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The Weibull statistic [1] has been widely used to study

the inherent scatter existing in the strength properties of

many advanced materials [2–7], as well as in the frac-

ture toughness of steels in the ductile-brittle transition

region [8, 9]

The two-parameter Weibull distribution function is

given by:

F = 1 − exp

[

−

(

σ

σ0

)′′′
]

(1)

where F is the probability of rupture under uniaxial

tensile stress σ , m the shape parameter or Weibull mod-

ulus and σ0 the scale parameter. From the results of a

limited number of tests and by applying standard sta-

tistical techniques (maximum likelihood, generalized

regression, moments method, etc.), estimations of the

parameters m and σ0 can be obtained. Obviously these

estimation values are subject to uncertainties, so, for

design purposes, it is necessary to calculate the appro-

priated confidence intervals of the estimators.

The confidence interval of the Weibull modulus esti-

mation, m̂, can be obtained from the percentage points,

lα , of the variable m̂/m, defined as:

Pr

[

m̂

m
≤ lα

]

= α (2)

Thus, the limits of the interval for a confidence level γ

are l 1−γ

2
and l γ

2
.

The percentage points, lα , were numerically calcu-

lated by Thoman et al. [10] without any assumption

about the statistical distribution of the variable m̂/m,

and they were published in the form of tables.

To obtain the statistical distribution of the pivotal

variable m̂/m, a simulation procedure based on the

Monte Carlo method may be used. In this procedure, a

set of n values (sample size) are generated as:

σi = σ0 · ln

(

1

R

)
1

m

(3)

where R is a random variable with uniform distribution

in the [0, 1] interval. From each sample so obtained,

estimations of the Weibull modulus are computed

using the maximum likelihood method, and from these

estimations, the variable m̂/m may also be built. Re-

peated application of this procedure provides a statisti-

cal distribution of this latter variable. Thoman et al. [10]

showed that, if the method of maximum likelihood is

used to estimate m, the distribution of the variable m̂/m
is independent of the true values of the parameters m
and σ0. Therefore, in order to make the simulation, any

values of these parameters can be chosen (m = 1 and

σ0 = 1, for example).

To describe the statistical behavior of m̂ by means of

a conventional probability distribution function, Gong

[11] assumed that this variable follows a Log-normal

distribution, with mean value, M , and standard devi-

ation, S, both of them depending on sample size, n.

Barbero et al. [12] proposed a three-parameter Weibull

distribution for m̂/m. To obtain a better approxima-

tion, the authors now propose that the variable ln ( m̂
m

),

named X throughout this work, follows a three param-

eter Weibull distribution.

The aim of this letter is to compare the results deriv-

ing from the above distributions with those obtained nu-

merically. The authors calculated the percentage points,

repeating 20 000 times the numerical procedure stated

above, for each sample size, increasing progressively

this latter from 5 to 120. From the numerical results, the

mean values, M and Mx and the standard deviations,

S and Sx, of the variables m̂/m and X , respectively,

were calculated and fitted to the sample size, n, with

the following four-parameter functions:

M = 0.9807 + 1.7001 ·

(

1

ln (1.0408 · n)

)2.5873

(4a)

S = −0.1357 + 0.5297 ·

(

1

ln (0.3087 · n)

)0.7303

(4b)

Mx = −0.01455 + 5.87953 ·

(

1

ln (2.7293 · n)

)3.18323

(5a)

Sx = −0.03669 + 5.5248 ·

(

1

ln (4.79698 · n)

)2.12069

(5b)

Figs 1 and 2 show the comparison between the nu-

merical and fitted values for the mean and standard de-

viation of the variable m̂/m (Fig. 1) and ln ( m̂
m

) (Fig. 2).

Excellent agreement is observed in the range of sample

sizes analysed (n = 5–120).

To describe the statistical behavior of the vari-

able m̂/m, recently Barbero et al. [12] proposed a
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Figure 1 Mean value (circles) and standard deviation (triangles) of vari-

able m̂/m as a function of sample size. The solid lines in the figure are

the fitted lines according to Equations 4a and b.

