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1. Introduction

Access to better and more financial data is a constant sofire@ioresearch and allows us to refine
solutions to old problems and to extract market informattwat previously could not be obtained. A
striking example is the relatively recent access to higlatfiency data. Nowadays it is possible to find
equity data with information on every trade including: tistamp to nearest second, volume, quotes,
etc. One of the many applications is, for instance, to furthe understanding of stock price dynamics

during ‘business time’ instead of ‘calendar time’; an imdijrst proposed in Clark (1973).

In a recent paper, Cartea and Meyer-Brandis (2010) empi&ybty-tick data to propose a model
that explicitly uses information on the waiting-time beemerades. In their model the arrival of trades
is determined by a counting process that captures the amlpwiaiting-time distribution under the
data generating measure. In this paper | further investitigd pricing equations arising from a model
that explicitly incorporates information on the waitingie between trades. | assume that the log-
stock dynamics are represented by a marked point procese Wigecounting proces$(t) represents
the number of trades and the maiksre i.i.d. random variables that represent price revisidrise
price revisionsy possess an infinitely divisible distribution with log-cheteristic function given by
the Lévy-Khintchine formula:

(1.1) InE [éﬂ — Y(&) = aif — %02£2+ (éfy 1 iEu(y))W(dy).

Ro

wherea e R, 0 > 0, u(y) is a truncation function an®#(§) is the characteristic exponent of the Lévy

distribution with triplet(a, a?,W).

Modeling price dynamics with a marked point process is egldb the vast literature on time
changes and stochastic volatility (see for example Hest683), Kallsen and Shiryaev (2002), Carr,
Geman, Madan, and Yor (2003), Carr and Wu (2004) and Cartkilawison (2009)) in the sense that
the market undergoes periods of high activity and low agtivh the model used here the ‘pace’ of the
market is driven by the arrival of trades, whereas in staahaslatility models, which can be seen as
time-changed Brownian motions, periods of high (resp. lealatility are periods of high (resp. low)

activity in the market. In other words, marked point proesssnd stochastic volatility models can both



be viewed as models that reflect the market's trading agtitich is better measured in business time

rather than calendar time; an effect also captured in tihemged Brownian motion models.

| highlight two new and significant contributions of this jgap First, | show that the value of
European-style options satisfy a partial integro-diffitied equation (PIDE) in time-to-maturity where,
instead of the traditional /0T derivative, the time-to-maturity derivative is a non-lbeperator known
as the Caputo operator. The Caputo nonlocal operator istdinal derivative which is an interpolation
between integer-order derivatives that nests the usuall dtezivatived /0T as a particular case. | derive
the result by using an infinite order expansion of the charestic function of the log-price dynamics.
These pricing PIDEs are new in the literature and result fromdeling price dynamics that incorporate
data to capture the stochastic: i) arrival of trades, angrie revisions every time there is a trade.
This approach profits from the knowledge provided by ticktiol equity data; information that the

traditional continuous-time models do not exploit.

Second, | show that the infinitesimal operator appearingnéngricing PIDEs coincides with the
infinitesimal operator of a Lévy process. At first this is egfed because, after all, it is assumed that
the price shocks possess an infinitely divisible distrdoutiBut if we bear in mind that the family of
waiting-time distributions used here can only ha¥mée number of trades within inite time interval,
it is interesting to see that we obtain pricing equationdaii infinitesimal generator of a Lévy process

that includesnfinite activityprocesses.

The rest of the paper is organized as follows. Sed¢tlon 2 gesvthe necessary definitions to intro-
duce a marked point process and presents the stock pricentbgiased throughout the paper. Section
discusses a particular waiting-time distribution andsisaf function in the light of tick-by-tick data.
Section 4 derives and discusses the main result of the p&getion[b presents some numerical ex-
amples of European call option prices under two differentkex point processes. Finally, Sectidn 6

concludes.



2. Price dynamics as a Marked Point Process

A popular way to model stock price dynamics is to assume thdéuthe risk-neutral measure prices
are driven by a Lévy process. In particular, it is assumed stock pricesS(t) satisfy the stochastic

differential equation
(2.1) dInS(t) = (r — D —c)dt+dLL,

wherer is a constant risk-free rat®, is the continuously compounded dividend yiatds a convexity
adjustment so thak[(T)| 7] = S(t)e'~P)(T-U whereE[-| ;] is the expectation operator conditioned

on information at time, anstQ is a Lévy process with triplg, 62, W,) and log-characteristic function

given bytW(¢), seel(1.1).

It is a well-known result that if stock prices follolw (2.1)eth the value of a European-style option,
denoted by (x,t), with payoff G(x(T)) is given bye "(T-YE[G(x(T))|#] which satisfies the PIDE,

in time-to-maturity,

NXT) 1 ,0V(xT oV(x, T
2.2) +/R(V(x+y,T)—V(x,T)—u(y)avgi-r)>wo(dy) — WxT),

subject to an initial condition, see Cont and Tankov (2004).

