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J.L. Rojo-Álvareza,�, G. Camps-Vallsb, M. Martı́nez-Ramóna,
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Abstract
This paper presents a support vector machines (SVM) framework to deal with linear signal processing (LSP)

problems. The approach relies on three basic steps for model building: (1) identifying the suitable base of the Hilbert

signal space in the model, (2) using a robust cost function, and (3) minimizing a constrained, regularized functional by

means of the method of Lagrange multipliers. Recently, autoregressive moving average (ARMA) system identification

and non parametric spectral analysis have been formulated under this framework. The generalized, yet simple,

formulation of SVM LSP problems is particularized here for three different issues: parametric spectral estimation,

stability of Infinite Impulse Response filters using the gamma structure, and complex ARMA models for

communication applications. The good performance shown on these different domains suggests that other signal

processing problems can be stated from this SVM framework.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Support vector machines (SVM) were originally

SVM implementation for regression and function
approximation [2]. Many other data analyses have
been stated from SVM principles [3–5], all of them
conceived as efficient methods for pattern recogni- taking advantage of the rather old ‘‘kernel trick’’

and classification [1]. The support vector [6] to develop non-linear versions of established

eserve
regressor (SVR) was subsequently proposed as the
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linear methods. However, from our viewpoint, it is
more convenient first stating the problem in the
linear domain, and then using the kernel trick to
provide non-linearity to the model. This way, one
could take advantage of the formulation to
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scrutinize the statistical properties of the data in
the original domain, and then, to decide which is
the most suitable transformation. This will be

p ¼ 1; . . . ;P. Each observed signal vector y can be
represented as a linear combination of elements of
this base, plus an error term e ¼ e1; . . . ; eN½ �TP
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specially adequate in time-series problems, where
knowledge of the statistical properties (auto-
correlation, ergodicity, or nature of interferent
noise) is fundamental for their processing. In this
setting, we have recently formulated the autore-
gressive moving average (ARMA) system identifi-
cation [7], and the non-parametric spectral
analysis [8] according to SVM principles. This
paper concentrates in generalizing this previous
work to propose an SVM framework for linear
signal processing (LSP) problems. Extensions of
SVM LSP formulations to the non-linear case can
be easily treated by using Mercer’s kernels, as
usual in the SVM literature.

The SVM LSP framework consists of three basic
steps for model building: (1) identifying the
suitable base of the signal space, implicit in the
time series model at hand; (2) using the robust cost
function previously presented in [7], which allows
to deal with different kinds of noise simulta-
neously; and (3) minimizing a constrained, reg-
ularized functional by means of the method of
Lagrange multipliers. We illustrate its use in three
representative signal processing areas of growing
sophistication: parametric power spectral density
(PSD) estimation [9], model stability of infinite
impulse response (IIR) filters by using the gamma
structure [10], and complex ARMA modelling [11]
for communication applications.

In Section 2, the SVM framework for LSP is
presented. In Section 3, each of the LSP problem is
formulated as a particular case study under this
framework. Section 4 provides simulation results.
In Section 5, conclusions are drawn.

2. SVM framework for LSP
Let fyng be a discrete time series in a Hilbert

space, from which a set of N consecutive samples
are measured and grouped in a vector of observa-
tions, y ¼ ½y1; y2; . . . ; yN �

T, and let the set of
vectors fzpg be a base expanding a P-dimensional
subspace into an N-dimensional Hilbert sub-
space, given by vectors zp ¼ ½z

p
1; z

p
2; . . . ; z

p
N �

T, with
modelling errors; y ¼ P
p¼1 wpzp þ e. For a given

time instant n, a linear time series model can be
written as

yn ¼
XP

p¼1

wpzp
n þ en ¼ wTvn þ en, (1)

where wT ¼ ½w1; . . . ;wP� is the model weight vector
to be estimated, and vTn ¼ ½z

