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Abstract

This paper discusses the building process and madeld byRed Eléctrica de Espafia
(REE), the Spanish system operator, in short-tdeutricity load forecasting. REE's
forecasting system consists of one daily model 2fhdhourly models with a common
structure. There are two types of forecasts ofigpaterest to REE, several days ahead
predictions for daily data and one day ahead hofmtgcasts. Accordingly, forecast
accuracy is assessed in terms of their errors.dBorg so we analyze historical, real
time forecasting errors for daily and hourly datar the year 2006, and report
forecasting performance by day of the week, timehef year and type of day. Other
aspects of the prediction problem, like the infleeenof the errors in predicting
temperature on forecasting the load several dagadchhor the need for an adequate
treatment of special days, are also investigated.
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1. INTRODUCTION

Short-term load forecasting has long been a miggue of interest for the
electricity industry. Traditionally, hourly foredaswith a lead time of one hour to seven
days are required for the scheduling and contrplosfer systems. From the perspective
of the system operators and regulatory agenciey, @dne a primary input for the safe
and reliable operation of the system. For prodydbey are a basic tool for determining
the optimal utilization of generators and powettigtes, as some facilities are more
efficient than others. Since the rise of free elety markets that followed the
deregulation of the power industry in the ninetiegre agents became interested in
load forecasting. Nowadays there is a huge varsétynarket participants, bidding
strategies are more and more complex, and a nuoflferancial derivatives have been
developed. Commercial success depends on theyabilgubmit competitive bids, and
even marginal improvements in forecasting the lcaadl lead to substantial increases in
trading profits. Nevertheless, the fact that a wptead demand for load forecasts exists
does not entail that all agents are concerned théhsame issues, as each organization
seeks particular aims, and making explicit the @ctueeds of information of the
organization is a prerequisite to set up fully ageg forecasting devices.

This paper describes the forecasting experiencBedt Eléctrica de Espafia
(REE), based on different modelling projects depetbby the authors since 1988. Load
forecasting is a central activity within REE, aheé search for a forecasting system able
to encompass all short-term load forecasting tasisslong been a priority. Forecasting
success is important and a necessary conditiovalatating any model. But the models
are also internal tools that have to adapt to perational features of REE and play a

leading role in the acquisition, sharing, and us&mwledge within the organization



(Schultz 1992, Nevist al 1995, Cancelo and Espasa 2001). As such, theat éine end

of a sequence that begins by identifying the neddREE, the kind of information
forecasts are asked to provide, critical origind &ad times, and how to implement
forecasting tools to promote organizational leagnine., the capacity to improve
performance based on experience. In this senseelm@ie not aimed to produce
tentative estimates that should be further elakdréty the control operator in duty to
derive the final predictions of the load. On thatcary, the forecasting procedures seek
to capture the knowledge of the qualified stafftioé organization, and hence their
implication in developing and monitoring the modslst major necessary condition for
their success.

The paper is organized as follows. Section 2 sunzemthe stylized features of
the load data for mainland Spain to give a genei@l of the forecasting problem.
Section 3 reviews the foundations of the modelsititagrate REE's forecasting system.
After a general introduction, we sketch their metaracteristics, report some estimated
effects, and compare REE's approach to other puoesdhat have been suggested in

the literature. Section 4 evaluates forecastinfpp@m@ance. Section 5 concludes.

2. LOAD DATA IN MAINLAND SPAIN: STYLIZED FACTS

The main features of load series have been extdgsieported in the literature:
trend, superimposed levels of seasonality, shom-tdynamics, special days, nonlinear
effects of meteorological variables, possible nuedr time dependence, etc., see for
instance Espaseat al (1996) in a general context of daily series ofreguic activity.
Such features are not independent, observed sBsigislying a great variety of profiles
according to the relative importance of each urytlegl component and the way they

interact.



Centring on the particular traits of mainland $pai covers an area of almost
500,000 square kilometres with more than 42 millb@ople. Average daily electricity
consumption in 2005 was 677 GWh. The winter peak @&l GWh and the summer
peak 786 GWh. Figures 1 to 5 highlight some of tfegor characteristics of the load
series. Figure 1 plots the monthly series to obaastearer picture of the trend. It shows
the original series and the trend computed withodriek-Prescott filter witth=14,400,
the default value for monthly data.

INSERT FIGURE 1 HERE

Figure 2 depicts daily consumption during 2005.vefal intra-annual
components can be observed: the weekly seasonial, ¢tlge weather-sensitive part of
the load related to temperature effects in wintet im summer, and the influence of the
vacation period in August. Annual seasonality iesely related to meteorological
variables and vacation periods. Weekly and anresd@nalities are not independent, as,
for instance, weekly seasonality is less pronoumcedigust than in any other month.

INSERT FIGURE 2 HERE

Figure 3 focus on intraday patterns. A fortnighthourly data is displayed in
each panel, and the figure shows that daily peribéhaviour varies both with the day
of the week and the time of the year.

INSERT FIGURE 3 HERE

Figure 4 reports the alterations in the load waepecial day occurs. The four
panels refer to the same public holiday, Octoberoh2wo consecutive years; panels A
and B are for the holiday falling on a Tuesday, padels C and D for the holiday on a
Wednesday. It can be seen that the effects of @lpedays are not independent of the
weekly seasonal factor, and they can also be shimwbe related to the annual

seasonality.



