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Abstract— This paper describes a new approach in features
extraction using time-frequency distributions (TFDs) for de-
tecting epileptic seizures to identify abnormalities in electroen-
cephalogram (EEG). Particularly, the method extracts features
using the Smoothed Pseudo Wigner-Ville distribution combined
with the McAulay-Quatieri sinusoidal model and identifies
abnormal neural discharges. We propose a new feature based
on the length of the track that, combined with energy and
frequency features, allows to isolate a continuous energy trace
from another oscillations when an epileptic seizure is beginning.
We evaluate our approach using data consisting of 16 different
seizures from 6 epileptic patients. The results show that our
extraction method is a suitable approach for automatic seizure
detection, and opens the possibility of formulating new criteria
to detect and analyze abnormal EEGs.

I. INTRODUCTION

In the last few years, EEG epileptic detectors have evolved

including new techniques such as neural networks [1], non-

linear models [2], independent component analysis (ICA)

[3], Bayesian methods [4], support vector machines [5]

and variance-based methods. These methods reinforce the

nonstationary EEG concept and call for the necessity of

extracting more information to understand the brain signals

and its dynamics.

Other group of methods potentially useful for detecting and

analyzing nonstationary signals are time-frequency distribu-

tions (TFDs) [6]. These methods allow us to visualize the

evolution of the frequency behavior during some nonstation-

ary event by mapping a one dimensional (1-D) time signal

into a two-dimensional (2-D) function of time and frequency.

Cohen [8] provided an overall class of TFDs based on

the Wigner distribution and emphasized its importance in

signal processing. This formulation led other researchers to

introduce the concept of “kernel”, and also provided an

important model to obtain many different types of time-

frequency distributions and applications in EEG, evoked

potentials (EP), electrocardiogram (ECG), electrogastrogram

(EGG), as well as in other signals of different nature, such

as sounds and vibrations [9].

The TFDs offer the possibility to analyze relatively long

continuous segments of EEG data even when the dynamics

of the signal are rapidly changing. Taking the most of these,

we could extract features from the time frequency plane.

However, three considerations have to be taken. Firstly, a

TFD will need signals as clean as possible for good results.

Secondly, a good resolution both in time and frequency
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is necessary and as the “uncertainty principle” states, it is

not possible to have a good resolution in both variables

simultaneously. Thirdly, it is also required to sufficiently

eliminate the spurious information ( i.e. cross-term artifacts)

inherent in the TFDs [8], [10].

The first consideration implies a good pre-processing stage

to eliminate artifacts and noise. To improve resolution in a

TFD for feature extraction, we propose to use the McAulay-

Quatieri (MQ) sinusoidal model [12]. This is a robust tool

used in speech processing for characterizing nonstationary

speech signals from the short-time Fourier transform (STFT).

We can tailor this technique to our detection task in EEG

signals.

We will evaluate here if the proposed method is able to

improve the resolution of TFDs for EEG signals, and give

an objective approach to detect the onset of a neural brain

event.

This paper is organized as follows. Section II introduces the

preprocessing method that provides a clean EEG without

artifacts, background and noise. It also explains the different

techniques that comprise the detection method: windowing,

the SPWV distribution (Smooth Pseudo Wigner-Ville), the

MQ model applied to SPWV distribution and the feature

extraction method. Section III shows the results of the seizure

detection method applied to real EEG data and in Section V

the principal conclusions of the paper are given and further

work is proposed.

II. PROCESSING METHODS

The design of an EEG detection system comprises several

tasks: acquisition, preprocessing to obtain a cleaner EEG

signal, feature extraction and decision. The analysis of the

EEG usually relies on windowing the signal using an sliding

window. Each resulting segment is processed using time-

frequency analysis (e.g. SPWV) and MQ sinusoidal analysis

with the objective of extracting features and using them for

the task of detection. We assume the existence of some

wave in epileptic seizures from results obtained by others

authors [6], [13] that have shown tracks along the time-

frequency plane when there is a seizure. Our approach can

be summarized in Fig. 1 and is detailed along this section.

