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1. Introduction

Access to better and more financial data is a constant source of new research and allows us to refine

solutions to old problems and to extract market informationthat previously could not be obtained. A

striking example is the relatively recent access to high-frequency data. Nowadays it is possible to find

equity data with information on every trade including: time-stamp to nearest second, volume, quotes,

etc. One of the many applications is, for instance, to further the understanding of stock price dynamics

during ‘business time’ instead of ‘calendar time’; an insight first proposed in Clark (1973).

In a recent paper, Cartea and Meyer-Brandis (2010) employ tick-by-tick data to propose a model

that explicitly uses information on the waiting-time between trades. In their model the arrival of trades

is determined by a counting process that captures the empirical waiting-time distribution under the

data generating measure. In this paper I further investigate the pricing equations arising from a model

that explicitly incorporates information on the waiting-time between trades. I assume that the log-

stock dynamics are represented by a marked point process where the counting processN(t) represents

the number of trades and the marksY are i.i.d. random variables that represent price revisions. The

price revisionsY possess an infinitely divisible distribution with log-characteristic function given by

the Lévy-Khintchine formula:

(1.1) lnE

[

eiξY
]

≡ Ψ(ξ) = aiξ− 1
2

σ2ξ2 +
∫

R0

(

eiξy−1− iξu(y)
)

W(dy),

wherea∈ R, σ ≥ 0, u(y) is a truncation function andΨ(ξ) is the characteristic exponent of the Lévy

distribution with triplet(a,σ2,W).

Modeling price dynamics with a marked point process is related to the vast literature on time

changes and stochastic volatility (see for example Heston (1993), Kallsen and Shiryaev (2002), Carr,

Geman, Madan, and Yor (2003), Carr and Wu (2004) and Cartea and Howison (2009)) in the sense that

the market undergoes periods of high activity and low activity. In the model used here the ‘pace’ of the

market is driven by the arrival of trades, whereas in stochastic volatility models, which can be seen as

time-changed Brownian motions, periods of high (resp. low)volatility are periods of high (resp. low)

activity in the market. In other words, marked point processes and stochastic volatility models can both
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be viewed as models that reflect the market’s trading activity which is better measured in business time

rather than calendar time; an effect also captured in time-changed Brownian motion models.

I highlight two new and significant contributions of this paper. First, I show that the value of

European-style options satisfy a partial integro-differential equation (PIDE) in time-to-maturity where,

instead of the traditional∂/∂T derivative, the time-to-maturity derivative is a non-local operator known

as the Caputo operator. The Caputo nonlocal operator is a fractional derivative which is an interpolation

between integer-order derivatives that nests the usual local derivative∂/∂T as a particular case. I derive

the result by using an infinite order expansion of the characteristic function of the log-price dynamics.

These pricing PIDEs are new in the literature and result frommodeling price dynamics that incorporate

data to capture the stochastic: i) arrival of trades, and ii)price revisions every time there is a trade.

This approach profits from the knowledge provided by tick-by-tick equity data; information that the

traditional continuous-time models do not exploit.

Second, I show that the infinitesimal operator appearing in the pricing PIDEs coincides with the

infinitesimal operator of a Lévy process. At first this is expected because, after all, it is assumed that

the price shocks possess an infinitely divisible distribution. But if we bear in mind that the family of

waiting-time distributions used here can only have afinitenumber of trades within afinite time interval,

it is interesting to see that we obtain pricing equations with an infinitesimal generator of a Lévy process

that includesinfinite activityprocesses.

The rest of the paper is organized as follows. Section 2 provides the necessary definitions to intro-

duce a marked point process and presents the stock price dynamics used throughout the paper. Section

3 discusses a particular waiting-time distribution and survival function in the light of tick-by-tick data.

Section 4 derives and discusses the main result of the paper.Section 5 presents some numerical ex-

amples of European call option prices under two different marked point processes. Finally, Section 6

concludes.
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2. Price dynamics as a Marked Point Process

A popular way to model stock price dynamics is to assume that under the risk-neutral measure prices

are driven by a Lévy process. In particular, it is assumed that stock pricesS(t) satisfy the stochastic

differential equation

(2.1) d lnS(t) = (r −D−c)dt+dLQ
t ,

wherer is a constant risk-free rate,D is the continuously compounded dividend yield,c is a convexity

adjustment so thatE[S(T)|F t ] = S(t)e(r−D)(T−t), whereE[·|F t ] is the expectation operator conditioned

on information at timet, andLQ
t is a Lévy process with triplet(0,σ2

o,Wo) and log-characteristic function

given bytΨ(ξ), see (1.1).

It is a well-known result that if stock prices follow (2.1) then the value of a European-style option,

denoted byV(x, t), with payoff G(x(T)) is given bye−r(T−t)E[G(x(T))|F t ] which satisfies the PIDE,

in time-to-maturity,

− ∂V(x,T)

∂T
+

1
2

σ2
o

∂2V(x,T)

∂x2 +(r −D−c)
∂V(x,T)

∂x

+

∫

R

(

V(x+y,T)−V(x,T)−u(y)
∂V(x,T)

∂x

)

Wo(dy) = rV (x,T),(2.2)

subject to an initial condition, see Cont and Tankov (2004).

Modeling spot price dynamics with (2.1) assumes that there is a trade at each instant in time. We

know, however, that although there are stocks that trade very frequently, there are time intervals when

no trades take place, and more importantly, we observe that the time between consecutive trades is

stochastic. Access to tick-by-tick data, with a time-stampfor every trade, allows us to depart from the

traditional approach that assumes continuous trading to one where we can incorporate information on

waiting times between trades. Ideally, we want a model that can build on high-frequency data with

information on times of trades as well as price revisions. And, indeed, the theory of marked point

processes provides the right framework to model processes where there are events that occur at random

times (trades) with a mark (price revision) associated to each event.
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Below I define the different elements required to model the log-stock risk-neutral dynamics of spot

prices within the theory of point processes. I define a simplepoint process, a marked point process

and then show that the discounted log-stock process used here is a martingale. For a comprehensive

treatment of point processes see Jacobsen (2006).