INSERT FIGURE 4 HERE

Forecasting special days is a key issue for systgenators, especially in Spain
due to the idiosyncratic characteristics of therfigfacalendar. Most public holidays are
observed on the same calendar date each year,hHamewer a holiday falls on Sunday
regional authorities can remove it to any otheeddtthe year. The maximum number
of public holidays is 14: 4 nationwide holidays,ldcal holidays, and the regional
governments set the rest. Each region's authodigesde the number of holidays as
long as the total does not exceed 14, and the tzeseplace national holidays falling
on Sunday. Regional governments tend to obserdgitnaal Spanish holidays and in
practice the resulting calendar is rather homoges@gaross regions, yet there are some
holidays that are region-specific and the total banof holidays within a given year
may not be the same in all regions, or can vamphénsame region from one year to the
next. In 2006 there were 29 national or regiondidiags, with very different effects on
mainland Spain consumption of electricity. Localithays in some big cities, notably
Madrid (3.1 million people) and Barcelona (1.6 mifl), must be taken into account
too, as they have perceptible effects on the total. Special days also comprise long
weekends arising from holidays that fall on Tuesdaylhursday / Friday and three
vacation periods (August, Easter and Christmaskuro up, special days and weekends
represent from 33% to 45% of the days within a giyear, depending on how strict the
definition of a special day one considers.

Figure 5 focuses on the relation between consemp@nd maximum
temperature for daily data during 2005; a fourtteorpolynomial was fitted to give a
tentative indication of its shape. The relatiotJishaped and (could be) asymmetric, as
the left branch is more pronounced than the righgwThere is also some evidence of

an exhaustion effect, especially for low tempemgur



INSERT FIGURE 5 HERE

3. REVIEW OF THE MODEL S

3.1 The basic strategy

The forecasting system currently implemented inEREonsists of one daily
model to forecast the daily load up to ten daysdhand 24 hourly models to compute
hourly predictions for horizons up to three dayse ™aily model is aimed to produce
forecasts for network outage planning, while theirho models are used to derive
forecasts for next-day hourly dispatch.

This combination of 1+24 models has proven tohgeliest approach according
to REE's needs. Daily forecasts up to ten daysdlf@aoutage planning could be
obtained from the hourly models, by computing 24irhoforecasts for each day and
adding them up to get the daily total. This procedinowever, renders forecasts with
too much uncertainty for lead times up to ten dalysad, while a direct prediction of
the daily aggregate provides a more adequate ankharsecond step, and in order to
derive the hourly forecasts that are required tmpmete the final outage plan, hourly
models are used to compute the shape of the loag d¢ar each day, and the daily
forecasts are interpolated according to the prediltiad curves.

For horizons up to three days, in contrast, ditemtirly forecasts are more
accurate than interpolated daily figures. Althoutjere is some controversy as to
whether it is better to treat each hour as a differseries (Ramanathat al 1997,
Cottet and Smith 2003) or to build a single modeldéerive the load profile (Smith
2000, Tayloret al 2006), most authors prefer the first approach. ‘REEperience since

1988 supports that view, as separate models caasity specified in a very flexible



way to capture short-term dynamics and the effettpecial days and meteorological
variables at different times of day.

All the models share a common basic structureatedl to the traditional
decomposition of the observed load into four congmdst normal load, the weather
sensitive part, special events and a random conmp¢Behneideet al 1985, Hyde and
Hodnett 1997, Cheant al 2001). They are given a common type of responsetifans
with parameters that are allowed to vary acroseserhe full search for specification
was carried out in building the daily model, as #tidized features of the load in the
aggregated daily data are also present in the darigs corresponding to each hour. Let
C; denote electricity consumption at day t and asstimé the model is additive in
logarithms:

InC, = p, +s, + CSD, + CWEA, + u, )]
pi+s is the normal load, where genotes the trend and(part of) the seasonal; CSIB
the contribution of special days; CWEA the contribution of meteorological variables;
U is a stationary disturbance that may display sehwet-term, transitory dynamics. In
practice it is not easy to separate annual seasofram the effect of weather variables,
so in the daily model; <onsists basically of weekly seasonals. In faasthmannual
seasonality can be explained by weather variableésby dummy variables that take
account of vacation periods.

In the rest of Section 3.1 we give a rough, gdnskatch of the way each
component is modelled. Next, some alternative aqugres are reviewed in Section 3.2,
where we also explain why we opted for the spedtiiin that follows, and report some
estimated effects to give some insight on the dégece of the electricity consumption
on special days and temperature.

Basic consumption B@&an be defined from (1) as:



INBC, =InC, - CSD, - CWEA, = p, +5S, + U, 2
It represents the load that would be observedhefe were no further effects
from special days or weather variables. Since ttzkbtional effects are the major
disturbances that alter the observed load, iBCather smooth and can be assumed to
follow, at least as an approximation, an ARIMA mbde
@L)A(L)InBC, = 6(L)a, ©)
where@(L) and B(L) are polynomials in the lag operator L with #ikir roots outside
the unit circle,A(L) is a polynomial with unit roots and & a white noise process.
Figures 1 and 2 suggest that a reasonable spéicifidar A(L) is AA=(1-L)(1-L"), as
the series display a local linear trend and a gtneeekly seasonal pattern which is
nondeterministic and is not explained by exogen@ugbles. If the stationary AR and
MA polynomials are specified in a multiplicativerfio with three factors, a regular one
on the operator L, a weekly seasonal dnahd an annual seasonal ot the final
expression of the ARIMA model for the basic constiompfollows:
@L) P, (L") D, (L**)AA, INnBC, = 6(L) O,(L") O,(L*) a, 4
Once the basic load is defined, special days agathver effects are introduced
by extending the model to include dummy and weattagiables. Their effects on the
load are dynamic and may depend on the day of #ekwand the time of the year. In
the case of the dummies for special days, addiagslend lags is a parsimonious way
of representing the effect on adjacent days, wihiéedynamic weather effects reflect
that individuals adjust to changing weather coodsi with some delay. The nonlinear
relation between consumption and temperature is eftemtl by computing several
degree-days transformations of the observed termyesa which will be explained in
detail in Section 3.2. The model includes otheraorilogical variables like cloudiness

and the duration of sun light. Wind speed and isdatumidity are known to affect the



load, but are not considered because no reliabbkrésts are produced and therefore
they provide no relevant information for load faxeting.

