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Abstract

Despite the advantages offered by pure Peer to Peer (P2P) networks (e.g. robustness and fault tolerance), a crucial requirement is to
guarantee basic security properties, such as content authenticity and integrity, as well as to enforce appropriate access control policies.
These mechanisms would pave the way for new models in which content providers can exert some control over the replication and file
sharing process. However, the extremely decentralized nature of these environments makes impossible to apply classic solutions that rely
on some kind of fixed infrastructure, typically in the form of on line trusted third parties (TTP). In this paper, we introduce a suite of
protocols for content authentication and access control in pure P2P networks based on attribute certificates that does not rely on the
existence of a public key infrastructure (PKI), privilege management infrastructure (PMI), or any other form of centralized authority.
We provide an analysis concerning the efficiency (computational effort and communication overhead) and the security of our proposal.

Keywords: Peer to Peer security; Content authentication; Public key certificates; Access control

1. Introduction

One of the features offered by nearly all P2P networks is
the possibility of having several replicas of the same content
distributed among multiple nodes. Despite the fact that this
functionality has many advantages (e.g. robustness and
fault tolerance), ensuring that each new provider will behave
accordingly to another user’s access policy gets more com-
plicated (and definitely hard should a global security infra-
structure be unavailable). Particularly, it is crucial to
guarantee properties such as content authenticity, as well
as to enforce appropriate access control policies. In most
existing P2P file sharing systems, verifying the integrity of
contents depends on peers’ authentication. Unfortunately,
no infrastructure exists for identifying peers and providing
them with digital certificates. A peer can publish fake or
junk files with the names or keywords of some popular files,
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causing normal users to frequently download the wrong
files. This quickly makes peers lose trust and interest in the
community [22]. The objective of checking content integrity
is not only to verify that data is not corrupted, but also to
validate that contents are really what one has requested.
Furthermore, many inherent characteristics of collabora-
tive environments introduce new requirements for access
control, such as different applications running on each node,
control decentralization, and off-line working, to name a
few. Mobility (e.g. by using wireless ad hoc networks) adds
additional concerns: support for mobile devices, the spo-
radic nature of connectivity, the dynamically changing
topology or the low computational power of the devices,
among others. These features pose a challenge from the
point of view of the security mechanisms that should be
applied [11]. For example, authorization in such environ-
ments cannot be generally provided by means of existing
models, which were developed for centralized systems. In
general, the extremely decentralized nature of a pure P2P
network makes impossible to apply solutions that rely on
some kind of fixed infrastructure, such as on-line TTP.
The most accepted solution for authentication and
authorization services in classic distributed environments
relies on the existence of a PKI (or a PMI, since PKIs


Nota adhesiva
Published in: Computer Communications, 2008, vol. 31, n. 2, p. 266-279


are not appropriate to provide authorization services).
Once that a public key can be securely associated to any
given party, the integrity of any content generated by her
can be ensured through her signature, thus maintaining
the correctness and consistency of global data structures
and shared contents, even when peers independently and
unpredictably join and leave the system. Nevertheless, pub-
lic key certification authorities do not, traditionally, certify
the behavior of the entities that possess their certificates.

1.1. Overview of our approach

Once a content is replicated through different locations,
the originator loses control over it. Our approach allows
the content owners to define and enforce restrictions on
how the content is used. In a previous work [16], we intro-
duced a protocol for content authentication in P2P net-
works based on public key certificates which does not
rely on the existence of a PKI. The protocol relies on the
scheme presented in [17], which addresses the issues related
to public key authentication in P2P systems through a Byz-
antine agreement among nodes, not requiring for this a
TTP. Our scheme maintains content integrity based on
the collaboration among a fraction of peers in the system.

In this paper, we extend that work by showing how dig-
ital certificates can be used for P2P content authentication
and how can be modified to provide authorization capabil-
ities, much in the way a X.509 public-key certificate can be
used as an attribute certificate. Both, contents and peers,
will posses a certificate ensuring properties such as integrity
and authenticity (in case of contents), and authorizations
(in case of users). According to RFC 3281 [8], the attributes
are digitally signed and the certificate issued by an attribute
authority an entity that pure P2P networks do not have.
Instead, our scheme uses a classic challenge-response pro-
cedure among a subgroup of peers until reaching a
consensus.

We also shall explore further extensions which help to
reduce the effectiveness of dishonest behavior by means
of a content access procedure based on proofs of computa-
tional effort. In particular, sharing can be encouraged by
imposing a cost on the downloads (e.g. resolving a crypto-
graphic puzzle). Recent works have followed this line,
studying how to use a P2P network to prevent Denial of
Service (DoS) attacks on the Internet [12,15]. Furthermore,
a number of approaches have been designed that support
secure authentication and authorization paradigms in dis-
tributed systems, such as P2P collaborative environments
[9], data-sharing P2P networks [20], and mobile ad hoc net-
works [5].

Roughly, the basic idea that underlies to our approach is
the following. Each peer classifies her contents according to
several security labels. Labels are ordered, for example as
in a lattice-based access control model. An authorized peer
will be able to get access to a given content if her security
clearance is higher or equal than the content’s label. These
security clearances, which take the form of attributes in

public key certificates, can be discretionally issued and
signed by the content provider. Apart from this, our
scheme uses a cryptographic proof-of-work mechanism to
discourage selfish behavior and to reward cooperation, as
well as maintaining a reputation-based classification over
the community. We shall describe how nodes interact fol-
lowing our proposed scheme in a generic P2P file sharing
system. Furthermore, we analyze some security aspects of
the protocol itself, and also we present an efficiency analy-
sis considering both the computational (especially crypto-
graphic) effort required by the nodes, as well as the
communication cost of the scheme.

