
Working Paper 11-09 (06)
Statistics and Econometrics Series
April 2011

Departamento de Estadística
Universidad Carlos III de Madrid

Calle Madrid, 126
28903 Getafe (Spain)

Fax (34) 91 624-98-49

A VEHICLE ROUTING MODEL WITH SPLIT DELIVERY AND
STOP NODES

Leonardo Berbotto1, Sergio García1 , Francisco J. Nogales 1

Abstract
In this work, a new variant of the Capacitated Vehicle Routing Problem (CVRP) is presented
where the vehicles cannot perform any route leg longer than a given length L (although the routes
can be longer). Thus, once a route leg length is close to L, the vehicle must go to a stop node to
end the leg or return to the depot. We introduce this condition in a variation of the CVRP, the
Split Delivery Vehicle Routing Problem, where multiple visits to a customer by different vehicles
are allowed. We present two formulations for this problem which we call Split Delivery Vehicle
Routing Problem with Stop Nodes: a vehicle flow formulation and a commodity flow formulation.
Because of the complexity of this problem, a heuristic approach is developed. We compare its
performance with and without the stop nodes.

Keywords: Split Delivery Vehicle Routing Problem, Stop Node, Granular neighborhood,
 Tabu search.

Acknowledgements: The first and third authors are supported by the Spanish Government
through project MTM2010-16519. The second author is supported by the Spanish Government
through project MTM2009-14039-C06-04.

1 Department of Statistics, Universidad Carlos III de Madrid.
e-mail addresses: lberbott@est-econ.uc3m.es (Leonardo Berbotto),

s ergio.garcia@uc3m.es (Sergio García),
Fc oJavier.Nogales@uc3m.es (Francisco J. Nogales).

mailto:lberbott@est-econ.uc3m.es
mailto:FcoJavier.Nogales@uc3m.es
mailto:sergio.garcia@uc3m.es

A Vehicle Routing Model with Split Delivery and Stop Nodes

Leonardo Berbotto, Sergio Garćıa, Francisco J. Nogales
Department of Statistics

Universidad Carlos III de Madrid, Spain

lberbott@est-econ.uc3m.es, sergio.garcia@uc3m.es, FcoJavier.Nogales@uc3m.es

Abstract

In this work, a new variant of the Capacitated Vehicle Routing Problem (CVRP) is

presented where the vehicles cannot perform any route leg longer than a given length L

(although the routes can be longer). Thus, once a route leg length is close to L, the

vehicle must go to a stop node to end the leg or return to the depot. We introduce

this condition in a variation of the CVRP, the Split Delivery Vehicle Routing Problem,

where multiple visits to a customer by different vehicles are allowed. We present two

formulations for this problem which we call Split Delivery Vehicle Routing Problem with

Stop Nodes: a vehicle flow formulation and a commodity flow formulation. Because

of the complexity of this problem, a heuristic approach is developed. We compare its

performance with and without the stop nodes.

Keywords: Split Delivery Vehicle Routing Problem, Stop Node, Granular neighbor-

hood, Tabu search.

1. Introduction

Transportation problems are confronted almost every day by everyone. From the simplest

one, like organizing a shopping day, to the most complex one, faced up by logistic companies,

both need a “good” model such that it captures the characteristics of the problem in the best

possible way. Thus, routing problems are among the most studied problems in Combinatorial

Optimization. The so-called Capacitated Vehicle Routing Problem (CVRP) belongs to this

family of problems: a set of routes for a fleet of capacitated vehicles, based at one or several

depots, must be determined for a number of geographically dispersed cities or customers.

Each of them has to be visited by one single vehicle. Figure 1 shows an example of a CVRP:

in Figure 1a, there is a set of customers with some demands. The central point is the depot.

Figure 1b shows a routing solution with four vehicles serving the customers. The objective

is to serve the customers, whose demands are known in advance, with all routes beginning

1The first and third authors are supported by the Spanish Government through project MTM2010-16519.
The second author is supported by the Spanish Government through project MTM2009-14039-C06-04.

2

and ending at a depot such that the total cost (total length of the routes) is minimum.

Other usual objectives for the CVRP are the minimization of the global transportation cost

or the travel time, the minimization of the number of vehicles used, the minimization of the

penalties associated with partial services if the customers are not fully served, etc.

Figure 1: Vehicle Routing Problem

(a) Set of customers and a depot (b) Solution of VRP

Real life situations need to adapt the CVRP model to their own characteristics and, thus,

new variants of the CVRP are obtained in a natural way. An important application of the

CVRP, not studied until now, is to consider a maximum length on each route leg performed

by a vehicle. First, we define a route leg as a piece of route starting and ending at the depot

or at some special node different from a customer. Thus, a route may be divided in more than

one leg with lengths less than an specific measure each. A simple example is the following:

a route length is equal to 720 km but each route leg cannot be longer than 400 km. This

route may be divided in different ways: one route of 400 km and other one with 320 km or

both route legs with 360 km each, or any combinations of route legs less than 400 km each.

Transportation examples that may consider this variant of the CVRP are those situations

where the driver cannot work more than a certain amount of time without having some rest

or where a vehicle must find a gas station before a certain limit of kilometers. This new

condition is added to the CVRP model such that, once the vehicle is close to the maximum

length, it must return to the depot or find a place to stop before the route leg length limit

is exceed. The places where the vehicle can stop, which we assume to be different from the

set of customers, are called stop nodes.

Other variant of the CVRP already known in the literature is the Split Delivery Vehicle

Routing Problem (SDVRP). It is a relaxation of the CVRP that removes the constraint of

each customer being served by just one single vehicle. We are also interested in this variant

of routing problems because it has many real life applications and, in some cases, savings

with respect to the transportation cost of the CVRP are reached. This fact is illustrated in

Figure 2. Figure 2a shows the graph for a simple problem with its arc costs. The customer

3

demands are equal to 3 for all of them and the vehicles have capacity Q = 4. Figure 2b

shows the optimal solution of the CVRP: four vehicles are used and the cost is 16. If split

delivery is allowed, Figure 2c shows an optimal solution: three vehicles are needed and the

solution cost is 15.

Figure 2: Split Delivery Vehicle Routing Problem

(a) Set of customers and a depot

(b) Solution without split (c) Solution with split

A first study on this saving was carried out in [19] using a heuristic approach. For

problem sets of 75, 115 and 150 demand points and a fleet of vehicles with capacity fixed at

Q = 160 units, the average number of vehicles saved was 14.07 and the average percentage

distance gained for this set of problems was 11.24% for demands between 0.7Q and 0.9Q.

They also showed empirically that if the demands are less than 0.1Q, there is no (or very

little) advantage in solving the problem as a SDVRP versus a CVRP. These savings are

theoretically studied in [6]: the cost of an optimal CVRP solution is compared with the

cost of an optimal SDVRP solution by computing an upper bound on the ratio between the

solution of both problems. It is shown that savings can be at most 50% and that this bound

is tight (i.e., there exist instances where the value of the optimal solution of the CVRP is

exactly twice the optimal value of the SDVRP).

The SDVRP has been applied successfully to several real situations such as the manage-

ment of a fleet of trucks in a feed distribution problem ([33]), the problem of determining the

flight schedule for helicopters to off-shore platforms for exchanging crew people employed

on these platforms ([34]), and a waste collection problem with vehicles with small capacities

and customers with demands greater than the vehicle capacity ([7]). In [10], a scatter search

approach is applied to a retail composed by 519 stores in 11 Brazilian states.

4

For these reasons, a model that combines split delivery and constraints on the route leg

length seems an interesting transportation problem, to study. This work presents a first

model for the Split Delivery Vehicle Routing Problem with Stop Nodes (SDVRPSN) using

two formulations: a vehicle flow formulation and a commodity flow formulation. For solving

the SDVRPSN, we develop a tabu search heuristic that we call Hybrid Granular Tabu Search

(HGTS). The local search is done in a granular neighborhood as developed in [35] for routing

problems. The heuristic uses some move operators dealing with the routing problem and

others that focus on the split problems and on the route length. Since we allow to search

in neighborhoods with infeasible solutions with regard to the vehicle capacity and route leg

length, the algorithm introduces corrective phases to fix these excesses. Because there are not

benchmarks for the SDVRPSN, we solve the SDVRP using HGTS and the same instances

than [8]. We compare the results with the best heuristics found in the literature and thus

we can test the algorithm efficiency. The HGTS performs very well and outperforms many

well-known solutions of the tested instances. After this, the limit on the route leg length is

introduced by fixing it to twice the distance between the depot and the farthest customer.

The problem is solved with HGTS for a subset of the instances that present the lowest demand

with respect to the vehicle capacity. We select these instances because their solution have a

high probability of presenting more than one route leg on each route.

The rest of this paper is structured as follows: Section 2 reviews the literature for the

SDVRP and for problems with some links to this new variant (SDVRPSN). Section 3 in-

troduces the general framework of routing problem with route leg length constraints and

Section 4 presents this variant specifically for the SDVRP. Section 5 describes the HGTS

and computational results are exposed in Section 6. Finally, some conclusions and further

research are given in Section 7.

2. Literature review

The CVRP was introduced in 1959, when the first mathematical programming formu-

lation and the first algorithmic approach were proposed in a real world application about

gasoline delivery (see [16]). These initial results were later improved in [14], where it was

developed a greedy heuristic, and which has become one of the most classical papers on

the topic. The CVRP falls into the category of NP-hard problems, which means that the

computational effort required to solve the problem increases exponentially as the problem

size grows linearly. As a consequence of its complexity, most of real-life instances can only

be solved with heuristics.

5

The variant of the CVRP with split delivery was introduced in [19] and [20], where it was

shown the potential in cost saving through split deliveries. This model is more realistic than

the simple CVRP in, for example, waste collection or food distribution, situations where

the demand at the nodes is much larger than the capacities of the vehicles. SDVRP is a

more complex problem than CVRP because it has many more feasible solutions. Some valid

inequalities for the SDVRP are derived in [18] and it is shown in [9] that the dimension of the

SDVRP polyhedron depends on whether a vehicle visiting a customer must service or not at

least one unit of the customer demand. They propose a new family of valid inequalities that

define facets of the polyhedron and a cutting plane algorithm whose quality is exhibited by

solving instances with up to 50 customers (but individual customer demands do not exceed

the vehicle capacity). In [30], it is presented a column generation approach similar to the

one in [34] and 12 of the 25 instances used in [9] (those with customer demands at least 15%

larger than the vehicle capacity) are compared. They improve the error gap (difference

between lower bound and upper bound generated by the same column generation algorithm)

with respect to the results of [9].