1
n; . . . ; z

P
n � represents

the input space at time instant n. Note that the
input space is closely related to the Hilbert signal
space. The input vector is given at time instant n

by the nth element of the Hilbert signal space
vectors. For instance, in non-parametric spectral
estimation, the base contains sinusoidal harmonics
[8], whereas in ARMA system identification and
modelling, it is generated by delayed versions of
input and output signals [7].
SVM algorithms for linear classification and

regression problems minimize a cost function of
the residuals. In [7], the following robust cost
function of the residuals was proposed,

LðenÞ ¼

0; jenjpe;
1

2d
ðjenj � eÞ2; epjenjpeC ;

Cðjenj � eÞ � 1
2
dC2; jenjXeC ;

8>>><
>>>:

(2)

where eC ¼ eþ dC; e is the insensitive parameter,
and d and C control the trade-off between the
regularization and the losses. The e-insensitive
zone ignores errors lower than e; quadratic cost
zone uses the L2-norm of errors, which is
appropriate for Gaussian noise; and linear cost
zone limits the effect of outliers. Note that (2) is
Huber’s cost when e ¼ 0 [1]. Also, using e-
insensitive cost always requires a numerical
regularization by adding a small diagonal matrix
to the Hessian of the QP problem, whose value can
be shown to be d parameter of (2), as detailed in [7]
for SVM–ARMA system identification. Therefore,
Vapnik e-insensitive cost is considered here a
particular case of (2).
The coefficients are estimated by minimizing the

previous loss function which is regularized with the

2



squared norm of model coefficients, as follows:

1 XP

ðwpÞ
2
þ

1 X
ðx2 þ x%2

Þ þ C
X
ðxn þ x%

Þ

denoted as Rvðs; tÞ � vTs vt. The dual problem can
now be obtained and expressed in matrix form,
and it corresponds to the maximization of

This section illustrates the use of the framework
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2
p¼1

2d
n2I1

n n
n2I2

n

�
X
n2I2

dC2

2
ð3Þ

with respect to wp, fxð%Þn g (notation for both fxng

and fx%

n g), constrained to

yn � wTvnpeþ xn, (4)

�yn þ wTvnpeþ x%

n , (5)

xn; x%

n X0 (6)

for n ¼ n0; . . . ;N, where n0 is determined by the
initial conditions required; fxð%Þn g are slack vari-

ables or losses, which are introduced to handle the
residuals according to the robust cost function;
and I1; I2 are the sets of samples for which losses
are required to have a quadratic or a linear cost,
respectively, and these sets are dynamically up-
dated during the optimization procedure (see [7]).

Derivations of the dual functional can be found
in the literature for SVR [2], for linear SVM–AR-
MA [7], and for SVM non-parametric spectral
analysis [8]. Here, by including linear constraints
(4)–(6) into (3), the primal–dual functional (or
Lagrange functional) is obtained for the general
LP problem:

LPD ¼
1

2

XP

p¼1

ðwpÞ
2
þ

1

2d

X
n2I1

ðx2n þ x%2
n Þ

þ C
X
n2I2

ðxn þ x%

n Þ �
X
n2I2

dC2

2

�
X

n

ðbnxn þ b%

n x
%

n Þ

þ
X

n

an � a%

n

� �
ðyn � wTvn � e� xnÞ ð7Þ

constrained to að%Þn ;bð%Þn ; xð%Þn X0. By making zero
the gradient of LPD with respect to the primal
variables [7], we obtain að%Þn ¼ ð1=dÞx

ð%Þ
n ðn 2 I1Þ,

að%Þn ¼ C � bð%Þn ðn 2 I2Þ, and wp ¼
P

n ðan � a%

n Þz
p
n,

and if these constraints are included into (7),
primal variables can be removed. The correlation
matrix of input space vectors can be identified, and
� 1
2
ða� a%Þ

T
½Rv þ dI�ða� a%Þ þ ða� a%Þ

Ty

� e1Tðaþ a%Þ ð8Þ

constrained to CXað%Þn X0, where að%Þ ¼ ½að%Þ1 ; . . . ;
að%ÞN �

T, and 1 denotes a column vector of ones.
After obtaining Lagrange multipliers að%Þ, the time
series model for a new sample at time instant m is
ym ¼ f ðvmÞ ¼

PN
n¼1 ðan � a%

n Þv
T
n vm, which is a func-

tion of weights in the input space.