The rest of this article is organized as follows. First, Sec-
tion 2 briefly overviews some related work and the back-
ground of our solution. Section 3 introduces the notation
that will be used throughout the paper and a few working
assumptions. In Section 4, we first present the basic opera-
tion of our scheme and subsequently discuss the three main
subprotocols. Each of them will be analyzed according to
security and efficiency measures in Sections 5 and 6, respec-
tively. Finally, Section 7 concludes the paper by summariz-
ing our contributions and outlining some future research
directions.

2. Background and related work

For readability and completeness, we first overview
some essential concepts used throughout this paper.

2.1. Pathak and Iftode’s protocol

Pathak and Iftode [17] apply the ideas presented in the
Byzantine Generals Problem [13] for providing public key
authentication in pure P2P systems, where generally one
cannot assume the existence of a PKI. They postulate that
a correct authentication depends on an honest majority of
a particular subgroup of the peers’ community, labeled
“trusted group”. However, in this kind of systems an
authenticated peer could create multiple fake identities
and acts maliciously in the future (Sybil attack [6]). For this
reason, the classification of the rest of the community
maintained by each node has to be proactive and periodi-
cally flushed. Thus, honest members from trusted groups
are used to provide a functionality similar to that of a
CA (certification authority) through a consensus
procedure.

The authentication protocol consists of four phases:
admission request, challenge response, distributed authen-
tication and Byzantine agreement. The protocol begins
when Bob runs into a newly discovered peer, Alice, with
an unauthenticated public key (K,), and then asks for
the key to a subgroup of its trusted members, in order to
verify its authenticity. Each notified peer challenges Alice
by sending a random nonce encrypted with Alice’s sup-
posed public key (sent by Bob) in the signed challenge mes-
sage. Alice will be able to return the recovered nonce in a
signed response message if and only if she holds the



corresponding private key (K;'). Each challenger waits for
an application specific timeout, and if a correct response is
received, he gets a proof of possession for K . All
announced peers send their proofs of possession to Bob.

If all peers are honest, then there will be consensus and
Bob will get the authentication result. Note that 4 or some
of the peers can be detected as malicious or faulty if some
votes differ. In this case, Bob first verifies if Alice is mali-
cious by sending her the request message containing the
proof. Alice must respond with all the challenge messages
received and her respective responses. If Alice can prove
that she is not malicious, then some of the peers must be;
in that situation, Bob must communicate a Byzantine fault
to the group, which will send the Byzantine agreement mes-
sage to others. All these transmitted messages have time-
stamps, source and destination identifiers, and digital
signatures. Finally, successful authentication moves a peer
to the trusted group, whereas encountered malicious peers
are moved to the untrusted group.

For further details, we refer the reader to the original
paper in [17].

2.2. Authorization and access control models

Despite the intense research activity that has been
devoted to develop applications aimed at facilitating col-
laboration among multiple, distributed users, relatively
few works have concentrated on controlling access to the
collaboration environment and shared data. Most collabo-
rative systems give all participants the same rights to all
objects, and expect that access issues will be controlled
by a social protocol. Thus, they do not provide support
for preventing mistakes, conflicting changes or unautho-
rized access.

There are two basic types of classical access control
models: discretionary and mandatory access control
(DAC and MAUC, respectively). Discretionary protection
policies govern the access of users to the contents on the
basis of the user’s identity and the authorizations she pos-
sesses. Discretionary methods must deal with the real flow
of information in a system [18]. On the other hand, the
mandatory aspect of MAC relies in that users access
objects through a MAC system and are not able to change
or reassign access rights. DAC allows an object’s owner to
determine the access rules for that object. While yielding
more flexibility than MAC systems, DAC loses the ability
to provide provable security to resources.

Generic access control models have been studied exten-
sively in non-collaborative domains, providing the basic
framework to describe protection systems such as classic
access matrix models (subject-object-right) and reference
monitors [2], among others. Two main data structures
have been chosen to represent the access matrix: capabil-
ity lists and access control lists. The first stores the matrix
by rows, i.e., each subject is associated with a list of pairs
(object, rights) called capabilities. The second approach
stores the matrix by columns, i.e., each object is associ-

ated with a list of pairs (subject, rights), an access control
list (ACL). Interested readers can find further details in
[21].

Models based on access matrices present some draw-
backs when applied in collaborative environments, mainly
due to the impossibility of relating access rights to con-
tents, attributes of resources, or any other contextual infor-
mation. Furthermore, these approaches lack the ability to
support dynamic changes of access clearances. For team-
work applications, some collaborative frameworks use
roles in conjunction with ACLs, such as SUITE and Inter-
mezzo frameworks [7].

Role-based access control (RBAC) methods were pro-
posed as an alternative to the models based on users’ iden-
tities. In RBAC policies, permissions are assigned to roles
(job functions or responsibilities) rather than to individual
users. In the case of collaborative environments, it is insuf-
ficient to have role permissions based on object types.

Some cryptographic-based mechanisms have been sug-
gested to solve the problem of content distribution, such
as Broadcast Encryption [10]. This is a cryptographic tech-
nique for implementing compliant authorized domains,
and can be used as a replacement for public key cryptogra-
phy in certain applications.