A. Materials and settings: Raw EEG

The EEG records of 6 adult epileptic patients were

obtained in a restful wakefulness stage recorded at

the Clinica Universitaria de Navarra, Department of

Neurophysiology (Pamplona, Spain). All of them contained

focal epileptiform activity, according to experienced

neurologists.
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Fig. 1. A general detection scheme with the proposed method for detection
of epileptic waves.

We used 16 EEG records of 24 min. length taken from 23-th

and 25-th channels using the 10- 20 International System

of Electrode Placement with additional anterotemporal

electrodes T1/T2. In practice, raw EEG data were digitized

at a sample rate of 200 Hz using a “DAD-32” equipment

(La Mont Medical) and were filtered by a digital low-pass

filter with cut-off frequency of 20 Hz. All computation has

been carried out off-line in a Pentium III computer, using

the Matlab (V.6) programming environment.

To get more generalization, we also used the dataset

described in [7]. We created a problem detection called N1,

consisting in two sets, normal and seizure, of EEG segments.

B. Low-pass filter and independent component analysis

(ICA)

EEG activity can be severely contaminated by eye move-

ments, blinking, muscle and heart artifacts, line noise, etc.

The elimination of these artifacts demands a preprocessing

stage. After sampling, the EEG signal can be modeled as a

process X(n) that relates the relevant activities as elementary

waves, background activity, noise and artifacts [14]:

X(n) = F (n)+

np
∑

i=1

Pi(n−tpi)+

na
∑

j=1

Rj(n−taj)+B(n) (1)

where F (n) is the background activity; the Pi terms rep-

resent brief duration potentials corresponding to abnormal

neural discharges; the Rj terms are related to artifacts and

B(n) is the measurement noise which is modeled as a

stationary process. Our goal is to obtain neural discharge

information (i.e. Pi and tpi ) from the signal X(n).
After preprocessing the EEG using such low-pass digital

filtering it is necessary to separate artifacts such as mus-

cle movements, eye blinks and other interfering activities

without altering important information of abnormal activity.

Taking these requirements into account, tools like ICA do

permit to separate components in complex signals with the

possibility of discriminating artifacts and brain waves. The

technique used to calculate the independent components was

the Joint Approximate Diagonalization of Eigen-matrices

method (JADE). Artifacts were identified and visually elim-

inated on JADE components similarly as in a previous work

[3], however we are also exploring automatic mechanisms

for such elimination, such as those presented in [11].

If noise and artifacts are successfully eliminated, we can

approximate Eq.(1) as:

X(n) ≈ F (n) + S(n) (2)

where

S(n) =

np
∑

i=1

Pi(n − tpi) (3)

C. Windowing

A quasi-stationary window refers to a period of time in

which the EEG signal can be considered to be stationary.

Although the time-frequency methods are oriented to deal

with the concept of stationarity, increasing the data length

has been found to reduce the degree of stationarity of

EEG because in long windows we have more dynamic

events come into play. As it is necessary to detect neural

discharges with short time duration, the data length should

be taken as short as possible. The preprocessed EEG signal

was segmented using 5 secs. non-overlapping rectangular

windows.

D. Smooth Pseudo Wigner-Ville distribution (SPWV) analy-

sis

In a series of papers, Cohen generalized the definition of

time-frequency distributions (TFDs) in such a way that a

wide variety of distributions could be included in the same

framework [8], [9]. Specifically the TFD of signal x(n) is

computed as:

P (t, ω) =
1

2π

∫

∞

−∞

∫

∞

−∞

A(θ, τ)Φ(θ, τ)e−jθt−jωτdθdτ (4)

where,

A(θ, τ) =
1

2π

∫

∞

−∞

x(u +
τ

2
)x∗(u −

τ

2
)ejθudu (5)

is the so-called Ambiguity Function and the weighting func-

tion Φ(θ, τ) is called the kernel of the distribution. t and w

are respectively time and frequency (“dummy”) variables.