First some notation. Let(Ω,F ,P) be a probability space with sample spaceΩ a non-empty set,F a

σ-algebra of subsets ofΩ, andP a probability measure onF and letR̄0 = [0,∞]. Moreover, suppose we

are given a measurable space(E,E ) called themark space. Adjoin to E the irrelevant mark ▽, to be

used for describing the mark of an event that never occurs, write Ē = E∪{▽} and letĒ = σ(E ,{▽})
denote theσ-algebra of subsets of̄E generated by the measurable subsets ofE and the singleton{▽}.

Definition 2.1 Simple Point Process. A simple point process (SPP) is a sequenceT = (Tn)n≥1 of

R̄0-valued random variables defined on(Ω,F ,P) such that

1. P(0 < T1 ≤ T2 ≤ ·· · ) = 1,

2. P(Tn < Tn+1,Tn < ∞) = P(Tn < ∞) (n≥ 1),

3. P(limn→∞ Tn = ∞) = 1.

The definition includes condition3 because for the particular waiting-time distribution employed in the

model below, there can only be a finite number of trades in a finite time interval. (Condition3 can be

relaxed to include SPP with explosions, see Jacobsen (2006)for details.)

Definition 2.2 Marked Point Process. A marked point process (MPP) with mark space E is a dou-

ble sequence(T ,Y ) = ((Tn)n≥1,(Yn)n≥1) of R̄+-valued random variables Tn and Ē-valued random

variables Yn defined on(Ω,F ,P) such thatT = (Tn) is an SPP and

1. P(Yn ∈ E,Tn < ∞) = P(Tn < ∞) (n≥ 1),

2. P(Yn = ▽,Tn = ∞) = P(Tn = ∞) (n≥ 1).

We are also interested in the counting processN = (Nt)t≥0 associated to the SPPT = (Tn)n≥1 which

we define asN(t) = ∑∞
n=11Tn≤t . In the modelN(t) counts the number of trades over the time interval

[0, t] with N(0) = 0.
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The Model for tick-by-tick spot data

The risk-neutral dynamics of log-stock prices are given by

(2.3) dX(t) = (r −D)dt+YdN(t)

whereX(t) = lnS(t), r is the risk-free rate,D is the dividend yield,N(t) is a counting process andY

are i.i.d. price revisions with infinitely divisible distribution and triplet(w,σ2,W), independent ofN(t),

wherew is such thatE[eY −1] = 0.

The novel part of this model for risk-neutral dynamics is thestochastic component in equation (2.3)

(2.4) U(t) =
N(t)

∑
n=1

Yi

which is anR-valued MPP with jump timesTn, jump sizes(Yn) with distribution g and N(t) is a

counting process independent of the i.i.d.Y. In the simple case whereN(t) is a homogeneous Poisson

process with rateλ > 0, the MPPU(t) is a Lévy process with bounded Lévy measureλg.

In model (2.3) we can distinguish two components: a deterministic one, which is the drift(r −D)t,

and a stochastic one, which is the jump component∑N(t)
i=1 Yi . Moreover, since we are interested in

financial applications where we use tick-by-tick data, we examine further some of the building blocks

of the arrival of tradesN(t): the waiting-time between trades, the survival function, and the rate of

arrival of trades, i.e. the hazard rate.

Define the waiting times between trades byTn−Tn−1 = τn and assume that the waiting-time pos-

sesses a continuous pdfυ(t). Hence we can write

Tn = T0 +
n

∑
i=1

τi , Tn−Tn−1 = τn, n = 1,2,3, · · · ,

and the survival function, which represents the probability that the waiting-time between two consecu-

tive trades is greater thant, is given by

(2.5) ϒ(t) = 1−
∫ t

0
υ(u)du.
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Finally, the hazard functionu(t) is defined as

(2.6) u(t) = − d
dt

lnϒ(t) , t ∈ R̄0.

Intuitively, the hazard function represents the probability that a trade will happen in the next small time

interval divided by the length of that time interval; i.e. the hazard function is the instantaneous intensity

of a trade occurrence. Here I assume thatu(t) is strictly positive and continuous.

In the model, only when we assume that the distribution of thewaiting times is exponential do we

find that stock prices are Markovian; the MPPU(t) becomes a compound Poisson process. In all other

cases the log-stock price processX(t) in (2.3) is not Markovian for a general waiting-time distribution

because the probability of observing a trade over the next time-step depends on how long we have been

waiting since the last trade. Denote byH(ω, t) = H(t) the so-called backward recurrence time (i.e. the

time elapsed since the last trade) which is defined by

(2.7) H(t) := t −TNt ,

and whereTNt represents the last trade time beforet. Then the intensity of the counting processN(t)

is given byu(H(t)) and the predictable compensator of the jump measureN(dt,dz) is the random

measure

(2.8) ν(ω,dt,dz) = ν(dt,dz) := u(H(t))g(z)dtdz,

whereu(t) is the hazard function given in (2.6) andg(z) the probability density of the shocksY. From

this it follows that the process is not Markovian as long asu(t) is not constant, see Jacobsen (2006).

Intuitively, for general hazard functionsu(t), it is important to know the time elapsed since the last

trade and thus the process is not memoryless.1

A special example is the well-known case resulting from the assumption that the waiting timesτ are

exponentially distributed with parameterλ. For this particular case, the survival function is given by

ϒ(t) = e−λt and the hazard function becomesu(t) = λ; note that the hazard function is independent of

1However, if we enlarge the state space with the backward recurrence timeH(t), then it can be shown that the two-
dimensional process(X(t),H(t)) is a time-homogeneous Markov process, see Cartea and Meyer-Brandis (2010).
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the backward recurrence timeH(t). In this case the compensating measure (2.8) becomesν(dt,dz) =

λg(z)dtdz, which is the compensating measure of the compound Poisson processU(t).