A distributed access control model is addressed in [14]
through the idea of authentication and authorization
infrastructures (AAI). An AAI is the most significative
evolution of PKIs, and may be seen as the result of the
union between PKI and PMI. ITU-T proposal defines
four PMI models according to the application: general,
control, role and delegation. A interesting point is that
AAIs provide a delegation procedure by which an owner
delegates authorizations to another without being
involved. However, there is some problems with the appli-
cation of existing delegation mechanisms in pure P2P
environments. For example, the delegate could masquer-
ade herself as the delegator, or impersonate her, since
there is no control on what others can do and can not.
A possible solution would be that the delegate should
act in his own name, not in hers.

By balancing the main features of collaboration and
security, our solution establishes a discretionary access
control scheme for pure P2P networks, providing at the
same time the ability of detecting non-authorized content
modifications. Furthermore, sharing can be encouraged
by imposing a cost on the downloads. For this, our proto-
col is based on the use of authorization certificates. This
kind of user certificate is based on an attribute certificate:
a digitally signed electronic document ensuring that its
holder has been given these attributes by the issuer.

We have established some requirements that an access
control model for collaborative environments should sup-
port: user clearances and content security labels. Our
proposed model should allow users to infer the access
rights locally. Thus, users should be able to specify access
policies. As a result, it should allow users to take multi-
ple security clearances simultaneously and change these



credentials dynamically during different collaboration
phases.

3. Assumptions and notation

The main purpose of this section is to establish some
basic notation and discuss a few working assumptions.
Throughout this work, we will assume the following work-
ing (operational) hypotheses:

1. Identification. Every participant needs a certificate for
accessing a desired content of a certain provider’s direc-
tory. These certificates are discretionally issued by the
content provider. After several transactions with differ-
ent providers, it is expected that a node will have a
“portfolio” of authorization certificates. Apart from
these, each participant has a unique identifier (pseudo-
nym, IP address, network name, etc). By now, anonym-
ity is not desired. Identification of contents is also
required. A unique name, which is also used for search-
ing the content, is associated with the content.

2. Digital signatures cannot be forged unless the attacker
gets access to private keys. Anyone can verify the
authenticity of a node’s signature by applying the Byz-
antine fault-tolerant public-key authentication protocol
presented in [17].

3. Reliable networking. Protocols at network and transport
layer provide secure and reliable communication among
nodes. This is especially important in the case of M-P2P
applications, which typically will execute on wireless, ad
hoc networks.

Next we summarize the notation used in this paper:

e N is the number of network nodes. Each node is deno-
ted by n;. Specific nodes will be occasionally designated
by capital letters: 4, B, ...

e Each node n; has a pair of public and private keys,
denoted by K; and K, respectively. In turn, encg(x)
represents the encryption of message x using K as key.

e m denotes a content that a node wish to publish, and
h(m) represents the result of applying a cryptographic
hash function on m.

e 5/(x) is n;’s signature over Xx, i.e.:

si(x) = ency 1 (h(x))

whereas s(x) is n;’s signature over x concatenated with
s identity, i.e.:

5i(x) = enc 1 (jl|h(x))

e P(d,x) represent a d-difficult cryptographic puzzle
(d€]0,...,dnax]) Wwhose solution is x.

e C,, is a content certificate associated with m.

e ()7 is an authorization certificate issued by n; to n,.

The specific structure of puzzles, content certificates and
authorization certificates will be clarified later.

P2P SECURE CONTENT ACCESS

JOIN CONTENT ACCESS
PROTOCOL AUTHENTICATION CONTROL
PROTOCOL PROTOCOL
P2P SEARCH TRUST P2P LOCATION
ENGINE MGMT. SYSTEM SERVICE

Fig. 1. Main building blocks.

4. An authentication and access control protocol

In this section, we first overview the full protocol oper-
ation by means of several scenarios. Subsequently, we will
describe in detail each building block of our proposal: Join
subprotocol, Content Authentication subprotocol, and
Secure Content Access subprotocol (see Fig. 1).

The entire scheme works as follows. Consider a common
file-sharing scenario wherein, for each transaction, node 4
which provides the service (i.e. the content) is called the
provider, while node B which requests the content is called
requester. We assume that B has at her disposal some kind
of search mechanism to engage in a searching process
aimed at locating contents. The usual situation is that,
due to replication, the search engine returns a list of
sources from which the content may be obtained.

In our scheme, the system always transmits and presents
contents encrypted by the sources by using some symmetric
cipher and a key Kg. Furthermore, the content is accompa-
nied by a certificate, C,,, which will serve both to guarantee
m’s authenticity and to dictate the security clearance
required to access m. The details of this certificate and a full
description of the scheme are provided below. The basic
idea is that the content certificate contains a puzzle whose
solution is K, i.e. the key required to decipher encg(m).
Basically, we may use a trapdoor function to supply collab-
orative requesters with /-bits out of the total bits of the key.
These / bits can be seen as an advantage for honest peers.

Providers control access to their contents by means of
authorization certificates, which includes the requester
clearance L;. The clearance represents the trustworthiness
of a holder not to disclose non-authorized content. On
the other hand, puzzles’ difficulty can be set by providers
(e.g. the maximum d,,,,) according to the security level,
L,;, associated with each content. In most situations, the
credential emitted to new users will have the lowest security
clearance.

Our secure content distribution protocol is suitable for
self-organized mobile ad hoc networks, and is similar to
PGP in the sense that content and authorization certificates
are issued by the users. However, as opposed to PGP, we
do not rely on certificate directories for the distribution
of certificates. Instead, in our model, certificates are stored
and distributed directly by the users.