A variant called Smooth Pseudo Wigner-Ville (SPWV) dis-

tribution incorporates smoothing by independent windows in

time and frequency, namely Ww(τ) and Wt(t):

SPWV (t, ω) =

∫

∞

−∞

Ww(τ)
[

∫

∞

−∞

Wt(u − t)x(u +
τ

2
)

x∗(u −
τ

2
)du

]

e−jωτdτ (6)

Eq.(6) provides great flexibility in the choice of time and

frequency smoothing, but the length of the windows should

be determined empirically according to the type of signal

analyzed and the required cross terms suppression.

E. MQ Sinusoidal analysis

In 1986, Robert McAulay and Thomas Quatieri proposed a

new method for analysis/synthesis of continuous time speech

signals which turned out to be a reconstruction process that

provided a close approximation of the original signal [12].

EEG waves represent the combined activity of many neu-

ronal cells which can generate sinusoidal-like oscillatory
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waves. In this sense the EEG signal may be modeled as a

collection of sinusoidal components of arbitrary amplitude,

frequency and phase. Eq.(3) can then be written as:

S(n) =
L

∑

ℓ=1

Aℓexp[jnΨℓ] (7)

where Aℓ and Ψℓ respectively represent the amplitude and

frequency of the ℓ-th component (out of L components

(waves) conforming the EEG signal). Here amplitudes and

frequencies are implicitly related to the Pi terms of Eq.(3).

The problem now is to identify the terms Aℓ and Ψℓ in

relation with neural discharges. The MQ algorithm performs

this estimation by peak-matching based on the localization

of peaks in energy on the SPWV plane. By linking peaks

which occur at similar frequencies, we can define tracks

along the t-f plane.

The concept of sinusoidal birth and death is used to account

for the appearance or disappearance of spectral peaks

between frames and the tracks are formed by connecting

peaks between contiguous frames (see Fig. 2, upper). A new

track is born if the frequency of a peak in the current frame

does not appear in an interval ±∆ of the peak frequency in

the previous frame. Similarly, a track is dead when a peak

in the current frame is not followed by another peak in the

interval ±∆ of frequency in the next frame. A magnitude

condition is also imposed so that contiguous peaks at the

same frequency which have large magnitude differences are

proposed to belong to different tracks (the partials). The

process of matching each frequency in frame t to some

frequency in frame t + 1 is given in [12]. Fig. 2 shows the

birth and death of frequency tracks formed by connecting

peaks of similar frequencies between frames (upper) and the

result of applying this method to an EEG seizure segment

using the SPWV (bottom).

F. Feature extraction

The extraction of relevant information from an EEG signal

is related to the information obtained with the MQ sinusoidal

model. We propose to use three features based on energy,

frequency and the length of the principal track. Fig. 2
(bottom) shows the existence of a principal track in the

seizure corresponding to non-normal activity. Similarly in

other EEG record with a duration of 75 secs. (see Fig. 3),

we can observe a longer track F clearly visible during the

seizure. These appreciations make it possible to introduce a

new feature based on the duration of the principal track and

use it in the detection task.