Like the classical CVRP, the SDVRP is NP-hard ([20]). As a consequence, exact solu-

tion methods are few and cannot solve problems too large in size. In [32], the problem is

formulated as a dynamic programming model and instances with up to nine customers are

solved. In [29], a two-stage algorithm is presented: i) the first stage creates clusters that

cover all the demands and establishes a lower bound for the optimal value; ii) the second

stage calculates the minimal distance traveled for each cluster by solving the corresponding

traveling salesman problem and also establishes an upper bound. This approach is able to

solve instances with up to 23 customers using a large computational time (more than 13

hours). Finally, an exact algorithm for the SDVRP with Time Windows (where customers

must be visited within a known time range) based on a set covering formulation and a column

generation technique is proposed in [24]. The algorithm solves almost all instances with up

to 50 customers. In [17], a branch-and-price-and-cut method for this variant of SDVRP is

proposed. It tests 504 instances, among which 176 instances are solved to optimality within

one hour of computer time.

Because of the already mentioned complexity of the problem, heuristic procedures are

more often found in the literature. In [19] and [20], a first local search approach is presented.

Tabu search heuristics are used in [2], [8] and [28]. In [28] the authors compare the saving

between solutions with and without split delivery in a model with time windows. They use

the Solomon instances (see http://www2.imm.dtu.dk/ jla/solomon.html) to show that the

number of vehicles and the distances traveled are reduced when split deliveries are allowed.

For other cases where split deliveries are not efficient, they obtain results identical to the best

6

known solution with no splits. A very simple tabu search with only two procedures named

Order Routes and Best Neighbor is implemented in [8]. They also add an improving phase

using the GENIUS algorithm developed in [25] and a k-split cycle elimination procedure.

They compare their results with [19] and improve almost all the considered instances. Finally,

in [2] a tabu search and a learning procedure are applied. The method is based on an set

of initial solutions that are used to build a new solution with high quality by replacing the

existing solution with least quality. The generated solutions are improved with a variable

neighborhood descendent procedure presented in [4].

On more solution algorithm for the SDVRP can be found in [12], where the first algorithm

based on a scatter search methodology for this problem is presented. It works with the

minimum number of vehicles necessary to serve all the demands. In [11], a memetic algorithm

with population management is implemented, which combines a genetic algorithm with local

search for intensification and diversification.

Following with heuristics for the SDVRP, the tabu search procedure of [8] is used in [5]

to identify part of the solution space that has a high probability of being in a best solution.

After that identification, an integer program is run to obtain improved feasible solutions.

Moreover, a hybrid approach combining a mixed integer program and a record-to-record

travel algorithm producing high quality solutions is developed in [13]. In [3], where a review

on solution techniques for the SDVRP can be found, a new diversification methodology is

developed. The geographic space of the problem is marked with rings used to group the

costumers and then they are assigned to routes using a constructive approach.

Concerning with models that introduce conditions on the route length, we can find in [31]

a limit on the total length of a route but not on route legs. Moreover, close to the idea of

the stop nodes, in [1] a model is proposed where routes must end at the driver’s homes or at

a parking lot. Therefore, even though the model with stop nodes is a realistic situation and

it is present in many situations, it has not been studied yet. We introduce this new variant

by describing the main characteristic of the route leg length constraints and the definition

of the stop nodes.

3. The CVRP with Stop Nodes

In this section we present the new set of conditions on the route leg length that added

to the CVRP model define the CVRP with Stop Nodes (CVRPSN). This approach differs

from others that introduce the limit length on the complete route, because in these problems

7

the minimum number of vehicles needed to serve all the customers may be greater than

that in the new variant. In a model with a limit on the route length, the minimum number

of vehicles needed to solve the problem does not depend on just the customer demands

and on the vehicle capacity, but also on the distances. Also, in a model with route length

constraint, the limit value of this length must be an amount at least twice the distance of

the farthest customer to the depot for some feasible solution to exist. However, with the use

of stop nodes, a lower value of the limit on route leg length does not exist because to reach

a customer you can visit many stops as needed. Then, the minimum number of vehicles

depends just on the customer demands and on the vehicle capacity. Of course, we need a

necessary amount of well located stop nodes.

3.1. Motivating example

For a better explanation about the use of stop nodes, consider the case where the vehicle

cannot perform a route leg longer than a given length L. First of all, we introduce in the

problem a new component called stop node: a node with no demand where the vehicle can

stop when the route leg length is close to L. This means that the cumulative length along

the route leg must be computed such that it cannot exceed the given value L. Thus, when

the route leg length is close to this limit, the vehicle must either return to the depot or go

to a stop node. If the latter choice is taken, after the stop, the vehicle can resume the route

and the leg length starts with a cumulative length equal to zero. The value of L can be

measured in distance units (i.e., kilometers) or in time (i.e., hours). In the problem that we

study here that we assume the existence of a set of stop nodes, different from the customer

set, with known location and without demands.

Figure 3 shows an example of CVRPSN. Assume that there is a set of 4 customers C =

{1, 2, 3, 4}, with one unit of demand each, a depot 0 and a stop node s (Figure 3a). Suppose

that a route leg cannot exceed a maximum length L = 7; the vehicle capacity is Q = 3 and

the number of vehicles is K = 2. The objective is to minimize the total route cost of serving

all the customers. For the sake of simplicity, we assume that the lengths of the arcs are

symmetric (lij = lji ∀i, j ∈ C ∪{0}∪{s}) and that these lengths are equal to the travel cost

along each arc (cij = lij ∀i, j ∈ C ∪ {0} ∪ {s}). We assume the following set of costs:

∙ c23 = c04 = 1, c01 = c12 = 2, c02 = c03 = c34 = 3;

∙ the cost of the arcs between the stop node s and the nodes 2 and 3 are equal to one,

that is c2s = c3s = 1;

∙ the remaining costs are greater than 3.

8

We assume a cost of one unit when the stop node is used. First, consider the case where

there is no stop node. The solution of the CVRP without the route leg length constraint

is equal to 10 (Figure 3b). If this constraint is introduced but the use of the stop node is

forbidden the solution cost is 14, performed in two routes: vehicle 1 visits nodes 1 and 2 and

vehicle 2 visits the nodes 3 and 4. Both route lengths are equal to 7 (c01 + c12 + c20 = 7 and

c03 + c34 + c40 = 7). This is shown in Figure 3c.

Figure 3: SDVRPSN with maximum length equal to 7

(a) Set of customers, depot and stop
node (b) Solution of CVRP with no L (z = 10)

(c) Solution of CVRP with L and no
stop node (z = 14)

(d) Solution of CVRP with L and stop
node (z = 12)

Now, consider that the use of the stop node is allowed. This means that a vehicle might go

to the stop node if the route leg length is close to L. The optimal solution is also performed in

two routes, but this time with a cost of 12. In the first tour, vehicle 1 visits nodes 1 and 2, the

stop node s and finally node 3. Note that, at node 2 the route leg length is 4 (c01 + c12 = 4).

If it decides to go to node 3 and then from node 3 to the depot, then the route leg length

will exceed L. If the vehicle goes to the stop node, the route leg length is 5 (< L). Then, it

resumes the next route leg from the stop node and, because the remaining capacity on the

vehicle is 1, the last visited customer on this route is node 3 before returning to the depot

with a leg length equal to 4 (cs3+c30). This route has two legs, both with length less than L.

Vehicle 2 visits the fourth customer with a route length of 2 (Figure 3d). A cost of 1 must

9

be added to the objective because the use of the stop node by vehicle 1.

The idea of this graphical example is formalized next with some constraints.

3.2. Route leg length constraints

Route leg length constraints forbid the existence of a route leg length larger than a given

value L. Let lij represent the length of the arc from node i to node j. Because we have

this new kind of length constraints, the computation of the cumulative length at each node

is necessary, meaning that we need to calculate the leg length performed by each vehicle

by every node that it visits. We denote with ajk the cumulative route leg length when

vehicle k arrives at customer j. For example, in Figure 3d, where the order of the customers

on route 1 is 0 − 1 − 2 − s − 3 − 0, the computation of aj1 at each node is: a11 = l01 = 2,

a21 = a11 + l12 = 4, as1 = a21 + l2s = 5, a31 = ls3 = 1 and, finally, a01 = a31 + l30 = 4.

The formulation of these constraints is the following. Let C = {1, 2, . . . , n} be the set of

customers, each one with a positive demand di and let S = {n+ 1, n+ 2, . . . , n+ p} be the

set of stop nodes (which have no demands). Let I = {0}∪C∪S be the set of all the nodes in

the problem where 0 denotes the depot. Each path from i to j ∀i, j ∈ I has a nonnegative

travel length lij and the use of a stop node j ∈ S is associated to a nonnegative cost fj .

First, consider that the vehicle k starts the route leg at the depot or at a stop node that

has been reached at an earlier stage. At the first visited node j ∈ C ∪ S on this leg, the

cumulative length is ajk = lij , where i ∈ {0} ∪ S is the initial node of the leg. For example,

in Figure 3d for j = 1, 3, we have that a11 = l01 and a31 = ls3. Formally, these constraints

are:

ajk ≤ L− (L− lij)xijk ∀i ∈ {0} ∪ S, ∀j ∈ I, k = 1, 2, . . . ,K, (1)

ajk ≥ lijxijk ∀i ∈ {0} ∪ S, ∀j ∈ I, k = 1, 2, . . . ,K, (2)

where xijk is a binary variable that takes value one if arc (i, j) is used by vehicle k in the

solution and value zero otherwise. Note that when xijk = 1, then ajk = lij .

Now, for any path starting at a customer i ∈ C along the route of vehicle k, the cumulative

costs are computed as ajk = aik + lij if the arc from i to j is used by vehicle k. Formally,

ajk ≤ aik + L− (L− lij)xijk ∀i ∈ C,∀j ∈ I, k = 1, 2, . . . ,K, (3)

10

ajk ≥ aik − L+ (lij + L)xijk ∀i ∈ C,∀j ∈ I, k = 1, 2, . . . ,K. (4)

Thus, if xijk = 1, then ajk = aik + lij .

