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1 Introduction

In recent years, attention has been drawn to the increase of volatility in financial markets across
the world because financial institutions such as banks can incur into substantial trading losses. This
worry has started moving research into the direction of developing models able to forecast volatility
accurately and creating quantitative techniques that aim at specifying the potential losses. With
respect to the direction of developing new models, the papers of Engle (1982) and Bollerslev (1986)
were the starting points of a new literature that continues to grow due to new extensions that cope
the main empirical features of financial data. One of these empirical facts is the high ”sensitiveness”
of volatility to negative shocks (see Pagan and Schwert, 1990; Nelson, 1991; Campbell and Hentschel,
1992; Engle and Ng, 1993; Glosten et al., 1993, among others). The reasons for this to occur are,
first, the "leverage effect” explained in Black (1976) and Christie (1982), according to which lower
equity values lead to a higher debt-to-equity ratio that, in turn, increases the risk of equity holder’s
positions, and second, the ”volatility feedback” that permits changes in volatility to affect returns
through changes in future expected returns (see Brooks and Persand, 2003).

Concerning the direction of quantifying losses, value-at-risk (VaR) is a very popular technique that
provides an estimate of the probability of likely losses to occur over a given time horizon due to changes
in market prices. A very related concept is the minimum capital risk requirement (MCRR) defined
as the minimum sufficient capital to absorb all except a pre-specified percentage of unforeseen losses
(see Brooks et al., 2000). Several methods have been proposed to calculate the VaRs, among them
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we include the ”delta-normal” method, the historical simulation that involves the estimation of the
quantile of the portfolio returns, and the structured Monte Carlo simulation (see Dowd, 1998; Jorion,
2001). Although the Monte Carlo approach is powerful and flexible for generating VaR estimates
because it can be specified any stochastic process for the asset price, it is not free of important
drawbacks. The first and most important one is related to the process that has been assumed for the
price of the asset, because if this assumption is not correct, the calculated VaRs can be inaccurate.
The second drawback is related to the computational time required to compute the VaRs. It may be
very high for a large portfolio. An alternative approach that could overcome the first drawback, is to
use bootstrap rather than Monte Carlo simulation.

In this paper, we address an approach to the calculation of the MCRRs similar to the works of Hsieh
(1993) and Brooks et al. (2000). We calculate MCRRs for four stock prices series defined on long and
short positions for 1, 10 and 30 days horizons, using the traditional GARCH model and two extensions
of it that allow for asymmetric responses of volatility to negative and positive shocks as in Brooks
and Persand (2003). Moreover, we include into the models’ variance equations realised volatility as
an explanatory variable as in Koopman et al. (2005), and we do compare the models performance
(with and/or without realised volatility) in calculating accurate MCRR’s. The results report that
the inclusion of realised volatility is of extreme importance, at least for the considered GARCH-type
models, since it works as a volatility persistence absorbing mechanism, i.e, it reduces the estimated
volatility persistence, and consequently, leads the models to generate more accurate volatility forecasts
and estimates of minimum capital risk requirements. In fact, the differences observed in the MCRRs
with and without including realised volatility are quite substantial that would have impact upon
the costs of holding positions in these stocks. Consequently, the most important findings in this
paper are: first;, GARCH models including realised volatility (denoted GARCH-RV) perform better
in terms of providing accurate MCRRs; second, the MCRRs based upon the traditional GARCH
specification (without including realised volatility) are generally larger for short investment horizons
and smaller for long investment horizons than the ones obtained with the GARCH-RV models, which
is due to the decreasing volatility forecastability registered by the former models when the forecasting
horizon increases (see Christoffersen and Diebold, 2000); and finally, models that allow for asymmetric
responses of volatility to price changes (with and without including realised volatility) perform better
in out-of-sample tests.

The remainder of the paper proceeds as follows: In Section 2 we present a description of data and
its main statistical properties. In Section 3 we focus on the realised volatility estimator used in the
paper. We estimate several conditional heteroscedastic models and we present the forecasting and the
MCRRs methodologies in Section 4. Section 5 reports the main empirical results and we conclude in
Section 6.

2 Data Analysis

In this study we calculate the MCRRs for stock price data on the American Express company, the
Coca-Cola company, the Disney (Walt) company and on the Pfizer Company. These companies are
included in the daily Dow Jones Stock Index and represent four different industries. The data was
collected from Yahoo Finance and spans the period 22 October 1997 - 22 January 2007, summing up
2324 observations.

