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Abstract

This communication reviews the use of undersampling techniques to acquire NMR signals. Undersampling transforms bandpass
free induction decay (FID) signals, centered at high frequencies, into lowpass signals or bandpass signals centered at much lower
frequencies. Consequently, the analog electronic stages that perform the demodulation can be eliminated, gaining in stability and
reducing the phase distortion while maintaining an equivalent or better signal to noise ratio when an adequate sampling rate is
chosen. The technique has been tested on a BRUKER BIOSPEC BMT 47/40, and the results show that undersampling could be
used to process NMR and MRI signals, extending the range of applications of the ‘digital radio’ techniques to NMR and MRI

apparatus.
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1. Introduction

In a typical nuclear magnetic resonance system, the
signal obtained in the receiver coil is amplified using
tuned amplifiers, processed with attenuators, demodula-
tors and intermediate frequency (IF) amplifiers, and
finally shifted to zero center frequency by means of a
quadrature phase sensitive detector. The last step pro-
duces two free induction decay (FID) signals, which
must be lowpass filtered to remove the high-frequency
components [1]. This classic architecture has been very
well studied and it has to be carefully designed in order
to minimize noise, channel imbalances and phase dis-
tortion [1-3].

Some of those analog sections can be replaced by
digital techniques in an attempt to introduce flexibility
and stability over time, and therefore an increase in the
quality of the signals could be expected. One of these
digital techniques is oversampling, which has been used
in direct digital receivers for low field MRI or Over-

hauser Imaging [4]. However, the application of this
technique to high field NMR and MRI systems is
limited by the minimum sampling frequency of the
analog to digital converter (ADC) required [5]; such a
high sampling rate can only be achieved with high-end
(and consequently, expensive) ADCs. A second draw-
back of these high rate conversion systems is that they
require the use of very fast digital electronics and large
storage capacities, or the use of specialized circuits such
a digital down converters [6].

As an alternative, this work presents the use of
undersampling or passband sampling techniques, ini-
tially proposed by Pérez et al. [7] and Green et al. [§],
which have been successfully applied in electron para-
magnetic resonance detection [9], in radio communica-
tions, in what has been called ‘software radio’ [10], and
in nuclear magnetic resonance signal processing [11].
This last reference is a particular case of the more
general theory described in this work.

In the software radio case an analog to digital con-
verter takes the radio frequency (RF) or the IF signal
and samples it at a rate below the Nyquist frequency.
This sampling process causes the replication of the
signal spectrum at several frequency bands including
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Fig. 1. Block diagram of the proposed receiver. After the tuned amplifier, the signal is down converted with undersampling. The last block
(detection and decimation) is used only if the demodulated signal is not centered at zero frequency.

baseband and low frequency passband. Therefore, un-
dersampling can be used to move the spectrum to a
lower frequency (demodulate), functioning like a mixer.
The original RF signal information can be completely
recovered from those sampled values if the signal is
actually a bandpass signal and the process of sampling
satisfies the bandpass sampling theorem [12,13]. Then,
the undersampling procedure directly applied to the
amplified NMR or MRI signal as shown in Fig. 1,
reduces noticeably speed and storage requirements on
the data acquisition system when compared to over-
sampling techniques, and therefore the costs of
equipment.

In order to manage all the frequency components
contained in the original signal the sample and hold
circuit (a first stage in the analog to digital conversion
process) has to have the same bandwidth characteristics
when oversampling or undersampling is used [14]. This
requirement can be accomplished with recently devel-
oped wide bandwidth analog-to-digital converters,
which have an input stage bandwidth that is greater
than the nominal sampling rate [15,16]. Finally, when
using undersampling techniques it is also essential to
consider the noise from the aliased bands, as well as the
effect of quantization.

