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1 Introduction

The median residual life function (merl) represents the median additional time to failure
given no failure by time ¢; more generally, the y-quantile residual life function g¢x () is
defined as the ~-quantile of the remaining life given survival up to time t. That is, if
lifelengths of the population are described by a random variable X with survival function
Fx, the median residual life function is defined by

merl(t) = Fy (0.5 Fx(t)) —t, t<ux, (1.1)
where F~! denotes the left continuous version of the inverse of F':
F~'(p) =inf{z: F(x) > p}, pe(0,1),

and ux is the right endpoint of its support. In general, if v is a number between 0 and 1,
the y-quantile residual life function of X is defined by

axH(t) = Fx'(y +7Fx (1) —t, t <ux, (1.2)

where 7 = 1 — 4. The quantile residual life function was first introduced by Haines and
Singpurwalla (1974) as an alternative to the mean residual life function. The mean residual
life function is a useful tool for analyzing important properties of X when it exists because
it characterizes the distribution. However, it may not exist. Even when it exists it may have
some practical shortcomings, especially in situations where the data are censored, or when
the underlying distribution is skewed or heavy-tailed. In such cases, either the empirical
mean residual life function cannot be calculated, or a single long-term survivor can have a
marked effect upon its estimation, which will tend to be unstable due to its strong dependence
on very long durations. The a-quantile residual life functions were studied in some detail by
Arnold and Brockett (1983), Gupta and Langford (1984), Haines and Singpurwalla (1974),
Joe and Proschan (1984a), Joe (1985) and Lillo (2005). Raja Rao et al. (2006) identified
families of distributions for which simple expressions for the a-quantile residual life functions
can be obtained.

In light of the extensive use of the quantile residual life functions in several areas of
probability, statistics, and their applications, Franco-Pereira et al. (2010) introduce a new
family of stochastic orders based on the pointwise comparison of these functions. In Jeong et
al. (2008) is widely motivated the usefulness of comparing the quantile residual life functions;
specially in the treatment of cancer when there exists a possibility of benefiting from a new
secondary therapy to be given in the middle of the follow-up period and thus the Kaplan-
Meier plots are not illustrative. They propose a score type test for the median residual life
time to compare two groups at any fixed time point during the follow-up period. Their work
improves the previous works of Wang and Hettmansperger (1990) who proposed a confidence
interval approach to compare quantiles from failure time distributions under censoring. For
the non-shift model, their methods involve the underlying density function. Su and Wei
(1993) introduced a nonparametric test statistic to improve Wang and Hettmansperger’s
procedure. Both methods, however, were intended only for comparing the remaining lifetimes
of patients at the origin of the follow-up period. Earlier, Berger et al. (1988) proposed a
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modified test statistic based on Fligner and Rut’s (1982) approach to compare two median
residual lifetimes under censoring. However, unlike Su and Wei (1993), their approach also
involves a nonparametric estimation of the probability density function of the failure time
distribution under censoring, which is the major drawback in the median-based inference
procedures for censored survival data. In Jung et at. (2009) the y-quantile residual life
function is associated at a specific time ¢, with selected covariates to develop a time-specific
log-linear regression method on quantile residual lifetime. This work is useful to infer the
remaining life years of a patient, given the genetic and/or environmental backgrounds.

In this paper we present an alternative method for comparing quantile residual life func-
tions which is based on the construction of confidence bands for the difference of two quantile
residual life functions. Although it is more common in the literature to compare quantile
residual life functions with v = 0.5, if the objective of a study is inferring about the popula-
tion with longer survival, high quantiles such as 80 or 90 percentile, rather than the median,
would be more appropriate. The comparison of quantile residual life functions is also useful
in Finance since a common measurement of the risk is the Value at Risk, which is defined
as the y-quantile of the loss distribution for some prescribed confidence level v € (0, 1). For
more applications of these stochastic orderings see Franco-Pereira et al. (2010).

Joe and Proschan (1984b) and Cheng (1985) proposed tests for comparing hazard rate
functions and quantile residual life functions, respectively. These tests, as well as many other
tests proposed to compare functions, checked the null hypothesis that two functions were
equal for all ¢, versus the alternative that one dominated the other for all £. These models
did not account for the realistic possibility that the functions cross. A test designed only
to test the null hypothesis of equality may have a large probability of rejecting this null
hypothesis for two populations whose functions cross. Rejection of the null hypothesis by
such a test may be interpreted as evidence that one function dominates the other only if the
possibility of crossing functions can be eliminated a priori. In that sense, the tests proposed
by Berger et al. (1988) to compare mean residual life functions and median residual life
functions included the possibility that the functions cross. The null hypothesis in their tests
is that the two functions are ordered in an interval (which may be the whole support) versus
the alternative that they are not.