Finally, the proposition below states that the stock price is an exponential martingale under the

risk-neutral measure. The proof relies on the fact that price revisions are such thatE[eY] = 1 and that

the predictable compensator of the jump measureN(dt,dz) is given by (2.8).

Proposition 2.1 Let the risk-neutral dynamics of the stock price satisfy SDE(2.3). Assume that g(z) is

the density of an infinitely divisible distribution satisfying

(2.9)
∫

R

(ez−1)g(z)dz= 0.

Then

e−(r−D)tS(t) = S(0)exp

(

∫ t

0

∫

R0

zN(dt,dz)−
∫ t

0

∫

R0

(ez−1)ν(dt,dz)

)

,(2.10)

is an exponential martingale underQ.

To show the result note that solving SDE (2.3) and discounting it by e−(r−D)t we have that

e−(r−D)tS(t) = S(0)exp

(

∫ t

0

∫

R0

zN(dt,dz)

)

,

and, because of condition (2.9), we can rewritee−(r−D)tS(t) as (2.10).

3. Waiting-time or duration between trades

There are a number of studies that have used high-frequency data to study the characteristics of either

the waiting-time between trades or the consequences of stochastic trade arrival. For example, Engle

(2000) finds evidence that both stock returns and variances are found to be negatively influenced by long

durations between trades. The study of Dufour and Engle (2000) shows that the stochastic component

of duration can explain the relationship between short timedurations, i.e. high trading activity, and

both larger quote revisions and stronger positive autocorrelations of trades. Both these findings are
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also supported by the results in Cartea and Meyer-Brandis (2010) where the authors employ a specific

survival function of the waiting times known in the literature as the Mittag-Leffler (ML) function given

by

(3.1) ϒml(t) =
∞

∑
j=0

(−1) j (t/τo)
β j

Γ(β j +1)
, for 0 < β ≤ 1,

andτo > 0 is a constant. One can check that the ML nests the exponential survival function whenβ = 1.

The ML function was first proposed in a financial context in thework of Mainardi, Raberto, Goren-

flo, and Scalas (2000) and Scalas, Gorenflo, and Mainardi (2000). There are two main reasons that

make the ML a suitable survival function in a financial context (as well as in many other physical ap-

plications). First, the decay of the (right) tail of the waiting-time distribution is algebraic, instead of

exponential, something that is observed in a great deal of traded assets and this feature alone makes it

a strong candidate to model (unconditional) waiting times between trades. Second, the ML is highly

tractable in applications because one can write its Laplacetransform in closed-form and because one

can express the Laplace-Fourier transform of the MPPU(t) in an analytic form. The latter is possi-

ble as long as we know the Fourier transform of the distribution of the random variableY, i.e. the

characteristic function, responsible for the marks in theU(t) process.

Although the works cited here present ample evidence supporting the use of the ML survival func-

tion, Figure 1 shows a representative example of the shape ofthe empirical and fitted survival functions

for June 2005 trades of General Motors in log-log space. Despite the fact that General Motors is a rela-

tively frequently traded stock, the figure clearly shows that the fitted exponential survival function, (the

dashed line), is a very poor assumption when compared to the fitted ML survival function, (solid line).

The latter is better at capturing ‘longer’ periods of time between trades as reflected by the empirical

survival function (denoted by circles).

We obtain the probability density function (pdf) of the waiting-time from the ML survival function,

υml(t) = − d
dt

ϒml(t), for 0 < β ≤ 1,
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Figure 1. General Motors waiting times: empirical, Mittag-Leffler and Exponential.

and we can also calculate the expected number of trades over the time interval[0,T]

(3.2) E [N(T)|F0] = (T/τo)
β/Γ(β+1).

The ML arises in many contexts, see for example Podlubny (1999) and Del-Castillo-Negrete, Car-

reras, and Lynch (2005). In its most general form, the (two-parameter) ML function is given by

(3.3) Eβ,γ(z) =
∞

∑
j=0

zj

Γ(β j + γ)
, β > 0, γ > 0,

with Laplace transform

(3.4) L
{

tβn+γ−1E(n)
β,γ (±atβ)

}

=
n!sβ−γ

(sβ ∓a)n+1
, Re(s) > |a|1/γ,

whereE(n)
β,γ (y) = dn

dyn Eβ,γ(y) and the Laplace transform of a functionf is given by

L [ f (t)] = f̃ (s) =

∫ ∞

0
est f (t)dt.
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Below we will also use the Fourier transform of a functionh which is denoted by

ĥ(ξ) = F [h(x)] =

∫ ∞

−∞
eixξh(x)dx.

In particular, the survival function we employ here given byequation (3.1) is a one-parameter ML

Eβ,1(t/τo) with Laplace transform

(3.5) ϒ̃ml(s) =
1− υ̃ml(s)

s
= τo

(τos)β−1

1+(τos)β , where υ̃ml(s) = L {υml(t)} , for 0 < β ≤ 1.

We end this section by presenting an infinite order approximation of the functionEβ,1 [a(ez−1)]

wherea is a constant. Expanding the exponential functionez = 1+z+ 1
2z2 + · · · allows us to write

Eβ,1 [a(ez−1)] = 1+
a(ez−1)

Γ(β+1)
+

a2(ez−1)2

Γ(2β+1)
+

a3(ez−1)3

Γ(3β+1)
+ · · ·

= 1+
a

Γ(β+1)

(

z+
1
2

z2 + · · ·
)

+
a2

Γ(2β+1)

(

z+
1
2

z2 + · · ·
)2

+
a3

Γ(3β+1)

(

z+
1
2

z2 + · · ·
)3

+ · · ·

= 1+
a

Γ(β+1)
z+ · · ·+ a2

Γ(2β+1)
z2 + · · ·+ a3

Γ(3β+1)
z3 + · · ·

= Eβ,1 [az]+ · · · .(3.6)

4. PIDE with non-local operator in time-to-maturity

In this section I derive the main result of this paper. I do this in 3 steps. First, Proposition 4.1 shows that

we can express the Laplace-Fourier transform of the MPP thatdrives the marks and arrival of trades in

our model in closed-form. Second, Proposition 4.2 shows that for a general European-style option we

can write the solution to the pricing problem as a numerical inversion of the Fourier transform of the

value of the option where, as expected, knowledge of the Fourier transform of the MPPU(t) is required.