In this work bandpass sampling applied to NMR and
MRI signals in the RF band is presented and analyzed,
evaluating the advantages and disadvantages of this
technique. Section 2 introduces briefly the theory bases
of undersampling, Section 3 presents the experiments
carried out to confirm the predictions, while the results
are shown and discussed in Section 4. Finally, conclu-
sions are drawn in section V.

2. Theory

Bandpass signals are characterized by having no
frequency components above a frequency f,, and below
a frequency f; (signal spectral components in the range
SL<|f|</f) As shown in different works [12,17], the
aliasing produced during the sampling process can be
used advantageously when sampling passband signals: a
sampling rate smaller than 2f;, can be used, according

to the bandpass sampling theorem for uniform and
instantaneous sampling. This theorem states that a
bandpass signal can be reproduced from its sample
values if the sampling frequency f, satisfies [12]
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The minimum rate, f, = 2( f, — f)), is of interest from
a theoretical point of view, but for practical applica-
tions this sampling rate can only be applied if there is
no signal component at the frequencies f,, or f.. As in
practical situations this cannot be guaranteed, the sam-
pling frequency must be higher or the signal bandwidth
has to be increased with a guard-band [17].

To illustrate the effect of sampling a bandpass signal
with a sampling frequency that satisfies the constraints
established in the above theorem an example is given in
Fig. 2 [12]. In this figure, a bandpass time-domain
signal A(¢) and its spectrum H(f) are shown on the
left. The center frequency of the signal is 10f, and the
bandwidth is 2f,. Direct application of the Nyquist
theorem imposes a sampling frequency of 22f;, but
since under those conditions the undersampling theo-
rem can be applied, a sampling frequency of 8f, (n =3)
will produce replicas of the original spectra centered at
+ 2f, and =+ 10f,; a low-pass filter with bandwidth 3f,
can reconstruct the original signal /(¢) centered at 2f,,.
From there, a numerical demodulation can be easily
performed to move the filtered signal to baseband.

As shown in Fig. 2, the undersampled signal repre-
sents a copy of the original analog signal spectrum
centered at a lower frequency, which in general is
different from zero frequency, and sampled with a
frequency greater than twice its bandwidth (2f;). There-
fore, in order to recover the signal at baseband, it is
necessary to realize a process of digital detection (multi-
plication by an exponential), which permits to translate
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the copy of the spectrum to zero center frequency. A
decimation stage follows this process to reduce the
number of samples (detection and decimation block
shown in Fig. 1).

2.1. Noise considerations

Other characteristics of the ADCs that become im-
portant when they are used beyond the Nyquist rate or
with undersampling have been studied in the literature
[13]; one of the most relevant is the degradation of the
signal to noise ratio (SNR). Even under ideal condi-
tions (meaning among other things that the signal has
been perfectly band-pass filtered before the conversion
stage), there is a quantization error whose spectrum
extends well beyond the Nyquist frequency f; (f, = 2B,
being B the signal bandwidth). When a quantized signal
is sampled, the entire quantization noise spectrum is
folded back into the baseband (aliasing), and it is
reasonable to take the total quantization noise power as
a measure of the noise to be expected in the baseband
[13,18]. For sinusoidal inputs, an expression for the

hit)

maximum theoretical signal to quantization noise ratio
at the Nyquist rate can be derived following certain
assumptions about the noise and the input signal
[19,20]:

SNR = 6.02N + 1.76 (dB) 4)

where N is the number of bits of the ADC; note that
for each extra bit of resolution in the ADC, there is
about 6 dB improvement in the SNR.

In the case of undersampling applied to relocate a
bandpass signal, the noise from all the aliased bands is
combined into the band where the signal of interest is
relocated. As in any sampled system, the periodicity of
the spectrum causes that this wideband noise appears
combined into each of the f,/2 bands. Even with an
ideal antialiasing filter, the SNR is not preserved when
bandpass sampling since the noise from the aliased
spectra will be always overlapped into the signal.