Briefly, we can identify three different possible scenarios
after downloading the encrypted content. If user B has a
security clearance issued by 4 and with level equal or



higher than L, then B can use it to easily solve the puzzle.
On the contrary, if B’s clearance is not enough, the diffi-
culty of solving the puzzle (and therefore decrypting the
content) will not get reduced. In this case, the provider
A can update B’s clearance or simply refuse the proposal.
Finally, if B has no security clearance issued by 4, she
should initiate the Join subprotocol to ask for one, or
simply mount a brute force attack on the (probably very
hard) puzzle, whose complexity will depend on the length
of K S-

In any of the three scenarios, once B gets access to mi,
she must verify its authenticity by means of the Content
Authentication subprotocol. Next we describe in detail
each of the scheme’s subprotocols.

4.1. Join subprotocol

This stage is initiated when a node B joins the commu-
nity and desires a specific content m. Each owner classifies
her contents according to several security labels, such as
the classic set “confidential”, “‘restricted”, “secret”, and
“top-secret”’, but can also be extended to support addi-
tional usage classifications depending on the owner’s
desires. As m is always published encrypted using a (sym-
metric) cipher with key K, B needs an authorization certif-
icate issued by A4 to get access to m. Peers who successfully
obtain this authorization certificate benefits from a trap-
door information for a faster key recovery process, and
therefore the content decryption takes less time and fewer
resources.

Content owners must keep a local (and private) data-
base containing the keys used to encipher contents and
the secret trapdoor values for each content’s security label,
as shown in Table 1.

Next we describe the Join subprotocol more formally.
The search engine will return a list of available nodes with
their contents and replicas. At the first step, each user cre-
ates her public key Kp, and the corresponding private key
K,', as some P2P file sharing systems already do [3]. Thus,

Table 1

Table of puzzles maintained by each content provider

Sec. label Session key Trapdoor
L, K, secret,

L, Ks, secret,,

User authorization certi- cate Cg

Certificate Cp:
Holder: B
Issuer: A
ValidityPeriod: te
Clearance: [;

Signatures:

54 (sB(Ch))

B, who is still unknown by A4, must send some information
to A:

B— A:ml = (B,A,RF,ss(B,A,RF))

where RF is a request form in which B formally expresses
her desire to access A’s contents, and sp(*) is the signature
provided by B. Upon reception, 4 must check B’s
signature.

The situation is analogous to people who have several
admission cards for accessing libraries, museums, clubs,
etc. B will have an authorization certificate for each suc-
cessfully contacted content provider. Nevertheless, the
authorization certificates are not issued neither by the
holder (the requester) nor a CA. Authorization certificates
are issued by a content owner for granting access to a spe-
cific requester, with a limited validity period and a security
label L,. How owners evaluate requesters’ intentions will be
discussed in Sections 5 and 6.

In case of acceptance, A generates and sends an autho-
rization certificate “offer” Cg(B,A4,t,,L;) for B:

A— B: CB,SA(CB)

Upon reception, B will check A’s signature, the expiration
time 7, and the security clearance L; provided. If this offer
satisfies B, then she will return to A her signature on Cp:

B—A4: CB,SB(CB)

After performing similar verifications, 4 creates B’s autho-
rization certificate as follows:

Cg : Cp,secrety,, s4(sz(Cp))

A — B :enck,(Cy),s4(enc,(Cy))

Summarizing, 4 generates a certificate C’j for node B, con-
taining (see Fig. 2):

e The identity of the authentication certificate owner (B),
also called “holder”, who establishes who has generated
the content and is its legitime owner.

e The identity of the issuer (A4).

e Expiration date (z,) of Cp.

e B’s security clearance, L,.

e Finally, the previous items are signed by the issuer A
and the requester B (as shown in Fig. 3).

¢ In the same way, the trapdoor secret corresponding to
L;, secret;, is associated with this authorization
certificate.

Table of subscribers S;

Date Requester | Clearance
Timey N4, L;,
Times Ny L,

Fig. 2. User authorization certificate and table of subscribers.
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Fig. 3. Join subprotocol.

Moreover, each provider must store successfully mem-
bers or ‘“‘subscribers” and their updated clearances, as
shown in Fig. 2.

Since Cj includes the security label which allows B
accessing some of A’s contents, the receiver should have
the ability to protect this clearance in order to prevent
eavesdropping or even infiltrations of legitimate users.
Using a simple encryption technique can be enough, but
this is an issue which will not be addressed in this paper.

The full operation of the Join subprotocol is graphically
depicted in Fig. 3.

4.1.1. Updating security clearances

Either when a node initiates for the first time the Join
subprotocol or when she wants to increase her clearance,
the content provider should have some procedure for man-
aging clearances. We sketch some ways for granting or
updating a clearance, even though this is an external fea-
ture to our proposal and falls out of the scope of this paper:

e Using a Trust Management System (TMS) [4]. The TMS
incurs a fixed cost of having to store and exchange all
behavior feedback items to generate a reputation value
for each requester. Essentially, higher clearances are
granted according to the past behavior of each peer.
This way, our scheme can be successfully integrated with
a TMS, for providers can use it in order to classify peers.

e Using proofs of work. In this case, the cost of getting a
clearance for any node will depend on the time required
for solving a puzzle of a selected level from a provider’s
list of challenges.

e Using a discretional policy. In this case, each node dis-
cretionary assigns clearance according to her personal
criteria.