Modeling spot price dynamics with (2.1) assumes that theeetrade at each instant in time. We
know, however, that although there are stocks that tradefwequently, there are time intervals when
no trades take place, and more importantly, we observe liieatimne between consecutive trades is
stochastic. Access to tick-by-tick data, with a time-stdomevery trade, allows us to depart from the
traditional approach that assumes continuous trading éondrere we can incorporate information on
waiting times between trades. Ideally, we want a model thatlkwild on high-frequency data with
information on times of trades as well as price revisions.d Aindeed, the theory of marked point
processes provides the right framework to model proceskesathere are events that occur at random

times (trades) with a mark (price revision) associated th exent.



Below | define the different elements required to model tlgedtock risk-neutral dynamics of spot
prices within the theory of point processes. | define a sinpoi@t process, a marked point process
and then show that the discounted log-stock process usedsharmartingale. For a comprehensive

treatment of point processes see Jacobsen (2006).

First some notation. L&Q, # ,IP) be a probability space with sample sp&a non-empty setr a
o-algebra of subsets 61, andP a probability measure on and letRg = [0,0]. Moreover, suppose we
are given a measurable spdée ) called themark space Adjoin to E theirrelevant mark v, to be
used for describing the mark of an event that never occuite ir= EU{v} and letz = o(,{v})

denote thes-algebra of subsets & generated by the measurable subsefs ahd the singletoR v }.

Definition 2.1 Simple Point Process. A simple point process (SPP) is a sequentce= (Ty)n>1 Of
Ro-valued random variables defined ¢, 7 ,P) such that

1. P(O<T1§T2§ ) =1,

2. ]P(Tn < Tn+l,Tn < 00) == ]P(Tn < OO) (n 2 l),

The definition includes conditioBbecause for the particular waiting-time distribution eayeld in the
model below, there can only be a finite number of trades in geftime interval. (Conditior8 can be

relaxed to include SPP with explosions, see Jacobsen (2008¢tails.)

Definition 2.2 Marked Point Process. A marked point process (MPP) with mark space E is a dou-
ble sequencé7 ., ) = ((Tn)n>1, (Yn)n>1) Of R, -valued random variables,Tand E-valued random

variables ¥, defined onQ, 7 ,IP) such thatr = (T,) is an SPP and

1. Py €E,Th<o) =P(Th<)  (n>1),

2. P(Ya=V,Th=00) =P(Ty=w) (n>1).

We are also interested in the counting prodess (N; );>o associated to the SPP= (T,)n>1 wWhich
we define adN(t) = 3_1 11,<t. In the modeN(t) counts the number of trades over the time interval
[0,t] with N(0) = 0.



The Model for tick-by-tick spot data
The risk-neutral dynamics of log-stock prices are given by
(2.3) dX(t) = (r—D)dt+YdN({t)

whereX(t) = InS(t), r is the risk-free rateD is the dividend yieldN(t) is a counting process antl
are i.i.d. price revisions with infinitely divisible distrition and triple{w, o, W), independent dfl(t),

wherew is such thaf[e” — 1] = 0.

The novel part of this model for risk-neutral dynamics issh@chastic component in equati@n (2.3)

(2.4) U= ¥

which is anR-valued MPP with jump timed,, jump sizes(Y,) with distribution g and N(t) is a
counting process independent of the i.id.In the simple case whefé(t) is a homogeneous Poisson

process with raté > 0, the MPRU (t) is a Lévy process with bounded Lévy meashige

In model [2.8) we can distinguish two components: a detastigrone, which is the driftr — D)t,
and a stochastic one, which is the jump compor@lﬁ@\ﬁ. Moreover, since we are interested in
financial applications where we use tick-by-tick data, warexe further some of the building blocks
of the arrival of tradedN(t): the waiting-time between trades, the survival functiond ¢he rate of

arrival of trades, i.e. the hazard rate.

Define the waiting times between tradeshy- T,_1 = T, and assume that the waiting-time pos-

sesses a continuous palft). Hence we can write
n
Tn:TO+21Ti7 Tn—TnflzTna n:l>273>"'7
i=

and the survival function, which represents the probatiitiat the waiting-time between two consecu-

tive trades is greater thdnis given by

't

(2.5) Yit) :1—/ v(wdu.

0



Finally, the hazard function(t) is defined as

(2.6) u(t) = —%InY(t), t € Ro.

Intuitively, the hazard function represents the probgpihiat a trade will happen in the next small time
interval divided by the length of that time interval; i.eethazard function is the instantaneous intensity

of a trade occurrence. Here | assume ti{a} is strictly positive and continuous.

In the model, only when we assume that the distribution ofathiging times is exponential do we
find that stock prices are Markovian; the MBRt) becomes a compound Poisson process. In all other
cases the log-stock price proceég) in (2.3) is not Markovian for a general waiting-time distrilon
because the probability of observing a trade over the ned-8tep depends on how long we have been
waiting since the last trade. Denote Hyw,t) = H(t) the so-called backward recurrence time (i.e. the

time elapsed since the last trade) which is defined by
(2.7) H(t) =t—Ty,

and whereTy, represents the last trade time beforéhen the intensity of the counting procdsé)
is given byu(H(t)) and the predictable compensator of the jump meablicd,dz) is the random

measure
(2.8) v(w,dt,dz) = v(dt,d2z) := u(H(t))g(z)dtdz,

whereu(t) is the hazard function given in_(2.6) ag@) the probability density of the shocks From
this it follows that the process is not Markovian as longuéts is not constant, see Jacobsen (2006).
Intuitively, for general hazard functiongt), it is important to know the time elapsed since the last

trade and thus the process is not memoryiess.