A first estimation of the degradation of the SNR can
be obtained considering an equivalent flat analog noise
spectrum, ideal filters and an infinitesimally small sam-
pling aperture. In a system with a signal with spectral
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Fig. 2. Waveform and spectra of a bandpass signal sampled at less than twice the highest frequency component. (a) Bandpass time-domain signal.
(b) Time-domain sampling function. (c) Time-domain sampled signal. (d) Spectrum of the sampled signal. (e) Spectrum of the passband signal.

(f) Spectrum of the sampling function.
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density S, in-band noise power density o;, and out-of-
band noise power density ¢, the SNR for the sampled
signal becomes degraded at least by the noise aliased
from the bands between dc and the passband, and can
be estimated as [17]
S
SNRy ——— 5
o;+ (n, — o, )

where 7, is the largest integer that fulfills Eq. (2).

If 6,70, and n,>1, then the SNR degradation
(Dgngr) in decibels can be approximated by

Dgnr =~ 10 log(n,,) (6)

If the noise spectrum is not uniform, then the Dgyy is
given by

Bga
Dyr ~ 10 log< 7 /2> ™
where f; is the sampling rate and Bg, is the equivalent
noise bandwidth of the analog signal.

When the noise level obtained with a certain sam-
pling frequency is unacceptable, it can be reduced by
using a higher sampling frequency or larger band-
guard, ie. a smaller value of n, After this higher
frequency (but still below Nyquist) sampling, the signal
spectrum can be digitally translated to baseband and
decimated [21].

2.2. Application of undersampling techniques to NMR
systems

As it was presented in the previous section, under-
sampling degrades the signal-to-noise ratio, but the
traditional analog detector introduces some degrada-
tion as well [8], specially the analog phase-detector.
According to the literature [1,2,22], a standard phase-
quadrature detector has a noise figure of at least 10 dB.
Then, from Eq. (7) it can be deduced that by choosing
the adequate sampling frequency, undersampling can
provide a digitized signal with at least an equivalent (if
not better) signal-to-noise ratio than that obtained with
an analog phase-quadrature detector followed by a
Nyquist or oversampling analog-to-digital conversion,
that is the standard procedure used in NMR and MRI
systems. We are assuming that both systems use the
same signal source (pre-amplifier), whose noise figure
will predominate in the total noise figure of the com-
plete chain [3], although our analysis starts at the
pre-amplifier output. Here is an example: Let’s assume
that an analog-to-digital converter is working at the
Nyquist sampling frequency fy. If this converter does
not introduce any additional degradation of the signal-
to-noise ratio, its equivalent noise bandwidth is half of
the Nyquist sampling frequency, Bgs = fn/2. According
to Eq. (7), to obtain a degradation smaller than or
equal to 10 dB, the sampling frequency has to be

f.=fn/10. This means that in the case of the MRI
system used in the experiments, whose Larmor fre-
quency was 200 MHz (Nyquist sampling frequency: 400
Msamples/s), the use of the undersampling technique
with a sampling frequency of 40 Msamples/s (under-
sampling by a factor of 10) will affect the final SNR in
a way similar to the conventional analog phase-quadra-
ture detector plus Nyquist analog-to-digital conversion.

It is also necessary to remark that when applying
digital techniques to acquire the NMR RF signal, the
coherence of the excitation pulses applied to the sample
during excitation is important. The oscillating RF field
produced by the transmitter coil when a sequence of
pulses is applied at times ¢, ¢,,..., f, with duration
71, Tay - - - T Can be represented by the function

