relative importance of each underlying component and the way they 

interact. 
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 Centring on the particular traits of mainland Spain, it covers an area of almost 

500,000 square kilometres with more than 42 million people. Average daily electricity 

consumption in 2005 was 677 GWh. The winter peak was 851 GWh and the summer 

peak 786 GWh. Figures 1 to 5 highlight some of the major characteristics of the load 

series. Figure 1 plots the monthly series to obtain a clearer picture of the trend. It shows 

the original series and the trend computed with a Hodrick-Prescott filter with λ=14,400, 

the default value for monthly data. 

INSERT FIGURE 1 HERE 

 Figure 2 depicts daily consumption during 2005. Several intra-annual 

components can be observed: the weekly seasonal cycle, the weather-sensitive part of 

the load related to temperature effects in winter and in summer, and the influence of the 

vacation period in August. Annual seasonality is closely related to meteorological 

variables and vacation periods. Weekly and annual seasonalities are not independent, as, 

for instance, weekly seasonality is less pronounced in August than in any other month. 

INSERT FIGURE 2 HERE 

 Figure 3 focus on intraday patterns. A fortnight of hourly data is displayed in 

each panel, and the figure shows that daily periodic behaviour varies both with the day 

of the week and the time of the year. 

INSERT FIGURE 3 HERE 

 Figure 4 reports the alterations in the load when a special day occurs. The four 

panels refer to the same public holiday, October 12, on two consecutive years; panels A 

and B are for the holiday falling on a Tuesday, and panels C and D for the holiday on a 

Wednesday. It can be seen that the effects of special days are not independent of the 

weekly seasonal factor, and they can also be shown to be related to the annual 

seasonality. 
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INSERT FIGURE 4 HERE 

 Forecasting special days is a key issue for system operators, especially in Spain 

due to the idiosyncratic characteristics of the Spanish calendar. Most public holidays are 

observed on the same calendar date each year, but whenever a holiday falls on Sunday 

regional authorities can remove it to any other date of the year. The maximum number 

of public holidays is 14: 4 nationwide holidays, 2 local holidays, and the regional 

governments set the rest. Each region's authorities decide the number of holidays as 

long as the total does not exceed 14, and the dates that replace national holidays falling 

on Sunday. Regional governments tend to observe traditional Spanish holidays and in 

practice the resulting calendar is rather homogeneous across regions, yet there are some 

holidays that are region-specific and the total number of holidays within a given year 

may not be the same in all regions, or can vary in the same region from one year to the 

next. In 2006 there were 29 national or regional holidays, with very different effects on 

mainland Spain consumption of electricity. Local holidays in some big cities, notably 

Madrid (3.1 million people) and Barcelona (1.6 million), must be taken into account 

too, as they have perceptible effects on the total load. Special days also comprise long 

weekends arising from holidays that fall on Tuesday or Thursday / Friday and three 

vacation periods (August, Easter and Christmas). To sum up, special days and weekends 

represent from 33% to 45% of the days within a given year, depending on how strict the 

definition of a special day one considers. 

 Figure 5 focuses on the relation between consumption and maximum 

temperature for daily data during 2005; a fourth-order polynomial was fitted to give a 

tentative indication of its shape. The relation is U-shaped and (could be) asymmetric, as 

the left branch is more pronounced than the right wing. There is also some evidence of 

an exhaustion effect, especially for low temperatures. 
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INSERT FIGURE 5 HERE 

 

 3. REVIEW OF THE MODELS 

 3.1 The basic strategy 

 The forecasting system currently implemented in REE consists of one daily 

model to forecast the daily load up to ten days ahead, and 24 hourly models to compute 

hourly predictions for horizons up to three days. The daily model is aimed to produce 

forecasts for network outage planning, while the hourly models are used to derive 

forecasts for next-day hourly dispatch. 

 This combination of 1+24 models has proven to be the best approach according 

to REE's needs. Daily forecasts up to ten days ahead for outage planning could be 

obtained from the hourly models, by computing 24 hourly forecasts for each day and 

adding them up to get the daily total. This procedure, however, renders forecasts with 

too much uncertainty for lead times up to ten days ahead, while a direct prediction of 

the daily aggregate provides a more adequate anchor. In a second step, and in order to 

derive the hourly forecasts that are required to complete the final outage plan, hourly 

models are used to compute the shape of the load curve for each day, and the daily 

forecasts are interpolated according to the predicted load curves. 

 For horizons up to three days, in contrast, direct hourly forecasts are more 

accurate than interpolated daily figures. Although there is some controversy as to 

whether it is better to treat each hour as a different series (Ramanathan et al 1997, 

Cottet and Smith 2003) or to build a single model to derive the load profile (Smith 

2000, Taylor et al 2006), most authors prefer the first approach. REE's experience since 

1988 supports that view, as separate models can be easily specified in a very flexible 
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way to capture short-term dynamics and the effects of special days and meteorological 

variables at different times of day. 