Figure 1 and Figure 2 show graphs of the financial returns and their volatility evolutions. In Table 1,
where we report some summary statistics, we observe that the four returns series are negatively skewed
and have a kurtosis between 6.159 and 10.068.

Next, we proceed by applying some statistical tests to the data to highlight its underlying generator
process. We start by testing whether the returns are independently and identically distributed (iid)
with the BDS test of Brock et al. (1996). Table 2 shows the results of the BDS test. The null hypothesis
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Figure 1: Financial returns: (a) American Express, (b) Coca-Cola, (c) Disney (Walt) and (d) Pfizer.

0.06 0.06
0.04 0.04
0.02 0.02
0 0
0 1000 2000 0 1000 2000
@) (b)
0.06 0.06
0.04 0.04
0.02 0.02
0 0.\.“ LMM.A L . ‘\1 I ‘
0 1000 2000 0 1000 2000
(© (d)

Figure 2: Squared returns: (a) American Express, (b) Coca-Cola, (c) Disney (Walt) and (d) Pfizer.

Stock Price Data  American Express Coca-Cola Disney (Walt)  Pfizer

Mean 0.0002 -0.0001 0.0001 0.0000
Variance 0.0005 0.0003 0.0005 0.0004
Skewness -0.1478 -0.2429 -0.1961 -0.2729
Kurtosis 6.7037 8.2439 10.0677 6.1590

Table 1: Summary statistics of returns.

of iid is rejected for all returns series at a 5% significance level as in Hsieh (1993) and Brooks et al.
(2000).

Hsieh (1991) showed that the BDS test can detect many types of non iid causes including linear
dependence, non-stationarity, chaos and non-linear stochastic processes. In order to understand the
underlying reason for the rejection of the null hypothesis, we calculate the autocorrelation functions
of the returns and squared returns up to order 15 and we test if they are statistical significant. The
Ljung-Box @ statistic is also computed and works here as a mere indicator since, with the violation
of the iid assumption, it does not converge anymore to a x? distribution.

Table 3 shows that the autocorrelations and the Ljung-Box @) statistic of squared returns are larger



e/o Contracts

Embedding dimensions

2 3 4 5
0.5  American Express 13.7 21.2 28.7 40.5
Coca-Cola 129 187 25,5 33.8
Disney (Walt) 114 173 22,6 28.6
Pfizer 119 148 186 23.1
1.0  American Express 13.5 18.5 229 28.1
Coca-Cola 12.2 165 202 244
Disney (Walt) 109 148 18.0 209
Pfizer 120 144 169 194
1.5  American Express 129 16.5 187 20.9
Coca-Cola 109 138 157 177
Disney (Walt) 10.6 136 155 17.1
Pfizer 11.5 134 149 16.1
2.0  American Express 11.7 149 16.1 17.3
Coca-Cola 9.9 123 134 144
Disney (Walt) 10.0 120 13.1 139
Pfizer 144 118 126 133

Table 2: BDS test statistic for financial returns. The critical values of the statistic for a two-tailed test are: 1.645
(10%), 1.960 (5%), 2.326 (2%), and 2.576 (1%).

Lag . Express Sq. Coca-Cola Sq. Disney Sq. Pfizer Sq.
length Returns  Returns Returns Returns Returns Returns Returns Returns
1 0.007  0.244" 0.039 0.162* —0.006 0.096* 0.029 0.153*
2 —0.053*  0.195* —0.055" 0.210* —0.026 0.066* —0.102" 0.097*
3 —0.008  0.182* -0.003 0.082* -0.005 0.109* -0.039 0.113*
4 —0.006  0.151" -0.009 0.110* -0.005 0.073* -0.006 0.098*
5 —0.041"  0.252* 0.001 0.084* —0.036" 0.031 -0.014 0.102*
6 —0.052*  0.086" 0.023 0.080" -0.020 0.054* -0.033 0.098"
7 -0.018  0.182" -0.002 0.078* —0.012 0.048* -0.017 0.104*
8 -0.017  0.182" —0.072" 0.082* -0.027 0.056* 0.043* 0.076*
9 0.010  0.133" -0.035 0.069" -0.020 0.055" -0.007 0.106*
10 -0.012  0.134" 0.055" 0.125* -0.005 0.083* 0.002 0.053*
11 0.009  0.070* —0.017 0.081* -0.025 0.053* -0.034 0.045*
12 0.023  0.120" 0.036 0.068" —0.013 0.031* -0.013 0.063"
13 0.018  0.083" -0.011 0.087* -0.016 0.035* -0.030 0.062*
14 -0.024  0.106" 0.007 0.124* 0.029 0.017* -0.002 0.046*
15 -0.04  0.096" -0.030 0.122* 0.014 0.030" -0.009 0.078"
Q(15) 22.6 870.5 40.2 431.7 13.6 131.4 43.5 289.0

