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It is argued that the usual understanding of the suppression of radial turbulent transport across a

sheared zonal flow based on a reduction in effective transport coefficients is, by itself, incomplete.

By means of toroidal gyrokinetic simulations of electrostatic, ion-temperature-gradient turbulence,

it is found instead that the character of the radial transport is altered fundamentally by the presence

of a sheared zonal flow, changing from diffusive to anticorrelated and subdiffusive. Furthermore, if

the flows are self-consistently driven by the turbulence via the Reynolds stresses sin contrast to
being induced externallyd, radial transport becomes non-Gaussian as well. These results warrant a
reevaluation of the traditional description of radial transport across sheared flows in tokamaks via

effective transport coefficients, suggesting that such description is oversimplified and poorly

captures the underlying dynamics, which may in turn compromise its predictive capabilities.

© 2009 American Institute of Physics. fDOI: 10.1063/1.3129727g

I. INTRODUCTION

During the last few decades, the beneficial role played

by a sheared zonal flow for tokamak plasma confinement has

been increasingly recognized, both experimentally, with the

advent of the H-mode in the 80’s sRef. 1d and other enhanced
confinement regimes exhibiting internal transport barriers,

2,3

theoretically,
4–6
and numerically.

7,8
These sheared flows are

central for the advanced regimes in which the future ITER

tokamak will operate.
9
The benefits for confinement coming

from the presence of sheared poloidal flows are by no means

restricted to tokamaks but are also well documented in other

plasma confinement devices such as stellarators
10
and

reverse-field pinches.
11

The traditional understanding of how the suppression of

radial transport by a sheared zonal flow takes place can be

sketched as follows: the turbulent radial flux of any quantity

s can be expressed as G̃r= ks̃ṽrl, where s̃ represents the fluc-

tuating advected field and ṽr is the fluctuating radial velocity.

This flux can be decreased due to either a reduction in the

amplitude of any of the fluctuating fields
4
or to an appropri-

ate shift in the phase between advected and advecting

fields.
12
The details of how this suppression happens are

however often complicated and still not well understood in

many cases. Mostly for that reason, the investigation of these

various possibilities in a tokamak geometry is traditionally

done by assuming ab initio that some effective diffusivity

can be used to characterize radial transport in the absence of

any poloidal sand toroidald flow. Say, Dr,Vc
2
/ lr, where lr is

the mean sradiald eddy size and Vc is a typical value for the

fluctuating radial velocity, from which a characteristic time

scale for the process t, lr /Vc follows. sThe argument that
follows will also hold for other choices since it only requires

that typical scales can be defined.d Then, it is assumed that
the radial flux is reduced because of the changes in lr and Vc

sand thus td brought about by the action of the radially
sheared poloidal flow on the turbulence. The key point here

is to note that for this argument to be valid, an additional

hypothesis susually assumed implicitlyd must be accepted:
that the nature of radial transport must be and remain diffu-

sive. Or more precisely, that the underlying transport dynam-

ics must be and remain Gaussian and Markovian, so that

finite values for Vc, lr, and t still exist. In this invited paper,
we review and extend the recent work

13
aimed at testing the

validity of such a hypothesis. As we will show, the answer is

negative in the simulations investigated, which suggests the

need for revisiting our understanding of transport suppres-

sion by sheared flows. The second aspect is the quantification

of the dynamical differences that exist between the suppres-

sion of radial transport carried out by a radially sheared po-

loidal flow that is driven externally with respect to the case

in which the flow is driven by the turbulence itself via the

turbulent Reynold stresses.
6
In both fluid and gyrokinetic

simulations, it has been observed for years that these two

situations can behave quite differently from a dynamical

point of view.
7,14,15

However, the suppression of radial trans-

port in both cases is still encapsulated within the same effec-

tive diffusivity scheme mentioned earlier, especially in the

context of modeling transport over the much longer tokamak

confinement time scales. From this investigation, we expect

that better effective transport models can be found to deal

with these cases.

Our studies have been done with toroidal gyrokinetic

simulations of global, electrostatic ion-temperature-gradient
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sITGd turbulence carried out with the UCAN gyrokinetic

code.
16
In Sec. I, after reviewing the fundamentals of UCAN,

we describe the simulations that have been used for these

studies. In Sec. II, we briefly review the theoretical aspects

of the diagnostics applied to the simulation data to determine

the nature of radial transport in the presence of radially

sheared poloidal flows. In Sec. III, the analysis and interpre-

tation of the numerical ITG data are described. Next, in Sec.

IV, we discuss plausible physical mechanisms that could be

responsible for the observed transport behaviors. The discus-

sion is mostly speculative in nature at this point. Further

simulation efforts are currently underway to test these ideas,

which will be published elsewhere in the near future. Finally,

some conclusions are drawn in Sec. V.

II. SIMULATIONS

A. The UCAN code

In the simulations that we will examine later, turbulence

is driven by the electrostatic ITG mode in toroidal geometry.