Finally, no cumulative cost can exceed the limit L:

ajk ≤ L ∀j ∈ {0} ∪ S, k = 1, 2, . . . ,K. (5)

An important remark must be made at this moment. These constraints are correct if

the arc lengths lij satisfy the triangle inequality, that is, whether the costs are associated

with Euclidean distances in ℛ2. For the case of different distances (i.e, if the data do not

verify the triangle inequality), we must adapt the constraints because a stop node could be

visited because of being on the shortest path to reach a customer. In this case, there should

be no cost for visiting the stop node. To solve this problem, copies of the stop nodes are

introduced as customers without demands. Then, when the route visits a stop node, we have

to consider if it is because the length of the leg is close to L and then the cost fj must be

computed, or it is because the shortest path for arriving at the next customer visits the stop

node. In our paper, we will assume that the lengths lij satisfy the triangle inequality.

Note that these constraints may be added to any variant of vehicle routing problems.

As it has already been exposed, we focus on problems with split delivery because of the

real applications and savings in the cost solution with respect to the CVRP. Also, note that

problems with at least one customer demand greater than the vehicle capacity cannot be

solved as a CVRP but can solved as a SDVRP.

4. The Split Delivery Vehicle Routing Problem with Stop Nodes

Contrary to what is assumed in the CVRP, in the SDVRP each customer can be visited

more than once and so its demand can be greater than the vehicle capacity. The remaining

assumptions of the CVRP are still valid for the SDVRP.

First, we introduce some notations. Following with the sets C, S and I introduced in

the previous section, the SDVRPSN can be described on a complete graph G = (I, A), also

called road graph, where A is the set of arcs {(i, j)∣ i, j ∈ I and i ∕= j}. A nonnegative cost cij

and a nonnegative length lij are associated with each arc (i, j) ∈ A, representing the travel

cost and the length of arc (i, j), respectively .

11

Each customer i ∈ C is associated with a deterministic nonnegative demand di to be

delivered (some of these demands might be greater than the vehicle capacity). The depot and

the stop nodes have no demand. A set of K identical vehicles, each one with capacity Q ∈ ℤ+,

is available at the depot. Each vehicle performs one route at most and we assume that K

is equal to the minimum number of vehicles needed to serve all the customers Kmin, which

can be determined by the trivial lower bound of the CVRP, Kmin = ⌈d(C)/Q⌉, where d(C)

is the sum of the demands in C.

Next we present two mathematical formulations for the SDVRPSN: a vehicle flow for-

mulation and a commodity flow formulation. The first one, also called formulation by arcs,

uses the subtour elimination constraints defined on a subset of arcs to avoid cycles on the

same route. The second one uses flow variables that define the incoming and outgoing flows

of commodities at each node on the routes. Common notation for both formulations is the

following:

∙ xijk is a binary variable for i ∕= j equal to one if vehicle k travels directly from i to j

and zero otherwise, for i, j ∈ I;

∙ fj is the cost of using a stop node for j ∈ S;

∙ L denotes the maximum route leg length, where L ≥ max{l0j}j∈A.

The objective function can be expressed as follows:

min
∑
i∈I

∑
j∈I

K∑
k=1

cijxijk +
∑
i∈I

∑
j∈S

K∑
k=1

fjxijk, (6)

where the first term is the travel cost and the second term is the cost associated with the use

of stop nodes in all the routes. Then, the optimal solution is the set of routes that minimizes

the total serving cost.

4.1. Vehicle flow formulation

Defining the variable yik as the demand of customer i ∈ C delivered by vehicle k =

1, 2, . . . ,K, the vehicle flow formulation for the SDVRPSN is:

12

Min.
∑
i∈I

∑
j∈I

K∑
k=1

cijxijk +
∑
i∈I

∑
j∈S

K∑
k=1

fjxijk,

s.t.
∑
i∈I

K∑
k=1

xijk ≥ 1 ∀j ∈ C, (7)

∑
j∈I

K∑
k=1

x0jk = K (8)∑
i∈I

xipk −
∑
j∈I

xpjk = 0 ∀p ∈ I, k = 1, 2, . . . ,K, (9)∑
i∈D

∑
j∈D

xijk ≤ ∣D∣ − 1, ∀D ⊆ C ∪ S,D ∩ S ∕= ∅, k = 1, 2, . . . ,K, (10)

yik ≤ di
∑
j∈I

xijk ∀i ∈ C, k = 1, 2, . . . ,K, (11)∑
i∈C

yik ≤ Q k = 1, 2, . . . ,K, (12)

K∑
k=1

yik = di ∀i ∈ C, (13)

ajk ≤ L− (L− lij)xijk ∀i ∈ {0} ∪ S,∀j ∈ I, ∀k = 1, 2, . . . ,K, (14)

ajk ≥ lijxijk ∀i ∈ {0} ∪ S,∀j ∈ I, ∀k = 1, 2, . . . ,K, (15)

ajk ≤ aiv + L− (L− lij)xijk ∀i ∈ C,∀j ∈ I, ∀k = 1, 2, . . . ,K, (16)

ajk ≥ aik − L+ (lij + L)xijk ∀i ∈ C,∀j ∈ I, ∀k = 1, 2, . . . ,K (17)

xijk ∈ {0, 1} ∀ (i, j) ∈ A, k = 1, 2, . . . ,K, (18)

yik ≥ 0 ∀i ∈ C,∀k = 1, 2, . . . ,K, (19)

ajk ≤ L ∀j ∈ {0} ∪ S, k = 1, 2, . . . ,K. (20)

Constraints (7) say that a customer must be visited by at least one vehicle while con-

straints (8) impose that exactly K vehicles leave the depot (if the model verifies the triangular

inequality these constraints are not needed). Constraints (9) indicate that if vehicle k visits

node p, then it must leave it and (10) are the classical subtour elimination constraints. Note

that the subset D must have at least one stop node because the existence of subtours formed

by only customer nodes are avoided by constraints (14)-(17). Constraints (11) guarantee

that the quantity delivered by each vehicle does not exceed the demand of the node. Con-

straints (12) limit to Q the maximum load of each vehicle while constraints (13) ensure that

the entire demand of each node is satisfied. Finally, constraints (14) to (17) and (20) are the

route leg length constraints.

Note that yik must be a integer number, assuming that fractional services are not possible.

In [6], the authors show that if the di are integer, then there always exists an optimal

integer solution to the SDVRP, that is, variables yik can be relaxed from being integer to be

13

continuous.

A weakness of this formulation is the huge number of equations introduced by the con-

straints (10). A formulation that avoids this problem is the commodity flow formulation

shown in next section.

4.2. Commodity flow formulation

Commodity flow models were first introduced by [21] for an oil delivery problem and then

extended by [22] and [23] to variants of the Traveling Salesman Problem and the CVRP.

This formulation requires of new continuous variables associated with the arcs, which

represent the amount of product that flow trough them. The commodity flow formulation is

defined on an extended graph G′ = (I ′, A′) obtained from G by adding a copy of the depot

node as the vertex n+ p+ 1.Thus, I ′ = I ∪{n+ p+ 1}, A′ = {(i, j), (0, i), (i, n+ p+ 1) ∣ i, j ∈
I ′∖{0, n + p + 1} and i ∕= j}. The arc costs associated to the copy of the depot are the

same than the arc costs of the depot, that is ci,n+p+1 = c0i ∀i ∈ I ′∖{0, n + p + 1}. Two

non-negative flow variables wijk and wjik are defined for each arc (i, j) ∈ A′. When vehicle k

travels from i to j, wijk and wjik represent the vehicle load and the residual capacity along

arc (i, j) for vehicle k, respectively. Note that wijk + wjik = Q for every arc (i, j) ∈ A′ in a

route k. Hence, the flow variables define two directed paths: one from the depot to its copy

with the load of the vehicle and another in the contrary sense with its remaining capacity.

It is important to remark that the following formulation (a commodity flow formulation

for the SDVRP) is new in the literature. In order to obtain it, the following constraints must

be considered:

∙ Commodity Flow conservation constraints:

We know that the outgoing flow at node i is the incoming flow minus its demand. Thus,

the difference between the incoming and the outgoing flows is di. Actually, since in a feasible

solution a node i ∈ C presents two incoming flows and two outgoing flows this difference is

equal to 2di. For i ∈ S we have that di = 0 and then the condition also holds. Therefore,

the constraints are:

∑
j∈I′

K∑
k=1

wjik −
∑
j∈I′

K∑
v=1

wijk = 2di ∀i ∈ C, (21)

14

and ∑
j∈I′

K∑
k=1

wjik −
∑
j∈I′

K∑
k=1

wijk = 0 ∀i ∈ S. (22)

∙ Outgoing flow from the depot:

Consider the flow path from the depot to its copy. By definition the outgoing flow wijk

at node i represents the remaining demand to be delivered by vehicle k along the route until

the end. Therefore, at the depot the outgoing flow w0jk is the total demand delivered by

vehicle k along the complete route. Summing over all the vehicles, this condition is:

∑
j∈I′∖{0,n+p+1}

K∑
k=1

w0jk = d(C). (23)

∙ Incoming flow at the depot:

Consider the flow path from the copy of the depot to the depot. The incoming flow wjik

at node i is the remaining capacity of vehicle k after visiting the customer j. At the depot,

this remaining capacity of the vehicle is the capacity Q minus the total demand delivered

along the route by vehicle k. Summing over all the vehicles:

∑
j∈I′∖{0,n+p+1}

K∑
k=1

wj0k = KQ− d(C). (24)

∙ Arc flow capacity: These constraints link the commodity flow variables and the vehicle

flow variables:

wijk + wjik = Q(xijk + xjik) ∀i, j ∈ I ′, k = 1, 2, . . . ,K. (25)

∙ Outgoing flow from the copy of the depot:

The path defined from the copy of the depot to the depot represents the remaining

capacity of the vehicle. Then the flow w(n+p+1)jk is the total capacity because no demand

was delivered yet. For K vehicles we have that:

∑
j∈I′∖{0,n+p+1}

K∑
k=1

w(n+p+1)jk = KQ. (26)

15

Thus, the full commodity flow formulation is:

Min.
∑
i∈I

∑
j∈I

K∑
k=1

cijxijk +
∑
i∈I

∑
j∈S

K∑
k=1

fjxijk,

s.t.
∑
i∈I′

K∑
k=1

xipk −
∑
j∈I′

K∑
k=1

xpjk = 0 ∀p ∈ I∖{0, n+ p+ 1}, (27)

∑
j∈I′

K∑
k=1

(wjik − wijk) = 2di ∀i ∈ C, (28)

∑
j∈I′

K∑
k=1

(wijk − wjik) = 0 ∀i ∈ S, (29)

∑
j∈I′∖{0,n+p+1}

K∑
k=1

w0jk = d(C) (30)

∑
j∈I′∖{0,n+p+1}

K∑
k=1

wj0k = KQ− d(C) (31)

∑
j∈I′∖{0,n+p+1}

K∑
k=1

w(n+p+1)jk = KQ (32)

(wijk + wjik) = Q(xijk + xjik) ∀i, j ∈ I, k = 1, 2, . . . ,K (33)

ajk ≤ L− (L− lij)xijv ∀i ∈ {0} ∪ S,∀j ∈ I ′∖{0},∀k = 1, 2, . . . ,K, (34)

ajk ≥ lijxijk ∀i ∈ {0} ∪ S,∀j ∈ I ′∖{0},∀k = 1, 2, . . . ,K, (35)

ajk ≤ aik + L− (L− lij)xijk ∀i ∈ C,∀j ∈ I ′∖{0},∀k = 1, 2, . . . ,K, (36)

ajk ≥ aik − L+ (lij + L)xijk ∀i ∈ C,∀j ∈ I ′∖{0},∀k = 1, 2, . . . ,K, (37)

xijk ∈ {0, 1} ∀ i, j ∈ I ′, k = 1, 2, . . . ,K, (38)

yik, wijk ≥ 0 ∀i ∈ C, j ∈ I ′, k = 1, 2, . . . ,K, (39)

ajk ≤ L ∀j ∈ S ∪ {n+ p+ 1}, k = 1, 2, . . . ,K. (40)

The flow variables and the flow conservation constraints avoid the use of the subtour

elimination constraints and, therefore, this formulation is smaller than the vehicle flow for-

mulation. However, it gives weaker lower bounds.

5. Solution method

In relation to implementation, the exact solution of both models using general CPLEX’s

Branch and Bound requires a huge amount of time even for small examples (up to 7 customer

nodes and 2 stop nodes using the instances of [32]). Hence, because of the complexity of

the problem, we need an efficient algorithm to get a solution and to start the study of

this problem. We present a tabu search heuristic with granular neighborhood. First, some

16

concepts about tabu search and granular searching are introduced.

5.1. Tabu search and granular local search

The neighborhood of a solution is a set of other solutions that can be obtained by simple

modification of the current solution. This modification and the transition of a solution to

a new one is called a move. In a simple local search, at each iteration, the best solution of

the neighborhood that improves the current solution is introduced. Since after an improving

move a new current solution is reached, the algorithm is iterated until no improving move is

obtained. The current solution represents a local optimum in the current neighborhood. As

it can be noted, the number of iterations needed to reach the local optimum may be large

and depends mainly on the problem size. A weakness of a local search process is that, once

the solution is close to a local optimum, it may be difficult to escape from it. The tabu

search methodology deals with this problem.

The basic tabu search is based on procedures designed to cross boundaries of local op-

timality or feasibility guiding a local search procedure to explore the solution space beyond

local optimality ([27]). The main component of the tabu search is its use of adaptive mem-

ory: to escape from a local optima and cycles, a tabu list or short term memory is used. This

tabu list introduces the main attributes of a move and forbid in the current neighborhood all

the moves that imply at least one attribute from the list. Moves at the tabu list are consid-

ered tabu, that is, they are forbidden during a certain number of moves. Intensification and

diversification components are also important for a tabu search. During the intensification

stage, the algorithm searches on a neighborhood of the elite solution by returning to attrac-

tive regions to search more thoroughly. On the diversification stage, the search is made on

unvisited regions. After a given number of non-improving moves, the tabu list is stopped.

Although the tabu list is an effective tool for avoiding local optima, the time required to

explore all possible neighborhoods may be very large, especially in large instances. For this

reason, it is defined in [35] a restricted neighborhood, called granular neighborhood, obtained

from the standard one by removing the moves that cannot belong to high quality feasible

solutions. The granular neighborhood only looks for moves with an important probability of

staying in the optimal solution at each iteration by defining elite neighborhoods. Because this

variant examines a granular neighborhood in much less time than the original one, the time

required to reach a highly quality solution is often much smaller. An important particularity

of granular search is that the structure of the granular neighborhood may be modified during

the evolution of the algorithm to diversify the search.

17

In [35], the authors observe that long arcs in the problem graph have a low probability

of being part of high quality solutions. Therefore, a possible way to limit the search of the

neighborhood is not considering moves that try to insert “long” arcs in the current solution.

Following this idea, it is defined a new sparse graph that includes all the arcs that should

be considered for insertion in the optimal solution. To define what “short” arc and a sparse

graph are, a granular threshold value is defined as:

� = �
z′

(n+K)′
, (41)

where � is a suitable positive sparsification parameter and z′ is the value of any initial

solution obtained by any fast algorithm. Note that the fractional term represents the average

value of an arc in the initial solution. An arc (i, j) belongs to the sparse graph G′ if:

cij ≤ �
z′

(n+K)′
. (42)

Finally, the sparse graph may also includes other arcs such as those from the depot to

customers, which may exceed the granular threshold, defining the set Z. Then the sparse

graph G′′ = (I ′, A′′), where A′′ = {(i, j) ∈ A′ ∣ cij ≤ �} ∪ Z is defined.

By using the above ideas, we propose in this paper an algorithm called Hybrid Granular

Tabu Search Heuristic. This algorithm can be used to solve SDVRP both with and without

stop nodes.

5.2. The Hybrid granular tabu search algorithm

The details of the Hybrid Granular Tabu Search heuristic (HGTS) for the SDVRPSN are

presented here. This algorithm has four main parts: 1) Initial Solution, 2) Granular Tabu

Search, 3) Improving Solution, and 4) Route Leg Length correction. There is also a set of

processes applied to improve the current solution based on local search and on the known

properties of the problem. The algorithm is constructed for a symmetric Euclidean graph.

5.2.1. Initial solution

The initial solution is obtained with the well known Clarke and Wright save algo-

rithm ([14]) based on the savings of merging two simples route (0, i, 0) and (0, j, 0) into

one route (0, i, j, 0). The saving for nodes i, j ∈ C is defined as sij = c0i + c0j − cij . A

18

decreasing ordered list (or matrix) of these savings is built storing at each row the infor-

mation of nodes i, j and the saving sij . Nodes are introduced and connected on the same

route following the order in the list until the capacity of the vehicle is full. Once a node is

added to a route, all the rows of the list that contain it are erased. If a vehicle cannot serve

the full demand of a node, it is partially served by this route (until completing the vehicle

capacity) and the route is over; the remaining demand will be served by other vehicle. Note

that only the last nodes introduced in a route can be visited by more than one vehicle. In

case of partial service, the rows on the list containing this node are not erased. Then the

algorithm constructs4 K routes, where K − 1 vehicles are full in capacity. If route K has a

split node with a route z, the node is deleted from z and all its demand is allocated to the

last vehicle (if the remaining capacity allows it). This initial solution is a feasible solution

that uses the minimum number of vehicles. Before the construction of the routes with the

Clarke and Wright algorithm, we perform single routes to nodes with demands greater than

or equal to Q so that we reduce the set of nodes and the number of vehicles to generate

the remaining routes. Finally, note that some of these routes can present route leg length

greater than L.

These routes can be improved in the sense of having less cost by making moves: exchanges

of nodes, splitting nodes or deleting nodes from some routes. The granular tabu search phase

includes these procedures.

5.2.2. Granular tabu search phase

In this phase, seven different local search procedures are executed and a tabu list is

built. Each procedure searches for an improving move in a granular neighborhood of the

current solution and the best move, in sense of the savings, is introduced to obtain a new

current solution. These moves are introduced at the tabu list and their inverse moves are

tabu for the next t moves. Then, t represents the tabu list size and also we indicate with T

the number of iterations with no moves to introduce in the solution. For the local search

procedures, a granular neighborhood is defined to reduce the search space. The algorithm

uses the following granular definition:

Gran = �
z

n+K + s
(1 +

RemCapk
AverRemCap

), (43)

where z is the value of the current solution, s is the number of nodes with split in the current

solution, RemCapk is the remaining capacity of vehicle k, we say AverRemCap represents

the average of the remaining capacity of routes with unused capacities. This new term into

the Gran definition allows to search in routes that are not in the normal granular space but

19

that are attractive because they have a relevant remaining capacity. Denoting with rk the

route performed by vehicle k, we say that a node i ∈ rk stays into the granular neighborhood

of j ∈ rv if cij ≤ Gran and we denote it as i ∈ G(j). Finally, y0ik and y1ik are the demands

of customer i served by vehicle k before and after introducing a move, respectively.

The procedures used in our tabu search are the following:

∙ Relocate node (Relocate): for customer nodes i ∈ rk and and j ∈ rv, if either i ∈ G(j)

or i ∈ G(j + 1) and if the remaining capacity of rv is large enough, then move the

node i from rk to rv and locate it at the position (j + 1)tℎ on rv. Demands are set as

following: y1ik = 0 and y1iv = y0ik (see Figure 4).

∙ Exchange node (Exchange): for customer nodes i, t ∈ rk and j, g ∈ rv, if either i ∈ G(g)

or i ∈ G(g + 1), either j ∈ G(t) or j ∈ G(t + 1) and the remaining capacities of rk

and rv are large enough, then move node i from rk to rv, locating it in the position

(g + 1)tℎ, and move j from rv to rk, locating it in position (t+ 1)tℎ. Demands are set

as following: y1ik = 0, y1iv = y0ik and y1jv = 0, y1jk = y0jv (see Figure 5).