The bands we construct evidence whether two random variables are close with respect
to the quantile residual life order or not in the following sense. If the random variables are
ordered, we will expect that the whole band lies below or above the x-axis. Otherwise, we
will expect that at least one of the limits of the band intersects the x-axis or each limit of
the band is at a different side of the z-axis. One of the advantages of the proposed procedure
is that, in case that the variables are not ordered with respect a the quantile residual life
order, it allow us to detect the moment at which the functions cross. That is, the shape of
the band evidences the crossing effect when it exists. The method is also valid when there
are censored data. Moreover, we do not need all the data to apply our methodology.

Given two random samples, we estimate their quantile residual life functions and their
bootstrapped counterparts, compute the difference between them and apply statistical depth
for functions as a criteria for constructing the bands. Statistical depth is a natural tool to
analyze functional data aspects. It has been introduced to measure the ‘centrality’ or the



‘outlyingness’ of an observation with respect to a given dataset or a population distribution
(see Ramsay and Silverman (2005)). The notion of depth was first considered for multivariate
data to generalize order statistics, ranks, and medians to higher dimensions. However, direct
generalization of current multivariate depths to functional data often leads to either depths
that are computationally intractable or depths that do not take into account some natural
properties of the functions, such as shape. For that reason, some specific definitions of depth
for curves have been introduced, to provide us with a criteria to order the sample curves from
the center-outward (from the deepest to the most extreme). See, for example, Vardi and
Zhang (2000), Fraiman and Muniz (2001), Lépez-Pintado and Romo (2005), Cuevas, Febrero
and Fraiman (2007), Cuevas and Fraiman (2009) and Lépez-Pintado and Romo (2009). We
will use this last depth concept to choose the (1 — a) more central curves, which will be
illustrated in Section 2.

This paper is organized as follows. Our methodology to construct the confidence bands
is explained in Section 2. In Section 3 we describe the simulation study we have carried out
and in Section 4 we apply the new method to real data examples.

2  Our methodology

In this section we describe the methodology we have considered to define a nonparametric
method for constructing confidence bands for the difference of two quantile residual life func-
tions. We apply bootstrap techniques and statistical depth as a criteria for constructing the
bands. In the sequel we detail the methodology.

For a sample size n, let X, X5, ..., X,, be independent random variables with common
distribution function Fx, and let Xi.,, Xo.,,..., X,.., be the corresponding order statistics.
Besides the sample distribution function F,(t) = n='#{k : X}, <t,1 < k < n}, we consider
also the sample quantile function

k—1 k —
Qn<y): Xk n—H<y§n—+l, k=1,...,n,
Xpm —=<y<l1.

nt+l =
The natural empirical counterpart of gx o, the sample a-quantile residual life at ¢ > 0, is
Uxma(t) = Qu(aFx, (1) —t, t<uy, (2.1)

where F Xn = 1 — Fx, denotes the empirical survival function of X.

Note that gxn.(t) is a piecewise linear function with jump discontinuities. Assuming
that Fx has a continuous positive density function fx such that infyo<,<1y fx(Fx'(y)) > 0,
then the sample a-quantile residual life function is a strongly uniformly consistent estimator.
This result can be found in Corollary 1.4.1. in Csorgd (1983) and the following paragraph.

Now, let Y be another random variable and let Y7, Y5,....Y;, be an i.i.d. random sample
from Y. Given v € (0,1), plots of the empirical y-quantile residual life functions of X and
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Y can give an indication of the plausibility of whether the y-quantile residual life functions
of X and Y are ordered; that is, if X and Y are ordered according to the y-quantile residual
life order.

Since ¢x ., and gy,m are strong consistent estimators of ¢x ., and gy, respectively,

Qyma(t) = Axny(t) = qvy(t) — ax (1),

almost surely, as n,m — oc.

For constructing the band we follow a three-step algorithm. Let B be the bootstrap size,
a € (0,1) be the confidence level and v € (0, 1) be the fixed quantile.