They have been run using the global particle-in-cell sPICd
gyrokinetic UCAN code. Although UCAN has been described

in detail elsewhere
15–17

and has been thoroughly bench-

marked with other codes as part of the CYCLONE

exercise,
14
some details about the code follow for the sake of

completeness. UCAN is a PIC code written in Cartesian coor-

dinates which uses the low noise df method
18–20

to solve the

collisionless, low-b, gyroaveraged kinetic equation in toroi-
dal geometry. As such, it assumes that the distribution func-

tion can be expressed as f = f0+df , where f0 is a Maxwellian

containing the background ion density and ion temperature

profiles

f0sr,vid = n0S2p
T0

i

mi

D−3/2

expH− smi/2dvi
2 + mB

T0
i J . s1d

df is the non-Maxwellian part. To compute df , UCAN ad-

vances marker ions in time along the nonlinear characteris-

tics in phase space of the ion gyrokinetic equations
18

Ṙ = vib̂ −
1

B2
S ]f̄

]R
3 BD + 1

Vi

Sm ¹ B + vi
2 b̂ · ¹B

B
D , s2d

v̇i = − Fb̂ +
vi

Vi

b̂ 3 sb̂ · ¹b̂dG · SZe

mi

]f̄

]R
+ m · ¹BD , s3d

which include the E3B, curvature and ¹B drifts, as well as

the mirroring force in the vi equation. The coupling of the

first term on the right-hand side srhsd of the vi-equation with

the third term on the rhs of the R-equation is the so-called

parallel nonlinearity, recognized in recent years as an impor-

tant player in the saturation dynamics.
21
In the df method

each ion also carries a weight vi;df / f0, which is evolved

along the characteristic according to

dwi

dt
= − s1 − widF vi

vth

Ze

mi

]f̄

]R
−
1

B2
S ]f̄

]R
3 BD

· HFd ln n0

dr
+

sP − 3d

2

d ln T0
i

dr
Gr̂ − P ¹ BJG . s4d

Here, b̂;B /B, with B as the magnetic field; Psvi ,v'd
;s2vi

2+v
'

2 d /2vth
2 ; vth

2 ;Ti /mi is the ion thermal velocity;

Vi=ZeB /mi is the ion cyclotron frequency, m=v
'

2
/2B is the

magnetic moment, and R;r−r, with the gyroradius defined

as r;v'3 b̂ /Vi. Finally, f̄sRd;kedrfsrddsr−R−rdlgp is
the gyrophase-averaged electrostatic potential, which is com-

puted numerically via four-point ring averaging.
20

The self-consistent determination of the plasma evolu-

tion requires the electrostatic potential to be obtained from

the macroscopic charge density accumulated from the

charged particles. UCAN solves the Poisson relation for the

low-frequency gyrokinetic system

Te

Ti

sf̄ − f̃d

lD
2 = esZn̄i − ned . s5d

Here, the Debye length is lD
2 =Te /n0e

2; f̃srd

;kedRdmdvif0f̄sRddsR−r+rdlgp. The ion density is

obtained from the full numerical distribution function:

n̄srd;kedRdmdvisf0+dfddsR−r+rdlgp. Finally, both pass-
ing and trapped electrons are taken to be adiabatic and the

electrostatic approximation ne=−esn0 /Tedsf− f̄00d is as-

sumed to hold. f̄00 represents the surface-averaged fluctuat-
ing potential si.e., it includes both the mean and fluctuating
zonal flowsd. Since electrons are assumed to be adiabatic,
UCAN is suitable for studying the heat transported by ITG

turbulence but not for quantifying particle transport. In spite

of that, we can still use it to characterize the nature of ion

transport, as will be shown in what follows. UCAN covers the

whole plasma cross section, which is taken to be circular,

and is therefore a global code. The implementation in Carte-

sian coordinates allows the use of fast Fourier transform

techniques to solve the gyrokinetic Poisson equation. It has

been implemented on massively parallel platforms using do-

main decomposition along the toroidal direction.
22
The

implementation of further domain decomposition within

each toroidal slice is currently being developed. Externally

driven flows can be included by prescribing an additional

external radial electric field Eextsrd=−sdfext /drdr̂.
The boundary conditions applied in UCAN are largely

historical and set early on in the development of the type of

Cartesian global gyrokinetic PIC code that UCAN comes

from, both in cylindrical
23
and in toroidal geometries.

24
In

each toroidal plane, the particle boundary is a circle whose

radius is very close but smaller than the minor radius. The

particles meandering outside that circle have their weight set

to zero and no longer contribute to the simulation. Because

of this buffer zone, it was found convenient through empiri-

cal trials early on to adopt periodic boundary conditions for

the fields in the X and Y directions. The full set of Fourier

modes is kept in the calculations. However, there is a form

factor Fskd=expf−skpad6g, which is applied to the density
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when the potential is calculated through the gyrokinetic Pois-

son equation. Again, this form factor sand the value of a, the

particle size, which is of the order of the unit grid spacingd
was chosen through empirical trials during the original de-

velopment of UCAN when it was found to be much less dis-

torting than the more conventional Fskd=expf−skpad2g used
in standard PIC codes where Gaussian-shaped particles are

the norm.