Table 3: Autocorrelations of returns and squared returns. The last line contains the values of the Ljung-Box @ statistic.
* means that the correlation of order m with m = 1, ..., 15 is significant at a 5% significance level.

than the ones of returns. Moreover, the individual significance tests show evidence (at a 5% significance
level) that both returns and squared observations are autocorrelated, although the autocorrelation is
much stronger for the series of squared returns.
So far, we have found a non-linear dependence in the series. In order to check if this non-linearity is
in mean or in variance, we test the null of zero conditional mean with the proposal of Hsieh (1989,

1991). If the null hypothesis is true, the bicorrelation coefficients, p(i, j) = E(y; yr—i ye—;)/[Var (y;)]

3/2
M

are zero for all 4,7 > 1. These coefficients are asymptotically normal distributed with zero mean and
variance [(1/7) > y? y?, yf_j] JI(1/T)>" 423, The bicorrelation coefficients are reported in Table 4
and we observe that none of them are statistically significant, which leads us to conclude that the
non-linear dependence is in variance.



p(i,7) A. Express Coca-Cola Disney Pfizer
p(1,1 -0.05 -0.06 0.06 0.08
p(1,2 0.05 0.02 0.00 0.01
p(2,2 0.02 0.07 -0.19 0.04
p(1,3 0.02 0.01 0.04 -0.01
p(2,3 0.01 0.06 -0.00 0.03
p(3,3 0.04 0.00 -0.14 -0.02
p(1,4 0.00 -0.00 0.04  -0.00
p(2,4 -0.05 -0.08 0.05 0.01
p(3,4 -0.03 0.05 -0.01 0.06
p(4,4 0.02 0.03 0.14 0.02
p(1,5 0.01 -0.05 -0.05 -0.03
p(2,5 0.11 0.07 -0.01 0.01
p(3,5 -0.01 -0.08 -0.05 0.04
p(4,5 0.08 -0.13 0.06 -0.02
p(5,5 0.24 -0.05 0.04 0.02

Table 4: Bicorrelation coefficients of the stock returns.

3 Realised Volatility

It can be shown, under innocuous regularity conditions, that realised volatility, measured as the sum of
squared overnight returns and cumulative squared intraday returns, provides a much better estimator of
daily volatility than squared daily returns. Some authors such as, for instance, Andersen and Bollerslev
(1998); Andersen et al. (2001); Barndorff-Nielsen and Shephard (2001, 2002a,b, 2004); Comte and
Renault (1998); Andersen et al. (2003, 2005) showed that realised volatility is a consistent estimator of
the integrated volatility, that is the time integral of the instantaneous volatility when the asset price
follows a diffusion process.

In this paper, we use the 5-min squared returns (from www.price-data.com) to calculate the measure
of realised volatility proposed by Martens (2002) and used in Koopman et al. (2005), that consists on
scaling the sum of 5-min returns by

A2
o} = “’H"" ZRW (1)

where t corresponds to a specific day (¢t = 1,...,T"), D is the total number of 5-min intraday returns, in
our case D = 78, and the open-to-close sample variance, 2., and the close-to-open sample variance,

62, are calculated in the following way:
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where log P is the logarithm of the open market price and log P; p is the logarithm of the close
market price. The need for this scaling is justified by the fact that the market is not open 24 hours
a day, and consequently, the overnight return is more volatile than the intraday 5-min returns, which
introduces extra "noise” into the realised volatility estimator. Hansen and Lunde (2002) proposed a
different estimate of the open-to-close variance that is based on the average of ) 5):1 Rf 4 and Areal and
Taylor (2002) proposed a different scaling where the weights depend on the proportidns of variance.
The summary statistics of daily squared returns and realised volatility for the Coca-Cola data are
reported in Table 5 and Figure 3. We observe various changes in realised volatility that correspond
more or less to the ones of squared returns, but high volatility periods seem to be more amplified in
daily squared returns than in realised volatility.