 All the models share a common basic structure, related to the traditional 

decomposition of the observed load into four components: normal load, the weather 

sensitive part, special events and a random component (Schneider et al 1985, Hyde and 

Hodnett 1997, Chen et al 2001). They are given a common type of response functions 

with parameters that are allowed to vary across series. The full search for specification 

was carried out in building the daily model, as the stylized features of the load in the 

aggregated daily data are also present in the daily series corresponding to each hour. Let 

Ct denote electricity consumption at day t and assume that the model is additive in 

logarithms: 

)1(uCWEACSDspCln tttttt ++++=  

pt+st is the normal load, where pt denotes the trend and st (part of) the seasonal; CSDt is 

the contribution of special days; CWEAt is the contribution of meteorological variables; 

ut is a stationary disturbance that may display some short-term, transitory dynamics. In 

practice it is not easy to separate annual seasonality from the effect of weather variables, 

so in the daily model st consists basically of weekly seasonals. In fact, most annual 

seasonality can be explained by weather variables and by dummy variables that take 

account of vacation periods. 

 In the rest of Section 3.1 we give a rough, general sketch of the way each 

component is modelled. Next, some alternative approaches are reviewed in Section 3.2, 

where we also explain why we opted for the specification that follows, and report some 

estimated effects to give some insight on the dependence of the electricity consumption 

on special days and temperature. 

 Basic consumption BCt can be defined from (1) as: 
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)2(uspCWEACSDClnBCln ttttttt ++=−−=  

 It represents the load that would be observed if there were no further effects 

from special days or weather variables. Since these additional effects are the major 

disturbances that alter the observed load, BCt is rather smooth and can be assumed to 

follow, at least as an approximation, an ARIMA model: 

)3(a)L(BCln)L()L( tt θ=∆φ  

where φ(L) and θ(L) are polynomials in the lag operator L with all their roots outside 

the unit circle, ∆(L) is a polynomial with unit roots and at is a white noise process. 

Figures 1 and 2 suggest that a reasonable specification for ∆(L) is ∆∆7=(1-L)(1-L7), as 

the series display a local linear trend and a strong weekly seasonal pattern which is 

nondeterministic and is not explained by exogenous variables. If the stationary AR and 

MA polynomials are specified in a multiplicative form with three factors, a regular one 

on the operator L, a weekly seasonal on L7 and an annual seasonal on L365, the final 

expression of the ARIMA model for the basic consumption follows: 

)4(a)L()L()L(BCln)L()L()L( t
365

365
7

7t7
365

365
7

7 ΘΘθ=∆∆ΦΦφ  

 Once the basic load is defined, special days and weather effects are introduced 

by extending the model to include dummy and weather variables. Their effects on the 

load are dynamic and may depend on the day of the week and the time of the year. In 

the case of the dummies for special days, adding leads and lags is a parsimonious way 

of representing the effect on adjacent days, while the dynamic weather effects reflect 

that individuals adjust to changing weather conditions with some delay. The nonlinear 

relation between consumption and temperature is modelled by computing several 

degree-days transformations of the observed temperatures, which will be explained in 

detail in Section 3.2. The model includes other meteorological variables like cloudiness 

and the duration of sun light. Wind speed and relative humidity are known to affect the 
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load, but are not considered because no reliable forecasts are produced and therefore 

they provide no relevant information for load forecasting. 

 The joint contribution of special days and weather variables can be expressed as: 

)5(WEA)L(SD)L(CWEACSD
n

1j
t,ji

m

1i
t,iitt ∑∑

==

β+α=+  

where SD1,t, SD2,t, ..., SDm,t are m dummy variables that define the different classes of 

special days, WEA1,t, WEA2,t, ..., WEAn,t represent n transformations of the observed 

meteorological variables, and αi(L), βj(L), i=1,..,m, j=1,...,n, are lag polynomials. 

 To derive the final expression for the observed load, from (4) and (5) it follows 

that 

)6(a
)L()L()L(
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 The final specification of model (6) was derived by starting from an ARIMA 

model with dummy variables to capture the influence of special days; at this first stage, 

no effects of weather variables were considered. Next, the model was extended to 

include a basic response to temperature, and in subsequent versions this response was 

allowed to be more and more complex to capture the variety of effects that are reviewed 

in Section 3.2. Finally, other meteorological variables were tested to assess whether 

they actually improve the forecasting performance of the model, and the final response 

to weather conditions was derived. Search for specification centred on the daily series; 

once a final, satisfactory daily model was achieved, its parameters were reestimated for 

each hourly series to get the final hourly models. As a general result, it was found that 

the hourly models are not as complex as the daily model, because many meteorological 

effects are not significant for specific hours within the day. 
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 3.2 Description of the models 

 Basic load 

 Several procedures have been proposed to take account of the trend. Some 

studies get rid of it by taking short samples where the mean level of the load can be 

assumed to be constant (Smith, 2000). Others consider a variety of deterministic 

functions of time: linear (Pardo et al 2002), linear and reciprocal (Ramanathan et al, 

1997), quadratic (Cottet and Smith, 2003), etc. Deterministic seasonal components 

include dummy variables (Ramanathan et al 1997, Soares and Souza 2006) and time-

varying periodic splines (Harvey and Koopman, 1993). Methods for explaining short-

term time dependence comprise linear autoregressions (Pardo et al 2002, Cottet and 

Smith 2003), fractionally integrated processes (Soares and Souza, 2006), artificial 

neural networks (Lamedica et al 1996, Darbellay and Slama 2000, Chen et al 2001, 

Hippert et al 2005), double seasonal Holt-Winters exponential smoothing adjusted for 

error correlation (Taylor, 2003), etc. 