B. ITG simulations used in these studies

The simulations we have used for these studies corre-

spond to collisionless, electrostatic ITG turbulence. The ge-

ometry used is a torus with major radius R=1.7 m and mi-

nor radius a=0.4 m. Each location in the torus is labeled by

the triad of numbers sr ,u ,zd, r being the radius normalized

to a, and u and z the poloidal and toroidal angles ssee inset in
Fig. 3d. The magnetic field used has an axis value B0
=1.87 T and the safety factor profile used is shown in Fig.

1sad. Circular magnetic surfaces are assumed. The back-
ground density and ion temperature radial profiles used are

shown in Fig. 1sbd. Axis values for density and temperature
sTe /Ti=1d are, respectively, 3.131019 m−3 and 0.7 keV. The

profiles do not go to zero at r.1 because these parameters
originate from a shigher temperatured simulation carried out

previously by some of us to compare against the central 60%

of DIII-D tokamak discharges.
25
The profiles chosen are such

that the most unstable location is ,r.0.4, where the values
of some parameters relevant for ITG turbulence are R /LT

=5.25, R /Ln=0.16, q=1.36, and ŝ;sr /qdsdq /drd=0.28. Ra-
dial profiles of R /LT, R /Ln, and hisrd;Ln /LT are shown in

Fig. 1scd. Computations are done on a Cartesian grid of size
fXYZg=2563256364, periodic in Z and including toroidal

effects. The radial size of the integration box is a /ri,200.
Time resolution is dt=0.15 ms. The Eulerian turbulence

decorrelation time festimated as the s1 /Î2d-fold decay time
of the autocorrelation of the local fluctuating potentialg is
typically ,10 ms within the nonlinearly saturated phase.
The number of markers used is ,3.43107 on a spatial grid

with ,4.23106 points, which amounts to eight particles per

cell. Although certainly not state of the art, this particle res-

olution is sufficient to obtain good convergence for our pa-

rameters.

Three different sets of simulations have been done for

these studies using the parameters just described but differ-

ing in their implementation of the zonal flow.
13
The first set

has been run in the standard manner: the ITG mode nonlin-

early drives the poloidal and toroidal flows that act back on

the turbulence until both saturate at some finite levels.
8
In

Fig. 3, the electrostatic energy for this case sE=edruf̄srdu2d
is shown in red. The second simulation that we will discuss

has been run by artificially suppressing the back reaction of

the nonlinearly driven zonal flow by zeroing the surface av-

erage of the electrostatic potential fi.e., f00sr , tdg at every
time step. As a result, turbulence saturates nonlinearly at a

higher energy level sin black, Fig. 3d, which results in a
larger level of fluctuations and thus in larger radial

transport.
15
Finally, in the third type of simulation that we

will examine, the zonal flow f00sr , td is still zeroed out, but
an external radial electric field is added, such that its related

potential fextsrd is roughly equal to the time average over the
saturated nonlinear phase of the zonal flow fi.e., fextsrd
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FIG. 2. sColor onlined Poloidal velocity profile ssolid lined used for simu-
lations with EXT driven flow. For comparison, the instantaneous radial pro-

file of the poloidal velocity obtained in the self-consistent runs is also shown

at selected times ssee text for a definition of t0d.
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.kf00sr , tdlnlg obtained in the first implementation. The ra-
dial profile of the resulting externally driven poloidal flow is

shown in Fig. 2, together with the instantaneous radial pro-

files of the poloidal component of zonal flow obtained in the

self-consistent case at several times within the saturated

phase sthe definition of t0 will be given in Sec. IVd. The
electric field is ramped up from zero at the start of the simu-

lation, reaching its final value before the nonlinearly satu-

rated phase is reached. Due to the impact of the flow on the linear stability properties of the mode, the linear growth

phase of this simulation will differ from the other two. How-

ever, as the final externally driven flow has roughly the same

average strength and radial profile as the self-consistent

zonal flow during the nonlinear phase, the electrostatic en-

ergy sin blued saturates at a similar value, as shown in Fig. 3.
In order to test the convergence of the simulations with

respect to the number of particles per cell and the grid reso-

lution, we have completed two sets of additional runs for the

previous implementations using the same physical param-

eters. The same grid resolution is kept in the first set si.e.,
fXYZg=2563256364d, but we use instead 16 particles per
cell. Figure 4 shows the time traces of the total electrostatic

energy for the self-consistent, externally driven, and artifi-

cially suppressed flow cases. The second set of runs probes

the convergence with respect to the grid resolution. The

number of particles per cell is now kept at 16, and we have

then carried out runs with twice the original grid resolution

in each toroidal plane and twice the resolution in the parallel

direction si.e., fXYZg=51235123128d. Figure 5 shows the
time traces of the total electrostatic energy of these simula-

tions for the self-consistent, externally driven, and artificially

suppressed flow cases. From these figures, it is concluded

that the original run si.e., fXYZg=2563256364 using eight

particles per celld seems to be fairly well converged.