∙ 2-Opt (2opt): for customer nodes i ∈ rk, j ∈ rv, if i ∈ G(j+ 1) and j ∈ G(i+ 1) switch

the initial part of rk(rv) until node i (node j) and reconnect it with j + 1 on rv (i+ 1

on rk). Demands are set as following: y1zv = y0zk (y1zk = y0zv) where z takes the value

of the first elements of rk (rv) up to node i (j). This move is done if the capacities of

vehicles k and v allow it (see Figure 6).

∙ Exchange Split (ExchSplit): for a customer node i visited by routes rk and rv (this

is, i ∈ rk and i ∈ rv) and customer nodes z, z + 1 ∈ rv, j ∈ rk, if either j ∈ G(z)

or j ∈ G(z + 1), then erase i from rv and generate a new split between these routes

at a node j inserting it at position (z + 1)tℎ on rv. Demands are set as following:

y1iv = 0, y1ik = y0ik + y0iv, y
1
jk = y0jk − y0iv and y1jv = y0iv (see Figure 7).

∙ Delete split and new split (DelSplitNew): for a customer node i visited by routes rk

and rv and customer nodes j ∈ rk and z, z + 1 ∈ rt if either j ∈ G(z) or j ∈ G(z + 1)

and the remaining capacity of rt is large enough, erase i from rv and generate a new

split on node j between route k and a new route t, locating it at the position (z+ 1)tℎ

on rt. Demands are set as following: y1iv = 0, y1ik = y0ik + y0iv, y
1
jk = y0jk − y0iv and

y1jt = y0iv (see Figure 8).

∙ Move splits (MoveSplit): given a customer node i that is visited by more than one

vehicle, let B be the set of routes that have i in their paths and let B′ be the set of

routes without i in their paths. If for some g ∈ r∗, either i ∈ G(g) or i ∈ G(g + 1)

where r∗ is a route in B′ with the minimum insertion cost (the cost of introducing some

20

node on a route) of node i and the remaining vehicle capacity of r∗ is large enough,

then delete ifrom all route in B and introduce it in r∗ at position (g + 1)tℎ. Demands

are set as following: y1ik = 0,∀k ∈ B and y1ir∗ = di (see Figure 9).

∙ Delete best split (DelBestSplit): given a customer node i that is visited by more than

one vehicle, let B be the set of routes that contain node i in their paths and let rk ∈ B
be the route with the greatest saving cost for erasing i. If the total remaining capacities

of rj , j ∈ B∖{rk}, are large enough, delete i from rk and allocate the free demand y0ik to

the other routes in B starting by the route with the lowest saving cost for erasing i and

continuing with the next lowest saving cost and so on, until having allocated all y0ik.

In other words, sort B by decreasing saving cost, delete i from the first route in B

and split y0ik among the other routes in B starting by the last one and, when it is full,

follow with the next one and so on (see Figure 10).

Figure 4: Relocate process.

(a) Routes before Relocate (b) Routes after Relocate

Figure 5: Exchange process.

(a) Routes before Exchange (b) Routes after Exchange

Figure 6: 2Opt process.

(a) Routes before 2Opt (b) Routes after 2Opt

The procedures Relocate, Exchange and ExchSplit are also applied in [28]. 2-Opt is the

classical procedure developed in [15] for the traveling salesman problem. DelBestSplit is

presented in [8], but they use the insertion criteria in the inverse sense: starting by the route

with the greater saving cost. We use a different criterion because a route with a lower saving

21

Figure 7: ExchSplit process.

(a) Routes before ExchSplit (b) Routes after ExchSplit

Figure 8: DelSplitNew process.

(a) Routes before DelSplitNew (b) Routes after DelSplitNew

Figure 9: MoveSplit process.

(a) Routes before MoveSplit (b) Routes after MoveSplit

Figure 10: DelBestSplit process.

(a) Routes before DelBestSplit (b) Routes after DelBestSplit

cost for erasing i has a small chance to delete i in some other move. Therefore we can say

that node i is well located in this route. Think of a route k with node i located in the direct

path between nodes j and z (see Figure 11). In this case, the saving cost for erasing i is

equal to zero, the lowest saving cost possible because the triangular inequality.

Each procedure uses the same current solution and calculates the saving cost of the

potential moves if they are not in the tabu list. They are sorted in a list and the algorithm

selects randomly one among the best m candidate moves by assigning higher probabilities

to the best moves. This means that if a certain procedure has more than one possible move,

22

Figure 11: Route with lowest saving cost of erase i

then the selected one might not be the best one from the list. The goal of this strategy

is to escape from local optima reached if choosing always the best move. Then, once the

algorithm has the “proposed” moves of each procedure, the best one in sense of saving cost is

introduced in the solution. The inserted move is stored in the tabu list and the reverse move

is forbidden for t moves. After T −1 iterations without moves with positive saving costs, the

algorithm allows to introduce a nonpositive move if there is at least one. Because of that we

call the algorithm hybrid : the general tabu search algorithm allows nonpositive moves (with

negative saving cost) at every iteration. Finally, if no move has been added after T iteration

the tabu phase is over. For intensification, if an improving move is found at next iteration,

the value of � in Gran is reduced in �% to intensify the search of this neighborhood. Also

for diversification, if no improving move is found, the value of � is increased in �% in the

next iteration to explore a new neighborhood.

The saving cost for each move is weighted by a factor that represents the remaining

capacity in the route where the node will be inserted. For example, in Relocate the saving

cost is weighted by the remaining capacity of Rv after having introduced the node i in the

path. Thus, the saving cost at each procedure is

scp = (
∑

Costdelarcs −
∑

Costaddarcs)(RemCapv + demik), (44)

where the parenthesis contains the difference between the sum of deleted arcs and added

arcs due to the move and demik represents the demands exchanged from route k to v.

Other important idea is that the algorithm can explore neighborhoods of infeasible solu-

tions in the sense of both vehicle capacity and route leg length. The infeasibility in capacity

is controlled by a parameter � such that the total demand served on a route cannot exceed

the threshold �Q, � ≥ 1. Then, the tabu phase relaxes constraints (12) of the vehicle flow

formulation to

23

∑
i∈C

yik ≤ �Q, ∀k = 1, . . . ,K. (45)

This infeasibility will be fixed in the next phase of the algorithm called Capacity Correc-

tion phase.

5.2.3. Capacity correction

This phase is active if, and only if, certain route k serves demands exceeding the capac-

ity Q. This process presents a set of moves from route k to one, two or three different routes

trying to eliminate the excess of capacity. It combines different ways to make new splits,

relocations or splits and relocations using up to three different nodes from route k. If there

is more than one possible move, the best in term of saving cost is introduced. The phase

is over when there is no route with excess of capacity. Note that the solution can still be

infeasible with regard to the route leg length.

5.2.4. Improving solution process and granular local search improving process

After the capacity correction, the algorithm improves the given solution with three pro-

cedures: 2-splits cycle, Node-position and Subtours-elimination. The 2-splits cycle procedure

eliminates solutions where two routes share two split nodes. Node-position relocates nodes of

a route in a different position if a saving is possible. Subtour-elimination procedure deletes

subtours in a given solution by erasing multiple visits of a vehicle to the same customer.

Finally, the algorithm applies a granular local search with the same procedures of the

tabu phase but setting � to one. Then, only infeasible solutions in term of route leg length

are allowed.

5.2.5. Route leg length correction

The solution obtained might be infeasible in terms of route leg length, that is, some route

leg length can exceed L. Because the algorithm assumes symmetric data (i.e, cij = cji), it

explores the route with excess length in both orientations, getting two candidates solutions

for each route k, rk1 and rk2 . It introduces the “best” stop nodes (in the sense of insertion

cost) before the node where the route leg exceeds L and checks that ask and a0k are less

24

than or equal to L. When the needed stop nodes are introduced and there are no route leg

lengths longer than L, the algorithm compares rk1 and rk2 and selects the shortest one.

The full algorithm works as follows:

1. Initial Solution: Clarke and Wright algorithm: CurrentSolution

2. Repeat M times:

2.1 Clear the Tabu-list.

2.2 While (NoMove ≤ T):

2.2.1 GRANULAR TABU: Construct the Tabu-list.

2.2.1.1 Select randomly one from m best moves of:

∙ Relocate.

∙ Exchange.

∙ 2opt.

∙ DelSplitNew

∙ ExchSplit

∙ MoveSplit

∙ DelBestSplit

2.2.1.2 if NoMove<T-1 only positive moves are allowed

2.2.1.3 Update CurrentSolution

2.2.2 If there is at least one move: NoMove=0 and � = (1− �/100) ∗ �.

If there is no move: NoMove=NoMove+1 and � = (1 + �/100) ∗ �.

2.2.3 If NoMove= T-1, allow negative moves.

2.3 Improving Solution processes: 2-cycles, Subtours, Node-position.: update Cur-

rentSolution.

2.4 If Rk, k = 1, 2 . . . ,K exceeds Q, Capacity correction process: update CurrentSo-

lution.

2.5 Improving Solution processes: 2-cycles, Subtours, Node-position.: update Cur-

rentSolution.

3. Local search improve process: update CurrentSolution.

4. Route leg length correction: BestSolution

Note that the algorithm presents an important number of local search procedures that

may demand expensive computational time but we balance this weakness by exploring

25

through granular neighborhoods. Also the correction capacity phase includes different moves

to find a good correction for the infeasibility on vehicle capacity. Finally, note that the al-

gorithm introduces the route leg length in the last phase and therefore, we can solve the

SDVRP using the HGTS.

6. Computational results

First, we want to evaluate the performance of HGTS with the SDVRP. Because there are

no benchmarks for the SDVRPSN, we solve this routing problem without constraints on the

route leg lengths, that is the SDVRP. This is equivalent to use a very large value of L such

that the stop nodes are not necessary. In this case, the solutions obtained can be comparable

with the state-of-the-art heuristics for solving the SDVRP. Then, the value of L is included

and we study the SDVRPSN. We use the same set of instances than [8], available in the web

page of the authors (http://www.unibs.it/on-line/dmq/Home/Personale/articolo2398.html).