The joint contribution of special days and weathsiables can be expressed as:

CSD, + CWEA, = i a,(L) SD,, +i B.(L) WEA )

i=1 =
where SR, SD,4, ..., SDht are m dummy variables that define the differeassés of
special days, WEA, WEA;4, ..., WEA,; represent n transformations of the observed
meteorological variables, amg(L), (L), i=1,..,m, j=1,...,n, are lag polynomials.

To derive the final expression for the observeat|drom (4) and (5) it follows

that

NG =3 a,(L)SD,, + 3 By WeA, + KD O(L) Ol L) ®

= = L) @, (L) D (L) AA, &
The final specification of model (6) was derived starting from an ARIMA

model with dummy variables to capture the influentspecial days; at this first stage,
no effects of weather variables were consideredt,Nde model was extended to
include a basic response to temperature, and iseguient versions this response was
allowed to be more and more complex to capturevéniety of effects that are reviewed
in Section 3.2. Finally, other meteorological vates were tested to assess whether
they actually improve the forecasting performantéie model, and the final response
to weather conditions was derived. Search for $jgation centred on the daily series;
once a final, satisfactory daily model was achievesdparameters were reestimated for
each hourly series to get the final hourly modAks.a general result, it was found that
the hourly models are not as complex as the datlglel) because many meteorological

effects are not significant for specific hours witkhe day.
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3.2 Description of the models

Basic load

Several procedures have been proposed to takeurgcod the trend. Some
studies get rid of it by taking short samples whitw® mean level of the load can be
assumed to be constant (Smith, 2000). Others censdvariety of deterministic
functions of time: linear (Pardet al 2002), linear and reciprocal (Ramanatletral,
1997), quadratic (Cottet and Smith, 2003), etc.eBeinistic seasonal components
include dummy variables (Ramanathetnal 1997, Soares and Souza 2006) and time-
varying periodic splines (Harvey and Koopman, 199&¢thods for explaining short-
term time dependence comprise linear autoregresgi@ardoet al 2002, Cottet and
Smith 2003), fractionally integrated processes (&®aand Souza, 2006), artificial
neural networks (Lamedicet al 1996, Darbellay and Slama 2000, Cletnal 2001,
Hippert et al 2005), double seasonal Holt-Winters exponentiabatinng adjusted for
error correlation (Taylor, 2003), etc.

Our proposal for the basic load is simple andhyghly effective. The two real,
positive unit roots embedded in tAé\; operator generate a local linear trend that is
flexible enough to approximate a wide variety déigiions, and a large sample can be
used for estimating the model without needing toceon about the shape of the trend.
Furthermore, it does not impose any constrainthenforecasts, so any changes in the
underlying level are automatically accommodated matural way.

Weekly unit roots allow for the type of evolvingeekly seasonality that is
displayed in Figures 2 and 3. The Figures showttietveekly seasonal depends on the
time of the year, and the seasonal unit roots withéA; operator act like an adaptative
mechanism that adjusts this week's pattern to acwate the yearly variation that is

already incorporated in the previous week obseraatiBesides, this approach does not
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impose that the intraannual evolution of the weeddgsonality is the same year after
year, as it would be the case if such interactietwben seasonals were modelled by
parametric functions of time.

Short-term time dependence is assumed to be deddogt an ARMA process
because it is more general than the residual au&laton adjustments used in
Ramanathamet al (1997), Pardet al (2002) or Taylor (2003), and can handle a wider
variety of dynamic effects with less parameterss lalso preferred to artificial neural
networks because there is no sound empirical evadmat the load data display the
type of nonlinear behaviour driven by ANNs (Darbglnd Slama 2000, Hippest al
2001 and 2005, Taylat al 2006).

Special days

Most applied studies separate normal and speagt cand build different
models for each category (Ramanatlearal 1997, Darbellay and Slama 2000). This
strategy is easy to implement for typical workingysl and weekends, but it is not so
straightforward for public holidays, long weekendgcation periods, etc. Public
holidays may be smoothed (Tayler al, 2006), treated as Sundays (Smith, 2000), or
replaced by the load observed in a similar dayhenweek before (Hippes#t al 2005).
The number and types of special days are usuakgifspd on a priori grounds,
although some authors have used pattern recogratnatysis to classify day types
empirically (Lamedicat al, 1996).

Within the single model approach the common petacis to use dummy
variables to estimate the changes in the load dwgpécial days. The number of total
parameters varies across studies: one in SoareS@mh (2006), three in Pardo al
(2002), and six in Cottet and Smith (2003). REE|segience indicates that the required

number is much higher, at least for mainland Spain.
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Some authors view this approach as if special degre treated as missing
observations, and conclude that there is nothingain by introducing them explicitly
in the model. That would be the case if a spegfcameter were used for each non-
normal observation, but is no longer true if spedays are grouped so that each
estimated parameter refers to a category of spdailnd not to a single observation.
Even in the extreme case that there is only onerghgon to estimate the impact of a
given category of special day, this approach isulse long as the estimated response
is different enough from other estimates and theegmy is well defined, so the
estimated impact can be used to forecasting anyd@vent of the same characteristics.