III. DIAGNOSTICS

The reason UCAN sor any other PIC code for that matterd
is particularly useful for our purposes is because the spatial

part of the characteristics of the gyrokinetic equation fi.e.,

FIG. 3. sColor onlined Electrostatic energies for NoF, SCF, and EXT driven
flow. Initial t0 ssee textd marked with arrow. Inset: snapshot of temperature
fluctuations beyond the linear phase of the self-consistent case just after the

zonal flow has already been nonlinearly driven.
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Eq. s2dg along which the marker ions are being pushed cor-
responds to the trajectory in real space of the kinetic ion

guiding centers. Thus, a large number of realizations of ac-

tual ion guiding-center orbits are at our disposal, and they

can be used to compute the probability Pisr , t ur0 , t0d of find-
ing one ion guiding center at some radius r and time t if it

was at another radius r0 at a previous time t0# t.

Pisr , t ur0 , t0d is what is known as a propagator or, in our

case, the ion guiding-center radial propagator. As we will

show, this propagator can be used to probe the nature of

radial transport across sheared zonal flows, despite the fact

that UCAN cannot quantify particle transport. Most interest-

ingly, we can investigate the nature of the transport of real

ion guiding centers in contrast to what happens when apply-

ing a similar methodology to continuum codes seither fluid
or gyrokineticd, in which one has to add massless tracers,
which are then advected by the turbulent E3B drift.

26–29

UCAN simulated ions also feel all the inertial effects via the

smass and charge dependentd toroidal drifts.
In order to understand how these propagators can be

used as a diagnostic, we review first some results from the

theory of stochastic transport processes, focusing the discus-

sion on the typical propagator forms which can be expected

in different situations. We start with standard diffusion,

which is the macroscopic consequence of microscopic

Brownian motion. This relationship can be shown, for in-

stance, by constructing a random walk in which particles

execute jumps of prescribed length l after having rested at

their locations for a prescribed time t. These typical scales
characterize the transport and, in fact, justify its being char-

acterized via a diffusivity D= l2 /2t. Indeed, the probability
of finding one particle at x at time t if initially at x0 can be

found analytically
30
to be sGfxg is a zero mean, unit variance

Gaussian lawd

PBmsx,tux0,0d = Gfsx − x0d/ÎDtg . s6d

Thus, the propagator is a Gaussian centered at x0 with vari-

ance which grows as t. The connection with diffusion be-

comes clear when noting that Eq. s6d is also the solution of
]tn=D]x

2n that satisfies nsx ,0d=dsx−x0d.
An alternative way of deriving this connection is by

starting from the Langevin equation for the position of the

particle as a function of time

xstd = x0 + E
0

t

j2st8ddt8. s7d

Here, it is assumed that j2std is Gaussian uncorrelated noise,
which means that its probability density function spdfd is
Gaussian and its correlation function is kj2stdj2st8dl
=2Ddst− t8d. The particle propagator of Eq. s7d, which can
be also computed analytically either by computing its

moments
31
or by using path-integral methods,

32
is the same

as Eq. s6d. It is important to note that hidden within the
assumption for the correlation function form, typical trans-

port scales have already been introduced. Indeed, noting that

the noise is an idealized fluctuating velocity, the correlation

function in a real fluid always has a finite width. However, a

d-function is a good representation when the real correlation

function decays exponentially with a typical decay time t.
Then, one can use the previous d-form with 2D,Vc

2t, where
Vc is a characteristic velocity of the flow. Again, a character-

istic length appears, l,t /Vc.

In order to be useful to characterize transport beyond

standard diffusion, both the Langevin and the random walk

approaches must be generalized. Of particular interest are

situations in which typical transport scales are absent but

transport still exhibits a self-similar character. sThis is a pre-
ferred situation, thanks to the same central limit theorem that

is behind the widespread application of diffusive transport.d
In practical terms, this means that the mean size of transport

events in a system of size L diverges as l,La, a.0; or that

the typical transport time diverges as t,Tb, b.0, T being

the mean confinement time of particles in it sor the mean life
of the system if shorterd. This lack of typical scales translates
into power-law decaying correlations in both time and space.

In cases like these, the generalizations of the random walk

and Langevin frameworks just described depart from each

other. The random walk is generalized by what is known as

the continuous-time random walk sCTRWd introduced by
Montroll and Weiss

30
in the 60’s and described in detail in

the literature.
33–36

Since the appropriate generalization in our

case will turn out to stem from the Langevin framework, we

do not discuss the details of CTRWs here.