6.1. About the instances and benchmarks

In [8], problems 1-5, 11, and 12 from [26] are considered. The number of customers varies

from 50 to 199 and the vehicle capacity from 140 to 200. Five additional sets of instances

are created by changing the demands of the customers in the basic instances, but keeping all

the other characteristics. Each of the new sets of instances is characterized by a lower bound

and upper bound on the customer demand, � and
 respectively, expressed as a fraction of

the vehicle capacity Q and � ≤
. Thus, the demand di of customer i is:

di = �Q+ �(
 − �)Q, (46)

for some random value � ∈ [0, 1]. Therefore, the demand di of customer i is set randomly in

the interval [�Q,
Q]. The following lower and upper bound combinations are used to con-

struct the demands of these new instances (�,
)= (0.01, 0.1), (0.1, 0.3), (0.1, 0.5), (0.1, 0.9),

(0.3, 0.7) and (0.7, 0.9).

The solution benchmarks for these instances are the results found in [2], [11] and [12].

These papers use the original instances of [26] and generate the random demands with the

methodology described in [8]. Therefore, we cannot make an accurate comparison with them.

For this reason, we compare the improving percentage of these algorithms with respect to

the tabu search of [8] with the improving precentages of the results of HGTS with respect

26

the results published in [8]. Additional, by since the results of [8] are improved in [5], with

the same set of instances, we also compare our results with this paper. To generate the

stop node data, the space where the nodes are located is divided into a grid of different size

depending on the number of customer nodes. In each cell of the grid we generate a random

number that represents the stop node location.

6.2. Results

Our algorithm presents 7 parameters to be set: 1) the tolerance on the excess of capacity

for infeasible solutions (�), 2) the tabu list size (t), 3) times that the tabu process is re-

peated (M), 4) candidate list (m), 5) number of iterations with no moves to add (T), 6) the

granular coefficient (�) and 7) the intensification/diversification parameter (�). After test-

ing different parameter combinations, taking into account the trade-off between the solution

quality and the CPU-time, we select the following values: � = 1.10 for problems P1 and P2

(those with lower demands with respect to the vehicle capacity) and � = 1.05 for P3-P5

and P11, t = 5, M = 30 for P5 and 50 for the remaining problems, m = 5, T = 5, � = 2

and � = 10%.

6.2.1. SDVRP results

Table 1 shows the main results comparing the solution of HGTS with the Tabu search (TABUS-

PLIT) of [8] and the Optimization based heuristic (OpBH) of [5] for the SDVRP. The first

two columns contain information about the demand parameters � and
, the problem name

and the number of customers; columns 3 and 4 are the values obtained by the TABUSPLIT

with respect to the number of vehicles and objective value (mean value over 5 runs), respec-

tively (obtained from the already mentioned webpage of the authors). Columns 5, 6 and 7

give the solution of OpBH found in the original paper: column 5 contains the number of

vehicles, column 6 the mean value of the objective and column 7 the best solution (using the

best set of parameters for each instance). Columns 8, 9 and 10 are our results with HGTS:

column 8 is the number of vehicles used at each instance (always the minimum), column 9 is

the mean of the objective value over 5 runs and column 10 is the best solution from these 5

runs. Finally column 11 presents the improving percentage with respect to OpBH, except for

problems with demand parameters (0.01,0.1) because they are not reported in [5]. For theses

instances we compare with TABUSPLIT. The problems are grouped by demand parameters.

The improving percentage � is calculated as:

27

� = (
ObjHGTS

ObjOpBH
− 1) ∗ 100, (47)

where ObjHGTS and ObjOpBH are the solutions of the HGTS and OpBH respectively. Neg-

ative values of � means an improvement at the solution.

We refer to a specific instance of problem Px with demand parameters (�,
) as Px(�,
).

HGTS solves better than OpBH problems marked with bold letters at column 11. For in-

stances with the original demands, HGTS improves solution of problems P1 and P2, the ones

with lower number of customers. Instances with demand parameters (0.01,0.1) are not better

using the HGTS. The remaining instance results present improvements in different ways ex-

cept for problems P1(0.1,0.3), P1(0.1,0.9), P2(0.1,0.3) and P3(0.1,0.5). Results marked with

asterisks mean that we reduce the number of vehicles used. Therefore, for problems with

demand parameters between (0.1,0.3) and (0.7,0.9), HGTS gets better solutions in objective

value in 16 instances (bold letter), in number of vehicles in 3 instances (asterisks) and in both

objective value and vehicles in 8 instances (bolt letter and asterisk). Note that in some in-

stances the reduction of the number of vehicles is important: in P11(0.1,0.9) and P5(0.3,0.7)

two vehicles are saved and in P11(0.7,0.9) the fleet is reduced in three units.

As a disadvantage of HGTS, we can mention that it does not use the GENIUS algorithm

developed in [25] for improving the solution of the traveling salesman problem, which is a

very efficient insertion procedure and a postoptimization routine. In [8] the authors imple-

ment it to improve their solution. From our point of view, adding this procedure might help

to improve the solution but computational time and complexity will increase. CPU times

for HGTS are lower than OpBH for all instances but we do not mention it as an advan-

tage because the differences in technical characteristics on the computers used. Detailed

information on CPU times for HGTS can be found in Table 3.

As it was mentioned above, papers [11], [12] and [2] use this set of problems but they

generate their own demands. To evaluate the performance of the HGTSm, we compare the

used vehicles and the improving percentage with respect to TABUSPLIT solution. Table 2

reports the best known solutions for these instances found in [11] with a Memetic Algorithm

(MA, in columns 3 and 4), [12] with Scatter Search (SS, in columns 5 and 6) and [2] with

Tabu Search with Vocabulary Building Approach (TSVBA, in columns 7 and 8). Columns 9

and 10 of Table 2 are the results of HGTS. Now, the improving percentage � is calculated

as:

� = (
ObjalgX

ObjTABUSPLIT
− 1) ∗ 100, (48)

28

Table 1: Solution of the SDVRP with different algorithms
Instances TABUSPLIT OpBH HGTS HGTS vs OpBH

�: 0
: 0 K z K z z min K z z min � (%)
P1 50 5 5307907 5 5276590 5276751 5 5393358 5269262 -0,14
P2 75 10 8542757 10 8535923 8536078 10 8468316 8391745 -1,69
P3 100 8 8413577 8 8412736 8401150 8 8624538 8522229 1,44
P4 150 12 10708613 12 10635794 10550759 12 10868161 10700740 1,42
P5 199 16 13403505 16 13383400 13383599 16 13893905 13727158 2,57

P-11 120 7 10569587 7 10569587 10569587 7 10934244 10730883 1,53
�: 0.01
: 0.10

P1 50 4629056 - - - 3 4810481 4641271 0,26
P2 75 6239394 - - - 5 6670397 6484007 3,92
P3 100 7714649 - - - 6 8062067 7926288 2,74
P4 150 9471386 - - - 9 9882560 9606843 1,43
P5 199 11482700 - - - 12 12018282 11918258 3,79

P-11 120 10552825 - - - 8 11402564 11231752 6,43
�: 0.1
: 0.3
P1 50 11 7653121 11 7653121 7582003 11 7737566 7729536 1,95
P2 75 16 11340760 16 11228487 11229145 16 11374473 11323738 0,84
P3 100 22 15151732 22 15069913 15054586 22 15013107 14852841 -1,34
P4 150 32 21018042 32 20967599 20932806 32 20745296 20605262 -1,56
P5 199 41 25858494 41 25832635 25826172 41 25571429 25486903 -1,31

P-11 120 26 30604668 26 30350649 30179211 26 29557770 29347110 -2,76
�: 0.1
: 0.5
P1 50 16 10391059 16 10373394 10210207 16 10287865 10219025 0,09
P2 75 24 15566936 24 15492215 15485438 24 15197313 15150386 -2,16
P3 100 33 20541296 33 20251664 20245791 33 20374753 20325598 0,39
P4 150 49 29916416 49 29817692 29770034 49 29319452 29131089 -2,15
P5 199 63 36242004 63 36064418 35939960 63 35553718 35415731 -1,46

P-11 120 40 45026152 40 44940602 44763774 40 42956594 42652382 -4,72
�: 0.1
: 0.9
P1 50 26 15119826 26 15119826 14972843 26 15117659 15065504 0,62
P2 75 41 23386654 41 23379638 23378115 40 23560322 23382550 0,02*
P3 100 56 31552228 56 31413398 31362933 56 31425076 31249365 -0,36
P4 150 84 46741320 84 46624467 46599000 83 46268072 45889819 -1,52*
P5 199 107 57158484 107 57129905 57102065 105 56438751 56299422 -1,41*

P-11 120 67 73501136 69 73392354 71172434 67 69569315 69415274 -2,47*
�: 0.3
: 0.7
P1 50 26 15039466 26 15020022 15020022 26 14988832 14911964 -0,72
P2 75 39 22935488 39 22905672 22631233 39 22627513 22458874 -0,76
P3 100 53 30709048 53 30555503 30555132 53 30361472 30113456 -1,45
P4 150 80 44968584 79 44662798 44654674 79 44090876 44050262 -1,35
P5 199 103 55711292 104 55538587 55497672 102 55860044 55677763 0,32*

P-11 120 65 71682608 65 71266849 71268363 64 67713770 67262705 -5,62*
�: 0.7
: 0.9
P1 50 42 21736308 42 21667970 21667970 41 21718227 21617517 -0,23*
P2 75 61 32853678 62 32741975 32503861 61 32704207 32608448 0,32*
P3 100 82 44707136 82 44577485 44525487 82 44244666 44128578 -0,89
P4 150 123 64821904 123 64627438 64627754 122 64725917 64618811 -0,01*
P5 199 162 83921136 162 83551883 83554528 161 83007324 82817770 -0,88*

P-11 120 99 106733056 101 105484279 104297549 98 102918853 102676746 -1,55*

where ObjalgX is the solution of the algorithm MA, SS, TSVBA or HGTS. Negative values

of � means an improvement at the solution of algorithm X and ObjTABUSPLIT is the ob-

jective value of the TABUSPLIT algorithm. We use the TABUSPLIT solutions available on

the web-page of the authors for the comparison.