Although a detailed presentation of REE's procedarmodel special days goes
well beyond the scope of this paper, we brieflyieevthe case of public holidays to
sketch the basic ideas. There are two classesliofalge, common holidays and special
holidays. Common holidays include some nationaidagk and all regional and local
holidays. Besides, there are three special holidalyof them nationwide: January 6,
May 1 and August 15. It was found that each spdmébtiay has a specific and separate
influence on the load, which is statistically dr#fat from the influence of any other
special day.

To highlight the importance of allowing for diffart effects for each class of
public holiday, Figure 6 displays the estimatedrelase of the load on the day of the
holiday. Although some particular coefficients abule restricted to take the same
value, as a whole the response varies in magnandeshape. The estimated standard
deviation for each estimator is about 0.5%, andadbiyo speaking all the differences
between estimated responses above 1% are stalyssigmificant.

INSERT FIGURE 6 HERE

13



Temperature effects

Meteorological variables play a leading role ine thmodel, especially
temperature. In this brief review we focus on tlesponse to the daily maximum
temperature and assume for simplicity that the rotheather variables induce no
additional effects on the load. The daily maximwmperature for mainland Spain is
computed as a weighted average of the maximum texiyves recorded between 6
A.M. and 6 P.M. at ten observatories that repreddferent climatic regions; within a
typical year it varies from a low of 8°C to a high34°C.

The estimated relation between load and temperatuhighly complex for a
number of reasons. On a priori grounds, the litgeasuggests that it is non-linear, U-
shaped as long as there is enough variation of@eatyres in the sample (Engleal,
1986). The response is asymmetric, in the sendeatlmme-degree increase when the
temperature is high and a one-degree decrease tubetlemperature is low need not
have the same impact on the load (Vabal, 2001). The relation differs for working
and nonworking days, as heating and cooling systgjagpment and operation are very
different in workplaces and private residences (Bn2000); it also changes with the
time of the year (Hyde and Hodnett, 1997). Thera dynamic effect, as the load at t
does not depend solely on the temperature at talsat on the temperatures at the
previous days (Lecomte and Warren, 1981). Exhausftects may appear because of
the limited capacity of existing electricity appl@es, so there is no further increase in
electricity consumption when the temperature exsesame saturation level (Henley
and Peirson, 1997).

The particular shape of the response is speaficeiich set of data and issues
like the degree of nonlinearity, the order of tlyaamics, or the presence and location

of the saturation levels, for instance, must be iaogly determined. In what follows
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we focus on the main characteristics of the esahaglation as it is currently used to
forecasting the load. Further details on the maugktrategy can be found in Cancelo
and Espasa (1996).

The response to the maximum temperature has tvamcbes, one for
temperatures below 20°C and one for temperatugdeehithan 24°C. The interval from
20°C to 24°C is a comfort zone of moderate tempeeatwith no effect on electricity

consumption. The general expression of the responssy temperatures is given by:

5
a, HDDS9, + 3, HDDS1], +y, HDDS14, +Z 1, HDDS20, 7
i=0
with
0 if Tmax, >X
HDDSx, = { x-Tmax if 9<Tmax <x ®)
X-9 if Tmax <9

where Tmax denotes the observed maximum temperature and HDIBSx heating
degree-days variable with reference temperaturedxsaturation level 9°C.

Expression (7) captures the basic shape of tlaioel for temperatures below
20°C, but it was found that its magnitude dependshe time of the year and, in some
seasons, on the day of the week. Two seasonsstnegdished, which will be referred
to as summer and non-summer or rest of the yeathdnnon-summer season the
response is different for normal weekdays and feekends / special weekdays. In the
summer season the impact does not depend on thef dag week and the response is
much simpler: temperatures below 16°C are seldosereled and the dynamics go from
t to t-2, so the only non-zero coefficients in &rg¢ o, T andro.

At the other branch of the curve, the respondegb temperatures is given by

2
> w CDDS24, ©)
£
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where CDDS2d4is a cooling degree-days variable with threshal8Cand saturation

level 33°C:
0 if Tmax, <24
CDDX4, = < Tmax—24 if 24<Tmax, <33 @ao
9 if Tmax >33

Temperatures above 24°C only affect the load ensihimmer season, and there
are no differences between normal weekdays andemelsk/ special days. The response
increases linearly from 24°C up to 33°C and remaorsstant above that level. The load
at t depends on the observed temperatures atant1-2.

To summarize the estimated effects, Figure 7 digpthe long-run gain for each
temperature value. The long-run gain for Tmax=Tmas*defined as the percent
increase of the daily load at day t assuming that temperature keeps constant at
Tmax* for all the relevant lags in equations (74 §8), with respect to the consumption
that would have been registered if the temperdtatebeen within the interval 20°C to
24°C. As an example, the gain for Tmax=26°C is etm&.48%: it means that if the
observed maximum temperature in days t-2, t-1 an@6°C, the daily consumption at t
will be 2.48% higher than if the temperature hadrbwithin the interval 20°C to 24°C
during that period.