Figure 2 Mean (circles) and standard deviation (triangles) of variable

ln m̂/m as a function of sample size. The solid lines in the figure are the

fitted lines according to Equations 5a and b.

three-parameter Weibull distribution:

F(m̂/m) = 1 − exp

[

− ·
( m̂/m − P1

P2

)P3
]

(6)

where P1, P2, P3 are, respectively, the position, scale

and form parameters that were fitted as a functions of

the sample size, n, by:

Pi = ai1 + ai2 · (ln n)ai3 (i = 1, 2, 3) (7)

the parameters ai1, ai2 and ai3 being those shown in

Table I.

Now the authors propose a new way to describe the

statistical behavior of the variable m̂/m, assuming that

the variable X (X = ln ( m̂
m

)) follows a three parameter

TABLE I Parameter of Equation 7

Parameter ai1 ai2 ai3

P1 0.65303 0.00467 2.33393

P2 2.47938 −1.65201 0.20487

P3 −1.13169 1.52229 0.59986

Figure 3 Relative error between the percentage points numerically ob-

tained and those fitted of variable m̂/m. a) α = 0.975. b) α = 0.025.

c) α = 0.950. d) α = 0.050.

2



TABLE I I Parameter of Equation 9

Parameter bi1 bi2 bi3

Q1 −1.50972 0.70844 0.39005

Q2 −1.25257 2.74062 −0.38729

Q3 −1.12766 2.84699 0.29276

Weibull distribution:

F(X ) = 1 − exp

[

− ·

(

X − Q1

Q2

)Q3
]

(8)

where Q1, Q2, Q3 may be fitted as a function of the

sample size, n, by:

Q1 = bi1 + bi2 · (ln n)bi3 (i = 1, 2, 3) (9)

The parameters bi1, bi2, y bi3 are given in Table II.

To compare the cited approximations, the limits of

two confidence intervals were analyzed. The selected

confidence levels were γ = 0.9 and γ = 0.95, that are

widely used for design purposes.

The corresponding limits are the percentage points,

lα , of the variable m̂/m, for α = 0.05 and α = 00.95

(case γ = 0.9) and α = 0.025 and α = 0.975 (case

γ = 0.95). The relative errors between the percent-

age points numerically obtained, (lα)num, and those

fitted, (lα)fit, by the above mentioned methods (Log-

normal [11], Weibull [12], and that proposed in this pa-

per, (hereinafter named Log-Weibull) were calculated

using

error(%) = abs

(

1 −
(lα)nur

(lα)fit

)

× 100 (10)

The results obtained are shown in Fig. 3. Log-normal

distribution leads to higher errors than Weibull and

Log-Weibull distributions, particularly for small sam-

ple sizes. For n values larger than 30, all approxima-

tions are similar, with maximum errors less than 2%. In

general, Log-Weibull distribution gives errors less than

2%, independently of the sample size.
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Areces (Área de Materiales, IX Concurso Nacional)

for its financial support of this research.

References
1. W . W E I B U L L , J. App. Mech. 8 (1951) 293.

2. S . C . N A M J A N G U D , R . B R E Z N Y and D . J . G R E E N ,

J. Amer. Cerami. Soc. 78 (1995) 266.

3. E . M . A S L O U N , J . B . D O N N E T , G . G U I L P A N , M .
N A R D I N and J . S C H U L T Z , J. Mater. Sci. 24 (1989) 3504.

4. H . G O D A and H . F U K U N A G A , ibid. 21 (1986) 4475.

5. A . M . G L A E S E R , Composites Part B: Engineering 28B (1997)

71.

6. Y . F U K U I , N . Y A M A N A K A and Y . E N O K I D A , ibid. 28B

(1997) 37.

7. D . M . B L O Y C E , R . H A M-S U , K . P . P L U C K N E T T and

D . S . W I L K I N S O N , Ceramic Transaction 38 (1993) 67.

8. A . G . E V A N S , Metallurgical Transaction A 14 (1983) 1349.

9. F . M . B E R E M I N , ibid. 14 (1983) 2277.

10. D . R . T H O M A N , L . J . B A I N and C . E . A N T L E , Techno-

metrics 11(3) (1969) 445.

11. J . G O N G , J. Mater. Sci. Lett. 18 (1999) 1405.
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