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Abstract. Gene functions is an essential knowledge for understanding
how metabolism works and designing treatments for solving malfunc-
tions. The Modular Multi-Relational Framework (MMRF) is able to
predict gene group functions. Since genes working together, it is focused
on group functions rather than isolated gene functions. The approach
of MMRF is flexible in several aspects, such as the kind of groups, the
integration of different data sources, the organism and the knowledge
representation. Besides, this framework takes advantages of the intrinsic
relational structure of biological data, giving an easily biological inter-
pretable and unique relational decision tree predicting N functions at
once.

This research work presents a group function prediction of S.cerevisiae
(i.e.Yeast) genes grouped by protein complexes using MMRF. The results
show that the predictions are restricted by the shortage of examples per
class. Also, they assert that the knowledge representation is very de-
terminant to exploit the available relational information richness, and
therefore, to improve both the quantitative results and their biological
interpretability.

Keywords: Relational Data Mining architecture, Gene function, Bio-
logical data integration, Machine Learning, Gene networks.

1 Introduction

Functional genomic is an open problem in molecular biology. Knowing the func-
tions of the genes it is necessary to understand how the organism tasks are
distributed, and which gene/s is/are involved in each biological process. Then,
if we are faced with a possible malfunction in the metabolism, we will have to
locate the problem at molecular level. This knowledge is essential to design a
solving treatment to the corresponding disease.

Nowadays, we still do not have this complete functional genomic knowledge.
There are many distributed fragments of gene annotation, from multiple re-
searching studies: wet or in-silico, in wide sense or specialized, in a particular
area or function. But uncertainty, changeable, incomplete and unreliable an-
notations suggest us to develop new techniques to improve this essential gene
function knowledge.
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Going beyond in functional genomic, actually an isolated gene is not the
responsible for a specific function, but each function is carried out by a group
of genes. Every biological process can be reached due to the collaboration of
all genes in the group. Without some of these genes, the biological result would
be different, unfinished or non-existent. Thus, a gene annotation might differ
depending on the gene groups in which it works. For example, when a gene A
works in a group GI with genes B and C, the gene A function (F1) will be
different from the gene A function (F2) in group G2 consisting of genes A, D,
E and H. So, functional genomic should be understood as gene group function
instead gene function; that is, functions are related to a gene group, not to an
individual gene.

Given a gene group, whether individual gene function are calculated and
after the simple union of these functions are considered as the functions of this
group, some drawbacks are ignored; mainly, lack of precision (i.e. a false positive
increase) and lack of sensitivity (i.e. a false negative increase). First, a gene can
get involved in several functions, although all these functions are not carried
out with the same gene group. So, the union of all individual gene functions
turns out an over-assignation of group functionality. It means that there are
functions that are carried out by a gene of the current group but only working in a
different group, with other genes. Second, related to lack of sensitivity, the union
of individual gene functions produces also an under-assignation of functionality.
In other words, there would probably have joint properties (knowledge shared
by several genes) without which it is imposible to assign a specific function to
a gene group, even less to an individual gene. Consequently, it is neccesary to
support the functional annotation with knowledge about relations among genes.

The wide range of kinds of gene relations in molecular biology results in
multiple criteria to make groups of genes: the same regulation network, protein
complex, pathway, or protein interaction network [10,17]; genes with similar
patterns in expression profiles from DNA arrays [6, 13]; genes with certain level
of sequence similarity, with the same cellular location, protein family, functional
annotation [19] or with common phenotypical data (for instance, pathology or
tissue), and so on.

There are several methods to build gene groups through biological networks
[15], through Gene Ontology functional annotation [19] or from other sources
[8], and some techniques to determine if a gene group is statistically significant
[18,21]. However, they are not focus on assigning function to gene groups, as our
approach does.