 Our proposal for the basic load is simple and yet highly effective. The two real, 

positive unit roots embedded in the ∆∆7 operator generate a local linear trend that is 

flexible enough to approximate a wide variety of situations, and a large sample can be 

used for estimating the model without needing to concern about the shape of the trend. 

Furthermore, it does not impose any constraint on the forecasts, so any changes in the 

underlying level are automatically accommodated in a natural way. 

 Weekly unit roots allow for the type of evolving weekly seasonality that is 

displayed in Figures 2 and 3. The Figures show that the weekly seasonal depends on the 

time of the year, and the seasonal unit roots within the ∆7 operator act like an adaptative 

mechanism that adjusts this week's pattern to accommodate the yearly variation that is 

already incorporated in the previous week observations. Besides, this approach does not 
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impose that the intraannual evolution of the weekly seasonality is the same year after 

year, as it would be the case if such interaction between seasonals were modelled by 

parametric functions of time. 

 Short-term time dependence is assumed to be generated by an ARMA process 

because it is more general than the residual autocorrelation adjustments used in 

Ramanathan et al (1997), Pardo et al (2002) or Taylor (2003), and can handle a wider 

variety of dynamic effects with less parameters. It is also preferred to artificial neural 

networks because there is no sound empirical evidence that the load data display the 

type of nonlinear behaviour driven by ANNs (Darbellay and Slama 2000, Hippert et al 

2001 and 2005, Taylor et al 2006). 

 Special days 

 Most applied studies separate normal and special days and build different 

models for each category (Ramanathan et al 1997, Darbellay and Slama 2000). This 

strategy is easy to implement for typical working days and weekends, but it is not so 

straightforward for public holidays, long weekends, vacation periods, etc. Public 

holidays may be smoothed (Taylor et al, 2006), treated as Sundays (Smith, 2000), or 

replaced by the load observed in a similar day in the week before (Hippert et al, 2005). 

The number and types of special days are usually specified on a priori grounds, 

although some authors have used pattern recognition analysis to classify day types 

empirically (Lamedica et al, 1996). 

 Within the single model approach the common practice is to use dummy 

variables to estimate the changes in the load due to special days. The number of total 

parameters varies across studies: one in Soares and Souza (2006), three in Pardo et al 

(2002), and six in Cottet and Smith (2003). REE's experience indicates that the required 

number is much higher, at least for mainland Spain. 
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 Some authors view this approach as if special days were treated as missing 

observations, and conclude that there is nothing to gain by introducing them explicitly 

in the model. That would be the case if a specific parameter were used for each non-

normal observation, but is no longer true if special days are grouped so that each 

estimated parameter refers to a category of special day and not to a single observation. 

Even in the extreme case that there is only one observation to estimate the impact of a 

given category of special day, this approach is useful as long as the estimated response 

is different enough from other estimates and the category is well defined, so the 

estimated impact can be used to forecasting any future event of the same characteristics. 

 Although a detailed presentation of REE's procedure to model special days goes 

well beyond the scope of this paper, we briefly review the case of public holidays to 

sketch the basic ideas. There are two classes of holidays, common holidays and special 

holidays. Common holidays include some national holidays and all regional and local 

holidays. Besides, there are three special holidays, all of them nationwide: January 6, 

May 1 and August 15. It was found that each special holiday has a specific and separate 

influence on the load, which is statistically different from the influence of any other 

special day. 

 To highlight the importance of allowing for different effects for each class of 

public holiday, Figure 6 displays the estimated decrease of the load on the day of the 

holiday. Although some particular coefficients could be restricted to take the same 

value, as a whole the response varies in magnitude and shape. The estimated standard 

deviation for each estimator is about 0.5%, and broadly speaking all the differences 

between estimated responses above 1% are statistically significant. 

INSERT FIGURE 6 HERE 
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 Temperature effects 

 Meteorological variables play a leading role in the model, especially 

temperature. In this brief review we focus on the response to the daily maximum 

temperature and assume for simplicity that the other weather variables induce no 

additional effects on the load. The daily maximum temperature for mainland Spain is 

computed as a weighted average of the maximum temperatures recorded between 6 

A.M. and 6 P.M. at ten observatories that represent different climatic regions; within a 

typical year it varies from a low of 8°C to a high of 34°C. 

 The estimated relation between load and temperature is highly complex for a 

number of reasons. On a priori grounds, the literature suggests that it is non-linear, U-

shaped as long as there is enough variation of temperatures in the sample (Engle et al, 

1986). The response is asymmetric, in the sense that a one-degree increase when the 

temperature is high and a one-degree decrease when the temperature is low need not 

have the same impact on the load (Valor et al, 2001). The relation differs for working 

and nonworking days, as heating and cooling systems equipment and operation are very 

different in workplaces and private residences (Smith, 2000); it also changes with the 

time of the year (Hyde and Hodnett, 1997). There is a dynamic effect, as the load at t 

does not depend solely on the temperature at t but also on the temperatures at the 

previous days (Lecomte and Warren, 1981). Exhaustion effects may appear because of 

the limited capacity of existing electricity appliances, so there is no further increase in 

electricity consumption when the temperature exceeds some saturation level (Henley 

and Peirson, 1997). 