Squared returns  Realised Volatility

Mean 2.77 3.98
Variance 55.76 27.97
Skewness 7.94 5.50
Kurtosis 90.31 56.56

Table 5: Coca-Cola summary statistics comparison.
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Figure 3: (a) Daily squared returns and (b) Realised volatility.

4 Conditional Heteroscedastic Models

4.1 Model Selection and Estimation

Since we have found in Section 2 that the non-linear dependence is in variance and financial econo-
metrics research has suggested that GARCH-type models may be useful in modelling and forecasting
the conditional variance of returns series, we start our analysis by presenting the GARCH(1,1) model
of Bollerslev (1986) and some extensions of it that allow for asymmetric responses of volatility to price
changes. Let y; be the return at time ¢ given by

Y =p+er =1+ 0re, (2)

where p is the expected value of y;, &; is the prediction error, o7 is the variance of y; given information
at time ¢t — 1 such as

of =v+aci +Boiy, (3)
o >0and ¢ ~ NID(0,1).
As in Brooks and Persand (2003), we have carried out the test of Engle and Ng (1993) to infer about
the need of an asymmetric conditional volatility model. The test is given as follows

2

€ £ £
5 =0+ P Zyy+ P22y = + B3V — +wy, (4)
O't ¢ gt

where w; is a white noise error, Z; 1 is a dummy variable that takes value 1 if ¢;/0; < 0 and 0
otherwise, and Y;_ is equal to 1 — Z;_;. The significance of ®; and ®5 or ®3 suggest that there are
sign and size biases, respectively. In order to perform a joint test for sign and size biases, we estimate
equation (4) by OLS and we use a Lagranger Multiplier Principle 7'R? that follows a x? distribution.
The results of the test are reported in Table 6. They evidence for all returns series that the conditional
volatilities are affected by the sign and size of shocks to volatility, which suggest additional modelling
structure that incorporates the possibility of asymmetry into the variance equation (3).

For this purpose we consider two GARCH-type models. The first is the Threshold GARCH model
proposed by Glosten et al. (1993) and denoted GJR, in which the conditional variance is given by

of =v+ et +B07 1+ AS_ et (5)



) D, ol D3 TR?
American Express  -0.898 -1.816 -5.133 2.483 1370.168™
(0.106)  (0.144)  (0.097)  (0.106)

Coca-Cola -0.977  -0.930 -3.948 2650  1611.124*
(0.067)  (0.094) (0.065)  (0.067)

Disney (Walt) 1488  -0.413  -3.927  3.360  1468.145"
(0.084) (0.116)  (0.081)  (0.084)

Pfizer -0.842  -0.966 -3.789  2.405  1670.663"

(0.061)  (0.085) (0.057)  (0.063)

Table 6: Engle and Ng (1993) test for the GARCH model. * means that we reject the null hypothesis at any relevant
significance level.

where S; | = 1 if &1 < 0 and 0 otherwise. In this model the impact of €7 ; on the conditional
variance o? is different when €, 1 is positive than when it is negative, reflecting that negative shocks
are associated with increases in variance and positive shocks are associated with a small decrease in
variance.

Another GARCH-type model that is able to take into account the asymmetric response of volatility to
positive and negative price changes is the model proposed by Nelson (1991) and denoted EGARCH,
where the conditional variance is expressed in the following way

log (Jf) =7+ log (Jf_l) +aeg 1 +w <|et_1| - \/2/7r) . (6)

The parameter « in this specification is the responsible for the asymmetric feature. In fact, if —1 <
a < 0, a positive shock increases volatility less than a negative one, and if @ < —1 a negative shock
increases volatility while a positive shock reduces it.

We estimate all models by quasi-maximum likelihood (QML) with the Ox GARCH 4.2 package of
Laurent and Peters (2006). In order to check if the models are correctly specified we apply the BDS
test to the standardised residuals. Note that, in this case we need to calculate new critical values
because the test favors the null of iid when we apply it to the standardised residuals of GARCH-type
models. For this purpose, we have simulated 2000 data series from each model with a sample size
similar to the original one, fitted each model on the simulated data and run the BDS test on the
residuals.

Embedding dimensions
American Express ¢/o 2 3 4 5

GARCH 0.5 -0.054 1.205 1.042 1.269
1.0  0.067  0.898 0.944 1.109
1.5 0.162 0.863 1.012 1.070
2.0  0.309 1.108 1.370 1.113

GJR 0.5 0.570  0.900 1.112 1.223
1.0 2231 2.030* 1.865 1.748
1.5 2.293  2.311*  2.199"  2.022
2.0 2530 2.740" 2.544  2.039

EGARCH 0.5 -1921 -1.844 -1.615 -1.308
1.0 -1.242 -1.666 -1.706 -1.477
1.5 -1.117 -1.762 -1.717 -1.552
2.0 -219 -1.463 -1.432 -1.429

Table 7: BDS test statistic for the standardized residuals (* significant at a 5% significance level). The critical values
can be obtained from the authors upon request.