In order to get a suitable gene group functional annotation, different kind
of available data sources should be integrated, including both individual gene
features (mainly came from gene sequences) and data from several relations
among genes (from a group or from whichever gene relation). The huge quantity
of these biological data requires the use of computational methods to manage
this task. Since the experimental techniques are costly in resources and time,
the function prediction methods have shown an useful alternative in the last
years [14]. Some interesting approach working with gene groups and functions



have been developed, where different data sources are combined [1], but without
taking into account the advantages of Multi-Relational Data Mining (MRDM).

We think that MRDM is more suitable for solving the gene group func-
tion prediction problem than traditional propositional Data Mining (DM). In
biological domain, there are many relational information, due to the intrinsic
structure of the molecules, the importance of the similarity among different
species (i.e. homology associations), and even more the relations among genes
in groups, which are essential in this domain. Additional advantages of MRDM
over the propositional DM approach are: (a)a decrease in the number of redun-
dant features and missing values (very common facts in biological domains); (b)a
better representation of real world problems, without losing the semantic after a
proposionalization process; (¢)an improved storage and management of the data,
organised in modules or tables, according to the relations; (d)an easier repre-
sentation of structured information, such as networks or graphs in interaction
networks, pathways or semi-structured data from text mining results.

MRDM have been successfully applied to individual gene function prediction
[4,23]. Other similar biological domains have been faced with relational tech-
niques also: protein-protein interaction prediction [22] and a work with gene
groups although only related with microarrays [20].

Uncertainty and unknown information in biology always make difficult the
bioinformatics problems. Gene group function annotation is even a harder do-
main, mainly due to the high variability in its context. First, it varies because
there is a frequently changeable environment, caused by the improvement in
the high-throughput experimental technologies that produces a huge quantity
of data that is constantly renewed, and not neccesary compatible with the old
ones. Second, it varies according the bio-expert interest, who alter the selection
of the grouping criterion and the kind of input/output data. So, particular and
very specific systems are not good solutions for this problem.

This paper proposes a modular framework which is adaptable to be applied
to any different gene group function prediction problems. Functional annotation
of S.cerevisiae genes grouped by complexes is a real open problem dealt with
this new multi-relational and flexible approach.

This paper is organised as follows: Section 2 explains the application of the
Modular Multi-Relational Framework in yeast genome. Section 3 presents and
analyses the application results. Finally, in Section 4, conclusions and future
work are summarized.

2 Modular Multi-Relational Framework applied to Yeast
Complex Function Prediction

Modular Multi-Relational Framework (MMRF) [7] is a new approach for solv-
ing the domain of Gene Group Function Prediction, facing the problem from a
relational and flexible point of view.

MMRF is designed by modules for managing the high variability which this
biological domain entails; changing independiently data, criteria and methodol-



ogy. MMRF uses a multi-relational approach (in representation and learning) for
fitting the intrinsic relational structure of gene grouping data, and for integrating
different data sources.

MMREF is splitted into six modules (see Figure 1) covering all involved do-
main tasks (grouping, representing and learning). Each module consists of one or
several abstract tasks [7] which must be individually instantiated in a particular
application of the framework.

The MMRF application described in this work predicts the function of gene
groups in S.cerevisiae (i.e.Yeast), where genes are grouped by protein complexes.
The instantiation of all the framework modules in this application are described
below, that is, the definition of the particular value for the tasks in each MMRF
module. The specific results and analysis appear in the Section 3.
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Fig. 1. The schema of the proposed Modular Multi-Relational Framework (MMRF).
The rectangles represent modules and the ellipses represent data.

1. Obtaining individual gene features. In this application, the individual
features for yeast organism are retrieved from Ensembl project [9], through
the BioMart tool [16]. Most of them are extracted from gene and protein
sequences. Some examples are the gene length, the chromosome name, the
gene biotype, the protein family domain, if it is or not a coiled-coil domain,
etc.