A special example is the well-known case resulting from gmienption that the waiting timesare
exponentially distributed with parametkr For this particular case, the survival function is given by

Y(t) = e and the hazard function becom&$) = A; note that the hazard function is independent of

THowever, if we enlarge the state space with the backwardrmece timeH (t), then it can be shown that the two-
dimensional proces(t),H(t)) is a time-homogeneous Markov process, see Cartea and NBegrdis (2010).



the backward recurrence tink(t). In this case the compensating measlrel (2.8) becofugsdz) =

Ag(z)dtdz which is the compensating measure of the compound PoisscegsJ (t).

Finally, the proposition below states that the stock pr@n exponential martingale under the
risk-neutral measure. The proof relies on the fact thakepravisions are such th&fe'] = 1 and that

the predictable compensator of the jump meadl(et,dz) is given by [2.8).

Proposition 2.1 Let the risk-neutral dynamics of the stock price satisfy $RB). Assume that@) is

the density of an infinitely divisible distribution satisiy

(2.9) /ﬂ%(ez— 1)g(2)dz=0.

Then

(2.10) e (-Ditg) :S(O)exp</ot/R zN(dt,dz)—/Ot/R (ez—l)v(dt,dz)>,

is an exponential martingale undéy.

To show the result note that solving SOE {2.3) and discogritiby e ~P)t we have that

e—(f—D)tS(t) = 50) exp</0t/R zN(dt,dZ)> )

and, because of conditiof (2.9), we can reweit€ ~P)'S(t) as [Z.1D).

3. Waiting-time or duration between trades

There are a number of studies that have used high-frequeateyta study the characteristics of either
the waiting-time between trades or the consequences diattic trade arrival. For example, Engle
(2000) finds evidence that both stock returns and variarredsand to be negatively influenced by long
durations between trades. The study of Dufour and EngleQ26ilows that the stochastic component
of duration can explain the relationship between short tilaeations, i.e. high trading activity, and

both larger quote revisions and stronger positive autetations of trades. Both these findings are

7



also supported by the results in Cartea and Meyer-Bran@i0j2where the authors employ a specific

survival function of the waiting times known in the litereguas the Mittag-Leffler (ML) function given

by

S gy (/1)

(3.1) Ym®) =Y (-1)) =————, for0<B <1,
=2 Ve

andt, > 0 is a constant. One can check that the ML nests the expohs&umtiéval function wher3 = 1.

The ML function was first proposed in a financial context inwek of Mainardi, Raberto, Goren-
flo, and Scalas (2000) and Scalas, Gorenflo, and MainardiOj20Dhere are two main reasons that
make the ML a suitable survival function in a financial cont@s well as in many other physical ap-
plications). First, the decay of the (right) tail of the viiagi-time distribution is algebraic, instead of
exponential, something that is observed in a great deahdétt assets and this feature alone makes it
a strong candidate to model (unconditional) waiting timesseen trades. Second, the ML is highly
tractable in applications because one can write its Laglarsform in closed-form and because one
can express the Laplace-Fourier transform of the MRB in an analytic form. The latter is possi-
ble as long as we know the Fourier transform of the distributbf the random variabl¥, i.e. the

characteristic function, responsible for the marks inulfe) process.

Although the works cited here present ample evidence stipgdhe use of the ML survival func-
tion, Figurd_l shows a representative example of the shagbe empirical and fitted survival functions
for June 2005 trades of General Motors in log-log space. Dedpe fact that General Motors is a rela-
tively frequently traded stock, the figure clearly showg tha fitted exponential survival function, (the
dashed line), is a very poor assumption when compared totted ML survival function, (solid line).
The latter is better at capturing ‘longer’ periods of timdvieen trades as reflected by the empirical

survival function (denoted by circles).
We obtain the probability density function (pdf) of the virag-time from the ML survival function,

d
Umi(t) = —ale(t), forO<B<1,



General Motors (GM)
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Figure 1. General Motors waiting times: empirical, Mittag-LefflercaBxponential.

and we can also calculate the expected number of tradestmvénte intervalO, T|

(3.2) E[N(T)|0] = (T/16)P /T (B+1).

The ML arises in many contexts, see for example Podlubny9Q)188d Del-Castillo-Negrete, Car-

reras, and Lynch (2005). In its most general form, the (t@mmeter) ML function is given by

0 Zj
3.3 Egv(z) = ) ——, >0, >0,
( ) &y( ) ;Z;I—(BJ +_»0 B y
with Laplace transform
_ nigd-y
(3.4) L {tB”+V 1E§jy>(iatﬁ)} = Grap RS9 a2/,
whereEé”\; (y) = %Eﬁ’y(y) and the Laplace transform of a functidris given by

L[FE)] = f(s):/omestf(t)dt.



Below we will also use the Fourier transform of a functiowhich is denoted by

A(E) = 7 [h(x)] = /j; &Eh(x)dx

In particular, the survival function we employ here givendmuation[(3.11) is a one-parameter ML

Ep 1(t/To) with Laplace transform

1-0m(s) . (9Pt

(3.5) Ymi(s) = s —lop o

where  Omi(s) =L {um(t)}, forO<P<1.