(i) Consider the bootstrap replications from Xj,..., X, and Y;,...,Y,,. We denote them
by X0, ... ,X;';b and Y}, ... ,Yn’;b, respectively, for b=1,..., B.

(ii) For every b =1,..., B, compute the empirical y-quantile residual life functions which
is associated to X7°, ..., X* and Y ... Y**. We denote them by q}bmﬂ and qi‘}fmﬁ,
respectively. Then consider

* __*b *b
B = dymy — Xy

(iii) Order the sample curves ¢;, b = 1,..., B, from inner to outer using any concept of
depth for functions and take the band given by the (1 — «) - 100% deepest curves.

The convex hull for these (1 — «) - 100% deepest curves constitutes the confidence band.

Remark 2.1. If there exist censored data in the sample, we can consider the quantile
residual life estimator under censoring proposed in Csorgé (1987) and follow the bootstrap
mechanism approach proposed by Efron (1981). The estimator of Csorgd (1987) is based on
the following estimation of the survival function of X

_ Nf(2)+1 12[ <2 + N+(zj)) 02,501 (2.)

Fxn(z) =
" n+l 24 \1+NH(Z)
where NT(x) denotes the number of censored and uncensored observations greater than .
Right-censored data is of the form {(x1,d4), ..., (z,,d,)}, where z; is the jth observation,
censored or not, and

_J 1 if j is uncensored,
! 0 if j is censored.

We draw a bootstrap sample (X7, D7), (X5, D3), ..., (X}, D) by independent sampling n
times with replacement from (Xi, Dy),(Xs, Ds),...,(X,, D,), putting mass 1/n at each
point. This form of the bootstrap requires only that the observed pairs (z;,d;) are i.i.d.
observations from a distribution Fx on R x {0,1}.

The notion of depth was first considered for multivariate data to generalize order statis-
tics, ranks, and medians to higher dimensions. Several depth definitions for multivariate
data have been proposed and analyzed by Mahalanobis (1936), Tukey (1975), Oja (1983),
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Liu (1990), Singh (1991), Fraiman and Meloche (1999), Vardi and Zhang (2000), Koshevoy
and Mosler (1997) and Zuo (2003). Direct generalization of current multivariate depths to
functional data often leads to either depths that are computationally intractable or depths
that do not take into account some natural properties of the functions, such as shape. For
that reason several specific definitions of depth for functional data were introduced. See,
for example, Vardi and Zhang (2000), Fraiman and Muniz (2001), Lépez-Pintado and Romo
(2005), Cuevas et al. (2007), Cuevas and Fraiman (2009) and Lépez-Pintado and Romo
(2009). The definition of depth for curves provides us with a criteria to order the sample
curves from the center-outward (from the deepest to the most extreme).

In the third step of the algorithm, we will use one of the statistical depths introduced in
Lépez-Pintado and Romo (2009), the modified band depth. One of the advantages of this
depth is that it follows a graph-based approach.

Let z1(t),...,z,(t) be a collection of real functions. Although the following ideas can
be introduced for more general functional observations, we will restrict the exposition to
functions in the space C(I) of real continuous functions on the compact interval I. The
graph of a function x is the subset of the plane G(z) = {(¢,z(t)) : t € I} and the band in
R? delimited by the curves z;,, T4, 18

Bz, i) = {(ty) :t € I, min z; (1) <y < max z;, (t)} =

=1,..., r=1,...,

={(t,y):tel,y= ﬁTilll;l.?inr(t) +(1-7) maxkxir(t),ﬁ € [0,1]}.

r=1,...,

Figure 1 (a) presents the band B(x1, z5) given by two curves whereas Figure 1 (b) presents
the band B(x1, x5, x3) given by three curves.

0.4
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0.3

0.2

0.1
0.1

0.0
I
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Figure 1: (a) Band defined by two curves z; (black) and x5 (red). (b) Band given by three
curves x; (black), x5 (red) and x3 (green).

For any function z in zq,...,x,, and a fixed j value with 2 < j < n, the quantity

-1
. n
BD (z) = ( ) Y. Le@ce, sy

J 1<i1<i2<...<i;<n
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expresses the proportion of bands B(x;,, T4, ...7;;) determined by j different curves x;,, z;,, ...z,
containing the whole graph of z. (If4y is one if A is true, and zero otherwise).