 The particular shape of the response is specific for each set of data and issues 

like the degree of nonlinearity, the order of the dynamics, or the presence and location 

of the saturation levels, for instance, must be empirically determined. In what follows 
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we focus on the main characteristics of the estimated relation as it is currently used to 

forecasting the load. Further details on the modelling strategy can be found in Cancelo 

and Espasa (1996). 

 The response to the maximum temperature has two branches, one for 

temperatures below 20°C and one for temperatures higher than 24°C. The interval from 

20°C to 24°C is a comfort zone of moderate temperatures with no effect on electricity 

consumption. The general expression of the response to low temperatures is given by: 

)7(20HDDS14HDDS11HDDS9HDDS
5
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itit0t0t0 ∑

=
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where Tmaxt denotes the observed maximum temperature and HDDSxt is a heating 

degree-days variable with reference temperature x and saturation level 9°C. 

 Expression (7) captures the basic shape of the relation for temperatures below 

20°C, but it was found that its magnitude depends on the time of the year and, in some 

seasons, on the day of the week. Two seasons are distinguished, which will be referred 

to as summer and non-summer or rest of the year. In the non-summer season the 

response is different for normal weekdays and for weekends / special weekdays. In the 

summer season the impact does not depend on the day of the week and the response is 

much simpler: temperatures below 16°C are seldom observed and the dynamics go from 

t to t-2, so the only non-zero coefficients in (7) are π0, π1 and π2. 

 At the other branch of the curve, the response to high temperatures is given by 
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2
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where CDDS24t is a cooling degree-days variable with threshold 24°C and saturation 

level 33°C: 
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 Temperatures above 24°C only affect the load in the summer season, and there 

are no differences between normal weekdays and weekends / special days. The response 

increases linearly from 24°C up to 33°C and remains constant above that level. The load 

at t depends on the observed temperatures at t, t-1 and t-2. 

 To summarize the estimated effects, Figure 7 displays the long-run gain for each 

temperature value. The long-run gain for Tmax=Tmax* is defined as the percent 

increase of the daily load at day t assuming that the temperature keeps constant at 

Tmax* for all the relevant lags in equations (7) and (9), with respect to the consumption 

that would have been registered if the temperature had been within the interval 20°C to 

24°C. As an example, the gain for Tmax=26°C is equal to 2.48%: it means that if the 

observed maximum temperature in days t-2, t-1 and t is 26°C, the daily consumption at t 

will be 2.48% higher than if the temperature had been within the interval 20°C to 24°C 

during that period. 

INSERT FIGURE 7 HERE 

 

 4. FORECAST PERFORMANCE DURING 2006 

 In Section 3 it was stated that there are two types of forecasts of special interest 

to REE, several days ahead predictions for daily data, and one day ahead hourly 

forecasts. Accordingly, forecast accuracy should be assessed in terms of their errors, so 

in this section we discuss the performance of the models with regard to both activities 

throughout 2006. 
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 4.1 Prediction up to ten days ahead using the daily model 

 Daily forecasts are used to set up the weekly network outage plan. They are 

computed by the middle of the week, usually on Wednesday morning with information 

up to Tuesday, for the seven-day period beginning the following Saturday. The relevant 

lead times go from 4 to 10 days ahead, although there are some minor modifications as 

the origin of the forecast changes when a public holiday falls on Wednesday (four times 

in 2006). We ignore that for simplicity and act as if there were a one-to-one relation 

between the day of the week and the lead time. The forecasts are based on model 

parameters that were estimated using daily data from January 1, 1993 to March 31, 2005 

(4473 observations); no reestimation was performed during 2006. 

 Two types of errors are computed, historical errors and model errors. By 

historical errors we mean real time errors, i.e., the errors that were actually observed. 

They arise either because of model misspecification or as a consequence of the errors 

made in forecasting meteorological variables; temperature forecasts are highly accurate 

for horizons up to three or four days, but they deteriorate as the lead time goes further. 

Hence, and in order to assess the influence of meteorological predictions, the load 

forecasts were recalculated by inserting the true values of the meteorological variables 

in the model, and the resulting errors are referred to as strict model errors. 

 Box-plots of the observed absolute percentage errors (APE) for historical errors 

are displayed in Figure 8. Table 1 reports mean absolute percentage errors (MAPE) for 

historical errors and model errors. It is well known that each set of data deserves 

particular consideration, and no general indications on how effective a forecasting 

procedure is can be given unless an explicit comparative evaluation is carried out on the 

same time series. In spite of that, the real time performance of the model looks 

satisfactory, in the sense that the errors are within the bounds that secure the electricity 
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supply security and quality. In the full year the MAPEs of the historical errors are 

always below 2.9% even for lead times of ten days ahead. They increase with the lead 

time, as expected, although there is some evidence that the forecasts are slightly worse 

on Sundays. 

INSERT FIGURE 8 HERE 

INSERT TABLE 1 HERE 

 Using temperature predictions instead of true values has no perceptible effect on 

Saturday's forecasts. From Sunday on part of the actual error in forecasting the daily 

load is due to unsatisfactory temperature predictions, and that part increases with the 

lead time. The MAPEs of the model errors increase with the lead time too, but do not 

exceed 2% in any case. Model errors confirm that the forecasting performance is less 

satisfactory on Sunday than on weekdays. 