H(t) =Y, A, (t) cos(wt + ¢y.) (8)
k

where A,(t)=0 outside the interval 7, <t<t,+ 7.
Those pulses are called incoherent if the phases ¢, are
randomly distributed, and coherent if their values can
be controlled (in particular if they have the same value
¢). These variations in phase values certainly affect the
final phase of the received signal, specially the encoding
phase in a 2DFT image reconstruction process. If co-
herent pulses are used, the receiver structure presented
in Fig. 1 is still valid, since in this case the phase of the
received signal is not modified from line to line in the
scanning process. However, when the NMR equipment
uses incoherent pulses, it is necessary either to have a
reference signal or to implement a method to compen-
sate the phase fluctuations. When processing the echoes
with the goal of reconstructing an image, it is necessary
to acquire either the reference signal used by the de-
modulation stage in the NMR equipment, or the excita-
tion pulse itself in order to estimate the initial phase.
Then, the system structure in Fig. 1 has to be modified
to include an additional stage to acquire the excitation
pulses in synchronism with the acquisition of the
echoes. It is also possible to process the FID without
any additional reference signal by using the method
proposed by Chen [23] and Callaghan [24].

3. Materials and methods

To evaluate if undersampling is a viable alternative
for processing the NMR and MRI signals, in our
experiments we used a BIOSPEC BMT 47/40 MR
system (BRUKER, 4.7 T, 200 MHz for 'H), which uses
incoherent excitation pulses. This is an analog system
all the way down to the AD conversion of the baseband
signal.

Signals were acquired with a digital oscilloscope
(Tektronix TDS-524A with GPIB interface), that has
an analog bandwidth limited to 500 MHz per channel,
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sampling rates up to 500 Msamples/s, and storage
capacity up to 50000 samples per channel. Data were
transferred to a PC type computer via the GPIB inter-
face after acquisition. This scope has two important
limitations for this experiment: first, it has 8 bits per
sample resolution, which limits the maximum theoreti-
cal SNR for every scale of the oscilloscope to 49.92
dB—Eq. (4)—due to the quantization noise. Second,
the sampling frequency was set to predetermined values
limiting the possibilities of experimenting with more
adequate sampling rates.

The NMR signal (200.36 MHz center frequency) was
acquired at the output of the second RF amplification
stage from the scanner; depending on the conditions of
operation (sequence and FOV) the bandwidth was 50,
25 or 12.5 kHz. For quality control purposes, we also
acquired the signal at the output of the analog receiver
just before the AD converters, where the quadrature
components of the echo signal are available in base-
band (0-100 KHz).

A 49.5 mm diameter spherical phantom made of
glass and filled with water was used for the experi-
ments. Echo signals were generated using a spin-echo
sequence (TR =1500 ms, TE=6 ms, FOV =60 x 60
mm, slice thickness =5 mm). The acquired data were
sent to computer via GPIB interface during the TR
interval, where they were stored and processed off line.
The acquisitions were synchronized with a pulse gener-
ated by the scanner that signals the reading interval of
the pulse sequence.

To verify the experimental results predicted by the
theory, a harmonic generation effect was simulated
using the MATLAB environment (The MathWorks,
Natick, MA).

3.1. FID signals acquisition

At the RF tap point, FID signals were acquired at
2.5 Msamples/s (undersampling) while after the analog
mixer the sampling rate was 0.5 Msamples/s (oversam-
pling). The number of FID signals collected at each
point was 128 and each signal was acquired during
16.384 ms.

The undersampled signals were processed as follows:
1. Carrier frequency detection, by locating the position

of the maximum in the magnitude spectrum.
2. Baseband shifting, by multiplying each signal by a
complex exponential

2nf.n

where f, is the carrier frequency of the signal, f; is
the sampling rate and ¢; is the phase value that
permits to obtain a perfect absorption spectrum of
the FID signal [23,24].

3. Decimation: 512 complex values were kept for the
quadrature components of each signal to match the
MRI system data size. To eliminate the ringing
effect introduced by the decimation filter at the ends
of the record, the number of samples is reduced to
500 by removing the first six and the last six samples
of each record.

4. Spectrum magnitude and phase computation: using
a complex FFT, rows of two 128 x 500 matrices
(magnitude and phase) are computed and stored.