Now, let J be a fixed value with 2 < J < n. For functions z,...x,, the band depth of
any of these curves x is

J
BD, s(z)=>_ BDY(x).
j=2

If Xi,...,X, are independent copies of the stochastic process X generating the ob-
servations xy,...,x,, the corresponding population versions are BD(j)(x, P) = P{G(z) C
B(Xl, e ,XJ)} and

J J
BD,(z,P) =Y _ BDY(x,P) =) P(G(x) C B(X1,...,X;)).
3=2 J=2

Lépez-Pintado and Romo (2009) recommend considering the definition of band depth
with J = 3 for several reasons: (1) when J is larger than 3 the index BD,, ; can be compu-
tationally intensive, (2) bands corresponding to large values of J do not resemble the shape
of any of the curves from the sample, (3) the band depth induced order is very stable in J,
and (4) the band depth with J = 2 is the easiest to compute but, if two curves cross over,
the band delimited by them is degenerated in a point and, with probability one, no other
curve will be inside this band.

Instead of considering the indicator function, a more flexible definition was introduced
by measuring the set where the function is inside the band. For any of the functions x in
Z1,...,T, and for 2 < 7 < n, let

Aj(r) = Alwsayy, ..o ) ={t€l: min x,.(t) <z(t) < max z,.(t)}

r=i1,..., 1 T=101,...,05

be the set where the function z is in the band determined by the observations w;,, zi,, . . ., ;.
If X is the Lebesgue measure on I, A\.(A4;(x)) = A(A;(x))/A(I) gives the ‘proportion of time’
that x is in the band. Now, for 2 < j < n,

MBDY (z) = (n) h > (A iy, i)

J 1< <ig<...<ij<n
is a more flexible version of BDJ (z): if x is always inside the band, the value \,(A;(z)) is
one as in the previous notion of depth.

Figure 2 illustrates the ‘proportion of time’ that the curve x; (black) is inside the bands
determined by different curves in the sample.

Now, let J be a fixed value with 2 < J < n. For functions x4, ..., x,, the modified band
depth of any of these curves x is

J
MDB, ;(x) =Y MDB](x).
j=2
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Figure 2: Illustration of the ‘proportion of time’ that z; (black) is in the band determined
by (a) z3 (red) and x3 (green) (b) x5 (red) and z4 (blue) (c) z3 (green) and z4 (blue).

The population version of the modified band depth is M DB (x) = Z‘].]:Q MDBY)(z), where
MDBY (z) = B[\ (A(z; X1, Xa, ..., X;))].

It is straightforward to check that in the univariate case, the band depth and the modified
band depth coincide. Moreover, the ordering induced in that case does not depend on J.
Lépez-Pintado and Romo (2009) recommend considering the definition of modified band
depth with J = 2 because it is computationally fast and the order induced is very stable in
J, and (contrary to the band depth) it provides reasonable orders even if many curves from
the sample cross over.

The band depth is more dependent on the curves shape and more restrictive than the
modified version, providing frequent ties (several curves with the same depth). The modified
band depth relies more on the magnitude or size of the curves that on their shape. Another
relevant difference between them is their behavior for curves leaving the center of the sample
only for a short interval (i.e., remaining in the interior of the sample almost all the time, but
taking extreme values in short subintervals): the modified band depth can still be large for
them but the band depth will always take small values on these curves.

Using the band depth or the modified band depth depends on the kind of functions being
analyzed and the objectives to be checked. If the curves are very irregular, it is convenient to
use the modified band depth because it avoids having too many depth ties and there might
not be a representative ‘shape’; however, the band depth is more adequate if the curves are
smooth and the goal is the most representative curve in terms of shape (not magnitude).

3 Simulation study

A simulation study has been carried out in order to evaluate the performance and to illus-
trate the consistency of our methodology. As we will see, the bootstrap procedures play a
central role in the methods studied here. The computer codes written in R can be found at
http://halweb.uc3m.es/esp/Personal /personas/afranco/eng/Software.html.



As we pointed out in Section 1, if two random variables are ordered with respect to
a y-quantile residual life order, then the difference of the «-quantile residual life functions
associated to the variables must be either positive or negative in the whole support. Based
on this idea, we have developed a nonparametric method for constructing confidence bands
for the difference of two quantile residual life functions as it was explained in Section 2.
These bands will provide us with an evidence of whether two random variables are close
with respect to a quantile residual life order or not, in the following sense. If the random
variables are ordered, we will expect that the whole band lies below or above the z-axis.
Otherwise, we will expect that at least one of the limits of the band intersects the x-axis or
each limit of the band is at a different side of the z-axis.