We end this section by presenting an infinite order approtiénzof the functionEg ; [a(e” — 1)]
wherea is a constant. Expanding the exponential funcebe- 1+ z+ %22 + --- allows us to write
ae—-1) a(e—-12? ad(e—1)3

Epila(e’—1)] = 1+ r(B+1) + r(2B+1) " r3p+1) o

a 1 a2 1 2
= l+|’(l3+1) <z+§£+...>+m <z+§zz+--->

ad 122 3
+m <Z_|_E _|_> .

_ 1+Lz+...+a7222+...+a7323+...
N rB+1) r(2p+1) r(3e+1)

(3.6) — Epaladt-.

4. PIDE with non-local operator in time-to-maturity

In this section | derive the main result of this paper. | ds thi3 steps. First, Proposition #.1 shows that
we can express the Laplace-Fourier transform of the MPRltihags the marks and arrival of trades in
our model in closed-form. Second, Proposition 4.2 showsftta general European-style option we
can write the solution to the pricing problem as a numerigatision of the Fourier transform of the
value of the option where, as expected, knowledge of thei€amansform of the MPB (t) is required.
Third, Propositiorh_4J3 contains the main result where | sttt the PIDE satisfied by European-style

options contains a non-local operator in time-to-maturity

10



Moreover, Proposition 414 shows the bounds satisfied bylagnit and call options when the time
since the last trade K (t) > 0. And finally, before showing numerical examples in Sedfiphdiscuss
some features of the pricing PIDE derived in Proposifion 43oint out the connection between the
non-explosive MPP that we employ here to model prices. | shsmw that the infinitesimal operator
which appears in the pricing PIDE whén= 1, coincides with the infinitesimal operator of a Lévy

process which appears in the PIDE for exponential Lévygseses of either finite anfinite activity.

Proposition 4.1 Let

q(x.0,T) =€’(T
where
N(T)
UM =7y
n=1

is an MPP as described above in equati@d) whereu(t) is the waiting-time pdf. Assume that the

backward recurrence time @) = 0, i.e. a trade just happened. Then

(4.1) L{T {Q(X,O,T)}} =

where &) is the characteristic function of Y with(£) given by(@.1).

Proof. LetP(n, T) denote the probability density function of observimggades during the time interval
[0,T]. Using the survival functior (215), the probability thatrade does not take place before tifhe

and the fact that we have assumed tHéD) = 0, is given by

T

Pn=1T)= / V(SY(T —s)ds= (U#Y)(T),

0

wherex denotes convolution. Then the probability of observirtgades over the intervé, T] is given

by (L"xY)(T) and taking its Laplace transform yields

(4.2) P(n,s) = (0(s))" Y(s) = (0(s))"

11



Now we calculate

4(6,0,T) = E[éazi“spvi}

£{§E0T)} = ¢

as required.

Proposition 4.2 Let G(-) be the pay-off function of a European-style option with mgtd written on

the stock &) that follows the risk-neutral log-stock price process
4.3) dX(t) = (r—D)dt+YdN({),

where X=InS(t), N(t) is a counting process with survival functioft), r is the risk-free rate and D
is a continuous dividend yield. Let the price revisions Y. iLevy distributed with tripletw, 6%, W)
and characteristic exponet(&) with w a convexity adjustment so thigfe " (T VS(T)| 7] = e PT-Ug(t),

whereE[-| 7] is the expectation operator conditioned on informationiriett.

Assume thafj(&,t, T), defined by
FsND oy
(4.4) qeé&,t,T7):=E [e'EZiNWlY' ’ft} ;

is analytic in& in a strip that intersects the strip where the (complex) kautransform of G exists.
Let€ € R be such that the lin@—co + i€, 00+ ié] is part of this intersection. Then, if (9) (i.e. the time
elapsed since the last trade is zero) the price at time t oBhepean option with pay-off &), and

maturity T, is given by

efr(Tft)

21

ol . R
[ e st DT g 1 T)G(E)de.

(4.5) V(xtT)= s
oo+i

12



Proof. Assuming the pay-of6(-) is such that we can invert its Fourier transform,

Vixt;T) = e"TYR[GX(T))|#]

1 pot& ~
_ (TR {_ / MG (5 f]
21 —oo+ig; (§)dE| 7

e T(T-t)  ootif _ e N(T) A
_ e /_Wae.zmsmela(rD)(Tt)E[elizilmft]G(g)da

e—r(T—t) °°+|E,| . ) . ~
— — /—OO-HE e EINS() (D) (TG _g t T)G(E)dE.

Note that in Proposition 4.2 | have not specified a particslavival function.

Pricing European-style options when stock prices follovegponential Lévy process can be done
by either solving PIDEL(Z]2) or by employing Fourier metholfsthe latter case we would proceed in

the same way as in Propositibn 4.2, wgtt) given by [2.1), and evaluate the Fourier inversion

e T(T-HK [o+il e i
(4.6) V(S’t;K’T):_T/_mng I SO+(T-O[-IFr-D)+P(-DIG(8)dE

whereW(§) is given by the Lévy-Khintchine formula(1.1).