In any case, when a node has more than one clearance,
her certificate must also include previous trapdoor values
in order to access lower-security contents. For this, the field

corresponding to the secret should be implemented as a list
instead of as a single value:

Ll . Lx

secrets: secret| secret

4.1.2. Cryptographic puzzles

There exists many ways of constructing a function such
that its computation is quite difficult unless a party pos-
sesses some piece of (secret) additional information. A
straightforward and efficient way of implementing such a
construction is by using a block cipher (e.g. the AES stan-
dard). The puzzle solution x is used as the plaintext to be
encrypted, and the resulting ciphertext is published. Upon
knowing a trapdoor value (e.g. a number of bits of the
key), the effort required to recover x can be adjusted from
very hard to a quite difficult problem according to the num-
ber of bits revealed in the trapdoor value.

For instance, if a 256-bits key is used to encipher mes-
sage x and the user is provided with a trapdoor value that
reveals 250 bits of the key, then she has to perform 2° !
AES decryptions on average to find the correct value of
x. On the other hand, if we want the party to devote more
resources on the computation for accessing x, a lower
informative trapdoor value should be used. For example,
by providing 128 correct bits of the key, we force her to
carry out around 2'?7 operations. This way, the number
of revealed bits can be seen as the difficulty parameter in
the cryptographic puzzle P(d, x).

Apart from this, there exist other possibilities to use
cryptographic primitives for building up similar puzzles
(e.g. hash functions in which a preimage of a given value
must be found).

4.2. Content authentication subprotocol

The main objective of this subprotocol is to maintain
content integrity, ensuring its authenticity and avoiding



non-authorized content alterations. This is achieved
through the collaboration of a fraction of peers in the sys-
tem. Let A be the legitime owner of a given content m. Pre-
viously to content distribution, 4 will generate a content
certificate C,,. For this, A first selects a subgroup of signing
nodes S, with |S| =k, among her group of trusted mem-
bers. The way in which this selection is carried out is not
discussed here, but it could depend, for example, on their
availability and trust level. C,, (Fig. 4 (left)) is structured
in three parts as follows:

e The certificate C, containing the following fields: The
identity of the originator, which ultimately establishes
who has generated the content and is its legitime owner,
the identity and hash of the content, A(m), assuring its
integrity, and the ordered list of signers (OLS). The lat-
ter contains the identity of k+ 1 network nodes,
denoted by ng,ni,...,n,, where ny A is the content
originator.

Content certificate C,
Certificate C:

e Three attributes: a valid period for C,, the secu-
rity label of the content, L,, and the puzzle
P(dmax, Ks). Puzzle’s solution is the decryption key
for obtaining m.

¢ Finally, the previous items are recursively signed by the
nodes listed in the OLS. First, 4 signs the certificate. The
resulting signature is subsequently checked and signed
by n;, and so on.

C,, must be progressively signed by the nodes included
in the OLS. We have identified two different ways in which
this process can be carried out. In a distributed approach,
each node is responsible of sending the signed certificate to
the next one in the list. In this way, 4 simply sends the ini-
tial certificate, C, to the first signer, n;, and waits until C,,
arrives (as shown in Fig. 5 (left)). We assume that each peer
must send a notification message to 4 when it passes the
certificate to the next node. This, together with appropriate
timeouts, allows 4 to be aware of the current state of the

Snk ( t (STLl (SA(C))))

Holder: A
D: I, Table of signed certificates T}
Content: h(m) Date | Certificate | Signature sp;
0LS: A,n1,...,nk received
Attributes: Timeq Cmy Sil
Validity Period: t. Times Cm2 Si2
Sec. Label: L.,
Puzzle:
Pm = P(dmam7 KS)
Signatures:

Fig. 4. Content certificate and local database maintained by each certification node.
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Fig. 5. Content authentication and access subprotocols.



process. As a centralized alternative, 4 could be responsi-
ble of sending C; | to each node and receiving C;. Now,
A can check whether the received certificate has been prop-
erly signed or not, thus having a higher level of control
over the process.

Signers have to perform a local verification stage in order
to ensure that they are not being cheated on. We will
denote by Cy,Ci,...,Cr C,, the successive versions of
the certificate as it passes through the list of nodes. First,
each n; € OLS, when it receives certificate C; |, should ver-
ify the authenticity and integrity of m (computing /(m) and
comparing the result with the value contained in C,,), ver-
ify the signatures contained in the received certificate
according to the list order (instancing Pathak and Iftode’s
public key authentication protocol if necessary), as well as
to authenticate the originator (obtaining A4’s public key if
unknown). If previous verifications succeed, the node adds
its signatures to C; 1, thus creating C;. Furthermore, each
n; dumps the received certificate (including the signatures
contained), a timestamp, and the generated signature,
s, (Cizy) on a local table of signatures, denoted T,
(Fig. 4 (right)).

Finally, A publishes the content m encrypted with the
session key K (which should never be distributed in clear),
along with the content certificate:

(encks(m), Cy)

Fig. 5 (left) depicts graphically the content authentication
subprotocol.

4.3. Content access subprotocol

Let B be the requester who wish to access m. We can
assume that, at this time, B has already completed a search-
ing process and obtained a list of sources that keep a rep-
lica of the desired content. The results should contain at
least the content descriptor and the list of identities of
the source nodes. Together with each query result, B
obtains sources’ published information, C,, with all the
information associated with the content, and encg (m), as
explained previously.