3. Applications of SVM framework for LSP
presented in the previous section in three relevant
LSP applications: parametric spectral estimation,
gamma filter, and complex ARMAmodelling. Once
we identify the base of the Hilbert signal space zp in
the model and weight vector w, we can directly state
the quadratic programming (QP) problem (8).

3.1. SVM-AR parametric spectral estimation

The most used linear system model in PSD
estimation is the all-pole structure. For a white
noise input en, the filter output yn is an AR(P),
given by

yn ¼
XP

p¼1

wpyn p þ en, (9)

where wp are the AR parameters. The base of
Hilbert space is here given by P delayed versions of
signal observations y. This is, zp ¼ ½yn0 p; . . . ;
yN p�

T for p ¼ 1; . . . ;P, where n0 ¼ Pþ 1 ac-
counts for the initial conditions. In our frame-
work, the classical all-pole PSD estimator [9]
becomes

Fðf Þ ¼
1

f s

�
s2P

1�
PP

p¼1

PN
n¼1 ðan � a%

n Þyn pe
j2ppf =f s

��� ���2 ,
ð10Þ
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where f s is the sampling frequency, and s2P is the
variance of the residuals. In (10), the AR spectrum
is the inverse of the spectrum of samples with noise

using independent and nested, real, binary classi-
fiers [13]. We adapt the SVM–ARMA model,
successfully tested for channel equalization in [7],
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above e. For e ¼ 0, all the noise will be considered
in the model, and overfitting will occur. As e
increases, the included noise level will decrease and
generalization will improve, but if the number of
support vectors is too low, the model will have
little information and error will increase. For white
Gaussian noise, a good trade-off in the choice of e
is the noise standard deviation.

3.2. SVM-gamma filter

An important issue in time series para-
metric modelling is how to ensure that the
obtained model is stable. A remarkable trade-off
between stability and simplicity of adaptation
can be provided by the gamma filter [10], which
is defined by

yn ¼
XP

p¼1

wpxp
n þ en, (11)

xp
n ¼

xn; p ¼ 1;

ð1� mÞxp
n 1 þ mx

p 1
n 1; p ¼ 2; . . . ;P;

(
(12)

where m is a free parameter. For m ¼ 1, the
structure reduces to Widrow’s adaline, whereas
for ma1 it has an IIR transfer function due to the
recursion in (12). The stability is trivially obtained
with 0omo1 for a low-pass transfer function, and
with 1omo2 for a high-pass transfer function.
By taking into account initial conditions for n0 ¼

maxðPþ 1;QÞ, the base of the Hilbert space is
given now by zp ¼ ½xp

n0
;xp

2; . . . ;x
p
N �

T, for p ¼ 1; . . . ;
P, i.e., by the input vector signal after each gamma
unit loops. Note that, for a previously fixed
value of m, the Hilbert vector space base is
fully determined. For details on the formulation,
see [12].

3.3. SVM ARMA complex formulation

An important field of application of LSP can be
found in Digital Communications, where complex
envelope of modulated signals is commonly used.
SVM has been proposed for channel equalization
to multilevel, complex environments, using a
regressor in the complex-plane. The cost function
is applied to the error between desired and
obtained outputs.
Let us consider two complex, discrete time

processes fxng and fyng, representing the input
and the output, respectively, of a linear, time
invariant system

yn ¼
XM
i¼1

aiyn i þ
XQ

j¼1

bjxn jþ1 þ en, (13)

where faig, fbj
g are M and Q complex coefficients

standing for the AR and the MA parts of the
system, respectively, and en is complex residual
noise. By denoting zp ¼ ½ y1 p; . . . ; yN p;xp; . . . ;
xN pþ1�

T and w ¼ ½aT; bT�T, model (13) can be
rewritten as (1). Therefore, Hilbert space base
vectors are formed by delayed versions of both the
input and output time series. We must include real
and imaginary slack variables, and their corre-
sponding constraints, in the cost function. Hence,
for complex en we define LðenÞ ¼ LðRfengÞþ

LðIfengÞ. Introducing the constraints into the
primal functional by means of Lagrange multi-
pliers faR;ng, fa%

R;ng, faI;ng, fa
%

I;ng, for the real
(subscript R) and imaginary (subscript I) parts,
we obtain the primal–dual functional. By making
zero its gradient with respect to wp, we obtain

a ¼
XN

n¼n0

cny
�
n 1; b ¼

XN

n¼n0

cnx
�
n, (14)

where n0 ¼ maxðPþ 1;QÞ, and cn ¼ ðaR;n � a%

R;nÞ

þjðaI;n � a%

I;nÞ. By placing (14) in the primal–dual
functional and grouping terms, the dual functional
consists of maximizing

� 1
2c

H
ðRv þ dIÞcþReðcHyÞ

� ðaR þ a%

R þ aI þ a%

I Þ1e ð15Þ

constrained to Lagrange multipliers being non-
negative. This is a real-valued QP problem,
formally similar to (8). However, the joint
information between the real and the imaginary
components of the residuals (by means of the

4



Lagrange multipliers) is taken into account by
the quadratic term, so that this formulation is
different from considering just two separate one-

situations, the model may fit those unwanted data,
thus leading to high-frequency distortions.
We used data generated as an ARMA-process
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dimensional problems, one for real and the other
for imaginary observations. In that sense, this can
be viewed as an optimal problem statement.

4. Experiments
Once the functional to be minimized is defined,

free parameters must be tuned, both the general
ones (C, d, e) and the model-specific ones (P in the
case of SVM-AR; P and m for SVM-gamma filter;
P and Q for complex SVM–ARMA model). When
the free parameters could not be chosen a priori,
their optimal values were always obtained with
cross-validation: for a training set of observations,
80% were used for building the SVM models with
fixed free parameters, and 20% for independently
evaluating the performance. A range of each free
parameter was explored in a uniform or logarith-
mic grid of values, with the remaining free
parameters fixed. The search was sequential, in
the order above described, and repeated twice
(details in Refs. [20,21]). The optimization proce-
dure was based on a modification of the iterative
re-weighted least-squares (IRWLS) algorithm used
in [8].

4.1. SVM-AR parametric spectral estimation
Three examples illustrate the capabilities of the

SVM-AR for parametric spectral estimation. The
first two experiments examine the effect of outliers
and of the number of available observations. In a
third experiment, we test the SVM-AR for
sinusoid detection in noise. We illustrate the
convenience of choosing a good value for e and
its effect on the presence of artifacts in the
estimated pseudospectrum.

(a) Insensitivity to outliers. Real-world measure-
ments of a time series are often corrupted by
outliers, i.e., atypical samples in the distribution,
which may occur due to erroneous measurements
or noisy phenomenon appearing in the tail portion
of some noise distribution functions. In those
Aðz 1Þyn ¼ Cðz 1Þen, where z 1 denotes the unit
delay operator, Aðz 1Þ and Cðz 1Þ are polynomials
in z 1, and en is white Gaussian noise with unit
variance, Nð0; 1Þ. Two systems [14] were analyzed:
an AR(3)-process given by Aðz 1Þ ¼ 1þ 0:9816z 1

þ0:9400z 2 þ 0:7799z 3, Cðz 1Þ ¼ 1, and a nar-
row-band ARMA(4,4)-process given by Aðz 1Þ ¼

1� 1:02z 1 þ 2:0902z 2 � 0:9808z 3 þ 0:9275z 4,
Cðz 1Þ ¼ 1þ 0:48z 1 þ 0:6876z 2 þ 0:4476z 3 þ