The main difference between equationsi(4.5) (4.6) tdriithe former we need the character-
istic function of the MPP that drives the arrival and sizepi€e revisions, in other words we need

to knowd(§,t,T) or be able to perform a numerical inversion to calculatenit & the latter we need

@.1).

If in Proposition 4.2 we let the survival function be given @), then we knovg in closed-form.
Furthermore, if we le = 1 in (3.1), we can verify that the price of a European callaptiith strike

K and maturityT is given b

e T(T-K  [ootif i _ 4 Ki&
- _ e K —IEINS(t)-+(T—1)[i&(r—D)+(W(-&) -1 _K"
V(StK,T) — /er k.

for§>1.

2Note that we must require”(—%) to be analytic in a line that intersedtse + i€, 00 + i§] where€ > 1.

13



When 3 < 1 we know that the MPP in the price dynami€s [4.3) is not Maikov This non-
Markovian characteristic of the underlying stock showsrughe PIDE satisfied by financial derivatives
written onS(t) in the form of a non-local operator. In particular, the nondl operator we obtain here

is known as the Caputo (fractional derivative in time) whifdr a functionf, is defined as

1 /T af(u)/audu

(4.7) O =g o Toup

with Laplace transform
(4.8) P {gDEf(T)} — Pf(s) - F11(0),
see Podlubny (1999).

Proposition 4.3 Let G(-) be the pay-off function of a European-style option with migtar written
on the stock &) that follows the risk-neutral log-stock price process j4r8Proposition[4.2 with ML
survival function given b{3.1). Assume thadi(&,t,T), defined by

iz <N(T) ,
(4_9) qA(E7t7T) = |:e|EZiN(t)+1Y' ’ft} ,

is analytic in& in a strip that intersects the strip where the (complex) keutransform of G exists.
Let€ € R be such that the lin@—co + i€, 00+ ié] is part of this intersection. Then, if (9) (i.e. the time

elapsed since the last trade is zero) and using the apprdiomaf the ML function discussed above in

3.6)
(410) E|371 [ez — 1] ~ E[ll [Z]

the price at time t of the European option with pay-off- JGand maturity T, satisfies the following

PIDE, in time-to-maturity,

cmBaTy Ty BT (WOVXT) 1 50V (XT)
DT V(X T) = 1,°€ <W76f 50—
oV (x,T)

V) -VET) - u) Yo [ wiy),

(4.11) BT /

Ro

14



wherex=x—(r—D)T.
Proof. Without loss of generality le¢t= 0. Using Propositioh 411 and (3.4) we write equation](4.9) as
Epa (€%~ 1)(T/w0)")

and using[(4.10) we obtain
0(~€.0.T) = Egy [W(-8)(T/00)") .

From Propositiol 412 we can write

(412) V(E,T) — efrTefiEInS(O)efiE(rfD)TEB’l |:LIJ(—E)(T/T0)B:| é(a)’
V(5. T)dENSO) .
.JEE%T__ — e (rHRPITE [W(—8)(T /)]
V(ET)etnso | ub-1 .
I {—G(E) = e P W(—E)TEB , using (3.4)
(4.13) (e il
€9 = Sy

where for notational simplicity

(5, T)= and u=s—(r+i&(r—D))T.

Proceed by rearranging equatién (4.13) to obtain

(4.14) Wl(E,9 -t = W-EPEs).

SubstitutingT = 0 in @.12) shows thait(€,0) = 1 and using[{4]8), we have that

(4.15) P {e*““i“*DDTgDEe(f“f(f*D))Tl‘ (E,T)} — WPl(E,s) — WP L.
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Therefore using equations (4114) ahd (4.15) we obtain

e_(H_iE(r_D))TSD-?—e(rHE(r_D))TlA(E,T) _ W(—E)TSBF(E,T)

(4.16) SDPrRI-DITY (g T) = W(—&)1,PelHEr-PNTY (g, T).

Now the final step is to take the inverse Fourier transfornfdi®) to obtain[(4.11) as required.
|

Above, | made the simplifying assumption that the time etdpsince the last trade was zero,
H(t) = 0. However, the price of a financial instrument with termipayoff G(X(T)) andH (t) > 0 is

given by
(4.17) V(xt) =e T YE[GX(T))X(t),H(t)] = e "TIEGX"(T = )] [x—x(t)h=H

whereX"(t) is theh-delayed renewal process startingxirinduced byX (t), i.e. the first waiting-time

in (2.3) has the distribution dft; — h), givent; > h.

Calculating prices wheiid (t) > 0 using [4.1F) might be slightly involved. Depending on the
model employed, and the type of instrument we are pricingnight be better to approximate the
priceV (x,t) = e "T-YRE[G(X(T))|X(t),H(t)] with V (x,t) = e "T-UE[G(X(T))|X(t),H(t) = 0]. The
Proposition below shows that we can obtain upper and lowend®for European puts and calls when

H(t) > 0.

Proposition 4.4 LetH(t) > 0. LetC(x,t; T,H(t)) denote the price of a European call an®t; T, H(t))
the price of a European put struck at K with maturity T writmthe stock &) that follows the risk-
neutral log-stock price procesk (4.3) in Proposition]4.2hwsurvival functionY(t). Assume that the
hazard function, se@.8), is increasing in t. Then &t; T,H(t)) obeys the bounds

(4.18) C(xt;T,0) <C(x,t;T,H(t)) <E[C(X+Y,t;T,0)]
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and R(x,t; T,H(t)) obeys the bounds

(4.19) P(xt;T,0) <P(x,t;T,H(t)) <E[P(x+Y,t;T,0)].