Problem set P11 is found in [11], [12] and [2] as P6. We do not report the solution

of P12 (or P7) because it is not reported in [8]. Previous results show that MA seems

to be the most efficient algorithm for solving the SDVRP because they improve almost all

the solutions of TABUSPLIT, especially for demands lower than Q/2. SS reaches better

improving percentages on the instances with original demands P5, P11 and P2(0.01,0.1),

P3(0.01,0.1), P5(0.3,0,7) and P11(0.3,0.7). TSVBA also is a very good algorithm. Note

that MA and TSVBA do not use the minimum number of vehicles but SS and HGTS do

it. Because of that we present two comparisons: column 11 presents the algorithm that gets

the best improving percentage among all algorithms (based on columns 4, 6, 8 and 10) and

column 12 presents the best improving percentage using the minimum number of vehicles

29

(based on columns 6 and 10).

Bolt letters in column 10 mark that our algorithm gets the best improving percentage

over all algorithms and asterisks mark when our algorithm finds the best solution using the

minimum number of vehicles. This information is summarized in columns 11 and 12. Thus,

for problems with demand parameters (0.1,0.5) HGTS gets the best improving percentages in

problem P2 with an improving percentage of 2.68%. For problems with demand parameters

greater than or equal to (0.1,0.9), HGTS reaches the best improving percentages in almost

all the instances, except for P2(0.1,0.9) and P1, where MA presents the best improving

percentage and P5(0.3,0.7), where SS has the best result. The reason why HGTS has these

best results might be because this algorithm focuses on the split procedures and capacity

corrections introducing many different moves into them. Note that when the customer

demands are closer to Q, more moves related to splits and capacity correction must be used.

HGTS also reaches the best improving percentage using the minimum number of ve-

hicles in all the instances with parameter demands greater than or equal to 0.10, except

in P1(0.1,0.3), P2(0.1,0.3) and P5(0.3,0.7). Therefore, from among 42 instances, HGTS

obtains the best improving percentage in 16 instances among all the algorithms and in 27

instances using the minimum number of vehicles.

Concerning the CPU time, the comparison might not be fair because of the important

differences in computer characteristics used to run the algorithms. In [11], MA was executed

on a 3 GHz PC; in [12], SS uses a 2.40 GHz PC with 1GB RAM and TVBA is run in

a 2.84 GHz PC with 512 MB RAM in [2]. HGTS is executed on a 3 GHz PC with 4 GB

RAM. Table 3 presents the CPU times for each approach.

6.2.2. SDVRPSN results

HGTS performs very well for the SDVRP. Next step is to reduce the value of L such that

the set of stop nodes are necessary to get a solution. We use from all the problems, only those

instances with the original demands and with demand parameters (0.01,0.1) and (0.1,0.3),

because for the other instances the routes are “short” due to the relation of demands and

vehicle capacity. The maximum route leg length is set to L = 2 ∗ max{c0i}i∈C so that a

single route to the farthest node is allowed.

Table 4 presents the SDVRPSN solutions. Columns 1 and 2 are the instance names and

the demand parameters. Column 3 contains the total number of stop nodes in the data. The

number of stop nodes used in the solution is presented in column 4 and column 5 presents

30

Table 2: Improving percentage respect to TABUSPLIT
Instances MA SS TSVBA HGTS

K Improve (%) K Improve (%) K Improve (%) K � (%) Best Best k min
�: 0
: 0
P1 50 5 -1,68 5 -0,58 5 0,00 5 -0,73 MA SS
P2 75 11 -3,02 10 -1,36 11 1,52 10 -1,77 MA SS
P3 100 8 -0,74 8 -0,56 8 1,21 8 1,29 MA SS
P4 150 12 -2,57 12 -1,12 12 2,13 12 -0,07 MA SS
P5 199 17 -2,33 16 -2,40 17 -1,31 16 2,41 SS SS

P-11 120 7 -1,4 7 -3,18 7 -2,33 7 1,53 SS SS
�: 0.01
 0.1

P1 50 3 -0,64 3 0,00 3 1,29 3 0,26 MA SS
P2 75 4 -0,85 4 -1,18 4 1,65 5 3,92 SS SS
P3 100 5 -3,38 5 -4,02 5 -2,06 6 2,74 MA SS
P4 150 8 -1,72 8 -1,71 8 0,53 9 1,43 MA SS
P5 199 10 -3,56 10 -2,12 10 2,29 12 3,79 MA SS

P-11 120 6 -9,97 6 -8,23 6 -6,82 8 6,43 MA SS
�: 0.1
 0.3
P1 50 10 -1,31 10 -1,29 10 0,44 11 1,00 MA SS
P2 75 15 -1,9 15 -1,07 15 0,20 16 -0,15 MA SS
P3 100 20 -2,24 20 -1,51 20 -0,18 22 -1,97* MA HGTS
P4 150 30 -2,06 29 0,45 30 0,07 32 -1,96* MA HGTS
P5 199 39 -1,85 38 0,88 39 -0,16 41 -1,44* MA HGTS

P-11 120 24 -6,8 23 -3,84 24 -3,76 26 -4,11* MA HGTS
�: 0.1
 0.5
P1 50 15 -2,02 15 0,38 15 2,94 16 -1,66* MA HGTS
P2 75 23 -2,07 22 1,58 23 1,24 24 -2,68* HGTS HGTS
P3 100 29 -2,61 29 1,55 29 0,42 33 -1,05* MA HGTS
P4 150 45 -2,7 43 1,27 45 1,16 49 -2,63* MA HGTS
P5 199 56 -2,84 56 0,47 56 0,61 63 -2,28* MA HGTS

P-11 120 35 -6,46 34 -3,48 35 -2,73 40 -5,27* MA HGTS
�: 0.1
 0.9
P1 50 26 -0,19 25 4,91 26 1,50 26 -0,36* HGTS HGTS
P2 75 39 -1,03 37 3,27 39 2,44 40 -0,02* MA HGTS
P3 100 48 -0,47 48 2,94 48 2,25 56 -0,96* HGTS HGTS
P4 150 74 3,48 71 2,12 74 4,36 83 -1,82* HGTS HGTS
P5 199 93 1,8 93 1,37 93 1,21 105 -1,50* HGTS HGTS

P-11 120 56 -4,03 56 -2,30 56 -3,05 67 -5,56* HGTS HGTS
�: 0.3
 0.7
P1 50 26 -1,33 25 2,55 26 0,75 26 -0,85* MA HGTS
P2 75 38 -1,31 37 2,87 38 0,73 39 -2,08* HGTS HGTS
P3 100 49 -0,41 49 3,13 49 1,16 53 -1,94* HGTS HGTS
P4 150 74 0,15 73 1,53 74 0,71 79 -2,04* HGTS HGTS
P5 199 96 1,03 96 -1,27 96 -0,96 102 -0,06 SS SS

P-11 120 58 -3,24 58 -3,57 58 -3,12 64 -6,17* HGTS HGTS
�: 0.7
 0.9
P1 50 41 -0,5 40 6,40 41 2,12 41 -0,55* HGTS HGTS
P2 75 60 0,62 60 5,26 60 1,86 61 -0,75* HGTS HGTS
P3 100 80 0,25 80 4,91 80 2,38 82 -1,29* HGTS HGTS
P4 150 119 1,15 119 2,29 119 1,29 122 -0,31* HGTS HGTS
P5 199 158 1,72 158 1,42 158 1,54 161 -1,31* HGTS HGTS

P-11 120 95 -2,34 95 -1,44 95 -1,17 98 -3,80* HGTS HGTS

the number of stop nodes in the routes that use at least one stop node. Columns 6 and 7

present the mean objective value over 5 runs and the minimum value of those, respectively.

The objective value includes the cost of using the stop nodes, set as 8000 for every stop

node. Finally, column 8 shows the increase of the cost for the new constraints with respect

to the best solutions of the HGTS for the SDVRP in Table 1. Note that P3, P4 and P5 with

demands with parameters (0.10,0.30) do not use the stop nodes. All the tested instances

use more than one stop node, and also, some of them present routes that use more than one

stop node. The total cost increases between 0.69% and 9.74% respect with the best solution

of the SDVRP.

Figure 12 shows the solution for P1(0,0). Circles points denote customers, square points

are the stop nodes and those in black color are the stop nodes used for the vehicles. Note

that the used stop nodes are those that minimize the distance between two nodes on a route,

such that the route leg length constraint is not broken.

31

Table 3: CPU time (s)

MA SS TSVBA HGTS
�: 0
: 0
P1 50 8,53 49,7 49,84 29,25
P2 75 35,72 166,5 145,78 51,75
P3 100 34,59 276,1 295,22 71,44
P4 150 103,69 527,1 2217,17 276,87
P5 199 353,84 588,3 4514,28 110,2

P-11 120 50,92 270,3 1944,19 654,5
� : 0.01
 : 0.1

P1 50 12,38 51,8 19,69 45,75
P2 75 18,75 144 134,14 181,5
P3 100 37,12 272,1 1944,19 158,25
P4 150 100,27 743,3 2640,95 351,99
P5 199 356,22 1874,8 11215,52 872,17

P-11 120 72,98 370,9 2736,34 1054,21
� : 0.1
 : 0.3

P1 50 10,22 66,4 23,17 9
P2 75 34,14 143,8 97,17 12,9
P3 100 78,06 305,1 160,95 27,13
P4 150 147,86 326,6 755,08 75,42
P5 199 347,14 32,1 1544,36 174,54

P-11 120 144,19 380,8 463,97 53,94
� : 0.1
 : 0.5

P1 50 12,49 87,1 17,72 30,75
P2 75 37,38 126,8 67,66 14,24
P3 100 28,39 225,2 145,05 43,98
P4 150 224,89 21,3 470,34 83,26
P5 199 436,2 31,2 1216,69 238,34

P-11 120 163,14 329 340,53 54,4
� : 0.1
 : 0.9

P1 50 21,42 92,6 19,11 39
P2 75 46,11 119,9 61,81 29,5
P3 100 84,38 177,9 125,28 89,35
P4 150 244,91 50,4 451,95 274,41
P5 199 725,69 50,7 108,63 534,51

P-11 120 196,14 20,6 418,98 151,56
� : 0.3
 : 0.7

P1 50 24,853 92,4 19,09 29,25
P2 75 51,78 11,1 55,17 39,5
P3 100 100,16 17 134,84 84,71
P4 150 244,86 23 449,34 219,65
P5 199 749,94 327,3 119,04 40,25