Third, Proposition 4.3 contains the main result where I showthat the PIDE satisfied by European-style

options contains a non-local operator in time-to-maturity.
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Moreover, Proposition 4.4 shows the bounds satisfied by vanilla put and call options when the time

since the last trade isH(t) > 0. And finally, before showing numerical examples in Section5, I discuss

some features of the pricing PIDE derived in Proposition 4.3. I point out the connection between the

non-explosive MPP that we employ here to model prices. I alsoshow that the infinitesimal operator

which appears in the pricing PIDE whenβ = 1, coincides with the infinitesimal operator of a Lévy

process which appears in the PIDE for exponential Lévy processes of either finite orinfinite activity.

Proposition 4.1 Let

q(x,0,T) = eU(T)

where

U(T) =
N(T)

∑
n=1

Yi

is an MPP as described above in equation(2.4) whereυ(t) is the waiting-time pdf. Assume that the

backward recurrence time H(0) = 0, i.e. a trade just happened. Then

(4.1) L {F {q(x,0,T)}} =
1− υ̃(s)

s
1

1−eΨ(ξ)υ̃(s)
,

where eΨ(ξ) is the characteristic function of Y withΨ(ξ) given by(1.1).

Proof. LetP(n,T) denote the probability density function of observingn trades during the time interval

[0,T]. Using the survival function (2.5), the probability that a trade does not take place before timeT,

and the fact that we have assumed thatH(0) = 0, is given by

P(n = 1,T) =

∫ T

0
υ(s)ϒ(T −s)ds= (υ⋆ϒ)(T) ,

where⋆ denotes convolution. Then the probability of observingn trades over the interval[0,T] is given

by (υn ⋆ϒ)(T) and taking its Laplace transform yields

(4.2) P̃(n,s) = (υ̃(s))n ϒ̃(s) = (υ̃(s))n 1− υ̃(s)
s

.
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Now we calculate

q̂(ξ,0,T) = E

[

eiξ∑N(T)
i=1 Yi

]

L {q̂(ξ,0,T)} = L
{

E

[

eN(T)Ψ(ξ)
]}

= L

{

∞

∑
0

P(n,T)enΨ(ξ)

}

=
1− υ̃(s)

s
1

1−eΨ(ξ)υ̃(s)
,

as required.

�

Proposition 4.2 Let G(·) be the pay-off function of a European-style option with maturity T written on

the stock S(t) that follows the risk-neutral log-stock price process

(4.3) dX(t) = (r −D)dt+YdN(t),

where Xt = lnS(t), N(t) is a counting process with survival functionϒ(t), r is the risk-free rate and D

is a continuous dividend yield. Let the price revisions Y be i.i.d. Lévy distributed with triplet(w,σ2,W)

and characteristic exponentΨ(ξ) with w a convexity adjustment so thatE[e−r(T−t)S(T)|F t ] = e−D(T−t)S(t),

whereE[·|F t ] is the expectation operator conditioned on information at time t.

Assume that̂q(ξ, t,T), defined by

(4.4) q̂(ξ, t,T) := E

[

eiξ∑N(T)
i=N(t)+1Yi |F t

]

,

is analytic inξ in a strip that intersects the strip where the (complex) Fourier transform of G exists.

Let ξ̂ ∈ R be such that the line[−∞+ iξ̂,∞+ iξ̂] is part of this intersection. Then, if H(0) (i.e. the time

elapsed since the last trade is zero) the price at time t of theEuropean option with pay-off G(·), and

maturity T , is given by

(4.5) V(x, t;T) =
e−r(T−t)

2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(t)e−iξ(r−D)(T−t)q̂(−ξ, t,T)Ĝ(ξ)dξ .
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Proof. Assuming the pay-offG(·) is such that we can invert its Fourier transform,

V(x, t;T) = e−r(T−t)E[G(X(T)) |F t ]

= e−r(T−t)E

[

1
2π

∫ ∞+iξi

−∞+iξi

e−iξx(T)Ĝ(ξ)dξ |F t

]

=
e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi

e−iξ lnS(t)e−iξ(r−D)(T−t)E

[

e−iξ∑N(T)
i=1 Yi |F t

]

Ĝ(ξ)dξ

=
e−r(T−t)

2π

∫ ∞+iξi

−∞+iξi

e−iξ lnS(t)e−iξ(r−D)(T−t)q̂(−ξ, t,T)Ĝ(ξ)dξ .

�

Note that in Proposition 4.2 I have not specified a particularsurvival function.

Pricing European-style options when stock prices follow anexponential Lévy process can be done

by either solving PIDE (2.2) or by employing Fourier methods. In the latter case we would proceed in

the same way as in Proposition 4.2, withS(t) given by (2.1), and evaluate the Fourier inversion

(4.6) V(S, t;K,T) = −e−r(T−t)K
2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(t)+(T−t)[−iξ(r−D)+Ψ(−ξ)]Ĝ(ξ)dξ ,

whereΨ(ξ) is given by the Lévy-Khintchine formula (1.1).

The main difference between equations (4.5) and (4.6) is that in the former we need the character-

istic function of the MPP that drives the arrival and sizes ofprice revisions, in other words we need

to know q̂(ξ, t,T) or be able to perform a numerical inversion to calculate it, and in the latter we need

(1.1).

If in Proposition 4.2 we let the survival function be given by(3.1), then we know ˆq in closed-form.