 To assess the performance by time of the year the database of errors was split in 

two parts, summer and rest-of-the-year. Table 1 indicates that the forecasts deteriorate 

during the summer months, especially in weekdays. Errors in forecasting temperature 

have to do with this deterioration for the longest horizons, but it basically reflects a 

weakness of the model and not of any of its inputs. The most important errors 

concentrate on August, a major period of vacation in mainland Spain: according to 

official estimates, the industrial production index fell by more than 30% in August 2005 

due to seasonal effects. The model includes some dummy variables to capture the 

effects of the vacation on the load, but for the moment the results have not been as 

satisfactory as for the rest of the year. 

 As for the type of day, it is not straightforward to compare the forecasting 

performance for weekdays that are normal days, weekdays that are special days and 

weekends, because of the changing lead time. In order to give some indication on this 



 19 

issue, we concentrated on weekdays and separated normal days (214 observations in the 

forecasting period) from special days (46 observations). For historical errors the MAPE 

is 2.34% for normal weekdays and 2.63% for special weekdays, while for model errors 

it is equal to 1.65% and 2.06%, respectively. 

 Decision makers are especially concerned about large errors, as they entail major 

rises in costs due either to unnecessary start-ups and energy purchases, or to very 

marginal scheduling that increases the likelihood of failures or equipment damage. 

There is not a general agreement about what a large error is, as each organization 

determines its own acceptable limit given its activities and aims. From the point of view 

of a utility, for instance, that limit heavily depends on its characteristics and operational 

features, but it also varies according to the day of the week and the hour of the day, the 

type of load (hourly, daily or peak), etc. 

 For simplicity, in this paper we assume a constant limit equal to 5%, so any error 

above that level in absolute value is termed a large error. This is a rough estimate that is 

often used at REE and has also been suggested as an adequate benchmark in the 

literature; see for instance Ranaweera et al (1997). Table 2 shows that in 2006 there 

were 32 large historical errors (out of 365, or 8.8%). The number of large errors 

increases with the lead time, as expected. Interestingly, most of them are caused by 

errors in predicting the weather variables: when model errors are considered there are 

only 7 large errors, less than 2% of the total. 

INSERT TABLE 2 HERE 

 4.2 Forecasting the hourly load for the next-day dispatch schedule 

 The hourly forecasts that determine the final dispatch schedule for the next day 

constitute the second set of critical forecasts for REE. Such forecasts are computed 

every day and the lead time is always one day. Contrary to the previous exercise, now 
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the lead time is constant and the origin changes along the week. The models are 

reestimated daily, so the forecast for day t is based on parameters that were estimated 

using data from January 1, 2001 to the last available observation. 

 Figure 9 displays box-plots of the historical hourly absolute percentage errors of 

the forecasts for the next day that were made public at REE's web page during 2006. 

They refer to 365 consecutive days with no exceptions, no corrections for public 

holidays, vacation periods, cold snaps, unexpected events, etc., other than those 

implemented in the models, and no supplementary subjective adjustments by the control 

operator or any other expert. Table 3 reports the related hourly mean absolute 

percentage errors. When no differences are made by day of the week the MAPE remains 

below 2% for all 24 hours. It takes its lowest values at late night hours and early in the 

morning, up to 8 A.M.; within this period it lies between 1.3% and 1.5%. Next it 

increases to about 1.6% in the first half of the business hours, from 10 A.M. to 3 P.M., 

and further to more than 1.7% from 4 P.M. to 8 P.M. A closer inspection of Table 3 

reveals that this pattern of intraday evolution is not stable as it changes according to the 

type of day. In the beginning of the week, from Sunday to Tuesday, the maximum 

MAPE is attained by 9 A.M.-10 A.M., while on Saturdays it is not observed until 7 

P.M. 

INSERT FIGURE 9 HERE 

INSERT TABLE 3 HERE 

 When the database of errors is split by day of the week it is found that the most 

difficult period to predict is Saturday afternoon (from 5 P.M. to 8 P.M.), followed by 

Sunday morning (from 9 A.M. to 11 A.M.) and Monday morning (from 10 A.M. to 12 

P.M.). Saturday afternoon behaves like a Sunday in some aspects and like a weekday in 

regard to commercial activities, especially retail trading, and that duality increases 
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forecast uncertainty to its maximum. In any case there are only 13 values of the MAPE 

higher than 2% (out of 168, or 7.7%), and none above 2.5%. 

 Table 4 reports MAPEs computed separately by time of the year and by type of 

day. Contrary to what was found in daily forecasting, the hourly models perform better 

in the summer season for almost all hours, although the difference is higher early in the 

morning. With regard to the types of day, there are differences in the magnitude of the 

errors among normal weekdays, weekends and special weekdays. For normal weekdays 

MAPEs vary from 1.14% at 7 A.M. to 1.64% at 6 P.M. The intraday evolution is rather 

similar in weekends, but now the MAPEs range from a low of 1.40% at 7 A.M. to a 

high of 2.15% at 7 P.M. Finally, for weekdays that are special days the MAPES go from 

1.39% at 4 A.M. to 2.90% at 5 P.M. 