0:3538z 4. The input discrete process to these
systems was a Nð0; 1Þ sequence with L ¼ 128
samples length. The corresponding output signal
was corrupted by an additive small variance
random process Nð0; 0:1Þ. In addition, a randomly
placed 20% of samples were affected by impulsive
noise from a zero mean (z.m.) and unit variance
(u.v.) uniform distribution. These L samples were
used for training the model and 1000 samples more
were used for validation. For all simulations, we
varied factors C and d in the range ½10 5; 105�, and
set e ¼ 0 since the insensitivity to outliers was
expected to be reduced by the linear zone. A
natural performance criterion is the integrated
mean-square error (IMSE) [9], given by

IMSE (dB) ¼
1

F

XF

f¼1

jFðf Þ � F̂ðf Þj2, (16)

where F is the number of estimated frequencies in
the spectrum. The experiment was repeated 100
times and the best model was selected according to
the IMSE in the validation set.
Fig. 1 illustrates the effect of different power of

outliers (Po) on the accuracy of the PSD estima-
tion. Results are worse with outlier amplitude
increasing, but SVM-AR outperforms the stan-
dard methods in all situations, with an average
gain of 1.5–2 dB. As the noise level increases,
differences between the methods reduce, specially
significant in ARMA(4,4) system.
(b) Size of the dataset. We studied the influence

of the length of the signal on the accuracy of the
PSD estimate. This is an important issue since in
many real-world applications the whole data is
segmented, and dedicated AR models are adjusted
for each low-sized subset.

5



Fig. 2 shows the results obtained by considering
different lengths of the acquired signal (L ¼ f16;
32; 64; 128; 256g samples). No outliers were intro-

a lower difference ranging from 1.5 to 4 dB
ðL ¼ 128Þ.
(c) Sinusoid detection. The pseudospectrum of
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Fig. 1. Evolution of IMSE for different Po, for AR(3) (a) and ARMA(4,4) (b).
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Fig. 2. Evolution of the IMSE as a function of the length of the dataset for AR(3) (a) and for ARMA(4,4) (b). Since higher orders are

necessary to attain significant results for ARMA(4,4), only sequences with more than 64 samples were used.
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duced in this experiment. In both cases, the SVM-
AR method yields more accurate estimates of the
spectrum. For AR(3) system, an important de-
crease of the IMSE with the number of available
samples is observed, with a maximum difference
between the SVM-AR and the other methods of
3.25–5 dB ðL ¼ 64Þ. Similar deterioration for the
IMSE is observed for ARMA(4,4) process, and
two sinusoids of unit amplitude in white Gaussian
noise of power s2 ¼ 0:16 was estimated by using
the SVM-AR and the minimum variance (MV)
methods [9]. The number of training samples was
30 and model order was P ¼ 10. A value of C ¼

0:1 was set to assure smoothness of the solu-
tion, and d ¼ 10 4 was used, though good results
were observed for a wide range of this parameter.
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Fig. 3(a) shows the different performance of SVM-
AR as a function of e. Two-hundred trials with
e ¼ 0 and e ¼ s were run, and mean and variance

(a) (b)
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Fig. 3. (a) SVM pseudospectrum using e ¼ s (lower solid, mean; upper solid, variance) and e ¼ 0 (dotted, mean; dashed, variance). (b)

SVM pseudospectrum using e ¼ s (lower solid, mean; upper solid, variance) and MV (dotted, mean; dashed, variance).
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of resulting spectra were computed. Experiments
with e ¼ s showed much lower variance than those
with e ¼ 0, and a smaller number of artifacts.
Fig. 3(b) shows the outperformance of SVM-AR
when e ¼ s over MV.