Furthermore, if we letβ = 1 in (3.1), we can verify that the price of a European call option with strike

K and maturityT is given by2

V(S, t;K,T) = −e−r(T−t)K
2π

∫ ∞+iξ̂

−∞+iξ̂
e−iξ lnS(t)+(T−t)[−iξ(r−D)+(Ψ(−ξ)−1)τ−1

o ] K iξ

ξ2− iξ
dξ ,

for ξ̂ > 1.

2Note that we must requireeΨ(−ξ) to be analytic in a line that intersects[−∞+ iξ̂,∞+ iξ̂] whereξ̂ > 1.
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When β < 1 we know that the MPP in the price dynamics (4.3) is not Markovian. This non-

Markovian characteristic of the underlying stock shows up in the PIDE satisfied by financial derivatives

written onS(t) in the form of a non-local operator. In particular, the non-local operator we obtain here

is known as the Caputo (fractional derivative in time) which, for a function f , is defined as

(4.7) c
0Dβ

T f (T) =
1

Γ(1−β)

∫ T

0

∂ f (u)/∂u

(T −u)β du

with Laplace transform

(4.8) L
{

c
0Dβ

T f (T)
}

= sβ f̃ (s)−sβ−1 f (0),

see Podlubny (1999).

Proposition 4.3 Let G(·) be the pay-off function of a European-style option with maturity T written

on the stock S(t) that follows the risk-neutral log-stock price process (4.3) in Proposition 4.2 with ML

survival function given by(3.1). Assume that̂q(ξ, t,T), defined by

(4.9) q̂(ξ, t,T) := E

[

eiξ∑N(T)
i=N(t)+1Yi |F t

]

,

is analytic inξ in a strip that intersects the strip where the (complex) Fourier transform of G exists.

Let ξ̂ ∈ R be such that the line[−∞+ iξ̂,∞+ iξ̂] is part of this intersection. Then, if H(0) (i.e. the time

elapsed since the last trade is zero) and using the approximation of the ML function discussed above in

(3.6):

(4.10) Eβ,1 [ez−1] ∼ Eβ,1 [z]

the price at time t of the European option with pay-off G(·), and maturity T , satisfies the following

PIDE, in time-to-maturity,

c
0Dβ

TerTV(x̄,T) = τ−β
o erT

(

w
∂V(x̄,T)

∂x̄
+

1
2

σ2∂2V(x̄,T)

∂x̄2

)

+τ−β
o erT

∫

R0

[

V(x̄+y,T)−V(x̄,T)−u(y)
∂V(x̄,T)

∂x̄

]

W(dy) ,(4.11)
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wherex̄ = x− (r −D)T.

Proof. Without loss of generality lett = 0. Using Proposition 4.1 and (3.4) we write equation (4.9) as

Eβ,1

[

(eΨ(ξ) −1)(T/τo)
β
]

and using (4.10) we obtain

q̂(−ξ,0,T) = Eβ,1

[

Ψ(−ξ)(T/τo)
β
]

.

From Proposition 4.2 we can write

V̂(ξ,T) = e−rT e−iξ lnS(0)e−iξ(r−D)TEβ,1

[

Ψ(−ξ)(T/τo)
β
]

Ĝ(ξ) ,(4.12)

V̂(ξ,T)eiξ lnS(0)

Ĝ(ξ)
= e−(r+iξ(r−D))TEβ,1

[

Ψ(−ξ)(T/τo)
β
]

L

{

V̂(ξ,T)eiξ lnS(0)

Ĝ(ξ)

}

=
uβ−1

uβ −Ψ(−ξ)τ−β
o

, using (3.4)

˜̂I(ξ,s) =
uβ−1

uβ −Ψ(−ξ)τ−β
o

,(4.13)

where for notational simplicity

Î(ξ,T) =
V̂(ξ,T)eiξ lnS(0)

Ĝ(ξ)
and u = s− (r + iξ(r −D))T.

Proceed by rearranging equation (4.13) to obtain

uβ ˜̂I(ξ,s)−uβ−1 = Ψ(−ξ)τ−β
o

˜̂I(ξ,s) .(4.14)

SubstitutingT = 0 in (4.12) shows that̂I(ξ,0) = 1 and using (4.8), we have that

(4.15) L
{

e−(r+iξ(r−D))T c
0Dβ

Te(r+iξ(r−D))T Î(ξ,T)
}

= uβ ˜̂I(ξ,s)−uβ−1.
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Therefore using equations (4.14) and (4.15) we obtain

e−(r+iξ(r−D))T c
0Dβ

Te(r+iξ(r−D))T Î(ξ,T) = Ψ(−ξ)τ−β
o Î(ξ,T)

c
0Dβ

Te(r+iξ(r−D))TV̂(ξ,T) = Ψ(−ξ)τ−β
o e(r+iξ(r−D))TV̂(ξ,T).(4.16)

Now the final step is to take the inverse Fourier transform of (4.16) to obtain (4.11) as required.

�

Above, I made the simplifying assumption that the time elapsed since the last trade was zero,

H(t) = 0. However, the price of a financial instrument with terminalpayoff G(X(T)) andH(t) > 0 is

given by

(4.17) V(x, t) = e−r(T−t)E[G(X(T))|X(t),H(t)] = e−r(T−t)Ex[G(Xh(T − t))] |x=X(t),h=H(t) ,

whereXh(t) is theh-delayed renewal process starting inx, induced byX(t), i.e. the first waiting-time

in (2.3) has the distribution of(τ1−h), givenτ1 > h.

Calculating prices whenH(t) > 0 using (4.17) might be slightly involved. Depending on the

model employed, and the type of instrument we are pricing, itmight be better to approximate the

priceV(x, t) = e−r(T−t)E[G(X(T))|X(t),H(t)] with V(x, t) = e−r(T−t)E[G(X(T))|X(t),H(t) = 0]. The

Proposition below shows that we can obtain upper and lower bounds for European puts and calls when

H(t) > 0.