5. Signal-to-noise ratio calculation: the mean and stan-
dard deviation of the magnitudes (u,;, 0.,;) and
phases (u,;, 0,,;) were obtained point by point. The
signal-to-noise ratio is estimated as follows [25]:

meaﬂ(umi)>

mean(o,,;)

SNR ~ 20 log< )
where mean(u,,;) is the average value of the mean of
the magnitudes across spectra and mean(a,,;) is the
average of the standard deviation of the same mag-
nitudes (magnitudes for the same frequency of the
128 spectra).

The signals acquired after the analog mixer (over-
sampled) were processed following the last three steps
only.

3.2. Acquisition of MR echoes in an image acquisition

Images were acquired with a resolution of 128 x 128.
The signals corresponding to the central line of the
K-space were acquired at the RF tap point undersam-
pled at different rates (0.5, 1, 2.5, and 5 Msamples/s).
In all cases, each signal was acquired during an interval
of time of 2.3 ms and its acquisition started with the
lead edge of the read pulse. For each sampling rate, 128
signals were acquired, the squared magnitude of the
spectrum calculated, and averaged point by point in
order to evaluate the effect on the SNR of different
sampling rates. The signal-to-noise floor ratio was cal-
culated using:

s?
SNRg,., = 10 10g< k > (10)
floor
where S? is the average power of the components of the
signal coming from the sphere and N3, is the average
power of the noise floor excluding spurious or har-
monic components. This procedure is based on that
given by Jenq for measuring noise floor and distortion
of an AD converter when a sine wave is digitized [26].
To determine whether undersampling affects the
phase information, one of the signals acquired at 2.5
Msamples/s was demodulated in quadrature (with a
constant phase factor to compensate that introduced by
the carrier of the excitation pulse in the NMR system)
and compared with the signals obtained from the corre-
sponding analog detector.
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Fig. 3. Average values (top) and S.D. (bottom) of 128 phase spectra from FID signals acquired after the quadrature receiver using oversampling
(left), and before the analog demodulation stage using undersampling (right).

4. Results and discussion

The results of the FID signals acquisition are pre-
sented in Figs. 3 and 4; in both cases (under and
oversampling), the mean value of the phase follows a
linear function, covering the same range of values,
nradians (Fig. 3, panels a and b). The difference be-
tween undersampling and oversampling is the presence
of a displacement, which is due to the different phase of
the reference signal used in the detection processes.
Panels ¢ and d of the same figure depict the standard
deviation of the phase values. The standard deviation in
both cases follows similar curves but the one obtained
from the undersampled data presents larger deviations
in some discrete frequency values. This difference in
spurious components is an artifact of the sampling
process due to the high correlation of the quantization
error with the input signal [27], as happens when work-
ing with sinusoidal inputs [28]; it is due to a small
number of quantization levels and a big distance be-

tween levels (violation of the Bennett conditions [29]).
Besides, the phase fluctuations of the carrier of the FID
signal, that is also quantized, introduce fluctuations in
the phases of these spurious components and therefore
cause the large changes in the standard deviation of
phase spectrum.

Additionally, and due to the oscilloscope ADC char-
acteristics, it was necessary to truncate the FID signal.
This time-domain truncation introduces additional fre-
quency-domain components (leakage) because of the
side-lobe characteristics of the sinc function and the
incoherent acquisition of the signal [30]. This harmonic
generation effect has been perfectly reproduced by the
computer simulations, and the observed results in the
analysis of the standard deviations of magnitude spec-
tra in the simulated conditions are similar to Fig. 4,
panel d, validating the hypothesis about their origin: In
the simulations the distortion due to the spurious com-
ponents disappeared when using 12-bit quantization.
These results let us conclude that a more adequate

6



ADC scheme in the experiments (more bits per sample
and no FID truncation) will reduce, if not completely
remove, this artifact.