INSERT FIGURE 7 HERE

4. FORECAST PERFORMANCE DURING 2006

In Section 3 it was stated that there are twodygfeforecasts of special interest
to REE, several days ahead predictions for dailfa,dand one day ahead hourly
forecasts. Accordingly, forecast accuracy shoul@gdsessed in terms of their errors, so
in this section we discuss the performance of tleeets with regard to both activities

throughout 2006.
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4.1 Prediction up to ten days ahead using the daily model

Daily forecasts are used to set up the weekly otvoutage plan. They are
computed by the middle of the week, usually on WWsdiay morning with information
up to Tuesday, for the seven-day period beginregallowing Saturday. The relevant
lead times go from 4 to 10 days ahead, althougtethee some minor modifications as
the origin of the forecast changes when a publiclay falls on Wednesday (four times
in 2006). We ignore that for simplicity and actifshere were a one-to-one relation
between the day of the week and the lead time. fohecasts are based on model
parameters that were estimated using daily data ffanuary 1, 1993 to March 31, 2005
(4473 observations); no reestimation was perforthethg 2006.

Two types of errors are computed, historical errand model errors. By
historical errors we mean real time errors, ilee érrors that were actually observed.
They arise either because of model misspecificabioas a consequence of the errors
made in forecasting meteorological variables; tenamjpee forecasts are highly accurate
for horizons up to three or four days, but theyedetate as the lead time goes further.
Hence, and in order to assess the influence of ar@tayical predictions, the load
forecasts were recalculated by inserting the tralees of the meteorological variables
in the model, and the resulting errors are refetoeak strict model errors.

Box-plots of the observed absolute percentage<(APE) for historical errors
are displayed in Figure 8. Table 1 reports meaolates percentage errors (MAPE) for
historical errors and model errors. It is well knowhat each set of data deserves
particular consideration, and no general indicatiam how effective a forecasting
procedure is can be given unless an explicit coatppa evaluation is carried out on the
same time series. In spite of that, the real tineefgpmance of the model looks

satisfactory, in the sense that the errors areinvitite bounds that secure the electricity
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supply security and quality. In the full year theAREs of the historical errors are
always below 2.9% even for lead times of ten ddyesad. They increase with the lead
time, as expected, although there is some eviddratdhe forecasts are slightly worse
on Sundays.

INSERT FIGURE 8 HERE

INSERT TABLE 1 HERE

Using temperature predictions instead of true esllbas no perceptible effect on
Saturday's forecasts. From Sunday on part of theaberror in forecasting the daily
load is due to unsatisfactory temperature predisti@nd that part increases with the
lead time. The MAPEs of the model errors increagh the lead time too, but do not
exceed 2% in any case. Model errors confirm thatftliecasting performance is less
satisfactory on Sunday than on weekdays.

To assess the performance by time of the yeatldtebase of errors was split in
two parts, summer and rest-of-the-year. Table icatds that the forecasts deteriorate
during the summer months, especially in weekdaysorg& in forecasting temperature
have to do with this deterioration for the longhstizons, but it basically reflects a
weakness of the model and not of any of its inpdise most important errors
concentrate on August, a major period of vacatimmmiinland Spain: according to
official estimates, the industrial production inded by more than 30% in August 2005
due to seasonal effects. The model includes somenguvariables to capture the
effects of the vacation on the load, but for thenmeat the results have not been as
satisfactory as for the rest of the year.

As for the type of day, it is not straightforwatd compare the forecasting
performance for weekdays that are normal days, daekthat are special days and

weekends, because of the changing lead time. ler dodgive some indication on this
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issue, we concentrated on weekdays and separatedindays (214 observations in the
forecasting period) from special days (46 obseovesti. For historical errors the MAPE
is 2.34% for normal weekdays and 2.63% for spegedkdays, while for model errors
it is equal to 1.65% and 2.06%, respectively.

Decision makers are especially concerned aboge larrors, as they entail major
rises in costs due either to unnecessary startampsenergy purchases, or to very
marginal scheduling that increases the likelihoddfallures or equipment damage.
There is not a general agreement about what a lange is, as each organization
determines its own acceptable limit given its attég and aims. From the point of view
of a utility, for instance, that limit heavily dep@s on its characteristics and operational
features, but it also varies according to the daye week and the hour of the day, the
type of load (hourly, daily or peak), etc.

For simplicity, in this paper we assume a condiamt equal to 5%, so any error
above that level in absolute value is termed eelamor. This is a rough estimate that is
often used at REE and has also been suggested adeguate benchmark in the
literature; see for instance Ranaweetaal (1997). Table 2 shows that in 2006 there
were 32 large historical errors (out of 365, or%3)8 The number of large errors
increases with the lead time, as expected. Intagdgt most of them are caused by
errors in predicting the weather variables: wherdeh@rrors are considered there are
only 7 large errors, less than 2% of the total.

INSERT TABLE 2 HERE

4.2 Forecasting the hourly load for the next-day dispatch schedule

The hourly forecasts that determine the final alisp schedule for the next day
constitute the second set of critical forecastsR&E. Such forecasts are computed

every day and the lead time is always one day.r@onto the previous exercise, how
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the lead time is constant and the origin changesgalthe week. The models are
reestimated daily, so the forecast for day t issdasn parameters that were estimated
using data from January 1, 2001 to the last availabservation.