Proposition 4.4 Let H(t)> 0. Let C(x, t;T,H(t)) denote the price of a European call and P(x, t;T,H(t))

the price of a European put struck at K with maturity T writtenon the stock S(t) that follows the risk-

neutral log-stock price process (4.3) in Proposition 4.2 with survival functionϒ(t). Assume that the

hazard function, see(2.6), is increasing in t. Then C(x, t;T,H(t)) obeys the bounds

(4.18) C(x, t;T,0) ≤C(x, t;T,H(t)) ≤ E[C(x+Y, t;T,0)]
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and P(x, t;T,H(t)) obeys the bounds

(4.19) P(x, t;T,0) ≤ P(x, t;T,H(t)) ≤ E[P(x+Y, t;T,0)].

Proof. We know that

(4.20) C(x, t;T1,H(t)) ≤C(x, t;T2,H(t)) ,

for T2− t ≥ T1− t. Let τh denote the time of the next arrival of a trade given that you have waited an

amounth already. Thenτ0 ≥ τH(t) a.s. and clearly

(4.21) C(x, t;T,H(t)) = E[C(x+Y,τH(t);T,0)] ,

i.e. wait until next trade, thenx jumps byY, and waiting-time resets to 0. Also,

(4.22) C(x, t;T,0) = E[C(x+Y,τ0;T,0)] ,

i.e. wait until next trade, thenx jumps byY, and waiting-time resets to 0.

Lower Bound. Using inequality (4.20) we haveC(x,τ0;T,0) ≤ C(x,τH(t);T,0) for everyx a.s. since

T − τH(t) ≥ T − τ0 a.s.. Consequently,

(4.23) E[C(x+Y,τ0;T,0)] ≤ E[C(x+Y,τH(t);T,0] ,

where expectation is over bothY and the random trade times. Now, the left-hand side of (4.23)is equal

toC(x, t;T,0), see (4.22), and the right-hand side isC(x, t;T,H(t)), see (4.21).

Upper Bound. Using (4.20) we know thatC(x,0;T,0) ≥ C(x,τH(t);T,0), for everyx a.s. and since

τH(t) ≥ 0 a.s., we have that

E[C(x+Y,0;T,0) ≥ E[C(x+Y,τH(t);T,0)] = C(x, t;T,H(t)) ,

where expectation is over bothY and the random trade times.
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The proof for the put option is similar.

�

4.1. Obtaining the infinitesimal generator of a Ĺevy process from a non-explosive MPP

Before proceeding to the next section, where we price European vanilla options using the result in

Proposition 4.3 and calculate upper and lower bounds for option prices whenH(t) > 0, I comment on

the particular case whenβ = 1 and discuss the connection between (4.11) and the traditional PIDE (2.2)

that arises in exponential Lévy processes.

First, it is trivial to see that whenβ = 1 equation (4.11) becomes

d
dT

erTV(x̄,T) = τ−β
o erT

(

w
∂V(x̄,T)

∂x̄
+

1
2

σ2∂2V(x̄,T)

∂x̄2

)

+τ−β
o erT

∫

R0

[

V(x̄+y,T)−V(x̄,T)−u(y)
∂V(x̄,T)

∂x̄

]

W(dy) ,

rV (x,T)+
∂V(x,T)

∂T
= (r −D− τ−β

o w)
∂V(x,T)

∂x

+τ−β
o

1
2

σ2∂2V(x,T)

∂x2

+

∫

R0

[

V(x+y,T)−V(x,T)−u(y)
∂V(x,T)

∂x

]

τ−β
o W(dy) ,(4.24)

which is the usual PIDE in time-to-maturity when the underlying asset follows an exponential Lévy

process.

If we let c = τ−β
o w, Wo = τ−β

o W and σ2
o = τ−β

o σ2 in (4.24) we obtain the traditional PIDE (2.2)

for the general family of exponential Lévy models, with triplet (0,σ2
o,Wo) and convexity adjustmentc,

which includes both finite and infinite activity models. Thisresult is interesting because the model is

based on a non-explosive MPP, i.e. there are a finite number oftrades in a finite time interval, but using

(4.10) the resulting PIDE withβ = 1 is equivalent to having assumed exponential Lévy processes of

infinite activity whenΨ(ξ) is the characteristic exponent of an infinite activity Lévyprocess att = 1.

Moreover, I further note that using the approximation (4.10) does not imply that the MPP becomes

an explosive MPP with an infinite arrival of trades over a finite time interval. What I have shown is that
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the distribution of the MPP using (4.10) can be the same as that of a Lévy process of infinite activity

(depending on the Lévy measure of the price revisionsY). Thus, the result is about the distributional

properties of the MPP, not about its path properties.

Forward Fokker-Planck equation

It is also interesting to inspect the result that we obtain when we use (4.10) by looking at the Forward

Fokker-Planck (FFP) equation of the MPPU(t). Assume for simplicity thatr = D = 0, so the stock

price isS(T) = S(0)eU(T) where

(4.25) U(T) =
N(T)

∑
n=1

Yi .

Assume thatp(x,T) is the probability that at timeT the log-price, starting atx(0) = lnS(0), is at

x(T). To derive the FFP we first derive the transition density satisfied byp(x,T).

Recall that the pdf of the waiting timeτn = Tn−Tn−1, n = 1,2,3, . . ., between trades is denoted by

υ(τ). The probability that the log-price isx(T) at a future timeT, is given by

(4.26) p(x,T) = δ(x)
∫ ∞

T
υ(t)dt +

∫ T

0
υ(T − t)

[

∫ ∞

−∞
g(x−x′)p(x′, t)dx′

]

dt ,

whereδ(x) is the delta function. The first term on the right-hand side accounts for no trades arriving

over the interval(0,T ], so the log-price remains unchanged atx(0). The second term denotes the

contribution that a movement in the underlying stock, located atx′ and which jumps tox(T) during

(0,T], makes top.