2. Multi-Grouping and group function. This module includes two main
activities. (a) Making gene groups, according to a specific criterion. Several
of these criteria are listed above (Section 1). In this application, the genes are
grouped by protein complexes. They are extracted from high-throughput ex-
perimental data from the detailed Krogan et.al. study [10]. These 547 protein
complexes are inferred from protein-protein interaction data, after applying
a Markov clustering algorithm. The 2,375 interaction pairs are identified by
two different mass spectrometry methods, in order to increase the data re-
liability. (b) Assigning functions to each group. In this initial application,



a Gene Ontology (GO) function shared by a 60% of the genes in a group
belongs to the assigned group functions. Gene Ontology Slim:Biological Pro-
cess is the functional catalogue used. These assigned functions will be the
classes in the further supervised learning process.

3. Retrieving relational data. The second source of background knowledge,
after individual gene features, are common features of a subset of genes. In
yeast complex function prediction application, the relational data consists of
homology data [9,16] and regulatory data [11]. Homologs are paralogs from
relations between genes from yeast, and orthologs from relations between
yeast and mouse, cow or human genes. The homology data represents only
binary relations between a pair of genes, while regulatory data means gene
group relations (N genes related among themselves, with N>=2). Experi-
mental regulatory data described in [11] includes different kind of networks
of regulator-regulated genes. Only one, the most frequent kind of network,
has been chosen: multi-input motifs (i.e. a gene set regulates other group of
genes). Thus, we get the highest possible number of instances for the learn-
ing task, but avoiding to mix different sources. It means 257 gene group
relations, and besides 826 regulator-regulated group binary relations.

4. Transforming to representation language. The knowledge representa-
tion language is defined as first-order logic predicates [12], in a prolog syntax,
involving all the collected data described above (see Figure 2).

gene_in_group (groupID,genelD) . cds_length(genelD,length).
group_function(groupID,goID). paralog(genelD,genelD,identity,coverage).
gene (geneID, chrom,length,strand) . ortholog(genelD,genelD,identity,id2,type).
pfam_domain(geneID,pfamID) . ortholog-signal_domain(geneID).
transmembrane_domain(genelD) . gene_in_coregulated(coregGroupID, genelD).
ncoils_domain(genelD) . regulator(coregGroupID, geneID) .

Fig. 2. Fragment of the knowledge representation language in gene group function
prediction domain.

5. Relational Learning. Using the previously defined logic predicates, we
apply the machine learning algorithm TILDE, Top-down induction of logical
decision trees [2], implemented in the ACE tool. It is a classical Quinlan de-
cision tree adapted to a relational approach, through first-order logic. This
tree has logic clauses in nodes instead of attribute-value comparisons. Be-
fore applying TILDE, we carried out a data pre-process, inspired by other
works [3,23], in order to get a multi-class and multi-label learning in an
unique classifier. Briefly, each gene group is represented by a boolean vector
of functions, and a regression prediction is applied to each possible class, at
the same time. It is neccesary because a group of genes (example) can have
more than one function assigned (class). This fact is very important in this
domain, since it increases its complexity and makes difficult its resolution.



6. Interpretation and Analysis. A biological interpretation aproximation of
the relational tree appears in the next section. Since the positives predictions
are the most interesting in this domain and the highly-skewed data set,
Precision-Recall curves (PRC) are the measure more suitable for leading the
computational analysis of the learning results [5].

3 Results and Discussion

The goal of this section is to show how MMRF is applied to a real gene function
context, and what results it brings out.

3.1 Experimental Design

The relational system learns from 208,098 logic predicates, where different kind of
them are included. In particular, 7,124 gene, 20,989 ortholog, 11,412 interpro_
domain or 2,246 gene_in_coregulated predicates. The initial number of groups
retrieved from [10] is 547. In that set, on average, there are 4.9 genes per group,
ranged from 2 to 54 genes, being most of the groups small. Besides, the set has
on average 2.7 functions per group, ranged from 1 to 10 functional annotations
in the same group.

The number of groups in the dataset is reduced after filtering those gene
groups without any GOSlim function assignation and following the 60% of shared
functions criterion (task 2.b). The final number of groups depends on the required
minimum number of examples per class. According to that parameter, three
different datasets (a, b and c) are defined. These datasets mainly differ in the
number of classes (functions) and the number of examples (groups):

a) At least 1 groups per function (>1): This dataset has 40 different classes
in 360 examples (on average, 24 positives and 336 negatives per class).

b) At least 10 groups per function (>10): This dataset has 24 different
classes in 357 examples (on average, 37 positives and 320 negatives per class).

c) At least 50 groups per function (>50): This dataset has 8 different classes
in 280 examples (on average, 57 positives and 223 negatives per class).