INSERT TABLE 4 HERE 

 Table 5 details the number of large errors (above 5% in absolute value) by day 

of the week. The total number is 218 out of 8760, or 2.5%. Large errors are more likely 

to occur from 5 P.M. to 8 P.M. and on weekends: almost one third is within that four-

hour interval, and 44% are either on Sunday or Saturday. It should be noted, however, 

that the differences among the MAPEs reported in Table 3 are not due solely to these 

large observations, as the pattern of unpredictability remains roughly the same when the 

means are recalculated without considering the errors above 5%. 

INSERT TABLE 5 HERE 

 To conclude this review of the forecasting performance of the hourly models, we 

assess its relative performance with respect to two benchmarks. Some years ago REE 

contacted two external organizations to develop alternative forecasting procedures; both 

of them are proprietary and we do not have permission to describe their details in this 

paper. The first alternative (benchmark 1) combines seasonal decomposition, 



 22 

exponential smoothing and neural networks; it includes temperature as an explanatory 

variable, but does not make any allowance for special days. The second procedure 

(benchmark 2) combines seasonal ARIMA models and artificial neural networks, 

includes temperature variables, and models special days in an explicit way. 

 It was found that the existing models were more accurate than both benchmarks, 

so the latter were discarded for on-line operation. But it was also decided that the two 

benchmarks would be used off-line to help in monitoring the performance of the 

preferred models. For doing so, hourly forecasts are computed from the three methods 

at the same time and based on the same information, so that they are fully comparable. 

They are not comparable, however, to the true historical errors reported in previous 

tables for a variety of reasons: they are usually computed on normal weekdays at 10 

A.M. for the entire next day, so in practice they are closer to a two-day ahead forecast; 

on Friday the full weekend plus Monday are forecasted; when there is a public holiday, 

the forecasts are computed at the previous day up to the next working day; on vacation 

periods there are some missing data (39 full days in 2006); etc. 

 The results are summarized in Table 6 and Figure 10. Table 6 sketches the main 

features by focusing on daily figures. The forecasting performance of each method is 

measured by the daily MAPE and the number of daily errors above 5%. The daily 

MAPE is the average of the 24 hourly MAPEs; the number of large errors is the number 

of days with a daily absolute percentage error (APE) above 5%, daily APE being 

computed as the average of the 24 hourly APEs. The results are reported for the whole 

set of data and separately by type of day. In addition, Figure 10 compares the 24 hourly 

MAPEs for each type of day and gives a more detailed picture of the relative 

performance of the methods. 

INSERT TABLE 6 HERE 
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INSERT FIGURE 10 HERE 

 Table 6 and Figure 10 show that the current models outperform the benchmarks 

in all possible comparisons. They confirm that modelling special days is a major need in 

forecasting the load, compare the performance of benchmark 1 with respect to the two 

other procedures. With regard to the comparison between the current models and 

benchmark 2, it can be seen in Table 6 that the daily MAPEs are from 0.6% to 1% lower 

in the current models. Besides, in Figure 10 the four curves of the current models are 

always below the related curves of the second benchmark. Finally, it was noted in Table 

4 that the forecasting performance of the current models is not as satisfactory for special 

days as it is for normal weekdays. The differences, however, are smaller for the current 

models than for benchmark 2, so it seems that the former are more successful in 

detecting the pattern of systematic variation of special days and in using it to improve 

the forecasts. 

 

 5. SUMMARY AND CONCLUSIONS 

 In this paper we have presented the experience of Red Eléctrica de España 

(REE), the Spanish transmission system operator, in forecasting the electricity load. 

Adopting the point of view of a specific agent within the power system is one of the 

distinguishing features of the paper. It leads to making explicit the actual needs of the 

organization and the kind of information forecasts are asked to provide, and they both 

determine the way the forecasting activity should be approached and how it should be 

evaluated. 

 Even though there is a wide, systematic production of forecasts at specific 

moments of the day or the week at REE, there are two particular types of special 

interest: the daily forecasts that are calculated on Wednesday morning for the seven-day 
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period beginning on the following Saturday, which are used for outage planning; and 

every day's hourly forecasts to set up the final hourly dispatch schedule for the next day. 

Both categories are critical inputs for REE's activities, to the extent that forecasting 

success should be mainly assessed in terms of their errors. A point that has been stressed 

throughout the paper is that in applied forecasting we need to identify the needs of the 

particular agent, set up adequate devices specifically designed to meet such needs, and 

monitor performance by focusing on the errors that have significant economic impacts 

according to the activities of the organization. 

 The current forecasting system implemented at REE consists of one daily model 

to forecast the daily load up to ten days ahead, and 24 hourly models to compute hourly 

predictions for horizons up to three days. All the models share a common basic 

structure, although their parameters are allowed to adapt to the particular features of 

each time series. 

 The forecasting performance was evaluated by analyzing different types of 

errors for the year 2006. Mean absolute percentage errors for historical, real time daily 

forecasts ranged from 1.3% to 2.8% even for lead times of ten days ahead, and a 

significant part of the error was caused by errors in predicting the weather variables. 

There were 32 historical errors above 5% in absolute value, and only 7 were strict 

model errors. The forecasting performance in special weekdays is worse than in normal 

weekdays, although the difference between the MAPEs is small and indicates that the 

model has been quite successful in explaining most of the distortions induced by the 

occurrence of a special day. 