The generalization of the Langevin equation we use is

xstd = x0 +
1

GSH −
1

a
+ 1DE0

t

dt8st − t8dH−1/ajast8d , s8d

with HP s0,1g and aP s0,2g, and Gsxd being Euler’s gamma
function. H is known as the self-similarity exponent sor
transport exponentd. Let us start with the case a=2. Then,
Eq. s8d reduces to the fractional Brownian motion sfBmd
introduced by Mandelbrot and van Ness

31
in the late 60’s,

which reduces to the usual Brownian motion fEq. s7dg when
H=1 /2. sIt must be noted that Mandelbrot gives preference
to an alternate formulation of fBMs, which does not give so

much importance to the initial time t=0 and which might

thus be argued to be more adequate. But since both formu-

lations yield the same propagators, the precise choice is

unimportant for the discussion that follows.d But in contrast
to Brownian motion, the successive increments dxstd
ªxst+dtd−xstd of fBm are correlated in time in such a way
that no finite typical time scale exists if HÞ1 /2. That is,

there is no time scale beyond which the motion becomes

insensitive to its previous history. The fBm propagator can

be found analytically to be
31,32

PfBmsx,tux0,0d = GFs2Hd1/2GSH +
1

2
D sx − x0d

D1/2tH G . s9d

The propagator is still a Gaussian, but now note that the

variance s2, t2H. By comparison with the usual sdiffusived
Brownian motion, it follows that the motion is subdiffusive

for H,1 /2 and superdiffusive for H.1 /2. In the first case,

successive velocities have become anticorrelated in the sense

that the probability of the next velocity value having an op-

posite sign is larger than that of retaining the same sign. In
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contrast, for H.1 /2, the probability is larger for staying on

course, so that the successive velocities are positively corre-

lated. The existence of this “memory” is what causes the loss

of the characteristic time scale t, which is no longer well
defined.

However, fBm still has a well-defined characteristic ve-

locity Vc
2, resulting from the finite variance of the noise pdf.

This is no longer the case when a,2, which means that the

statistics of the uncorrelated noise ja follow a symmetric

Lévy form.
37
This choice of statistics converts Eq. s8d in

what is known as fractional Lévy motion sfLmd. It is a very
natural choice because Lévy laws are stable distributions that

happen to satisfy the same central limit theorem as the

Gaussian law. Thus, they should also be expected to become

a preferred distribution in nature. But Lévy laws decay in-

stead algebraically for large values of their arguments as

power laws with exponent −s1+ad, aP s0,2d. Because of
this algebraic decay, they have an infinite variance so that the

characteristic velocity Vc, which still existed for fBm, can no

longer be defined. The fLm propagator can also be computed

analytically,
38,39

the result being sLafxg is a symmetric Lévy
law of index a and scale factor unityd

PfLmsx,tux0,0d = LaFsaHd1/aGSaH − 1 + a

a
D sx − x0d

D1/atH G .
s10d

Note that Eq. s10d reduces to the fBm result if a=2 and
to Brownian motion if, in addition, H=1 /2. Although we

will still use the subdiffusive or superdiffusive terminology

in the same way as with fBm sthat is, depending on whether
H is smaller or larger than 1/2d, note that the successive
displacements of motion are now uncorrelated only when

H=1 /a, anticorrelated if H,1 /a, and positive correlated
otherwise. Note also that the only finite moments of fLm

have order s,a and grow as tsH. But the variance can still

be computed in a finite system of size L. It would scale as in

the fBm case s2,Ct2H, but C would diverge now with the

system size.

The way we will diagnose the nature of transport will be

by comparing the numerically obtained radial propagators

for the ion guiding centers with the analytic forms just dis-

cussed. These forms all have a well-defined physical mean-

ing. A practical warning, which may seem unnecessary but

which is often ignored in the literature, is made at this point

regarding how this comparison must be carried out. Propa-

gators should not be compared by plotting the numerical and

analytical forms in the same linear-linear plot because the

central part of a Lévy law looks very much like a Gaussian in

lin-lin scale, specially if the Lévy index is not far from 2, the

Gaussian value ssee Fig. 6d. Thus, it is extremely important
to carry out such comparison using a log-linear plot and to

use a fitting procedure based on the minimization of some

figure of merit. In our case, we use a Levenberg–Marquard

algorithm to minimize a target schi-squared function built as
the sum sover all binned valuesd of the squared difference
between the numerical and analytical propagators normal-

ized to the analytical value.

IV. RESULTS

With the analytical propagators just discussed in Sec. III

in mind, we now discuss the ion guiding-center radial propa-

gators obtained for the three simulations described in Sec. II.

For the analysis to be meaningful, the ion guiding-center

motion is considered only for times well within the nonlin-

early saturated phase. This is important as results from the

nonstationary parts of the simulation may be misinterpreted

as features that are characteristic of the steady-state transport

dynamics. The starting time st0d used for each case is marked
with horizontal arrows in Fig. 3. Furthermore, we restrict the

analysis to those ions present at t0 within a narrow annulus

si.e., rP f0.35–0.40gd close to where the instability drive is
maximum, and to elapsed times, Dt; t− t0, not too long

scompared with the simulation durationd but still larger than
a meaningful number of eddy turnover times. In this way,

two difficulties that can make the results complicated to in-

terpret can be avoided. First, by not considering the shortest

times we avoid distortions of the propagator for values of the

radial displacement sDr;r−r0d up to the average banana
width and elapsed times up to the mean inverse bouncing

frequency s,0.2 msd caused by the fact that a fraction of the
ions will follow the trapped orbits.