We have examined several examples through simulation. The random variables we have
considered first follow Pareto distributions. The reason is that, for any v € (0, 1), the 7-
quantile residual life function of a Pareto distribution is a line for ¢ > 0 and for ¢t < 0.
Therefore, if we compare the y-quantile residual life functions of two Pareto distributions
there are only two possible situations: either their y-quantile residual life functions are
parallel for all ¢ > 0 or they intersect. In the first case we conclude that X and Y are
ordered in the y-quantile residual life order and in the second case they are not.

Let X have the Pareto distribution

FX(t):1—<p)fit) Yoo,

where px > 0 and vy > 0. We denote it X ~ P(px,vx). Then, for any v € (0, 1),

qx%ﬂ:{«l—w*ﬂx—wm~¢, t<0;

(1= 7)1 = 1)(px +1), >0,

See Franco-Pereira et al. (2010). Now, if Y ~ P(py, vy ), with py > 0 and vy > 0, it follows
that

vy <vx and
X Sa_rl Y < (1704)_1/1/)(71 Py

(1—a)~vy -1 — px~

The following equivalence holds for the Pareto case:
X< Y e X<z ,Y forall e (0,1) & X <, Y,

where <, denotes the hazard rate order. The second inequality always holds (see Franco-
Pereira et al. (2010)).

From Example 3.1 to Example 3.6 we have considered six pairs of Pareto random variables
where X is always the same and the Y; vary for i = 1,...,6, and are ordered with respect to
any quantile residual life order. In particular, they are ordered with respect to the median
residual life order. The median residual life functions of these variables are represented in
Figure 3. It can be seen that the distance between the median residual life function of X
and the median residual life function of Y;, i = 1,...,6 increases as i increases.

The pairs of variables from Example 3.7 to Example 3.10 are not ordered with respect
to any y-quantile residual life order. In particular, they are not ordered for v = 0.5. The
median residual life functions of these variables are represented in Figure 4.



Example 3.1.

X ~ P(10,10)

Y1 ~ P(20,10)
Example 3.2.

X ~ P(10,10)

Y, ~ P(40,10)
Example 3.3.

X ~ P(10,10)

Y; ~ P(60,10)
Example 3.4.

X ~ P(10,10)

Y, ~ P(80,10)
Example 3.5.

Example 3.6.

Figure 3: Median residual life functions of the variables from Example 3.1 to Example 3.6.

Example 3.7.
X; ~ P(10,10)
Y: ~ P(1,5)



10 20 30 40

10 20 3.0 40
I I |

60 65 70

Figure 4: Median residual life functions of the variables from Example 3.7 to Example 3.10.
Example 3.8.

Xs ~ P(20,5)
Ys ~ P(70,10)

Example 3.9.
Xy ~ P(160,20)
Yy ~ P(70,10)

Example 3.10.
X0 ~ P(10,10)
Yio ~ P(20,15)

We have fixed B = 1000 the bootstrap size, v = 0.5 the quantile we want to compare and
a = 0.1 the confidence level. Although all the procedure is valid for any definition of depth
for curves, we have considered the modified band depth that we have explained in Section 2
with J = 2.

The 90%-confidence bands for the difference of the median residual life functions of the
variables in the first six examples are shown in Figure 5 to Figure 10. In the left graph of
each figure, the B = 1000 bootstrap estimations of the difference of the median residual life
functions together with the confidence band is shown. In the right graph, only the band is
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shown. The 90%-confidence bands for the difference of the median residual life functions of
the variables in the last four Pareto examples are shown in Figure 11 to Figure 14.

Figure 7: 90%-confidence band for gy, 05 — ¢x.0.5-

In Figures 5 to 10, which correspond to the Pareto examples where the variables are
ordered in the sense of the median residual life order (Examples 3.1 to 3.6), except when the
difference of the variables is very small (Example 3.1), all the region delimited by the band
lies above the z-axis. In Figure 5, in which the variables involved are ordered but close with
respect to the median residual life order (Example 3.1), it is seen that the lower limit of the
band crosses the z-axis or the z-axis is contained in the band. However, as the difference
between the two median residual life functions increases, the distance of the lower limit of
the band to the z-axis also increases. This fact shows the coherence of these bands.