Table 7 presents the results of the BDS test for the standardised residuals obtained from fitting the
selected models to the American Express data. We observe that we do not reject the null hypothesis
of iid standardised residuals for the GARCH and EGARCH models.!

!The results for the other series are similar to the ones presented here, except for the GARCH model that performs




It is well known that the GARCH estimated persistence is too high to generate observed volatility
pattern. Some authors such as Brooks et al. (2000) addressed this problem by including a proxy for
overnight volatility into the variance equation (3). According to these authors this helps in explaining
the level of volatility persistence. Others such as Hamilton and Susmel (1994) and Lamoureux and
Lastrapes (1990, 1994) tried to solve this problem by using a Markov Switching ARCH model and the
total volume of stock traded within a day, respectively.

In this paper, as in Koopman et al. (2005), we extend the presented models by including into the vari-
ance equations an extra explanatory variable that takes into account information from high-frequency
data, realised volatility. We have included this variable due to the good forecasting results obtained
in Koopman et al. (2005). In this case, the variance equation is the following

of =y+ae_ | +B0; 1 +657,

where 67 is the estimate of realised at time ¢. The GJR and EGARCH variance equations, formulas
(5) and (6), are extended in the same way and we denote these models GJR-RV and EGARCH-RV,
respectively.

Parameters
I ~ « I6] A w

GARCH

American Express 0.0006 0.055 0.074 0.914
(0.0003)  (0.040) (0.020)  (0.022)

Coca-Cola 0.007 0.053 0.946
(0.007)  (0.027)  (0.026)
Disney (Walt) 0.0007 0.039 0.088 0.913
(0.0004)  (0.032) (0.049)  (0.044)
Pfizer 0.142 0.119 0.850
(0.077)  (0.040)  (0.048)
GJR
American Express 0.009 0.938 0.110
(0.020) (0.012) (0.024)
Coca-Cola 0.009 0.956 0.086
(0.005) (0.011)  (0.025)
Disney (Walt) 0.018 0.961 0.077
(0.013) (0.018)  (0.041)
EGARCH
American Express  0.003 -0.076 0.999 0.248
(0.001) (0.032)  (0.0006) (0.025)
Coca-Cola -0.059 0.998 0.282
(0.026)  (0.0008) (0.040)
Disney (Walt) -0.061 0.997 0.306
(0.024)  (0.001) (0.035)

Table 8: Final estimates and standard errors (in parenthesis) of the GARCH-type models.

From Table 8 we observe that the persistence estimated by the GARCH-type models, that depends on
the sum of a and § for the GARCH model, is quite high. As an example and for the American Express
and Coca-Cola data, we obtain values of the estimated persistences of 0.988 and 0.999, respectively
(see Table 8). On the contrary, considering the GARCH-RV model, the estimated persistences for
these series are 0.839 and 0.521, respectively (see Table 9). Note that in Table 8 and Table 9 we only
present the models that are statistical significant.

slightly worse for the Coca-Cola and Disney data. All test results are available upon request from the authors.



Parameters

« Je) w 1)
GARCH-RV
American Express 0.839 0.142
(0.029) (0.026)
Coca-Cola 0.521 0.345
(0.100) (0.080)
Disney (Walt) 0.728 0.181
(0.174) (0.122)
Pfizer 0.104 0.658 0.197
(0.046)  (0.141) (0.110)
EGARCH-RV
Coca-Cola -0.050 0.998 0.235 501.31

(0.023)  (0.0006) (0.030)  (106.360)

Table 9: Final estimates and standard errors (in parenthesis) of the GARCH-RV-type models.

4.2 Forecasting

The main aim of this subsection is to highlight the volatility forecasting methodology. Concerning the
GARCH model, the estimated one-day-ahead conditional variance at time ¢t — 1 is

67 =F+aei + 860,

and given that y, = p + €, the previous expression can be written in the following way

67 =4+ aly—1 — f1)° + B67 ).
Finally, it follows directly that the one-day-ahead variance forecast at time T" can be calculated as

71 =4+ alyr — p)° + 567
If the variance equation includes realised volatility, the one-day-ahead variance forecast at 1" can be
computed as

671 =5+ alyr — p)° + 667 + 867,

where &% is the value of realised volatility at 7" and § is the quasi-maximum likelihood estimate of §

(see Koopman et al., 2005). Similar expressions of the one-day-ahead variance forecasts for the other
models can be deduced.