Now B first selects a source 4 among those returned by
the query. This selection could be done taking into account
the knowledge (reputation) of some of the signers, of the
source, or simply at random. Recall that successful past
transactions with a well-known provider mean that B
already has an authorization certificate (access right) to
use A’s offered services. The possession of a valid Cj will
give several advantages to B, particulary if the clearance
of B is high enough, i.e. Lg > L,,. In this case, B can use
the information enclosed into her authorization certificate
to easily solve the puzzle included in the content certificate
C,,.. This process provides B with Kg, the key required to
decrypt m.

In case of B either not having any authorization issued
by A or her clearance being lower than L,,, she can:

1. Initiate the Join subprotocol to obtain a valid authoriza-
tion certificate from A.

2. Try to update or increase her clearance (see Section
4.1.1).

3. Try to solve the maximum hardness puzzle P(d.x, Ks)
included in C,, for getting m.

Whatever the case may be, B finally gets Kg and
decrypts the desired content. Now she must verify the cor-
rectness of C,, in order to ensure the authenticity and integ-
rity of m. For this, B performs the following steps:

e Step 1. B computes A(m) from m and compares the result
with that included in the certificate. If both values differ,
then either m has been altered or C,, is not an authentic
certificate for m.

e Step 2. B verifies the concatenated signatures of the
peers listed in the OLS. At worst, B knows none of
the signers’ identities, having to run Pathak and Iftode’s
protocol, and pre-evaluating the new members’ trust
based, for instance, on the weighted values given by a
TMS [19].

In Fig. 5 (right) it is graphically shown the content
access subprotocol. Finally, a summary of the entire
scheme is shown in Fig. 6.

5. Security analysis

In this section, we provide an informal analysis concern-
ing the correctness of our proposal in terms of security. For
this, we discuss several attack scenarios and forms of mali-
cious behavior which can occur during each phase of the
protocol execution, showing how the scheme is prevented
against them.

5.1. Join subprotocol

Here, we discuss several attack scenarios that may be
launched against the Join subprotocol.

1. Eavesdropping. An attacker cannot listen the four mes-
sages transmitted during the Join subprotocol, for all
the communication between 4 and B are protected by
the network/transport layer (see assumptions in Section
3). This can be achieved by using e.g. Secure Socket
Layer (SSL), or any other scheme allowing parties to
mutually authenticate and establish a session key under
which all the communication is encrypted.

2. Message modification attacks. An attacker can try to
modify some messages with the hope of modifying
the privileges granted by A4 to B. As in the previous
case, the secure channel established between both par-
ties prevent this situation to occur. Such a modification
can only lead to an incorrect message authentication in
the lower layers, but never to any gains for the
attacker.



Join

B — A: B, A, RF,sigp(B, A, RF)

A — B:Cpg,siga(Cp)

B — A:sigp(Cp)

A — B:encgy (C’g),sigA (encKB (C’g))

Content authentication

1. (), generation:
A generates C' =< A, Iy, h(m),OLS > and signs:Cp =< C,s4(C) >
2. Distributed signing process:
A sends (m, Cp) to ny
Fori=1to k
(a) n; performs the local verification stage on C;_j
(b) n; adds its signature and generates Cj
(c) n; updates T; with the tuple < timestamp,C;i_1,5n,;(Ci—1) >
(d) n; sends (m, C;) to 1711 (mod k)
(e) n; sends a notification message to no
3. Content publishing:

A publishes (encKS (m),Cm)
Content access

Case 1:B has an appropriate Cg:
1.B uses Cg for easily solving P(dmaz, Kg).
2.m is decrypted by using Kg (puzzle solution).
Case 2:B has no valid authorization:
1.Initiate Join subprotocol, or
2.Try to update/increase her clearance, or
3.Try to solve the maximum hardness puzzle P(dmaqz, Ks)
C,, verification:
1.h(m) comparison
2.0LS’s public keys verification (if not done before)
3.Verification of C),’s chain of signatures

Fig. 6. Summary of the proposed content authentication and access control scheme.

3. Message reply attacks. An attacker first listens the mes- the correct digital signatures. Note that this is a particu-

sages exchanged between 4 and B and then tries to
reproduce the session by using some of them. The proto-
col is robust against such a situation for two reasons.
First, the underlying secure communication protocol
will detect that the messages are encrypted under a dif-
ferent session key. Second, the identities of of both 4
and B are included in the messages, not being useful
for anyone different from them.

. Message insertion attacks. An attacker can try to gener-
ate fake messages and insert them in the channel
between 4 and B. However, she is unable to do that
for the same reason previously described for the case
of message modification attack.

. Message dropping attacks. Given enough control over
the network infrastructure, an attacker can try to delete
some of the messages exchanged between A4 and B. By
doing so, the only result achieved is a failure in the cor-

lar case of either 4 or B trying to exhibit malicious
behavior against the other party.

. Attacks against the public key authentication process. At

some stages of the protocol, both parties are required to
authenticate the other’s public key in order to verify the
signatures exchanged. However, Pathak and Iftode’s
protocol can fail due to the impossibility of getting an
honest majority. In this case, an adversary might con-
vince a honest peer that the public key of a node is
K1, when it is not. This kind of man-in-the-middle
attack is detected if at least one peer (apart from A) is
honest.

5.2. Content authentication subprotocol

The discussion provided above for attacks 1 7 is appli-

cable to the content authentication protocol in all the
aspects concerning an attacker trying to influence over
the secure communication. Apart from those, some other
questions arise in this case:

rect execution of the protocol (which can be viewed as a
denial of service), but cannot enable the attacker to gain
any useful information.