40
Second, we avoid hav-

ing to deal with the effect of spatial inhomogeneities in the

turbulence which would become apparent at long times if

particles had time to move into regions in which the turbu-

lence is very different.

Snapshots of the numerical propagators are shown in

Fig. 7 for three different Dt values swith respect to the initial
time t0d chosen to be large enough to exceed the trapped-ion
distorted regime for the three simulations described in Sec.

II. Figure 7sad shows the snapshots of the propagator for the
case with artificially suppressed zonal flow, which clearly

follows a Gaussian form sas shown by the fits included in the
figure in dashed linesd that spreads with time. Figure 7sbd
shows the snapshots of the propagator for the case in which
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FIG. 6. sColor onlined Comparison between two Lévy laws sa=1.39 above;
a=1.78 belowd and the Gaussian fits to their central parts. Left: linear-log
scale. Right: linear-linear scale. Note that to tell them apart “experimentally”

one needs to resolve probabilities as low as 10−1 for a=1.39 and 10−2 for
a=1.78. As a→2−, the probability that needs to be resolved tends rapidly to

zero.
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the zonal flow driven by turbulence has also been artificially

suppressed, and it is substituted by an externally driven flow

of similar strength and profile. The result is again a set of

Gaussian propagators, but note that the spreading of the

propagator seems to take place at a much slower pace. sWe
will see in what follows that this slower pace cannot be in-

terpreted as a reduced diffusivity relative to the case with all

flows suppressed.d Finally, Fig. 7scd shows the snapshots of
the propagator for the usual UCAN setup: the case in which a

zonal flow is driven nonlinearly by the turbulence, which

acts back on the fluctuations until a saturated state is reached.

The result is somewhat surprising: it is clearly non-Gaussian

and its convexity reverses so that it exhibits an algebraic tail

that decays as ,sDrd−2.4. By carrying out a simple Lévy fit
for a sequence of successive Dt, one concludes that the

propagator is fitted extremely well by a symmetric Lévy law

with a=1.42.
Next, we discuss the time scaling of the variances si.e.,

s2;ksDrd2− kDrl2ld of the propagators for the three cases,
since the form of the propagator is not sufficient to charac-

terize the nature of transport. The variances are plotted as a

function of Dt in Fig. 8. The effect of the trapped ions is

apparent for cases with zonal flows up to Dt,0.1–0.3 ms.
The distortion, however, is absent in the case with no zonal

flow because the larger sunsuppressedd fluctuations kick ions
out of their trapped orbits before they complete the banana.

For the run in which the zonal flow has been artificially

suppressed, the variance sblack, Fig. 8d scales as s2, t. But

for the other two cases, in both of which a zonal flow exists,

the variance scales instead sublinearly with time, which is a

signature of subdiffusion. Indeed, s2, t0.5 for time scales

exceeding both the turbulence decorrelation time and the ion

bouncing time for the externally driven flow case fblue sor
dark gray in the print versiond, Fig. 8g. Similarly, s2, t0.7 for

the case with the self-consistent zonal flow fred sor gray in
the print versiond, Fig. 8g.

Comparing these numerical propagators with the analyti-

cal propagators introduced in Sec. III, we conclude that the

results strongly suggest that the nature of radial turbulent

transport is diffusive only in the absence of any radially

sheared poloidal flow, since the propagator then follows a

Gaussian form and its variance increases linearly with time.

sThat is, using the transport exponents introduced in Sec. III,
a=2 and H=1 /2, for this case.d However, the nature of ra-
dial transport is very different in the presence of a sheared

poloidal flow, either externally driven or nonlinearly driven

by the turbulence itself. In the externally driven case, the

propagator is still Gaussian si.e., a=2d, but it spreads sublin-
early with time, being consistent with fBm with H

=0.2560.03 and not with diffusion within the intermediate

time scales and up to the simulation end. Physically, this

result means that the ion radial velocities somehow self-

correlate over long times so that the probability of reversing

their sign exceeds that of retaining it. Finally, the case with

the self-consistent zonal flow is even more different. The

propagator variance has been found to be subdiffusive swith
H,0.34d in the intermediate range, suggesting that a finite
typical time scale is again absent as in the externally driven

case. But it is not fBm, since the propagator is clearly not

Gaussian, but follows instead a Lévy law. Fat tails are char-

acteristic of situations without a finite typical length scale l.
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FIG. 7. sColor onlined Snapshots of
the ion guiding-center radial propaga-

tors at three different times for NoF

sleftd, EXT driven flow scenterd, and
SCF srightd. Best fits shown in dashed
lines: Lévy fit on the right frame cor-

responds to a=1.42; other fits are
Gaussian.