Proof. We know that
(4.20) C(x,t; Ty, H(t)) <C(x,t; To,H(L)),

for T, —t > Ty —t. Lett1, denote the time of the next arrival of a trade given that yorehaaited an

amounth already. Therto > Ty a.s. and clearly

(4.21) CXtT,H(1)) =E[C(X+Y,THw):T,0)],

i.e. wait until next trade, thex jumps byY, and waiting-time resets to 0. Also,
(4.22) C(xt;T,0) = E[C(x+Y,T0;T,0)],

i.e. wait until next trade, thexjumps byY, and waiting-time resets to O.

Lower Bound Using inequality [(4.20) we hav@(x, To; T,0) < C(X, Ty(r); T,0) for everyx a.s. since

T —The > T —T0as.. Consequently,
(4.23) E[C(Xx+Y,10;T,0)] <E[C(X+Y,TH(); T,0],

where expectation is over bothand the random trade times. Now, the left-hand side of [42&)yuall

toC(x,t;T,0), seel(4.2R), and the right-hand sid€ix,t; T,H(t)), seel(4.211).

Upper Bound Using [4.20) we know thaE(x,0;T,0) > C(x,Tyw);T,0), for everyx a.s. and since

Tyt > 0 a.s., we have that
E[C(x+Y,0;T,0) > E[C(x+Y, Ty T.0)] = C, L T, H(1)),

where expectation is over bothand the random trade times.
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The proof for the put option is similar.

4.1. Obtaining the infinitesimal generator of a Levy process from a non-explosive MPP

Before proceeding to the next section, where we price Eamp@nilla options using the result in
Propositior 4.8 and calculate upper and lower bounds faolmgtrices wherH (t) > 0, | comment on
the particular case wheh= 1 and discuss the connection betwéden (4.11) and the traaitRiDE [2.2)

that arises in exponential Lévy processes.

First, it is trivial to see that whefd = 1 equation[(4.11) becomes

d roiem _ aT ((WOVET) 1,0V (XT)
ﬁer V(X,T) = 1,°¢ <W - 39 e

1T [ V) VT -u) YT wiey,
Ro 0X
rV(x,T)+aV(g)_i_’T) = (r—D—TgBW)L/g;T)
pl 20V (x,T)
+T4 20' 76)(2
(4.24) [ vocrn) -vee) - u) P swiey.

which is the usual PIDE in time-to-maturity when the undedyasset follows an exponential Lévy

process.

If we let ¢ = ToPw, W, = 1o "W and 02 = 1,02 in (@22) we obtain the traditional PIDE(2.2)
for the general family of exponential Lévy models, witlptet (0,02, W,) and convexity adjustmera
which includes both finite and infinite activity models. Thesult is interesting because the model is
based on a non-explosive MPP, i.e. there are a finite numteadss in a finite time interval, but using
(4.10) the resulting PIDE witp = 1 is equivalent to having assumed exponential Lévy preses$

infinite activity whenW(§) is the characteristic exponent of an infinite activity Lgrpcess at = 1.

Moreover, | further note that using the approximation (¥ d@es not imply that the MPP becomes

an explosive MPP with an infinite arrival of trades over a éitiine interval. What | have shown is that

18



the distribution of the MPP using_(4]10) can be the same afteLévy process of infinite activity
(depending on the Lévy measure of the price revisidnsThus, the result is about the distributional

properties of the MPP, not about its path properties.

Forward Fokker-Planck equation

It is also interesting to inspect the result that we obtairmtve use[(4.10) by looking at the Forward
Fokker-Planck (FFP) equation of the MRRt). Assume for simplicity that = D = 0, so the stock
price isS(T) = (0)e”(T) where

(4.25) um= 3y Y.

Assume thap(x, T) is the probability that at tim& the log-price, starting at(0) = InS(0), is at
X(T). To derive the FFP we first derive the transition densitys§etl byp(x, T).

Recall that the pdf of the waiting ting, =T, — T,_1, n=1,2,3,..., between trades is denoted by
u(T). The probability that the log-price igT) at a future timeT, is given by

(4.26) b, T) zé(x)/T‘mu(t)dw/oTu(T—t) [/m g(x—x)p(xX,t)dx | dt,

whered(x) is the delta function. The first term on the right-hand sideoaats for no trades arriving
over the interval(0,T], so the log-price remains unchangedxé). The second term denotes the
contribution that a movement in the underlying stock, ledaatx' and which jumps tox(T) during

(0, T], makes tap.