6. Impersonation attacks. Assume that an attacker can suc-
cess in hijacking a secure session between 4 and B. Even
in this case, messages exchanged among trusted peers are
safe from spoofing, for they are signed by authenticated
public keys. In other words, the attacker cannot generate

1. Assurance of content authenticity. The protocol is
started by A and ultimately relies on her honesty. In
case of A being honest, we can assume that the origi-



nal content m released by her is authentic. We also
assume that the hash function cannot be manipulated,
and that the OLS contains A4’s trusted members. In
this case, the initial content certificate, C,, is correct.
It is straightforward to see that any modification on
the certificate performed by a signing node can be eas-
ily detected.

The originator might try to exhibit a malicious behav-
ior. Any modification of the certificate fields will be
eventually detected by, at least, one node in the
OLS, since it is assumed honest majority in the signing
community and, therefore, A cannot collude with a
sufficient number of traitors.

. Modified replicas. Consider the following scenario,where
B gets access to m and its associated certificate C,,, and
tries to generate a new, fake certificate C,, in which B
appears as the legitimate owner of m:

Certificate C”:
Originator: B

ID: I,

Contents: h(m)

OLS: B,nqry ..., Ny

SignAlgorithm: Algorithm
Attributes:

Validity Period: t.
Sec. Label: L,
Puzzle:
le — ,P(d;naacv ng’)
Signatures:

sm, (- (5ny, (55(C7))))

This will be detected by a subset of nodes in the OLS
during the local verification stage, as at least one of them
has previously signed C,, and will refuse to cooperate.

. No cooperation. Cooperation is crucial during the con-
tent certificate generation stage. A dishonest signer
could send its participation randomly or maliciously,
instead of a properly constructed signature. This is
indeed a point of failure of the proposed scheme, since
cooperation is required among the k+ 1 nodes to
achieve a successful execution of the protocol. In other
words, the protocol actually detects these forms of mis-
behavior and no cooperation, but it cannot enforce
nodes to behave properly. Even though this is totally
related with the decentralized nature of P2P systems,
nodes can be provided with incentives for cooperation
in the way it is done in some current P2P systems for
encourage file sharing. Nevertheless, this is something
external to our proposal. Furthermore, each intermedi-
ate peer must ignore any messages that do not have
the proper form of content, and a signed certificate.
Besides, peers know that the originator 4 is malicious
if her signature is incorrect.

5.3. Content access subprotocol

The search and downloading process is external to our
proposal and provided by a P2P file-sharing application.
Since the contents are distributed encrypted, the protocol
does not intervene in this process. Once the content has
been successfully downloaded, there are several scenarios
for an attacker:

1. Breaking cryptographic puzzles. At the content access
stage, peers without the proper authorization (e.g., clear-
ance) can choose to break the puzzle. The only way of
breaking it is by using a brute force attack and trying
each possible key until the content is correctly decrypted.
Assuming a correct implementation of the encryption
process and an appropriate length for the keying mate-
rial, completing successfully this task falls out of the
resources of an attacker.

2. Manipulation of authorization certificates. An user B
with an insufficient clearance cannot upgrade it exclu-
sively by herself, for the key bits required to do so
are only known by the content’s owner 4. Therefore,
the upgrading process can only be done by 4 through
the Join subprotocol. Furthermore, as the authoriza-
tion certificate is signed by A, any modification per-
formed on it will require to generate the new
signature, a task that again only can be done by A4
by means of her private key.

5.4. A note on replication

After a successful execution of the protocol, a node B
obtains a copy of m. This replica can be published by B,
thus contributing to increase the availability of m
throughout the network. For this, B cannot modify this
replica, otherwise C,, would not be valid. Note that by
doing this B is not claiming to be the originator of m;
information about the true originator is enclosed within
the signatures.

On the other hand, we could be interested in control-
ling every transaction (desirable condition in a collabora-
tive working environment). Without a clear data
ownership, consumption is infinite, and that is not a
desired state in a mobile environment. Our protocol does
not apply any capabilities delegation over contents among
nodes.

Furthermore, our proposal alone cannot prevent m
from being modified by B once she has got access to it.
However, if B publishes a modified replica, any requester
will be able to detect it just by checking the associated
signatures.

6. Efficiency analysis

This section presents an efficiency analysis considering
both the computational (especially cryptographic) effort
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required by the nodes, as well as the communication cost of
the scheme.

6.1. Computational effort

First we analyze the theoretical efficiency according to
time, memory and computational resources required by
each protocol operation.

Table 2 presents the content access life cycle summariz-
ing the time sequence, the number of cryptographic opera-
tions and the complexity for each stage of the protocol.
Furthermore, we include in Table 3 the speed benchmarks
corresponding to the cryptographic primitives used. We use
previous tables with the aim of measuring the computa-
tional cost for content certificate generation and content
access subprotocol.

Fig. 7 shows the cost in the worst case (no signers are
known and all the verifications must be performed), so
these curves must be seen as an upper bound. Content cer-
tificate subprotocol performs a number of hash genera-
tions, signature generations and verifications which
depends on the number k of signers. Of course, this also
implies that k instances of Pathak and Iftode’s protocol
must be executed, plus a symmetric encryption and a puz-
zle generation.

For instance, generating a certificate for contents between
1 and 10 MB takes less than 9 min with the cooperation of 10
signers. As content’s size and the number of signers increase,
the computational cost increase significatively: A certificate
for a content of 500 MB and 20 signers takes approximately
1 h. See, however, that this task is carried out just once, and
that content access is considerably faster.