These 3 datasets have been defined because the original one is very skewed
through the number of examples available for predicting each class. The values
goes from 1 to 68 examples per class, underlining a 40% with less than 10
examples per class and a 62.5% with less than 25 examples per class. The effect
of this fact is evaluated in the experiments in the next section.

Moreover, there is one more difference in the experiments done, related to
the relational knowledge used in the learning process: (1)binary relations
(i.e. homology data) or (2)binary and group relations (that means to add
regulator and gene_in_coregulated predicates). This separation let us to anal-
yse the influence of group relations in the learning process.

The next section shows the results for the 6 configurations we have considered
(2 relations subsets x 3 datasets). The remainder background knowledge (i.e.
logic predicates) and learning parameters are the same for all the configurations.



3.2 Results and Analysis

The results shown in Table 1 and Figure 3 come from 10 folds cross validation
experiments. Table 1 shows several quantitative measures which evaluate differ-
ent aspects of the relational learning process, from the solution size (two first
rows) to the prediction goodness (two last rows). In addition, Precision-Recall
curves appear in Figure 3 for some configurations. All of them are the average
results about overall classes in a specific configuration. Although several indi-
vidual classes in the same configuration have its Precision-Recall curve higher
than this average curve (see Figure 3, “individual class 2.¢” line).

Precision-Recall Curve

overall classes 1.a
overall classes 2b —*
08 I overall classes 1.c —®%— |

Table 1. Quantitative results from yeast individual class 2.c —*—

complex function prediction with MMRF.
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Fig. 3. Precision-Recall curves from yeast
complex function prediction with MMRF,
in different configurations.

Analysing the obtained results, we can conclude that the quantitative mea-
sures are not very high, although they are closed to the results in similar bio-
logical domain. For example, our preliminary AU(PRC)s are not very distant
from the maximum of 0.3 reached in individual gene function prediction with
relational data mining [23].

Furthermore, Table 1 and Figure 3 point out that the predictions improve
from “a” to “b”, and from “b” to “c” configurations. It means that the results
are better when the number of examples per class is higher. Although it also
implies that the set of predicted classes is smaller. Therefore, improving the
results implies to search alternative ways in order to increase the number of
groups. For example, looking for experimental data producing a higher number
of gene groups, mixing data from several experimental studies, modifying the
grouping criterion to another which gives more groups, or even joining groups
coming from different grouping criteria.

The different relational background knowledge used is the remaining analysis
proposed according to the experimental design (see Section 4.1). Looking at
Table 1 and the decision trees in different configurations (very similar to the



tree shown in Figure 4), we realise that the numeric results barely change from
configurations 1 to 2. Moreover, the new regulatory predicates hardly ever appear
in the decision tree nodes in configurations 2. Hence, it does not matter if we add
more relational information, even more enriching one (group relations is better
than only binary relations), because the learning process not take advantage of
it. At least, with the current defined knowledge representation.

Additional experiments have been carried out, in order to try to solve the
low quantitative results, mainly modifying the grouping criterion in module 2,
from protein complexes to coregulated genes or both criteria together. In these
additional experiments the flexibility of the framework is checked, because only
swapping gene_in_group and gene_in_coregulated predicates a new framework
application is defined: co-regulated gene function prediction. So, now the grouping
criterion (module 2.a) is co-regulated genes and relational background knowledge
(module 3) includes protein complex relations. In this dataset, only 56 examples
appear for predicting 30 differents classes, versus 360 examples for 40 classes
in the previous application. All classes have less than 10 examples for learning.
Consequently, the output predictor will be not generic, but very dependent on
these few examples. Since the results depend very much on the specific MMRF
application, we must take care of its design.