Now | derive the FFP equation satisfied pgx, T). First solve [(4.26) by taking Fourier-Laplace

transforms:

(4.27) B(s,&) =

1-0(s) 1
S
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and recall thae¥(® is the characteristic function af the distribution of the i.i.d. Lévy distributed
jumpsY with triplet (w,02,W). Then if we assume that the waiting-time distribution ig thisthe ML
survival function [(3.4), witha = 1 for simplicity, and use the approximatidn (4.10) we obtain

-1

(4.28) p(E,s) = L

forO<pB< L

Proceeding in a similar way as in the proof of Propositior) w& have

pE9 -F = WE)BES
p(x,9) —F15(x) = LPp(x,s),  bytakingF 2,
DPp(x,T) = Lp(xT), bytakings ™,

where L is the infinitesimal generator of the Lévy procesi#h wiplet (w,6%,W), given by

LpT) = o [ e e Tk

- ap(x T)+ 1 20°P( T)

2 0x2
+/ < (x=y,T p(x,T)+U(y)%>W(dy)-

Hence,p(x, T) satisfies the FFP equation

op(x, T %p(x, T
lpixT) = —wlPXT), 202 2o T)
op(x, T
(4.29) + / < (X=y,T)=p(x,T)+u(y) p(ax ) > w(dy).
We see that fop = 1 we obtain
ap(x,T) 0p(x T) 1 ,8°p(xT)
oT W 39 e

+/ ( x=y,T p(x,T)+U(y)apS()’(T)>W(dy),

which is the well-known FFP equation for Lévy processes degending on the Lévy measW&dy),

is of either finite or infinite activity.
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Finally, note that the result that links the distributionaofion-explosive MPP to the distribution of
a Lévy process of infinite activity can be obtained by startivith a compound Poisson proc%%ﬁ{\(i
whereN(t) is a homogeneous Poisson process with inteisitgndy; are i.i.d. with infinitely divisible

distribution and tripleta, a2,W). The characteristic function of the compound Poisson p®ce
(4.30) B [GEEMI] - (e )
and using[(Z.70) wit = 1, i.e.e¥® ~ 14+ W(E), we can write
InE [éiiﬁfﬂ] ~ AMW(E)
= Aaiat—hoZath / (éiy—l—iau(y))AW(dy),
2 Ro

which is the characteristic function of a Lévy process Witblet (Aa, A\a?, AW).

5. Numerical examples: the impact of waiting times on optiorprices

To price European-style options we can proceed by eitherenigally solving PIDE[(4.111) or we can

also use Fourier methods to invért (4.5) with
A(~&.T) = Ega |[W(-8)(T/10)°] .

The advantage of having PIDE_(4]11) is that we can solve gthalslems that involve more exotic
payoffs such as knock-out options. There are a number of rnoahenethods to solve PIDEs that
involve non-local Caputo operators, or other fractionah@gives such as Riemann-Liouville, that can
be employed to solvé (4.111), see Podlubny (1999), and inaghtexkt of option pricing with Riemann-

Liouville fractional operators see Cartea and del Cashlégrete (2007).

The numerical examples shown below are prices of Europeaoptaons which were calculated
via Fourier methods using (4]12). The first example assulmasprice revisions are Gaussian and

the second example assumes that price revisions possesdM @iStribution (see Carr, Geman,
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Madan, and Yor (2002)). All examples assume that 1/1,200 000, (i.e. that there are, on aver-
age, 10000¢% /T (B+ 1) trades per month, see (B.2)).

Gaussian price revisions and ML waiting-times

Figure[2 shows implied volatility (V) calculated from theiges of European call options, wis{0) =
100 anK € [92,108), when it is assumed that price revisiohare Gaussian with volatilitg = 0.5,/T,
and mean-02/2 (so thatE[e"] = 1). With this choice of volatility, and lettin@ = 1, the model is
asymptotically equivalent to assuming a Black-Scholesehaath volatility ops = 0.50. The Figure
shows IVs for3 = 0.75. Note that the waiting-time affects the convexity of tkidn a symmetric way

and does not reproduce smirks or skewed IVs.

0.1
0.17)
0.16

0.15
2

014~ Tl e R

013 RIETO T PPt 4

—T=5 Tl .-

0.127 - - -T = 10| IR N
T=15

- =T=20

0.11 1 1 1 1
92 94 96 98 100 102 104 106 108
Strike

Figure 2. IV across strikes for conditionally Gaussian model with tingj times for different days to maturity =
{20,15,10,5} andp = 0.75. The distribution of the price revisioNsis GaussianY ~ N (702/2, 02) whereo = 0.5,/T,
To = 1/(1,200,000) and the parameters for option pricing are 5%, D = 0 andS(0) = 100.

CGMY price revisions and ML waiting-times

Here | show the same results as above, but allow the distsibof price revisions to exhibit fatter tails
than the Gaussian distribution by choosing price revisioitb a CGMY distribution. The examples
assume that = 1.8750x 107, Y = 1.5, G = 10, M = 20, which implies that the distribution of the
price shocks has negative asymmetry bec&useM, and both the left and right tails of the distribution

of price shocks are heavier than those of a Normal distobuti
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Figure[3 shows IVs across strikes and maturitieg3fer 0.75. In this case we observe that the IVs
are more pronounced, as well as skewed, than those obsertteel Gaussian case; a finding more in

line with what we observe in the financial markets.

92 94 96 98 100 102 104 106 108
Strike

Figure 3. IV across strikes for conditionally CGMY model with waitirtjnes for different days to maturitf =
{20,15,10,5} andB = 0.75. HereC = 1.8750x 1077, Y = 1.5, G = 10, M = 20, T, = 1/(1,200,000) and the parame-
ters for option pricing are = 5%, D = 0 andS(0) = 100.