4.3 MCRR Methodology

Capital risk requirements, given by the percentage of the initial value of the position for a 95% coverage,
are estimated for 1, 10 and 30 days investment horizons. To this end, we proceed as in Grané and Veiga
(2007) by generating 20000 paths of future values of the price series with the help of the parameter
estimates, the disturbances obtained by sampling with replacement from the iid standardised residuals
(iid bootstrap), and the multi-step ahead volatility forecasts. The maximum loss over a given holding
period is then obtained by computing

Q= (Py— Pi)n,

where n is the number of contracts, Py is the initial value of the position and P; is the lowest simulated

price (for a long position) or the highest simulated price (for a short position) over the period. If the

number of contracts is one, without loss of generality, we can write - = ( — %) for a long position,
0 0



b
Py

depends on the distribution of P;.

In this paper, we proceed as in Hsieh (1993) assuming that simulated prices are lognormal distributed,
which it is frequent in the finance literature. Consequently, the maximum loss for a long position over
the simulated days is given by Q/Py = 1 — exp(cy s + m), where ¢, is the o x 100% percentile of the
standard normal distribution and s and m are the standard deviation and mean of the In (P;/FP),
respectively. The analogous for a short position is given by Q/Py = exp(c1—o s + m) — 1, where ¢1_,
is the (1 — a)) x 100% percentile of the standard normal distribution (see Brooks, 2002).

The confidence intervals for the MCRRs are obtained as the 95% percentile intervals estimated by
iid bootstrap. For each model we estimate the parameters, we forecast the volatility and we keep
the standardised residuals. Each value of the MCRR is obtained from 200 re-samples of the stan-
dardised residuals, proceeding as described above, and the confidence intervals are computed from
1000 estimated MCRR values. We choose the percentile intervals because it is possible to obtain a
better balance in the left and right sides using the empirical distribution of the MCRRs (Efron and
Tibshirani, 1993, chapter 13). The confidence intervals give us an idea about the sample dispersion in
the MCRR estimates.

and & = 1) for a short position. Note that, since Py is constant, the distribution of ) only
Po

5 Results

The series show larger MCRRs for short positions than for long positions. As an example, for the
American Express stock returns and according to the GARCH model, 1.79%, 5.16% and 8.02% of the
value of a long position (as a percentage of the initial value of the position) will be enough to cover
95% of the expected losses if the position is held for 1, 10 and 30 days, respectively. The MCRRs
for a short position are 1.89%, 5.58% and 9.68%, respectively. This finding could be explained by
the existence of a positive drift in the returns over the sample period, indicating that series are not
symmetric about zero. In fact, the mean for all series, except for the Coca-Cola returns, is positive
over the sample period (see Table 1).

Long Position

Horizon GARCH GARCH-RV GJR EGARCH

1 1.79 2.03 1.87 1.71
10 5.16 6.32 5.73 5.18
30 8.09 8.65 9.55 8.95

Short Position
Horizon GARCH GARCH-RV GJR EGARCH

1 1.89 2.14 1.93 1.94
10 5.58 6.90 6.20 6.84
30 9.68 10.01 10.90 13.93

Table 10: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the

American Express quotes.

From Tables 10-13 we observe that the MCCRs derived from the GARCH model are, in general,
larger than those obtained with the other GARCH-type models. The reason for this to happen is the
excessive volatility persistence implied by this model that leads to high values of volatility forecasts, and
consequently, to high values of MCRRs. The inclusion of realised volatility into the variance equations
usually improves the performance of models in forecasting volatility since the forecasts become more
"sensitive” to changes in volatility (see Koopman et al., 2005). Consequently, and also because the
level of volatility at the beginning of the MCRRs calculation period is low relatively to its historical
level for half of the series, we obtain values of MCRRs for one day investment horizon smaller than
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those obtained without including realised volatility as an explanatory variable. The opposite may be
observed when the volatility at the calculation period is high (see Table 13).