Apart from having the duration of the principal track, it also

becomes necessary to measure other characteristics as energy

and frequency to bring better information about this principal

track. We have an EEG segmented into K segments, each

EEG segment gives us the values Ek, Fk and Lk and we

subsequently construct a three dimensional feature vector for

each segment. The procedure to be applied to each segment

is explained below.
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Fig. 2. Upper: Frequency matching process for determining frequency
tracking in a TFD window. Each path in the graph is called a track. The birth
of a track occurs when there is no partial in the previous frame to connect
a peak in the current frame. Conversely, death occurs when a partial does
not exist in the next frame to connect a peak in the current frame. Bottom:
Peak-matching on the SPWV from a real EEG segment in a seizure. There
is a principal track (largest length), marked with a thick line, and other
minors tracks, marked with a thinner line. These tracks serve to summarize
the spectral content on the time-frequency plane calculated by SPWV.
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Fig. 3. Track extraction using a record with a seizure. The figure shows the
EEG in time domain (upper) and time frequency plane using track extraction
(middle). The length of the register is 75 secs. Taking zoom in a window
(5 secs.) on three different EEG parts, we can observe how a dominant and
sustained frequency F appears when there is a seizure, while tracks appear
discontinued in the non-seizure periods.

1) Energy: Denoting ϑk(t, f) the time-frequency plane

using the MQ sinusoidal model for segment k, where

ϑk(t, f) only takes nonzero values on points corresponding

to the identify tracks, it is possible to calculate energy as:

Ek =

∫

∞

−∞

∫

∞

−∞

ϑk(t, f)dtdf (8)

2) Frequency: Similarly, we calculate the frequency of

segment k using the frequency marginal

Fk =

∫

∞

−∞

ϑk(t, f)dt (9)
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3) Length: Lk is the length of the largest track in the k-th

EEG segment.

III. RESULTS

Table II shows the results of N1 problem detection and

the 6 EEG records from patients that suffer the same type of

focal temporal lobe epilepsy. We use EEG registers with the

same size. Note that features change in different registers,

suggesting that factors specific to individual patients play an

important role in determining how accurate a seizure may be

detected.

TABLE I

ANALYSIS OF DIFFERENT SEIZURES IN DIFFERENT PATIENTS.

EEG L [secs.] F [Hz] E [%]

1 2 1.7 26
2 3 5.9 37
3 2.5 4.4 28
4 3.2 2.5 32
5 2.6 6.5 1
6 3 3.8 27

N1 0.6 4.3 4

Our analysis have shown that there are features related

to epileptic activity. Taking the median values from the

feature vector as threshold decision, we present the results

of sensitivity and specifity, wich are defined as follows:

Sensitivity: Percentage of EEG segments containing abnor-

mal activity correctly classified.

Specificity: Percentage of EEG segments not containing

abnormal activity correctly classified.

The results based on these two measures are presented in

Table II and Table III. Note the good performance of our

method when we use different EEG data from the same

patient (Table II) and how this performance is also good

when we try to detect epileptic activity in different patients

(Table III).

TABLE II

SENSITIVITIES AND SPECIFITIES OF EEG’S IN SAME PATIENT.

EEG Sensitivity [%] Specifity [%]

1 89 97
2 90 99
3 80 89
4 30 100
5 77 94

TABLE III

SENSITIVITIES AND SPECIFITIES OF EEG’S IN DIFFERENT PATIENTS.

Patient Sensitivity [%] Specifity [%]

1 72 99
2 88 93
3 56 97
4 90 99
5 66 100
6 30 100

N1 97 85

IV. CONCLUSIONS AND FUTURE WORKS

A new approach to identify abnormal discharges in

epileptic EEG signals using track extraction is presented.

Our results suggest that the track extraction method

is a powerful tool for detecting in EEGs signals. The

feature vector based on duration, frequency and energy

< Ek, Fk, Lk > obtained from track extraction in every

frame is simple and useful for the detection task.

The initial results show that the track extraction is a suitable

method for automatic seizure detection based on features

extraction from TFDs, and opens the possibility of studying

new criteria for detecting abnormal EEG. In our studies

with patients that suffer from focal epileptic seizures, we

found similar characteristics present in the seizures and we

obtained a clear isolation of tracks in epileptic EEGs. This

results present high-quality resolution and facilitates the

extraction of features.

Future works implies the study of a wide range of machine

learning methods to better exploit the features proposed

here to finally obtain improved seizure detections.
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