In Figures 11 to 14, where the Pareto variables are not ordered in the sense of the median
residual life order (Examples 3.7 to 3.10), the z-axis either cross any of the limits of the
band or is contained inside the band. Actually, the proposed procedure in this case, where
the variables are not ordered with respect to the quantile residual life order, allows us to
detect the moment at which the functions cross.
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Figure 10: 90%-confidence band for gy, 05 — ¢x,05-

We have also considered six examples with variables following Weibull distributions,
which are very often used in reliability. Ecologists have long been interested in modelling
survivorship of biological units such as plants and animals. The Weibull distribution has
been noted to be one of the most suitable distributions in this context (Pinder et al. (1978)).
There are number of reasons for its wide applicability. Firstly, the Weibull distribution
can accommodate the three commonly encountered hazard or age-specific instantaneous
mortality curves: constant, increasing, and decreasing. Secondly, the statistical methodology
of the Weibull distribution is quite simple.

The quantile residual life function of the Weibull distribution is decreasing, therefore, it
is very useful to model aging notion. See Lai and Xie (2006) for more details.

Let X has the Weibull distribution, then its distribution function is given by

FX<t> =1- eXp{_<)‘Xt)mX}v t >0,

12



Figure 14: 90%-confidence band for ¢y,,.05 — ¢x.0.5-

where mx > 0 and Ax > 0. We denote it X ~ W (mx, Ax). Then, for any v € (0,1),

Axt)™ —log(1 — ~)]7x
gx(t) = [(Axt) )\og( )] —t, for all t.
b

It can be seen that if Y is another random variable such that Y ~ W(my, \y) with
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mx = my and Ax > Ay, then their y-quantile residual life functions are ordered for all
v € (0,1). That is, X and Y are ordered in any quantile residual life order.

From Example 3.11 to Example 3.16 we have considered six pairs of Weibull random
variables where X is always the same and the Y;* vary for ¢ = 1,...,6, and that are ordered
with respect to any quantile residual life order. In particular, they are ordered with respect
to the median residual life order. The median residual life functions of these variables are
represented in Figure 15. It can be seen that the distance between the median residual
life function of X* and the median residual life function of Y;*, ¢+ = 1,...,6 increases as %
increases (as Ax- gets closer to Ay-).

Example 3.11.

X+ ~W(2,7

Y ~W(2,6
Example 3.12.

X+ ~W(2,

Yy o~ ( )
Example 3.13.

X+ ~W(2,

Yy o~ (27
Example 3.14.

X+ ~W(2,7

Y ~W(2,3
Example 3.15.

X+ ~W(2,7

Yo~ W(2,2)
Example 3.16.

X+ ~W(2,7)

Yo ~W(21)

In Figure 16 to Figure 21, the 90%-confidence bands for the difference of the median
residual life functions of the variables in the Weibull examples are shown. Again, except
when the difference of the variables is very small (Example 3.11), all the region that is
delimited by the limits of the band lies above the x-axis.

In Figure 16, where the variables involved are ordered but close with respect to the
median residual life order (Example 3.11), it is seen that the lower limit of the band crosses
the z-axis or the x-axis is contained in the band. However as the difference between the two
median residual life functions increases, the distance of the lower limit of the band to the
x-axis also increases. This fact, again, shows the coherence of these bands.
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Figure 18: 90%-confidence band for gy 05 — qx+,0.5-

Remark 3.17. We have computed the confidence band for the difference of two median
residual life functions. However, as we have already explained, the procedure is valid for
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Figure 21: 90%-confidence band for qvy 05 — 4X*,0.5-

any quantile v € (0,1), and the graphs of the band continue being consistent with the order
between the functions.

As we have illustrated with this examples, the confidence bands for the difference of two
quantile residual lifetimes provide us with a criteria of whether two random variables are
close or not with respect to a quantile residual life order, or allow us to compare quantile
residual life functions in a given interval.