4.2. SVM-gamma filter
The performance of the SVM-gamma filter is

Gaussian, high-amplitude samples with z.m. and
u.v. (s2j ¼ 1).
Impulse response was estimated from the

Time sample [n](b)

Fig. 4. Effect of outliers in the estimation of the impulse

response. (a) Additive Gaussian noise and (b) additive Gaussian

noise plus outliers.
shown in terms of accuracy, robustness to outliers,
memory depth, and regularization.

(a) Insensitivity to outliers. The system to
be identified was yn ¼ 1:7901yn 1 � 0:8100yn 2þ

0:0068xn þ 0:0088xn 1 þ 0:0043xn 2. The gamma
filter with 0omo1 is appropriate to model this
low-pass system, whose impulse response length
(memory depth) is much greater than the number
of coefficients. Input signal fxng was a 200-sample,
white, Gaussian noise sequence of z.m and u.v.,
and output signal fyng was z.m., reduced variance
s2y ¼ 0:012, and it was corrupted by additive,
white, Gaussian random process fzng with z.m.
and small variance s2z ¼ 0:0025. Impulsive noise
fjng was generated as a sparse sequence for which
5% of the samples were randomly placed, being
observations with and without impulsive noise,
fyng þ fzng þ fjng and fyng þ fzng, respectively. In
both cases, several estimation procedures were
used. The least-squares (LS) solution of an ARMA
model was obtained using all the samples and the
true model order, and robust M-estimate using
Huber’s cost [15] was obtained.
Fig. 4 shows the estimated impulse responses for

the three methods. In the presence of a relatively

7



high noise power in the output sequence, the LS
solution deteriorates, while both gamma filter
solutions still provide a good estimation of the

compared the memory parameter m in the LS,
the SVM and the regularized gamma filters. The
last one used the leaky LS algorithm described
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Fig. 5. Performance criterion for the identification of an elliptic filter by the LS gamma filter (thin) and the SVM gamma filter (thick)

for different orders (P between 1 and 4). The optimal m parameter is also indicated for the LS (‘�’), the SVM (‘&’) and the regularized

(‘n’) gamma filter.
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system. In the presence of outliers, the robustness
of the SVM allows us to obtain a more accurate
system estimation, avoiding the oscillations pre-
sent in the LS gamma filter. The M-estimates
solution is not capable of totally compensating the
effect of outliers. We obtained an optimum at m ¼
0:2 and P ¼ 7, and thus, the memory depth of the
estimated model was M ¼ P=m ¼ 35 samples,
which contains most of the power of the true
impulse response. An interesting result is that the
product dC ¼ 0:78 is near 2sy, which is auto-
matically found by the cross-validation in order to
limit the effect of outliers in the model.

(b) Memory depth and regularization. In this
experiment, we focused on the main advantages of
both the gamma filter structure (stability and
memory depth) and the SVM (regularization). We
in [16]. We identified the third-order elliptic low
pass filter given by Cðz 1Þ ¼ 0:0563� 0:0009z 1 �

0:0009z 2 þ 0:0563z 3 and Aðz 1Þ ¼ 1� 2:1291z 1

þ1:7834z 2 � 0:5435z 3, which was previously
analyzed in [10] because of its longer impulse
response. A 100-sample input discrete process fxng

is a white, Gaussian noise sequence with z.m. and
u.v. The output signal fyng was corrupted by
additive, small variance (s2e ¼ 0:1) random process.
An independent set of 100 samples was used for
testing. The experiment was repeated 100 times.
Fig. 5 shows the chosen performance criterion

(Jmin ¼ varðenÞ=varðynÞ) [10] as a function of m
and P in the test set. It is noteworthy that, in
all cases, the adaline structure (m ¼ 1) performs
worse than the gamma structures. In addition, the
SVM-gamma filter clearly improves the results of
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the LS and the regularized versions in terms of
Jmin. The memory depth M for a fixed P increases
with lower values of m. This trend (observed for

In this experiment, we tested a 5th order DFE
trained using the complex SVM–ARMA algo-
rithm in a channel with impulse response transfer
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the three methods) is especially significant for
the regularized gamma filter, but it occurs at the
expense of poor performance of the criterion. The
SVM-gamma filter still presents a better trade-off
between memory depth and performance.