Long Position

Horizon GARCH GARCH-RV GJR EGARCH EGARCH-RV

1 1.03 0.93 0.98 0.81 0.79
10 3.21 3.34 3.08 2.66 2.67
30 5.58 5.80 5.38 5.19 5.32

Short Position
Horizon GARCH GARCH-RV GJR EGARCH EGARCH-RV

1 1.03 0.94 0.99 0.81 0.79
10 3.25 3.37 3.12 2.68 2.69
30 5.74 6.08 5.55 5.30 5.28

Table 11: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Coca

Cola quotes.

Long Position

Horizon GARCH GARCH-RV GJR EGARCH

1 1.76 1.44 1.68 1.74
10 5.28 5.11 5.18 5.62
30 8.92 9.37 9.01 10.91

Short Position
Horizon GARCH GARCH-RV GJR EGARCH

1 1.86 1.44 1.72 1.78
10 6.24 5.11 5.62 6.12
30 11.55 9.37 10.04 12.40

Table 12: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Disney

quotes.

Long Position

horizon GARCH GARCH-RV

1 1.86 2.10
10 5.61 5.38
30 8.64 16.49

Short Position
Horizon GARCH GARCH-RV

1 1.89 2.12
10 5.64 5.42
30 8.83 18.50

Table 13: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Pfizer

quotes.

Tables 14-17 show the 95% confidence intervals for the MCRRs based upon the considered specifica-
tions. The results show that the amplitude of the intervals increase with the investment horizon, which
makes the MCRR estimates for longer horizons less reliable, and the inclusion of realised volatility, in
general, decreases their amplitude, specially, for very short investment periods.

For a full evaluation of the results, we perform an out-of-sample test of the MCRRs calculated with
the selected models. By definition, the failure rate of a model is the number of times the estimated
MCRRs are inferior to the returns (in absolute value). If the MCRR model is correctly specified,
the failure rate should be equal to the pre-specified MCRR level (in our case, 5%). Therefore, we
calculate the MCRRs for one day horizon for both long and short positions, and then, we check if
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Long Position

Horizon GARCH GARCH-RV ~ GJR EGARCH

1 [[42,236] [1.42,2.32] [1.55,2.54] [1.38,2.72]
10 [4.36,6.05] [4.45,6.03] [4.95,6.73] [4.22,6.56]
30 [7.05,9.12] [7.54,9.58] [8.47,10.64] [7.47,10.42]

Short Position
Horizon GARCH GARCH-RV GJR EGARCH

1 [1.53,2.36] [1.48,2.32] [1.62,2.49] [1.59,2.83]
10 [5.26,6.58] [5.05,6.36] [5.46,6.88] [6.06,7.52]
30 [9.61,11.84] [8.80,10.95] [9.81,12.21] [12.66,15.34]

Table 14: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the

American Express quotes.
Long Position

Horizon GARCH GARCH-RV  GJR EGARCH EGARCH-RV

1 [0.84,1.28] [0.78,1.09] [0.80,1.20] [0.82,1.18]  [0.66,0.97]
10 [2.85,3.66] [2.90,3.77] [2.73,3.50] [2.74,3.48]  [2.34,3.02]
30 [4.98,6.25] [5.76,7.19] [4.80,6.02] [4.98,6.21]  [4.75,5.85]

Short Position
Horizon GARCH GARCH-RV GJR EGARCH EGARCH-RV

1 [0.85,1.25] [0.79,1.10] [0.82,1.18] [1.59,2.83]  [0.66,0.95]
10 [2.85,3.62] [2.96,3.76] [2.74,3.48] [6.06,7.52]  [2.35,2.98]
30 [5.15,6.40] [5.77,7.25] [4.98,6.21] [12.66,15.34]  [4.76,5.92]

Table 15: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Coca

Cola quotes.
Long Position

Horizon GARCH GARCH-RV ~ GJR EGARCH

1 [143223] [L.21,1.74] [1.37,2.12] [1.44,2.14]
10 [4.60,6.03] [4.40,5.73] [4.57,5.85] [4.96,6.32]
30 [7.85,10.06] [8.23,10.22] [8.02,10.03] [9.79,12.06]

Short Position
Horizon GARCH GARCH-RV GJR EGARCH

1 [143223] [1.23,1.84] [1.42,2.16] [1.48,2.20]
10 [4.60,6.03] [4.75,6.20] [4.93,6.33] [5.40,6.89)
30 [7.85,10.06] [9.26,11.77] [9.03,11.45] [11.22,14.21]

Table 16: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Disney

quotes.
Long Position

Horizon GARCH GARCH-RV

1 [1.54,2.26] [1.71,2.51]
10 [4.90,6.26] [4.74,6.04]
30 [7.65,9.48] [14.66,18.26]

Short Position
Horizon GARCH GARCH-RV

1 [1.58,2.23] [1.79,2.48]
10 [5.00,6.35] [4.82,6.04]
30 [7.98,9.90] [16.65,20.82]

Table 17: Minimum capital risk requirements for 95% coverage probability as a percent of the initial value of the Pfizer

quotes.