Price bounds whenH (t) > 0

Figured 4 andl5 depict the difference between the upper avet lnound for the conditionally Gaussian
and CGMY prices presented in Figutés 2 ahd 3. As discusseabbenH (t) > 0 calculating option
prices becomes more involved for general waiting-timeritiistions. Figure§l4 and 5 are calculated
using the same parameters as above and we can see that dnendiéf between the two bounds is
negligible if we were to compare it to bid/ask spreads oleim the market or if we compare it to tick
sizes. This result should not be surprising in this modebbse the MPP we employ assumes that the
expected number of trades is very large. Recall that in camgtes with the ML survival function the
expected number of trades is 1000 /I (3 + 1) per month, and the bounds are calculated assuming
one fewer trade (lower bound) or one extra trade (upper botlnaoh the number of trades that take

place betweethandT whenH (t) > 0.
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Figure 4. Difference between upper and lower bound from Proposfighatross strikes in the conditionally Gaus-
sian model for different days to maturify = {20,15,10,5} and 3 = 0.75. The distribution of the price revisions is
Y ~N (—02/27 02) whereo = 0.5,/To, To = 1/(1,200,000) and the parameters for option pricing are- 5%, D = 0 and
S(0) = 100.

5.1. How good is the approximationEg ; [a(e” — 1)] ~ Eg 1 [aZ when pricing options?
In this subsection | discuss the validity of using the appration
B (€ — 1)(T/10)?] ~ Eg1 [W(&)(T/10)"]

when calculating option prices. We can compare the diffeein option prices by employing (4.5)

with

(5.1) d(~&t.T) =g [ (€8~ 1)(T/10)"]
or

5.2) A(~&.4.T) = Egs [W(-8)(T/00)") .

Figure[6 shows the difference between call options empipfinl) and call options employing
(5.2), assuming that price revisions are CGMY distributéthw = {20,15,10,5} andp = 0.75. As
above,C = 1.8750x 107, Y = 1.5, G = 10, M = 20, 1, = 1/(1,200,000) and the parameters for
option pricing are = 5%, D = 0 andS(0) = 100. It is clear that the difference in prices is negligible.
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Figure 5. Difference between upper and lower bound from Proposfiidhatross strikes in the conditionally CGMY
model for different days to maturity = {20,15,10,5} andf3 = 0.75. We useC = 1.8750x 107,Y =15,G=10,M = 20,
To = 1/(1,200,000) and the parameters for option pricing are 5%, D = 0 andS(0) = 100.

This price difference, and others that were calculatedrbthe interest of space are not reported here,
indicates that the difference between the two prices istmgjuishable in the light of the bid/ask spread

and tick sizes observed in financial markets.

Approximation Difference

- | | |
92 94 96 98 100 102 104 106 108
Strike

Figure 6. Call option price using(5]1) minus call option price usiBg) across strikes for conditionally CGMY model
for different days to maturitfr = {20,15,10,5} andp = 0.75. HereC = 1.8750x 107,Y=15,G=10,M = 20,10 =
1/(1,200,000) and the parameters for option pricing are 5%, D = 0 andS(0) = 100.

25



6. Conclusions

Based on tick-by-tick data | propose a non-explosive MPPddehthe risk-neutral dynamics of stock
prices where the survival function of the trades is the MLction and price revisions possess an
infinitely divisible distribution. The ML is a suitable suval function because its right tail exhibits

algebraic decay; something that we also observe in the amalpiick-by-tick data and that has been

shown in previous studies.

| show that the value of European-style options satisfieszERO time-to-maturity where the
time-to-maturity derivative is a non-local operator, eed of the traditionab/0T local derivative,
known as the Caputo operator. This PIDE is new in the optioigng literature and the presence
of the Caputo fractional derivative is a consequence of treMarkovianity present in the arrival of
trades in the model. The PIDE | derive can be solved eithersingustandard numerical methods, see
Podlubny (1999), or for vanilla options by employing nuroatiFourier inversions which is a widely

used technique to price vanilla options when prices are taddes exponential Lévy processes.

From a financial viewpoint, the model proposed here is isterg because it directly uses tick-
by-tick data to extract information of trade arrival in hiflequency. Although the idea of viewing
markets on ‘business time’ dates back to the work of Clarkr8)9explicitly incorporating empirical
waiting-times between trades in price dynamics in the fofmmoMPP is relatively new and explored

in the context of option pricing for the first time in Carteaddieyer-Brandis (2010) and in this paper.

| also show that the infinitesimal operator appearing in theing PIDEs coincides with the in-

finitesimal operator of a Lévy process. At first this is expddecause, after all, | assume that the price
shocks possess an infinitely divisible distribution. Bulvé bear in mind that the family of waiting-
time distributions used here can only havérgte number of trades within &nite time interval, it is
interesting to see that we obtain pricing equations, byguaminfinite order approximation of the char-
acteristic function of the MPP, with an infinitesimal genereof a Lévy process that includainite
activity processes. However | note that the relationship betweenahexplosive MPP and Lévy pro-
cesses, of finite or infinite activity, arises from the diaitional properties of the MPP and not the path

properties.
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