SNR for both cases have been estimated using Eq.
(9). When undersampling the RF signal at 2.5 Msam-
ples/s the SNR was 27.5 dB, while when oversampling
the baseband signal this value was 37.4 dB. This appar-
ently lower performance of the undersampling tech-
nique is in our opinion caused by the very low sampling
rate used in the experiment since it was not possible to
select the adequate rate. We try to prove our point with
the experiment described in the next paragraph. It is
also possible to improve the undersampling SNR by
using three different mechanisms: (1) a higher sampling
rate, according to Eq. (7); (2) a higher number of
quantization levels, to reduce the correlation between
the signal and the quantization noise; and (3) avoiding
the necessity of FID truncation and thus eliminating
the spurious components shown in Figs. 3 and 4.

Average of magnitude spectra (oversampling)
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Signal to floor noise ratios presented in Table 1 were
obtained analyzing the spectra of the signals corre-
sponding to the central line of the K-space of the
uniform spherical sample acquired with different sam-
pling rates, using Eq. (10). The last two columns show
the relative decrease in SNR introduced by too low
sampling rates compared with the 5 Msamples/s refer-
ence case. Measured results and values predicted by Eq.
(7) are almost identical.

Fig. 5 shows the central line of the K-space in the
image acquisitions. The quadrature components ob-
tained with undersampling are shown in panel a, while
panel b shows the components obtained by oversam-
pling (a constant phase correction was introduced in
the undersampled results). These results shown that,
except by a scale factor of approximately 1/224 and a
higher noise level (due to a too low sampling rate, as
explained above), undersampling and oversampling
produce the same profiles. This means that undersam-
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Fig. 4. Averages (top) and standard deviations (bottom) of 128 magnitude spectra from FID signals acquired after the quadrature receiver with
oversampling (left), and before the analog demodulation stage using undersampling (right).
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Table 1
Dependency of the signal to noise floor ratio with the sampling rate

Sampling rate (Msamples/s) Measured SNRy, .. (dB)

Relative* measured SNR,, (dB)

Relative® predicted SNR,,, (dB)

0.5 29.2 —10.2
1 32.4 -17.0
2.5 36.4 -3.0
5 39.4 -

—10.0
-17.0
-3.0

Comparison of theoretical predictions and experimental results.
2 Relative to a sampling rate of 5 Msamples/s.
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Fig. 5. Real (left) and imaginary (right) parts obtained from the echo corresponding to the central line of the K-space of a spherical phantom.
(a) Components obtained before the analog demodulation stage using undersampling at 5 Msamples/s. (b) Components obtained after the

quadrature receiver using oversampling at 2.5 Msamples/s.

pling can be used in MRI experiments since it does not
modify the relative phase of the components of the
nuclear magnetic resonance signal and, if the phase
relationship between lines of the K-space is preserved,
the undersampled reconstructed image will not differ
from the oversampled one.

5. Conclusions

This work presents undersampling as an alternative
way of processing NMR and MRI signals, instead of
the traditional analog processing with analog phase-
quadrature detectors. The theory predicts that an ade-
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quate selection of the sampling rate and quantization
levels may actually produce better SNR than the analog
alternative. The experimental results allowed us to
characterize the SNR deterioration due to the folding
of the aliased spectra caused by the undersampling
technique: This degradation varied depending on the
parameter selection, according to the theoretical predic-
tions. It was also demonstrated that using the under-
sampling technique, the information coded in frequency
and phase is correctly recovered, making feasible the
use of this technique for MRI. Additional advantages
are that this technique overcomes some of typical prob-
lems of analog processing, like low frequency noise, dc
offsets, phase errors or channel imbalances in the
quadrature detection. NMR systems that work with
incoherent excitation pulses require phase compensa-
tion methods, like for example the one proposed in this
work. With the advent of recent ADCs with wider
bandwidth for the sample and hold stage, the under-
sampling technique may be useful in systems with
higher field magnets, opening its use to a varied range
of new applications.
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