Figure 9 displays box-plots of the historical Hguwbsolute percentage errors of
the forecasts for the next day that were made puwHliREE's web page during 2006.
They refer to 365 consecutive days with no excegtiano corrections for public
holidays, vacation periods, cold snaps, unexpe&eents, etc., other than those
implemented in the models, and no supplementarjestive adjustments by the control
operator or any other expert. Table 3 reports thkated hourly mean absolute
percentage errors. When no differences are madeypf the week the MAPE remains
below 2% for all 24 hours. It takes its lowest \edwat late night hours and early in the
morning, up to 8 A.M.; within this period it liesetween 1.3% and 1.5%. Next it
increases to about 1.6% in the first half of theibess hours, from 10 A.M. to 3 P.M.,
and further to more than 1.7% from 4 P.M. to 8 PAVicloser inspection of Table 3
reveals that this pattern of intraday evolutiomas stable as it changes according to the
type of day. In the beginning of the week, from &y to Tuesday, the maximum
MAPE is attained by 9 A.M.-10 A.M., while on Sataks it is not observed until 7
P.M.

INSERT FIGURE 9 HERE
INSERT TABLE 3 HERE

When the database of errors is split by day ofwbkek it is found that the most
difficult period to predict is Saturday afternodno(n 5 P.M. to 8 P.M.), followed by
Sunday morning (from 9 A.M. to 11 A.M.) and Mondaprning (from 10 A.M. to 12
P.M.). Saturday afternoon behaves like a Sundapime aspects and like a weekday in

regard to commercial activities, especially retadding, and that duality increases
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forecast uncertainty to its maximum. In any casgdlare only 13 values of the MAPE
higher than 2% (out of 168, or 7.7%), and none ali%%.

Table 4 reports MAPEs computed separately by timie year and by type of
day. Contrary to what was found in daily forecagtithe hourly models perform better
in the summer season for almost all hours, althdhghdifference is higher early in the
morning. With regard to the types of day, theredifierences in the magnitude of the
errors among normal weekdays, weekends and speeeddays. For normal weekdays
MAPEs vary from 1.14% at 7 A.M. to 1.64% at 6 P.Nhe intraday evolution is rather
similar in weekends, but now the MAPEs range frohova of 1.40% at 7 A.M. to a
high of 2.15% at 7 P.M. Finally, for weekdays the¢ special days the MAPES go from
1.39% at 4 A.M. to 2.90% at 5 P.M.

INSERT TABLE 4 HERE

Table 5 details the number of large errors (alisein absolute value) by day
of the week. The total number is 218 out of 876(.6%. Large errors are more likely
to occur from 5 P.M. to 8 P.M. and on weekends:oalnone third is within that four-
hour interval, and 44% are either on Sunday orr8atu It should be noted, however,
that the differences among the MAPEs reported iblef& are not due solely to these
large observations, as the pattern of unpredidtab@mains roughly the same when the
means are recalculated without considering thesabove 5%.

INSERT TABLE 5 HERE

To conclude this review of the forecasting perfante of the hourly models, we
assess its relative performance with respect toldarmchmarks. Some years ago REE
contacted two external organizations to develograditive forecasting procedures; both
of them are proprietary and we do not have peronsgd describe their details in this

paper. The first alternative (benchmark 1) combinemasonal decomposition,
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exponential smoothing and neural networks; it idekitemperature as an explanatory
variable, but does not make any allowance for sphetays. The second procedure
(benchmark 2) combines seasonal ARIMA models artdical neural networks,
includes temperature variables, and models spéaial in an explicit way.

It was found that the existing models were mo@ieate than both benchmarks,
so the latter were discarded for on-line operatBut it was also decided that the two
benchmarks would be used off-line to help in mamnip the performance of the
preferred models. For doing so, hourly forecastscamputed from the three methods
at the same time and based on the same informatotihat they are fully comparable.
They are not comparable, however, to the true hdstoerrors reported in previous
tables for a variety of reasons: they are usualynmuted on normal weekdays at 10
A.M. for the entire next day, so in practice theg aloser to a two-day ahead forecast;
on Friday the full weekend plus Monday are foresdstvhen there is a public holiday,
the forecasts are computed at the previous day tipet next working day; on vacation
periods there are some missing data (39 full day906); etc.

The results are summarized in Table 6 and FigQr& able 6 sketches the main
features by focusing on daily figures. The foreicgsperformance of each method is
measured by the dailly MAPE and the number of dartprs above 5%. The daily
MAPE is the average of the 24 hourly MAPESs; the hanof large errors is the number
of days with a daily absolute percentage error (ABBove 5%, daily APE being
computed as the average of the 24 hourly APEs.résdts are reported for the whole
set of data and separately by type of day. In amgiFigure 10 compares the 24 hourly
MAPEs for each type of day and gives a more detapecture of the relative
performance of the methods.

INSERT TABLE 6 HERE
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INSERT FIGURE 10 HERE

Table 6 and Figure 10 show that the current mooedgerform the benchmarks
in all possible comparisons. They confirm that miialg special days is a major need in
forecasting the load, compare the performance oEtmmark 1 with respect to the two
other procedures. With regard to the comparisonwden the current models and
benchmark 2, it can be seen in Table 6 that tHg NEAPESs are from 0.6% to 1% lower
in the current models. Besides, in Figure 10 the faurves of the current models are
always below the related curves of the second bradh Finally, it was noted in Table
4 that the forecasting performance of the currendels is not as satisfactory for special
days as it is for normal weekdays. The differenbesyever, are smaller for the current
models than for benchmark 2, so it seems that thendr are more successful in
detecting the pattern of systematic variation afcsgl days and in using it to improve

the forecasts.

5. SUMMARY AND CONCLUSIONS

In this paper we have presented the experiencReaf Eléctrica de Espafia
(REE), the Spanish transmission system operatofpriecasting the electricity load.
Adopting the point of view of a specific agent witlthe power system is one of the
distinguishing features of the paper. It leads tkimg explicit the actual needs of the
organization and the kind of information forecaate asked to provide, and they both
determine the way the forecasting activity showtdalpproached and how it should be
evaluated.