6.1.1. Memory consumption

The certificates involved in the proposal are small
enough to be stored even on nodes with low storing capa-
bilities (e.g. mobile devices). The size of an authorization
certificate is around 600 bytes, depending on the security

Table 3

Speed of cryptographic primitives used in our simulations [1]

Algorithm ms/operation

RSA 2048 Encryption 0.45

RSA 2048 Decryption 28.41

RSA 2048 Signature 28.13

RSA 2048 Verification 0.45
MBI/second

AES 256 48.229

SHA 256 44.460

level issued to the user and the signing algorithm chosen.
In the case of content certificates, the size is similar.

Content providers and signing nodes must maintain a
number of local databases (tables Z; T; and S;). Their
length greatly depends on the dynamics of the network
and the extent to what the node is involved. However, it
is reasonable to assume that a peer who offers a large num-
ber of contents also has at her disposal a good amount of
computational resources.

6.2. Communication overhead

Next we analyze efficiency according to the communi-
cation overhead imposed by the proposal. Table 4 pre-
sents the number of messages and the complexity in
terms of communication transmission for each subproto-
col stage. For example, Join process linearly increases
slowly as shown in Fig. 8. This figure plots how the num-
ber of transmitted messages increases depending on the
number of signers involved in each subprotocol. Obvi-
ously, the Content Authentication subprotocol requires
a higher number of transmissions. In the case of Join,
communication overhead actually depends on the authori-
zation certificate’s length and the complexity of the chal-
lenges in Pathak and Iftode’s messages. On the other
hand, the upper bound in our simulations is given by a
content certificate generation with 25 signers: more than
350 messages.

Table 2
Efficiency analysis (computational effort)
Subprotocol Stage No. crypto operations Complexity
Join 1.1 B’s Request 1S O(klogk)
1.2 A’s checking 1PI+ 1V
1.3 Cy generation 3S+3V+1E+1D
Subtotal: 4S+4V+1E+ 1D+ 1PI
Authentication 2.1 C,, generation 1H+ 1S O(| m | K logk)
2.2 Signature process kS + kH + k(k—;l) V + kPl
2.3 Content publishing 1E+1Zg
Subtotal: (k+1)(H+S+%4r) +
1E+1Zg+ kPI
Access 3.1 Access Request 1Zs+ 1D O(| m | K* logk)
3.2 B’s Checking on C,, 1H+ kPI+kV

Subtotal:

1Zs+ 1D+ 1H + k(PI+ V)

H, hash generation; E, symmetric encryption; D, symmetric decryption; S, signature generation; V, signature verification; k, no. of signers; P/, Pathak and

Iftode’s protocol; Zg, puzzle solving; Z, puzzle generation.
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Fig. 7. Computational cost (worst case) for content certificate generation
and content access subprotocol.

Table 4
Efficiency analysis (communication overhead)
Subprotocol Stage No. messages  Complexity
Join 1.1 B’s Request 1 O(k)
1.2 A’s checking 4k + 1
1.3 C} generation 3+2
Subtotal: 4k +7
Authentication 2.1 C,, generation 1+1 O(klogk)
2.2 Signature process 2k + %ﬂ)
2.3 Content publishing 1+ 1
Subtotal: 2k +4+ —/‘<"2+])
Access 3.1 Access Request 1 O(k)
3.2 B’s Checking C,, k
Subtotal: k+1

7. Conclusions and future work

Even in a mobile environment, a P2P content distribu-
tion scheme can be more efficient and economical than a

—+— Join subprotocol
—8— Authentication subprotocol

300 —6— Access subprotocol i

250 8

200 : 8

No of messages

100 B

50 9

Fig. 8. Communication cost (number of messages transmitted in the worst
case) for each subprotocol.

traditional client server scheme. However, security issues

in particular authorization and authentication  must
be adapted to the specific nature of decentralized environ-
ments and mobile nodes.

In this paper, we have introduced an access control pro-
tocol especially oriented to P2P file-sharing systems, which
are environments characterized by node transience and the
lack of any centralized authority. The proposed solution
provides a content authentication scheme which allows
secure content replication among peers, thus ensuring the
integrity of the published contents. Non-authorized acces-
ses are prevented by ensuring that only a user having the
proper security clearance will be able to decrypt the down-
loaded content. Content owners can control who accesses
their contents by discretionally issuing clearances in the
form of authorization certificates.

Our motivating scenarios are the implementation of
these concepts in collaborative working environments, sup-
ported by mobile ad hoc networks and file-sharing applica-
tions. Our scheme represent a secure mechanism for
providing guarantees that a content is authentic and has
not been altered, even if it is a replica of the original and
its source has lost control over it.

Our future work include several research lines. First, it
would be interesting to measure how serious the problem
of fake content distribution is in real P2P environments,
such as BitTorrent, eMule and eDonkey systems, to
name a few. A second line is related to the study of spe-
cific ways according to which the clearance granting/
updating process can be integrated with a TMS. This
can greatly reduce the computational cost of the pro-
posal by decreasing the number of cryptographic opera-
tions needed. However, trust and security are concepts
somewhat related but definitely different in nature. As
a consequence, delegating security processes to trust sys-
tems is something that should be done carefully and in
the appropriate contexts.
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In principle, the process for generating content certificates
may be performed by using a multisignature scheme. This is
generally a more efficient way to gather up a number of signa-
tures over a given document than by doing it sequentially.
Finally, we will investigate ways to extend the authentication
and access control services here presented to more complex
capabilities, such as privilege delegation and revocation.
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