FIG. 8. sColor onlined Variance of ion guiding-center radial propagators as
a function of the elapsed time after t0 for cases with NoF, SCF, and EXT

driven flow. The values of t0 used for each case are listed in the lower right

corner.
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Thus, the radial transport appears to lack both spatial and

temporal typical scales and is consistent with fLm with a
=1.4260.04 and H=0.3460.03.

Although the discussion in this section has been made

using the propagators and variances obtained from the runs

with eight particles per cell and an fXYZg=2563256364

grid, we have repeated the same analysis on the higher res-

olution runs done to test the level of convergence of our

simulations. As an illustration, Fig. 9 compares the propaga-

tors and variances obtained for the self-consistent flow case

with the same grid resolution sfXYZg=2563256364d but 8
and 16 particles per cell. Similarly, Fig. 10 shows the same

comparison but between two runs of the artificially sup-

pressed flow case with 16 particles per cell but two different

grid resolutions: fXYZg=2563256364 and fXYZg=512
35123128. The values of the exponents a and H obtained

during this convergence exercise for these two comparisons

as well as all other cases examined have been collected in

Table I. The level of convergence is quite satisfactory.

V. DISCUSSION

In this section, we propose and briefly discuss a physical

mechanism plausibly responsible for the onset of nondiffu-

sive radial transport reported in this paper. In particular, we

will focus on the mechanism causing subdiffusion, which is

present in both the externally and self-consistently driven

cases. The character of the discussion is speculative since

hard numerical evidence from gyrokinetic simulations is still

being gathered with UCAN. However, some supporting nu-

merical evidence has been obtained using a simpler drift-
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TABLE I. Exponents a and H obtained at the same positions and times for

various UCAN simulations with the same parameters but varying particle

and/or grid resolution. Electrostatic energies, propagators, and variances for

some of these runs are illustrated in Figs. 4, 5, 9, and 10.

Particles per cell Grid a H

Self-consistent flow

8 2563256364 1.4260.04 0.3460.03

16 2563256364 1.4760.09 0.3660.05

16 51235123128 1.4860.07 0.3660.04

Externally driven flow

8 2563256364 2 0.2560.03

16 2563256364 2 0.2660.05

16 51235123128 2 0.2860.05

Artificially suppressed flow

8 2563256364 2 0.5060.03

16 2563256364 2 0.5160.06

16 51235123128 2 0.4960.04
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wave turbulence code in slab geometry, which incorporates

the action of an externally driven sheared flow.
41
These re-

sults give us confidence in the validity of the mechanism we

propose to explain the subdiffusion, although its details will

need to be revised to accommodate the toroidal geometry of

the UCAN simulations.

To understand this mechanism, let us consider how

transport across a sheared flow is modified by the action of a

shear flow on the underlying two-dimensional turbulence.

First, a preferential sign of the axial vorticity appears coming

from the sign of the vorticity of the sheared flow; second, the

turbulent eddies are tilted with the flow. In Fig. 11, a sketch

of an x-sheared y-directed flow is shown from which the

mean flow has been subtracted. The effect of a positively

sheared flow on those eddies with positive saboved and nega-
tive sbelowd axial vorticities salong z, which comes out of the

plane of the figured is also illustrated. Both types of eddies
are going to be tilted in the direction of the flow, thus reduc-

ing the mean eddy size along the direction perpendicular to

the flow si.e., along xd. Importantly and simultaneously, those
eddies with positive axial vorticities will also be reinforced

by the positively sheared flow, while those with negative

vorticities will be weakened and partially suppressed. Note

that these two effects persist even if the eddies are eventually

sheared apart. Thus, in the presence of the sheared flow, the

motion of any particle advected by the turbulence will take

place within a landscape in which a preferential sign for the

axial vorticity exists spositive in the case sketched in Fig.
12d. A couple of trajectories of particles moving across such
a landscape have also been sketched in the figure. Note that

whenever the particle leaves the eddy in which it is being

advected ssay, due to either the eddy being torn away by
nearby eddies or to inertial effectsd, the probability of being
advected next by an eddy with the same sign of the axial

vorticity sas that of the one just leftd is larger than the prob-
ability of being advected next by an eddy with axial vorticity

of the opposite sign. Note that the difference between the

two probabilities will become larger as the shear becomes

stronger, since the imbalance between positive and negative

vorticities will be also greater. In terms of the particle veloc-

ity along the x-direction, this causes that the probability of

reversing the sign of its x-velocity over time scales longer

than an eddy turnover time is larger than that of staying with

the same sign ssee Fig. 12d. As discussed in Sec. III, the
presence of an asymmetry slanted toward changing the di-

rection of motion is the cause of subdiffusion. In contrast, in

the absence of the sheared flow, the populations of eddies

with either sign of axial vorticity would be roughly equal and

the probability of the advected particle changing or not the

sign of its x-velocity would thus be the same. Thus, diffusion

r

FIG. 11. sColor onlined Sketch of the generation of preferential vorticity
sign and eddy tilting caused by a sheared flow. Thickness of the line repre-

sents the strength of the eddy si.e., the absolute value of the axial vorticity it
containsd. The direction of circulation distinguishes between different axial
vorticity signs: positive saboved and negative sbelowd.