Even though there is a wide, systematic productbrforecasts at specific
moments of the day or the week at REE, there are garticular types of special

interest: the daily forecasts that are calculated@dnesday morning for the seven-day
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period beginning on the following Saturday, whiale ased for outage planning; and

every day's hourly forecasts to set up the finairlyadispatch schedule for the next day.

Both categories are critical inputs for REE's atigs, to the extent that forecasting

success should be mainly assessed in terms ofaitiens. A point that has been stressed
throughout the paper is that in applied forecastuwegneed to identify the needs of the

particular agent, set up adequate devices spdbyfidasigned to meet such needs, and
monitor performance by focusing on the errors tiate significant economic impacts

according to the activities of the organization.

The current forecasting system implemented at R&iSists of one daily model
to forecast the daily load up to ten days ahead 2dnhourly models to compute hourly
predictions for horizons up to three days. All thmdels share a common basic
structure, although their parameters are alloweddapt to the particular features of
each time series.

The forecasting performance was evaluated by amagydifferent types of
errors for the year 2006. Mean absolute percergages for historical, real time daily
forecasts ranged from 1.3% to 2.8% even for leatkdi of ten days ahead, and a
significant part of the error was caused by errarpredicting the weather variables.
There were 32 historical errors above 5% in absouatlue, and only 7 were strict
model errors. The forecasting performance in speaakdays is worse than in normal
weekdays, although the difference between the MABEsnall and indicates that the
model has been quite successful in explaining rnbshe distortions induced by the
occurrence of a special day.

In regard to the hourly forecasts for the next-degpatch schedule, the MAPEs

for historical errors were between 1.3% and 1.9%taere were 218 errors higher than
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5%, 2.5% of the total. It was found that the ma#iadilt period to predict is Saturday
afternoon, as it behaves like a Sunday in somecespad like a weekday in others.

The performance of the hourly models was compai@diwo different
benchmarks. A distinguishing feature of this papehat the benchmarks are competing
methods acquired to external organizations to ehgh the existing procedure and even
to become the main forecasting devices. Neverthgethe current models outperformed
the benchmarks in all comparisons. In particulbe, &€xercise showed that the major
improvement in error reduction comes from undedita;n how the load reacts to
special days, and integrating their influence tbgewith weather variables' effects in a

comprehensive model that captures the main detantsrof the electricity load.
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Figure 1.- Monthly electricity consumption in mind Spain: original series

and trend computed with a Hodrick-Prescott filtéihwk=14,400
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Figure 2.- Daily electricity load in 2005
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Figure 3.- Intraday electricity load patterns
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Figure 4.- Effect of a public holiday on load
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Panel B.- Hourly load 10/10/2004 - 10/23/2(
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Figure 5.- Daily load and maximum temperature002

900

800

700

600 -

500

400

15

20

Degrees Celsit

33

25

30

35

40



%

Figure 6.- Estimated decrease of the daily load pablic holiday
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Figure 7.- Long-run gain of the maximum temperatyoercent increase of the

daily load with respect to the load for temperasusgthin the interval 20°C to 24°C
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Figure 8.- Box-plots of the historical, real tidbsolute Percentage Errors

(APE) in dalily forecasting for the network outadarp
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Figure 9.- Box-plots of the historical, real tiddbsolute Percentage Errors

(APE) in hourly forecasting for the next-day disgaschedule

188383808 Baey :

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

36



Figure 10.- Forecasting comparison among the stuheurly models and two third-party benchmarksirhomean absolute percentage

errors by type of day
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Table 1.- Mean absolute percentage errors (MARIERgily forecasting

Day Lead time Historical errors Model errors

All Non-summer  Summer Difference All Non-summer Summer f&énce
Sat 4 1.34 1.33 1.35 0.02 1.35 1.32 1.40 0.08
Sun 5 1.97 2.03 1.86 -0.17 1.74 1.80 1.62 -0.19
Mon 6 2.13 2.16 2.07 -0.09 1.53 1.53 1.52 -0.01
Tue 7 2.06 1.79 2.63 0.84 1.53 1.18 2.26 1.08
Wed 8 2.36 1.95 3.19 1.24 1.72 1.32 2.54 1.22
Thu 9 2.59 2.08 3.61 153 1.81 1.45 2.58 1.13
Fri 10 2.82 2.23 3.95 1.72 2.01 1.74 2.53 0.79

Table 2.- Absolute percentage errors higher tRanrbdaily forecasting

Day Lead timg Historical errors Model errors
Number % Total Number % Total
Sat 4 1 1.9 0 0.0
Sun 5 3 5.7 1 19
Mon 6 3 5.8 1 1.9
Tue 7 4 7.7 0 0.0
Wed 8 6 11.5 1 19
Thu 9 5 9.6 2 3.8
Fri 10 10 19.2 2 3.8
Total -- 32 8.8 7 1.9
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Table 3.- Mean absolute percentage errors in adorécasting: all days and details by day of tleskv