4 Application to real data examples

Failure time analysis (FTA) addresses data of the form ‘time until an event occurs’. The
survival times of medical patients or industrial products have been the usual subjects of FTA,
but also data from a wide variety of ecological studies may be cast in these terms, including

survival times of organisms or part of organisms and times until certain behaviours are
exhibited.
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In the biomedical context, FTA has been also called ‘survival analysis’ since the event is
commonly the death of a patient, so the time until the death is the survival time. Failure
time analysis accommodates ‘censored data’. Censored data points are those in which the
event was not observed, perhaps because the study ended before the event happened to
some of the individuals under observation or because some of the individuals were lost track
of before the event occurred during the study. For these censored data points, the actual
time of occurrence is not known. Instead we know a minimum length of time during which
the event did not occur. Failure time analysis allows use of such censored data for their
partial information. This feature is apt to be useful in the field biology, where identification
markers may be lost, external conditions may cause the premature end of observations, or
the observation period may be too brief for all positive events to occur.

Here we consider three examples in which the construction of confidence bands for the
difference of two quantile residual life functions allows us to extract useful information in
the biomedical and in the ecological context.

Analysis of radio-chemotherapy data We present an analysis of the two-sample data
of Stablein and Koutrouvelis (1985) concerning the effects of chemotherapy and chemother-
apy plus radiotherapy on the survival times of gastric cancer patients. This example is also
analyzed in Hsieh (2001), Kleinbaum (1996), Klein and Moeschberger (1997) and Bagdon-
avicius et al. (2004). The number of patients is 90. Kaplan and Meier estimators (Kaplan
and Meier (1958)) of survival functions pertaining to both treatment groups clearly show a
crossing effect phenomenon. The two estimated curves indicate that radiotherapy would ini-
tially be detrimental to a patient’s survival but becomes beneficial later on. See, for example,
Stablein and Koutrouvelis (1985).

We have constructed the 90%-confidence bands for the difference of the median residual
life functions for the patients belonging to both groups, see Figure 22. Since there exist
censored data, we have considered the median residual life function estimator proposed in
Csorgd (1987). From the figure we cannot conclude that one treatment is better than the
other over all the support of the random variables.
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Figure 22: 90%-confidence bands for comparing the two treatments of cancer.

Analysis of ecological data A number of ecological questions can be phrased in terms
of ‘time until an event occurs’. Events of interest might include the arrival of a migrant
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or parasite, the display of a particular behavior, the dispersal of a fruit or offspring, the
germination of a seed, the abscission of a flower, or the death of an organisms or part of an
organism.

Male plants of dioecious species are often more floriferous than female plants, see Lloyd
and Webb (1977). This is true of Clematis ligusticifolia Nutt., the species we have considered
in our example. These data were collected in Matthews-Winters Park, Jefferson County,
Colorado, and are available in Muenchow (1986). In this paper it is tested whether males
and females are equally attractive to insects against the alternative hypothesis that males
are more attractive. The event was defined as the arrival of any flying insect at one of the
flowers. He concluded that male flowers were visited at a significantly faster rate than were
female flowers after carrying out the Cox-Mantel test.

We have constructed the 90%-confidence bands for the difference of the median residual
life functions for both groups of plants, see Figure 23. Again, there exist censored data so
we have considered the median residual life function estimator proposed in Csorgé (1987).
From the figure we can not conclude that one group of plants is more attractive to insects
than the other.

Figure 23: 90%-confidence bands for comparing the two groups of plants.

Analysis of Berger et al. (1988) data The context of this third example involves
the influence of different diets on the aging process in rats where research indicates that diet
restriction promotes longevity. Yu et al. (1982) studied the effects of a restricted diet on
rats versus an ad libitum diet, i.e., free eating (see also Witten (1985)).

Let X represent the lifelength in days of rats following ad libitum diet and let Y represent
the lifelength in days of rats following a restricted diet. Berger et al. (1988) hypothesized
Hy:ex(t) <ey(t) for somet € [0,894]
Versus
H, :ex(t) > ey(t) for somet € [0,894],

where ex and ey denote the mean residual life function of X and Y, respectively. At the
approximate level o = 0.1 the null hypothesis is rejected in favor of H,.

Figure 24 represents the 90%-confidence bands for the difference of the surviving times of
both groups of rats merly (t) — merix(t), for all t. The conclusion of the bands is that those
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rats following a restricted diet life longer that those following an ad libitum diet. Therefore,
this analysis confirm the conclusions of Berger et al. (1988) and complete it because they
were not able to state that one variable dominates the other for all ¢ > 894.
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Figure 24: 90%-confidence bands for comparing the two groups of data of Berger et al.
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