12



these MCRRs have been exceeded by price movements in day t 4+ 1. We roll this process forward and
we calculate the MCRRs for 252 days.? In Table 18, we present the number of violations of the MCRR
estimates generated by the models. We observe, relatively to the GARCH model, that the number of
violations (in percentage) never exceeds the 5% nominal value for all series, which may indicate that
the model generates ”slight” excessive MCRRs, but the inclusion of realised volatility seems, in all
cases, to improve the performance of the model. Finally, the best performances are registered by the
asymmetric models: the GJR model for the Disney returns, the EGARCH for the American Express
and the EGARCH-RV for the Coca-Cola returns, with failure rates closer to the nominal 5% level.

American Express Coca-Cola Disney Pfizer

GARCH L. Position S. Position L. Position S. Position L. Position S. Position L. Position S. Position
GARCH.RV 2.0% 4.4% 1.6% 3.2% 2.4% 4.0% 2.4% 2.4%
GIR 2.8% 6.0% 1.6% 3.6% 3.2% 5.2% 2.8% 2.8%
GIR-RV 2.8% 3.6% 1.6% 3.6% 3.6% 4.4% * *

4.0% 6.3% 1.6% 5.2% 2.4% 6.0% * *
EGARCH * * 2.0% 4.8% * * * *
EGARCH-RV

Table 18: Results of the out of sample test. Estimates of the failure rate. The MCRR’s are computed to cover the 95%

of expected losses. * means that we do not calculate the failure rate for these models.

Since the calculation of the empirical failure rate defines a sequence of ones (MCRR violation) and
zeros (no MCRR violation), we can use the well known likelihood ratio test for a proportion in order
to test Hy : f = 5% vs. Hy : f # 5%, where f is the theoretical failure rate. We apply this test
to the failure rates for long and short positions. Table 19 reports its p-values. The results evidence
that there is not "the best” model, for which we never reject the null hypothesis that the theoretical
failure rate is equal to the nominal level, but we have clear indications that models including realised
volatility and/or asymmetries perform better in computing accurate estimates of minimum capital risk
requirements.

American Express Coca-Cola Disney Pfizer

GARCH L. Position S. Position L. Position S. Position L. Position S. Position L. Position S. Position
GARCH-RV 0.000 0.321 0.000 0.052 0.004 0.209 0.004 0.004
GIR 0.017 0.252 0.000 0.116 0.052 0.443 0.017 0.017
GIR.RV 0.017 0.116 0.000 0.116 0.116 0.321 * *

0.209 0.198 0.000 0.443 0.004 0.252 * *
EGARCH * * 0.000 0.441 * * * *
EGARCH-RV

Table 19: p-values of the out of sample test. The MCRR’s are computed to cover the 95% of expected losses. * means

that we do not calculate the failure rate for these models.

6 Conclusions

In this paper, we examine the performance of three conditional heteroscedastic models in the calcu-
lation of minimum capital risk requirements for long and short positions, using 1, 10 and 30 days
investment horizons. Some of the models take into account the possibility of asymmetric responses of
volatility to positive and negative price changes and they are extended by including into their variance
equations realised volatility as an explanatory variable. The results show that the inclusion of realised
volatility decreases the estimated persistence and leads to more accurate estimates of minimum cap-
ital risk requirements. Moreover, models’ volatility forecastability decreases with the increase of the

2For a long position the failure rate is obtained as the percentage of negative returns smaller than one day ahead
MCRRs for long positions. Analogously, for a short position the failure rate is estimated as the percentage of positive
returns larger than one day ahead calculated MCRRs for short positions (see Giot and Laurent, 2003, 2004).
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investment horizon, which is reflected by the range of the MCRRs confidence intervals. Finally, the
results also stress that asymmetric models (with and without including realised volatility) perform
better in out-of-sample tests. This paper may be of some reference to those financial institutions that
use or plan to use these conditional heteroscedastic models to calculate minimum capital risk require-
ments, since it stresses the important role of realised volatility and asymmetries on stock returns risk
estimates.
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