Other experiments consist of increasing the number of groups and examples
per class by joining groups coming from different grouping criteria, particularly
protein complexes and co-regulated genes criteria. Thus, we define easily other
new application. Here, the number of groups increases from 360 to 415, with at
least one assigned GO function. However, the results are practically the same
as Table 1 shows, since groups from complexes are much more abundant than
from co-regulation, so the latter are covered by the former. This is the bad
consequence of mixing data for increasing the number of examples. Therefore,
with this two modifications, it is checked as a tricky domain.

1: class(-A,-B,-C,-D,-E,-F,-G,-H,-I)

2: [0.186507936507937] 252.0

3: gene_in_group(A,-J),gene(J,-K,-L,-M) ,ncoils_domain(J) ?

4: +--yes: [0.12258064516129] 155.0

5: | paralog(J,-N,-0,-P),0>=23 7

6: | +--yes: [0.15714285,0.37142857,0.17142857,0.07142857,
71 0.25714285,0.18571428,0.1, 0.37142857]
8: | 70.0

9: | [0.04381267,0.05816884,0.04537138,0.03100409,
10: | 0.05261569,0.04681516,0.03611575,0.058168843]
11:] +--no: [0.141176470588235] 85.0

12:] ortholog(J,-Q,-R,-S,-T),R>=22 7

13: | .

Fig. 4. Fragment of the relation decision tree in configuration ’'1.c’.

On the other hand, the Figure 4 shows a relational decision tree fragment.
The biological interpretation of this tree means that given a gene J belonging to
the group A, if gene J had a coiled-coil domain and a paralog relationship with
gene N with an identity >23%, then the eigth regression values in lines 6 and
7 determine the functions assigned (among B to I) to group A. For example,
with a threshold of 0.35, the functions C=G0:0006350 and I=GO:00050709



would be predicted to the group A. The line 8 in Figure 4 tells how many
examples satisfy these conditions, and line 9 and 10 show the error measured
in the regression process. The tree goes on checking if other logic predicates are
true in the knowledge base.

4 Conclusions and Further Work

In this work, a variation of gene function prediction domain is tackled: gene
group function prediction. The Modular Multi-Relational Framework (modular
for flexibility and Multi-Relational due to the structured data) is proposed to
solve this new domain. It is applied to a specific real problem, the yeast complex
function prediction. Preliminary quantitative results are around low levels, al-
though not very distant from typical ones in related domains. However, it seems
clear that the prediction is very restricted by the high number of functions (i.e.
classes) and mainly by the few groups per function. It means that when the latter
number increases (and consequently the former decreases), the predictions im-
prove. In addition, it is concluded that the group relational data is not exploited
with the current knowledge representation.

Thus, an important improvement in this research would be to modify the
knowledge representation (module 4) so that the learning process can take ad-
vantage of the fundamental information existing in bio-relational data. As further
work related to the skewed classes, we could explore different alternatives in or-
der to increase the number of groups in yeast, analysing their influence in the
prediction results. Another proposal is to include new grouping criteria, with
several goals; such as, to apply the system to multi-grouping scenarios, to define
new framework applications changing the instantiation of module 2 (for example,
pathways function prediction or co-expressed gene function prediction), and to
increase the number of groups too. Other near idea is to add new relational infor-
mation (module 3), integrating more data sources. Also, the functional catalogue
could be changed to other less generic than Gene Ontology.

However, it might occur that the collected data and similar one not contains
enough knowledge to face the problem of predicting group functions directly.
Maybe the next step should be to slightly change the approach, splitting the
prediction process in two phases. First, predicting individual gene function with
Relational Data Mining (whose viability has been checked in closed domain [4,
23]), although increasing the relevance of gene group membership, as background
knowledge. Second, predicting group functions, through the inferred individual
function from the first phase.

Finally, probably the most relevant improvement is to change the objective
organism from yeast to human. It implies more interesting gene groups and more
useful annotations (for instance, related to some disease). Thus, this framework
could be applied to predict results so relevant as the unknown function of human
gene groups.
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