Now I derive the FFP equation satisfied byp(x,T). First solve (4.26) by taking Fourier-Laplace

transforms:

(4.27) ˆ̃p(s,ξ) =
1− υ̃(s)

s
1

1− υ̃(s)eΨ(ξ)
,
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and recall thateΨ(ξ) is the characteristic function ofg; the distribution of the i.i.d. Lévy distributed

jumpsY with triplet (w,σ2,W). Then if we assume that the waiting-time distribution is that of the ML

survival function (3.4), witha = 1 for simplicity, and use the approximation (4.10) we obtain

(4.28) ˆ̃p(ξ,s) =
sβ−1

sβ −Ψ(ξ)
, for 0 < β ≤ 1.

Proceeding in a similar way as in the proof of Proposition 4.2, we have

ˆ̃p(ξ,s)sβ −sβ−1 = Ψ(ξ) ˆ̃p(ξ,s)

p̃(x,s)sβ −sβ−1δ(x) = L p̃(x,s), by takingF −1,

c
0Dβ

T p(x,T) = Lp(x,T), by takingL −1,

where L is the infinitesimal generator of the Lévy process, with triplet (w,σ2,W), given by

Lp(x,T) =
1
2π

∫ ∞

−∞
e−iξxΨ(ξ)p̂(ξ,T)dξ

= −w
∂p(x,T)

∂x
+

1
2

σ2∂2p(x,T)

∂x2

+
∫ ∞

−∞

(

p(x−y,T)− p(x,T)+u(y)
∂p(x,T)

∂x

)

W(dy).

Hence,p(x,T) satisfies the FFP equation

c
0Dβ

T p(x,T) = −w
∂p(x,T)

∂x
+

1
2

σ2∂2p(x,T)

∂x2

+

∫

R0

(

p(x−y,T)− p(x,T)+u(y)
∂p(x,T)

∂x

)

W(dy).(4.29)

We see that forβ = 1 we obtain

∂p(x,T)

∂T
= −w

∂p(x,T)

∂x
+

1
2

σ2 ∂2p(x,T)

∂x2

+

∫

R0

(

p(x−y,T)− p(x,T)+u(y)
∂p(x,T)

∂x

)

W(dy),

which is the well-known FFP equation for Lévy processes and, depending on the Lévy measureW(dy),

is of either finite or infinite activity.
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Finally, note that the result that links the distribution ofa non-explosive MPP to the distribution of

a Lévy process of infinite activity can be obtained by starting with a compound Poisson process∑N(t)
n=1Yi

whereN(t) is a homogeneous Poisson process with intensityλt, andYi are i.i.d. with infinitely divisible

distribution and triplet(a,σ2,W). The characteristic function of the compound Poisson process is

(4.30) E

[

eiξ∑N(t)
n=1Yi

]

= eλt(eΨ(ξ)−1)

and using (4.10) withβ = 1, i.e.eΨ(ξ) ∼ 1+ Ψ(ξ), we can write

lnE

[

eiξ∑N(t)
n=1Yi

]

∼ λtΨ(ξ)

= λaiξt − 1
2

λσ2ξ2t + t
∫

R0

(

eiξy−1− iξu(y)
)

λW(dy) ,

which is the characteristic function of a Lévy process withtriplet (λa,λσ2,λW).

5. Numerical examples: the impact of waiting times on optionprices

To price European-style options we can proceed by either numerically solving PIDE (4.11) or we can

also use Fourier methods to invert (4.5) with

q̂(−ξ, t,T) = Eβ,1

[

Ψ(−ξ)(T/τo)
β
]

.

The advantage of having PIDE (4.11) is that we can solve otherproblems that involve more exotic

payoffs such as knock-out options. There are a number of numerical methods to solve PIDEs that

involve non-local Caputo operators, or other fractional derivatives such as Riemann-Liouville, that can

be employed to solve (4.11), see Podlubny (1999), and in the context of option pricing with Riemann-

Liouville fractional operators see Cartea and del Castillo-Negrete (2007).

The numerical examples shown below are prices of European call options which were calculated

via Fourier methods using (4.12). The first example assumes that price revisions are Gaussian and

the second example assumes that price revisions possess a CGMY distribution (see Carr, Geman,
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Madan, and Yor (2002)). All examples assume thatτo = 1/1,200,000, (i.e. that there are, on aver-

age, 100,000β/Γ(β+1) trades per month, see (3.2)).

Gaussian price revisions and ML waiting-times

Figure 2 shows implied volatility (IV) calculated from the prices of European call options, withS(0) =

100 andK ∈ [92,108], when it is assumed that price revisionsY are Gaussian with volatilityσ = 0.5
√

τo

and mean−σ2/2 (so thatE[eY] = 1). With this choice of volatility, and lettingβ = 1, the model is

asymptotically equivalent to assuming a Black-Scholes model with volatility σbs = 0.50. The Figure

shows IVs forβ = 0.75. Note that the waiting-time affects the convexity of the IV in a symmetric way

and does not reproduce smirks or skewed IVs.
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Figure 2. IV across strikes for conditionally Gaussian model with waiting times for different days to maturityT =
{20,15,10,5} andβ = 0.75. The distribution of the price revisionsY is Gaussian,Y ∼ N

(

−σ2/2,σ2
)

whereσ = 0.5
√

τo,
τo = 1/(1,200,000) and the parameters for option pricing arer = 5%,D = 0 andS(0) = 100.