 In regard to the hourly forecasts for the next-day dispatch schedule, the MAPEs 

for historical errors were between 1.3% and 1.9% and there were 218 errors higher than 
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5%, 2.5% of the total. It was found that the most difficult period to predict is Saturday 

afternoon, as it behaves like a Sunday in some aspects and like a weekday in others. 

 The performance of the hourly models was compared to two different 

benchmarks. A distinguishing feature of this paper is that the benchmarks are competing 

methods acquired to external organizations to challenge the existing procedure and even 

to become the main forecasting devices. Nevertheless, the current models outperformed 

the benchmarks in all comparisons. In particular, the exercise showed that the major 

improvement in error reduction comes from understanding how the load reacts to 

special days, and integrating their influence together with weather variables' effects in a 

comprehensive model that captures the main determinants of the electricity load. 
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 Figure 1.- Monthly electricity consumption in mainland Spain: original series 

and trend computed with a Hodrick-Prescott filter with λ=14,400 
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 Figure 2.- Daily electricity load in 2005 
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 Figure 3.- Intraday electricity load patterns 
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 Figure 4.- Effect of a public holiday on load 
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 Figure 5.- Daily load and maximum temperature in 2005 
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 Figure 6.- Estimated decrease of the daily load on a public holiday 
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 Figure 7.- Long-run gain of the maximum temperature: percent increase of the 

daily load with respect to the load for temperatures within the interval 20°C to 24°C 
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 Figure 8.- Box-plots of the historical, real time Absolute Percentage Errors 

(APE) in daily forecasting for the network outage plan 

 

 Figure 9.- Box-plots of the historical, real time Absolute Percentage Errors 

(APE) in hourly forecasting for the next-day dispatch schedule 
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 Figure 10.- Forecasting comparison among the current hourly models and two third-party benchmarks: hourly mean absolute percentage 

errors by type of day 
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 Table 1.- Mean absolute percentage errors (MAPE) in daily forecasting 

 

 

 

 

 

 

 

 

 

 

 

 Table 2.- Absolute percentage errors higher than 5% in daily forecasting 

 

 

 

 

 

 

 

 

 

 

 

Day Lead time

All Non-summer Summer Difference All Non-summer Summer Difference

Sat 4 1.34 1.33 1.35 0.02 1.35 1.32 1.40 0.08
Sun 5 1.97 2.03 1.86 -0.17 1.74 1.80 1.62 -0.18
Mon 6 2.13 2.16 2.07 -0.09 1.53 1.53 1.52 -0.01
Tue 7 2.06 1.79 2.63 0.84 1.53 1.18 2.26 1.08
Wed 8 2.36 1.95 3.19 1.24 1.72 1.32 2.54 1.22
Thu 9 2.59 2.08 3.61 1.53 1.81 1.45 2.58 1.13
Fri 10 2.82 2.23 3.95 1.72 2.01 1.74 2.53 0.79

Historical errors Model errors

Day Lead time

Number % Total Number % Total

Sat 4 1 1.9 0 0.0
Sun 5 3 5.7 1 1.9
Mon 6 3 5.8 1 1.9
Tue 7 4 7.7 0 0.0
Wed 8 6 11.5 1 1.9
Thu 9 5 9.6 2 3.8
Fri 10 10 19.2 2 3.8

Total -- 32 8.8 7 1.9

Model errorsHistorical errors
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 Table 3.- Mean absolute percentage errors in hourly forecasting: all days and details by day of the week 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hours All days

Sun Mon Tue Wed Thu Fri Sat

1 A.M. 1.34 1.55 1.28 1.47 1.36 1.47 1.04 1.23
2 A.M. 1.37 1.70 1.05 1.52 1.33 1.45 1.17 1.37
3 A.M. 1.35 1.78 1.08 1.66 1.33 1.33 1.06 1.23
4 A.M. 1.35 1.80 1.19 1.61 1.23 1.28 1.02 1.32
5 A.M. 1.39 1.80 1.22 1.69 1.41 1.26 0.99 1.34
6 A.M. 1.31 1.61 1.17 1.51 1.34 1.30 0.99 1.25
7 A.M. 1.33 1.47 1.24 1.53 1.33 1.22 1.18 1.33
8 A.M. 1.45 1.64 1.56 1.52 1.39 1.30 1.28 1.46
9 A.M. 1.66 2.03 1.87 1.78 1.66 1.42 1.31 1.52
10 A.M. 1.63 2.08 2.14 1.57 1.60 1.43 1.32 1.26
11 A.M. 1.60 2.06 2.01 1.46 1.55 1.45 1.40 1.24
12 P.M. 1.60 1.89 2.02 1.52 1.53 1.45 1.52 1.26
1 P.M. 1.61 1.79 1.86 1.52 1.59 1.49 1.58 1.41
2 P.M. 1.62 1.77 1.78 1.57 1.58 1.52 1.60 1.50
3 P.M. 1.63 1.79 1.75 1.54 1.57 1.65 1.55 1.53
4 P.M. 1.77 1.91 1.95 1.60 1.63 1.76 1.74 1.77
5 P.M. 1.91 1.97 1.97 1.68 1.88 1.72 2.05 2.09
6 P.M. 1.90 1.82 1.81 1.71 2.03 1.65 1.95 2.32
7 P.M. 1.85 1.91 1.66 1.66 2.08 1.56 1.69 2.39
8 P.M. 1.74 1.84 1.67 1.68 1.89 1.55 1.53 2.03
9 P.M. 1.63 1.93 1.70 1.49 1.81 1.36 1.39 1.72
10 P.M. 1.40 1.66 1.57 1.22 1.47 1.09 1.16 1.60
11 P.M. 1.39 1.40 1.59 1.21 1.62 1.21 1.15 1.57
12 A.M. 1.55 1.80 1.61 1.44 1.67 1.24 1.35 1.73