Hours All days Day of the week
Sun Mon Tue Wed Thu Fri Sat

1A.M. 1.34 1.55 1.28 1.47 1.36 1.47 1.04 1.23
2 AM. 1.37 1.70 1.05 1.52 1.33 1.45 1.17 1.37
3 AM. 1.35 1.78 1.08 1.66 1.33 1.33 1.06 1.23
4 AM, 1.35 1.80 1.19 1.61 1.23 1.28 1.02 1.32
5A.M. 1.39 1.80 1.22 1.69 1.41 1.26 0.99 1.34
6 A.M. 1.31 1.61 1.17 1.51 1.34 1.30 0.99 1.25
7 AM. 1.33 1.47 1.24 1.53 1.33 1.22 1.18 1.33
8 A.M. 1.45 1.64 1.56 1.52 1.39 1.30 1.28 1.46
9 A.M. 1.66 2.03 1.87 1.78 1.66 1.42 1.31 1.52
10 A.M. 1.63 2.08 2.14 1.57 1.60 1.43 1.32 1.26
11 A.M. 1.60 2.06 2.01 1.46 1.55 1.45 1.40 1.24
12 P.M. 1.60 1.89 2.02 1.52 1.53 1.45 1.52 1.26
1P.M. 1.61 1.79 1.86 1.52 1.59 1.49 1.58 1.41
2 P.M. 1.62 1.77 1.78 1.57 1.58 1.52 1.60 1.50
3P.M. 1.63 1.79 1.75 1.54 1.57 1.65 1.55 1.53
4 P.M. 1.77 1.91 1.95 1.60 1.63 1.76 1.74 1.77
5P.M. 1.91 1.97 1.97 1.68 1.88 1.72 2.05 2.09
6 P.M. 1.90 1.82 1.81 1.71 2.03 1.65 1.95 2.32
7 P.M. 1.85 1.91 1.66 1.66 2.08 1.56 1.69 2.39
8 P.M. 1.74 1.84 1.67 1.68 1.89 1.55 1.53 2.03
9 P.M. 1.63 1.93 1.70 1.49 1.81 1.36 1.39 1.72
10 P.M. 1.40 1.66 1.57 1.22 1.47 1.09 1.16 1.60
11 P.M. 1.39 1.40 1.59 1.21 1.62 1.21 1.15 1.57
12 A.M. 1.55 1.80 1.61 1.44 1.67 1.24 1.35 1.73
All hours 1.56 1.79 1.62 1.55 1.58 1.42 1.38 1.56
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Table 4.- Mean absolute percentage errors in dorécasting: details by time of the year and sypeday

Hours Time of the year Types of day
Non-summer Summer Weekdays, normal Weekends + Weekends eekdals, speci
Weekdays, special

1AM. 1.39 1.25 1.28 1.44 1.40 1.54
2 AM. 1.44 1.23 1.25 1.54 1.54 1.55
3AM. 1.48 1.10 1.23 1.53 151 1.56
4 AM. 1.47 1.11 1.24 151 1.56 1.39
5A.M. 1.55 1.07 1.28 154 1.57 1.49
6 A.M. 1.47 0.99 1.17 152 1.43 1.70
7 AM. 1.47 1.05 1.14 1.59 1.40 2.03
8 A.M. 1.56 1.24 1.20 1.80 1.55 2.39
9 A.M. 1.81 1.35 1.38 2.06 1.78 271
10 A.M. 1.76 1.37 1.40 1.95 1.67 2.59
11 AM. 1.67 1.46 1.40 1.88 1.65 2.39
12 P.M. 1.66 1.47 1.41 1.86 1.58 251
1P.M. 1.66 151 1.42 1.87 161 2.48
2P.M. 1.70 1.46 1.42 1.90 1.64 2.49
3P.M. 1.70 1.48 1.43 1.90 1.66 2.44
4 P.M. 1.88 1.55 1.49 2.16 1.84 2.88
5P.M. 2.02 1.67 1.64 2.29 2.03 2.90
6 P.M. 1.98 1.73 1.64 2.26 2.07 2.71
7 P.M. 1.94 1.67 1.53 2.31 2.15 2.67
8 P.M. 1.82 1.58 1.49 2.10 1.94 2.47
9 P.M. 1.69 1.50 1.37 1.99 1.82 2.37
10 P.M. 1.46 1.27 1.17 1.72 1.63 1.94
11 P.M. 1.38 141 1.26 1.59 1.48 1.82
12 AM. 1.55 1.55 141 1.74 1.76 1.69
All hours 1.65 1.38 1.36 1.84 1.68 2.20
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Table 5.- Number of absolute percentage errotsenithan 5% in hourly forecasting

Day of the week

Mon Tue Wed Thu Fri Sat

Sun

44

25

20

22

30

24

53

All days

13
11

10
12

10
20
16
18
17

218

Hours

1AM

2 AM.

3 AM.

4 AM.

5AM.

6 A.M.

7AM.

8 A.M.

9 AM.

10 AM.
11 AM.
12 AM.
1P.M.

2P.M.

3 P.M.

4 P.M.

5 P.M.

6 P.M.

7 P.M.

8 P.M.

9 P.M.

10 P.M.
11 P.M.
12 P.M.

All hours
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Table 6.- Forecasting comparison among the cutiently models and two third-party benchmarks: ydaillean absolute percentage

errors and number of errors above 5% by type of day

Types of day Number of Mean Absolute Percentage Errors (MAPE) Number of errors above 5%

observations

Current models Benchmark 1 Benchmark P Current models encBmark 1 Benchmark 2

All days 326 1.66 3.21 2.32 2 39 26
Weekdays, normal 196 1.50 2.15 2.09 0 8 10
Weekends + weekdays, specjal 130 1.91 4.81 2.68 2 31 16
Weekends 92 1.86 291 2.52 2 10 9
Weekdays, special 38 2.04 9.42 3.06 0 21 7

Note: The daily MAPE is computed as the averagh®®4 hourly MAPES; the number of errors abovei®¥%#ased on the daily average
percentage error, which is computed as the averitpe 24 hourly APESs for that day.
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