CGMY price revisions and ML waiting-times

Here I show the same results as above, but allow the distribution of price revisions to exhibit fatter tails

than the Gaussian distribution by choosing price revisionswith a CGMY distribution. The examples

assume thatC = 1.8750×10−7, Y = 1.5, G = 10, M = 20, which implies that the distribution of the

price shocks has negative asymmetry becauseG< M, and both the left and right tails of the distribution

of price shocks are heavier than those of a Normal distribution.
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Figure 3 shows IVs across strikes and maturities forβ = 0.75. In this case we observe that the IVs

are more pronounced, as well as skewed, than those observed in the Gaussian case; a finding more in

line with what we observe in the financial markets.
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Figure 3. IV across strikes for conditionally CGMY model with waitingtimes for different days to maturityT =
{20,15,10,5} and β = 0.75. HereC = 1.8750× 10−7, Y = 1.5, G = 10, M = 20, τo = 1/(1,200,000) and the parame-
ters for option pricing arer = 5%,D = 0 andS(0) = 100.

Price bounds whenH(t) > 0

Figures 4 and 5 depict the difference between the upper and lower bound for the conditionally Gaussian

and CGMY prices presented in Figures 2 and 3. As discussed above, whenH(t) > 0 calculating option

prices becomes more involved for general waiting-time distributions. Figures 4 and 5 are calculated

using the same parameters as above and we can see that the difference between the two bounds is

negligible if we were to compare it to bid/ask spreads observed in the market or if we compare it to tick

sizes. This result should not be surprising in this model because the MPP we employ assumes that the

expected number of trades is very large. Recall that in our examples with the ML survival function the

expected number of trades is 100,000β/Γ(β + 1) per month, and the bounds are calculated assuming

one fewer trade (lower bound) or one extra trade (upper bound) than the number of trades that take

place betweent andT whenH(t) > 0.
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Figure 4. Difference between upper and lower bound from Proposition 4.4 across strikes in the conditionally Gaus-
sian model for different days to maturityT = {20,15,10,5} and β = 0.75. The distribution of the price revisions is
Y ∼ N

(

−σ2/2,σ2
)

whereσ = 0.5
√

τo, τo = 1/(1,200,000) and the parameters for option pricing arer = 5%, D = 0 and
S(0) = 100.

5.1. How good is the approximationEβ,1 [a(ez−1)] ∼ Eβ,1 [az] when pricing options?

In this subsection I discuss the validity of using the approximation

Eβ,1

[

(eΨ(ξ) −1)(T/τo)
β
]

∼ Eβ,1

[

Ψ(ξ)(T/τo)
β
]

when calculating option prices. We can compare the difference in option prices by employing (4.5)

with

(5.1) q̂(−ξ, t,T) = Eβ,1

[

(eΨ(−ξ)−1)(T/τo)
β
]

or

(5.2) q̂(−ξ, t,T) = Eβ,1

[

Ψ(−ξ)(T/τo)
β
]

.

Figure 6 shows the difference between call options employing (5.1) and call options employing

(5.2), assuming that price revisions are CGMY distributed with T = {20,15,10,5} andβ = 0.75. As

above,C = 1.8750× 10−7, Y = 1.5, G = 10, M = 20, τo = 1/(1,200,000) and the parameters for

option pricing arer = 5%,D = 0 andS(0) = 100. It is clear that the difference in prices is negligible.
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Figure 5. Difference between upper and lower bound from Proposition 4.4 across strikes in the conditionally CGMY
model for different days to maturityT = {20,15,10,5} andβ = 0.75. We useC = 1.8750×10−7, Y = 1.5, G = 10,M = 20,
τo = 1/(1,200,000) and the parameters for option pricing arer = 5%,D = 0 andS(0) = 100.

This price difference, and others that were calculated but in the interest of space are not reported here,

indicates that the difference between the two prices is indistinguishable in the light of the bid/ask spread

and tick sizes observed in financial markets.
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Figure 6. Call option price using (5.1) minus call option price using (5.2) across strikes for conditionally CGMY model
for different days to maturityT = {20,15,10,5} andβ = 0.75. HereC = 1.8750×10−7, Y = 1.5, G = 10, M = 20, τo =
1/(1,200,000) and the parameters for option pricing arer = 5%,D = 0 andS(0) = 100.
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6. Conclusions

Based on tick-by-tick data I propose a non-explosive MPP to model the risk-neutral dynamics of stock

prices where the survival function of the trades is the ML function and price revisions possess an

infinitely divisible distribution. The ML is a suitable survival function because its right tail exhibits

algebraic decay; something that we also observe in the empirical tick-by-tick data and that has been

shown in previous studies.

I show that the value of European-style options satisfies a PIDE in time-to-maturity where the

time-to-maturity derivative is a non-local operator, instead of the traditional∂/∂T local derivative,

known as the Caputo operator. This PIDE is new in the options pricing literature and the presence

of the Caputo fractional derivative is a consequence of the non-Markovianity present in the arrival of

trades in the model. The PIDE I derive can be solved either by using standard numerical methods, see

Podlubny (1999), or for vanilla options by employing numerical Fourier inversions which is a widely

used technique to price vanilla options when prices are modeled as exponential Lévy processes.

From a financial viewpoint, the model proposed here is interesting because it directly uses tick-

by-tick data to extract information of trade arrival in highfrequency. Although the idea of viewing

markets on ‘business time’ dates back to the work of Clark (1973), explicitly incorporating empirical

waiting-times between trades in price dynamics in the form of an MPP is relatively new and explored

in the context of option pricing for the first time in Cartea and Meyer-Brandis (2010) and in this paper.

I also show that the infinitesimal operator appearing in the pricing PIDEs coincides with the in-

finitesimal operator of a Lévy process. At first this is expected because, after all, I assume that the price

shocks possess an infinitely divisible distribution. But ifwe bear in mind that the family of waiting-

time distributions used here can only have afinite number of trades within afinite time interval, it is

interesting to see that we obtain pricing equations, by using an infinite order approximation of the char-

acteristic function of the MPP, with an infinitesimal generator of a Lévy process that includesinfinite

activity processes. However I note that the relationship between thenon-explosive MPP and Lévy pro-

cesses, of finite or infinite activity, arises from the distributional properties of the MPP and not the path

properties.
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