P-11 120 271,39 20,5 436,8 108,98
� : 0.7
 : 0.9

P1 50 22,91 5,8 24,41 31,5
P2 75 27,48 10,5 86,27 66,4
P3 100 55,75 38,3 185,55 86,98
P4 150 401,62 30,5 678,94 355
P5 199 571,7 215 153,12 274,25

P-11 120 298,08 20,4 30,32 195,06

32

Table 4: HGTS for SDVRP with Stop nodes

SN SN used Routes z z min Cost (%)
�: 0
: 0
P1 50 20 3 R1, R2, R3 : {1} 5588912 5419797 2.86
P2 75 20 4 R1, R2, R3, R4 : {1} 9593272 9208852 9.74
P3 100 30 4 R2, R3, R4, R6 : {1} 8850630 8782165 3.05
P4 150 56 6 R1, R2, R3, R6, R11 : {1} 11250866 10970295 2.52

P-11 120 36 3 R2, R3, R4 : {1} 10944934 10853018 1.14
� : 0.01
 : 0.1

P1 50 20 4 R3 : {1}, R1, R2 : {2} 5078419 5067974 9.18
P2 75 20 5 R1, R3, R5 : {1}, R2 : {2} 6659760 6568705 1.31
P3 100 30 6 R1, R2, R3, R5 : {1};R4 : {2} 8319168 8240947 3.97
P4 150 56 6 R1, R2, R4, R5, R7, R8 : {1} 10114248 9901622 3.07

P-11 120 36 3 R1, R2, R3 : {1} 11384465 11308892 0.69
� : 0.1
 : 0.3

P1 50 20 3 R1, R2, R3 : {1} 7934106 7893430 2.12
P2 75 20 3 R6, R7, R13 : {1} 12498145 12038303 6.31
P3 100 30 - - - - -
P4 150 56 - - - - -

P-11 120 36 - - - - -

7. Conclusions and further research

In this work, it has been introduced a new variant of the vehicle routing problem where a

route leg length cannot exceed a given length L. Thus, a new set of nodes with no demands,

called stop nodes are defined. The vehicles can visit a stop node to avoid the breaking of

this condition. A new set of constraints are defined and added in the SDVRP, model taken

as the base of our study because it can generate savings with respect to the model with no

splits.

Two mathematical formulation have been derived (a vehicle flow formulation and a com-

modity flow formulation) and a heuristic approach is developed: a Hybrid Granular Tabu

Search (HGTS). This algorithm is a tabu search that contains seven different moves to get

better solutions and it explores into a granular neighborhood. This granular neighborhood

incorporates a term that represents the average length of the arcs in the current solution and

a term that represents the remaining route capacity. The algorithm selects the best move

among a set of randomly selected moves obtained at each procedure. This algorithm allows

no improving moves after T − 1 iterations without improving moves (in term of savings).

The output of each no-tabu move might be an infeasible solution in both vehicle capacity

(but controlled by a parameter) and route leg length. The excess of capacity of the route is

fixed in a capacity correction phase. Finally, the route leg length is corrected by a route leg

33

Figure 12: Solution of P1(0,0) with Stop Nodes

length correction phase.

From the results, it can be observed that the HGTS outperforms many tested instances

with respect to very efficient algorithms with the advantage that our heuristic considers the

minimum number of vehicles needed to serve all the demands (as SS does). Thus HGTS

gets better improving percentages with respect to TABUSPLIT in 16 instances among all

the compared algorithms and 27 instances with respect to SS. When the stop nodes are

needed, the algorithm obtains a solution by inserting these nodes to avoid the violation of

the maximum route leg length L. We cannot compare our results with other algorithms

because this variant of vehicle routing problem is new in the literature.

This paper presents a contribution to the state-of-the-art of the vehicle routing problem

due to the introduction of a new variant of this problem. Also, the HGTS obtains the best

results for a set of well known instances when the SDVRP is solved. For future research,

the properties and particularities of the stop nodes must be studied. Furthermore, because

the proposed heuristic represents an upper bound for the best solution of the problem, an

algorithm that gets a lower bound could prove useful.

References

[1] D. Aksen, Z. Ozyurt, and N. Aras. Open vehicle routing problem with driver nodes and
time deadlines. Journal of the Operational Research Society, 58(9):1223–1234, 2006.

[2] R.E. Aleman and R.R. Hill. A tabu search with vocabulary building approach for the
vehicle routing problem with split demands. International Journal of Metaheuristics,
1(1):55–80, 2010.

34

[3] R.E. Aleman, X. Zhang, and R.R. Hill. A ring-based diversification scheme for routing
problems. International Journal of Mathematics in Operational Research, 1(1):163–190,
2009.

[4] R.E. Aleman, X. Zhang, and R.R. Hill. An adaptive memory algorithm for the split
delivery vehicle routing problem. Journal of Heuristics, 16(3):441–473, 2010.

[5] C. Archetti, M. W. P. Savelsbergh, and M. G. Speranza. An optimization-based heuristic
for the split delivery vehicle routing problem. Transportation Science, 42(1):22–31, 2008.

[6] C. Archetti, M.W.P. Savelsbergh, and M.G. Speranza. Worst-case analysis for split
delivery vehicle routing problems. Transportation Science, 40(2):226–234, 2006.

[7] C. Archetti and M. G. Speranza. Vehicle routing in the 1-skip collection problem.
Journal of the Operational Research Society, 55(7):717–727, 2004.

[8] C. Archetti, M. G. Speranza, and A. Hertz. A tabu search algorithm for the split
delivery vehicle routing problem. Transportation Science, 40(1):64–73, 2006.

[9] J. M. Belenguer, M. C. Martinez, and E. Mota. A lower bound for the split delivery
vehicle routing problem. Operations Research, 48(5):801–810, 2000.

[10] P.I. Belfiore et al. Scatter search for a real-life heterogeneous fleet vehicle routing prob-
lem with time windows and split deliveries in Brazil. European Journal of Operational
Research, 199(3):750–758, 2009.

[11] M. Boudia, C. Prins, and M. Reghioui. An effective memetic algorithm with population
management for the split delivery vehicle routing problem. Hybrid Metaheuristics, pages
16–30, 2007.

[12] V. Campos, A. Corbelan, and E. Mota. A scatter search algorithm for the split deliv-
ery vehicle routing problem. In Andreas Fink and Franz Rothlauf, editors, Advances
in Computational Intelligence in Transport, Logistics, and Supply Chain Management,
volume 144 of Studies in Computational Intelligence, pages 137–152. Springer Berlin /
Heidelberg, 2008.

[13] S. Chen, B. Golden, and E. Wasil. The split delivery vehicle routing problem: Applica-
tions, algorithms, test problems, and computational results. Networks, 49(4):318–329,
2007.

[14] G. Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number
of delivery points. Operations Research, 12(4):568–581, 1964.

[15] GA Croes. A method for solving traveling-salesman problems. Operations Research,
6(6):791–812, 1958.

[16] G. B. Dantzig and J. H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

[17] G. Desaulniers. Branch-and-price-and-cut for the split-delivery vehicle routing problem
with time windows. Operations Research, 58(1):179–192, 2010.

[18] M. Dror, G. Laporte, and P. Trudeau. Vehicle routing with split deliveries. Discrete
Appl. Math., 50(3):239–254, 1994.

35

[19] M. Dror and P. Trudeau. Saving by split delivery routing. Transportation Science,
23(2):141–145, 1989.

[20] M. Dror and P. Trudeau. Split delivery routing. Naval Research Logistics, 37:383–402,
1990.

[21] W. M. Garvin, H. W. Crandall, J. B. John, and R. A. Spellman. Applications of linear
programming in the oil industry. Management Science, 3(4):407–430, 1957.

[22] B. Garvish and S. Graves. The travelling salesman problem and related problems.
Technical report, Working paper 7905. Graduate School of Management, University of
Ronchester, Ronchester, NY, 1979.

[23] B. Garvish and S. Graves. Scheduling and routing in transportation and distribution
systems: Formulations and new relaxations. Technical report, Graduate School of Man-
agement, University of Rochester, NY, 1982.

[24] M. Gendreau, P. Dejax, D Feillet, and C. Gueguen. Vehicle routing problem with
time windows and split deliveries. Technical report, 851, Laboratoire d’Informatique
d’Avignon, 2006.

[25] M. Gendreau, A. Hertz, and G. Laporte. New insertation and postoptimization proce-
dures for the traveling salesman problem. Operations Research, 40(6):1086–1094, 1992.

[26] M. Gendreau, A. Hertz, and G. Laporte. A tabu search heuristic for the vehicle routing
problem. Management Science, 40:1276–1290, 1994.

[27] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, 2001.

[28] S.C. Ho and D. Haugland. A tabu search heuristic for the vehicle routing problem with
time windows and split deliveries. Computers & Operations Research, 31(12):1947–1964,
2004.

[29] M. Jin, K. Liu, and R.O. Bowden. A two-stage algorithm with valid inequalities for the
split delivery vehicle routing problem. International Jounal of Production Economics,
105(1):228–242, 2007.

[30] M. Jin, K. Liu, and B. Eksioglu. A column generation approach for the split delivery
vehicle routing problem. Operations Research Letters, 36(2):265–270, 2008.

[31] G. Laporte, Y. Nobert, and M. Desrochers. Optimal routing under capacity and distance
restrictions. Operations Research, 33(3):1050–1073, 1985.

[32] C. G. Lee, M. A. Epelman, C. C. White III, and Y. A. Bozer. A shortest path approach
to the multiple-vehicle routing problem with split pick-ups. Transportation Research B,
40(4):265–284, 2006.

[33] P. A. Mullaseril, M. Dror, and J. Leung. Split delivery routing heuristics in livestock
feed distribution. Journal of the Operational Research Society, 48(2):107–116, 1997.

[34] G. Sierksma and G. Tijssen. Routing heliopters for crew exchanges on off-shore locations.
Annals of Operations Research, 76(0):261–286, 1998.

[35] P. Toth and D. Vigo. The granular tabu search and its application to the vehicle-routing
problem. INFORMS Journal on Computing, 15(4):333, 2003.