FIG. 12. sColor onlined Sketch of motion in the presence of preferential
vorticity and eddy tilting. Here, the vertical direction is assumed to be pe-

riodic and the periodic continuation of a trajectory is represented by a

square. The component of the particle velocity perpendicular to the sheared

flow has a larger probability of reversing its direction sover time scales
longer than an eddy turnover timed than staying on the same course.
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would ensue. It is important to stress that the mechanism we

propose for subdiffusion would work on all turbulent scales

that are affected by the shear. The fact that eddies may be

sheared apart by the flow does not invalidate the argument in

any way. Also, note that it is the existence of a preferential

vorticity sign that makes it work. The tilting of the eddies

reinforces the subdiffusive effect by causing an overlap of

the eddies, but it would not be sufficient by itself to establish

it.

The previous discussion suggests that in the case of the

UCAN simulations, subdiffusion in the radial direction is

caused mainly by the shear of the time-averaged sover the
nonlinearly saturated phased poloidal zonal flow. Indeed, this
conclusion seems to be in agreement with the observation

that both the externally driven and the self-consistent UCAN

simulations showed radial subdiffusion. Finally, note that the

main difference between the self-consistent and externally

driven cases is whether the fluctuating sin timed part of the
zonal flow is kept or not. This suggests that the mechanism

responsible for the appearance of Lévy radial propagators

observed in the simulations should probably be related to the

shear of the fluctuating sin timed component of the zonal
flow. The details of how and why this happens are still under

investigation.

VI. CONCLUSIONS

We have reported the first numerical evidence that sug-

gests that the traditional assumption of the diffusive nature of

radial transport in magnetically confined toroidal plasmas is

challenged in the presence of sheared zonal flows, driven

either self-consistently by the turbulence or externally. In

particular, our simulations show that radial transport remains

subdiffusive for a large range of scales beyond the turbulent

decorrelation time. Furthermore, the transport exhibits non-

Gaussian features in the self-consistent case. Although the

phenomenology is robust, the actual value of the exponents

a and H depends on the strength and length scale of the

shear of the flow. The weaker the shear, the more diffusive-

like transport will behave.

Our findings should have an important practical impact

if one is interested in quantifying transport across sheared

flows for time scales over which the subdiffusive behavior

dominates. How long these time scales do extend would

probably be different in each situation, since it should de-

pend on the characteristics of the shear of the flow. In the

simulations we have examined, the transition to a different

transport regime has not been observed, which implies that

the subdiffusive range is at least an order of magnitude

longer than the eddy turnover time for those runs. It should

however be expected that either diffusive or superdiffusive

transport will take over at some point. Otherwise no steady

state would be possible, since subdiffusion implies that any

continuous external fueling would result in a steady buildup

of the profiles. Whether it would be diffusion or superdiffu-

sion may depend on the role played by the background pro-

file evolution that feeds free energy to the instabilities. For

instance, in near-marginal turbulence, superdiffusive behav-

ior should probably be expected.
42–45

But even in cases in

which diffusive behavior may finally dominate at the longer

time scales, the actual diffusivity may be considerably

smaller in the presence of sheared flows compared to that

which would be naively estimated using quasilinear argu-

ments that assume diffusion at the shorter time scales. sAl-
though one could also envision situations in which some

other mechanism ensures a steady state without reaching the

long time scales needed to overcome the domination of sub-

diffusion. For instance, this might happen in H-mode dis-

charges with edge localized modes sELMsd during the ELM-
free periods. The strong poloidal shear present in the pedestal

may result in subdiffusive transport, which causes the con-

tinuous buildup of profiles between ELMs. Before reaching

the times at which diffusion sor superdiffusiond dominates,
and when a steady-state profile can be sustained, an instabil-

ity is triggered that causes the ELM and thus maintains a

quasisteady state via quasiperiodic relaxations of the pro-

files.d
It should also be noted that the Lévy tails observed in the

case with the self-consistent flow may have important impli-

cations for both control and design for edge flux loads. When

calculating the particle and heat loads, it is not just the aver-

age load that is important but also the instantaneous load sor
the probability distribution of the instantaneous loadsd. This
distribution of loads can be radically changed by the bursty

Lévy-type transport events when contrasted to a Gaussian

distribution of transport events. These results in turn suggest

that externally imposed flows might be useful in controlling

the distribution of heat and particle loads, even given the

same average flux sloadd.
Due to the generality of the suppression of transport via

sheared flows, our conclusions should be applicable beyond

the context discussed here, including astrophysical, atmo-

spheric, and oceanic stable sheared flows. They also might

open up interesting avenues in the area of plasma control.

Finally, it is worth noting that the fact that fBm/fLm fits so

well the radial propagators from our simulations elegantly

connects with recent theoretical work showing that under

similar assumptions for a prescribed turbulent flow, the trans-

port of any passive quantity becomes nondiffusive and can

be analytically obtained in terms of fractional differential

equations.
46
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