All hours 1.56 1.79 1.62 1.55 1.58 1.42 1.38 1.56

Day of the week
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 Table 4.- Mean absolute percentage errors in hourly forecasting: details by time of the year and types of day 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hours

Non-summer Summer Weekdays, normal Weekends + Weekends Weekdays, special
Weekdays, special

1 A.M. 1.39 1.25 1.28 1.44 1.40 1.54
2 A.M. 1.44 1.23 1.25 1.54 1.54 1.55
3 A.M. 1.48 1.10 1.23 1.53 1.51 1.56
4 A.M. 1.47 1.11 1.24 1.51 1.56 1.39
5 A.M. 1.55 1.07 1.28 1.54 1.57 1.49
6 A.M. 1.47 0.99 1.17 1.52 1.43 1.70
7 A.M. 1.47 1.05 1.14 1.59 1.40 2.03
8 A.M. 1.56 1.24 1.20 1.80 1.55 2.39
9 A.M. 1.81 1.35 1.38 2.06 1.78 2.71
10 A.M. 1.76 1.37 1.40 1.95 1.67 2.59
11 A.M. 1.67 1.46 1.40 1.88 1.65 2.39
12 P.M. 1.66 1.47 1.41 1.86 1.58 2.51
1 P.M. 1.66 1.51 1.42 1.87 1.61 2.48
2 P.M. 1.70 1.46 1.42 1.90 1.64 2.49
3 P.M. 1.70 1.48 1.43 1.90 1.66 2.44
4 P.M. 1.88 1.55 1.49 2.16 1.84 2.88
5 P.M. 2.02 1.67 1.64 2.29 2.03 2.90
6 P.M. 1.98 1.73 1.64 2.26 2.07 2.71
7 P.M. 1.94 1.67 1.53 2.31 2.15 2.67
8 P.M. 1.82 1.58 1.49 2.10 1.94 2.47
9 P.M. 1.69 1.50 1.37 1.99 1.82 2.37
10 P.M. 1.46 1.27 1.17 1.72 1.63 1.94
11 P.M. 1.38 1.41 1.26 1.59 1.48 1.82
12 A.M. 1.55 1.55 1.41 1.74 1.76 1.69

All hours 1.65 1.38 1.36 1.84 1.68 2.20

Time of the year Types of day
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 Table 5.- Number of absolute percentage errors higher than 5% in hourly forecasting 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Hours All days

Sun Mon Tue Wed Thu Fri Sat

1 A.M. 4 1 0 0 1 1 0 1
2 A.M. 4 2 0 0 0 1 0 1
3 A.M. 5 3 0 1 0 1 0 0
4 A.M. 5 4 0 0 0 1 0 0
5 A.M. 7 4 0 0 1 1 0 1
6 A.M. 3 1 0 0 0 1 0 1
7 A.M. 5 1 0 1 1 1 0 1
8 A.M. 9 2 0 1 1 2 1 2
9 A.M. 13 2 1 2 2 2 1 3
10 A.M. 11 4 0 2 2 2 0 1
11 A.M. 8 5 0 0 1 1 0 1
12 A.M. 9 4 2 1 1 0 1 0
1 P.M. 10 3 2 1 1 1 1 1
2 P.M. 12 3 1 3 1 1 2 1
3 P.M. 9 3 2 2 1 0 1 0
4 P.M. 10 2 2 2 1 0 3 0
5 P.M. 20 3 6 3 1 1 4 2
6 P.M. 16 1 4 2 1 1 3 4
7 P.M. 18 1 2 2 2 1 3 7
8 P.M. 17 2 2 3 2 1 1 6
9 P.M. 5 0 0 1 0 0 1 3
10 P.M. 5 0 0 1 0 0 1 3
11 P.M. 7 1 0 1 1 0 1 3
12 P.M. 6 1 0 1 1 0 1 2

All hours 218 53 24 30 22 20 25 44

Day of the week
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 Table 6.- Forecasting comparison among the current hourly models and two third-party benchmarks: daily mean absolute percentage 

errors and number of errors above 5% by type of day 

 

 

 

 

 

 Note: The daily MAPE is computed as the average of the 24 hourly MAPEs; the number of errors above 5% is based on the daily average 

percentage error, which is computed as the average of the 24 hourly APEs for that day. 

 

 

 

 

 

 

 

Types of day Number of
observations

Current models Benchmark 1 Benchmark 2 Current models Benchmark 1 Benchmark 2

All days 326 1.66 3.21 2.32 2 39 26
Weekdays, normal 196 1.50 2.15 2.09 0 8 10
Weekends + weekdays, special 130 1.91 4.81 2.68 2 31 16
Weekends 92 1.86 2.91 2.52 2 10 9
Weekdays, special 38 2.04 9.42 3.06 0 21 7

Number of errors above 5%Mean Absolute Percentage Errors (MAPE)