4.3. Complex SVM ARMA
Two simulations are provided to compare the

complex SVM–ARMA model to standard equal-
izers and channel estimators.

(a) Decision feedback equalizer. DFE [17] is a
suboptimal but low computational burden solu-
tion to reduce the impairments produced by the
dispersive impulse responses of most communica-
tion channels. In a DFE, a linear feedforward filter
is used to maximize the signal to noise ratio
(SNR), and the feedback filter uses previous
decisions to estimate and substract any trailing
inter-symbols interference (ISI) caused by previous
symbols.1

1DFE has non linear properties due to the threshold decisor.

However, under the assumption that all signal values previously

detected by the decisor are correct which is exact during the
supervised learning phase its behavior is linear.
function HðzÞ ¼ ð0:98� 0:1jÞ þ ð�0:27� 1:38jÞz 1

þð�0:55� 0:73jÞz 2 and 64-QAM transmission.
Channel output is corrupted with Gaussian noise.
The training burst consisted of 50 random symbols
and we chose d ¼ 10 3, dC ¼ sn, s2n being the
thermal noise power, which was assumed to
be known. We compared the SVM-DFE to
the LS DFE one. Equalizers were trained with
the training burst and then BER was measured
with 105 set of independent samples.
Fig. 6 shows the result of averaging 1000 trials

of the experiment. It can be observed how the
SVM-DFE shows improved generalization cap-
abilities with respect to the LS-DFE: in the
hypothesis of small training data set the gain of
SVM-DFE over LS-DFE exceeds 1.5 dB for a
BER of 10 3.
(b) Channel estimation. Channel estimation

is a needed subprocess to optimally detect signals
in dispersive channels through the Viterbi algo-
rithm. In channel estimation, an IIR filter is
commonly used, as the number of parameters of
this kind of filters is much lower than those of FIR
[11]. Once the model is adjusted, a truncated FIR
response from those of IIR filter is used as an
estimation.
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In this experiment, we tested the robustness of
complex SVM–ARMA against impulsive noise in
channel estimation. We trained an ARMA(3,3)

allows a good trade-off between memory depth
and performance; and the complex SVM–ARMA
formulation yields significant gain over traditional

[1] V. Vapnik, The Nature of Statistical Learning Theory,

J.L. Rojo Álvarez et al. / Signal Processing 85 (2005) 2316 2326 2325
model to approximate the channel impulse re-
sponse transfer function given by HðzÞ ¼ ð1þ
0:5jÞþ ð1:6þ 0:5jÞz 1 þ ð0:78� 0:05jÞz 2 þ ð0:56þ
0:1jÞz 3 þ ð0:37 þ 0:02jÞz 4 þ ð0:24þ 0:01jÞz 5 þ

ð0:15þ0:01jÞz 6þð0:1þ0:01jÞz 7þð0:06þ 0:003jÞ

z 8 þ ð0:04þ 0:001jÞz 9. This channel is a random
realization of the typical urban (TU) 3GPP
standard test channel [18]. The synthesis method
is described in [19], and we truncated the impulse
response to order 9. In order to train the model, 50
binary data were used and Signal to Thermal
Noise Ratio was fixed to 30 dB. Channel impulse
noise consisted of impulses appearing with a
probability of 0:2. Experiments were done with
an impulse variance from 0 to �40 dB under signal
power. We compared the complex LS-ARMA and
SVM–ARMA models. In order to adjust C and d,
we first chose C ¼ 10 and swept from d ¼ 10 5 to
d ¼ 10 3 with 10 exponentially distributed values.
The optimal d value was chosen to minimize the
output error power. Such an adjustment becomes
strictly necessary due to the presence of impulse
noise. Then, the value of dC needs to be adjusted
to the best possible compromise between L2 cost
function for Gaussian noise and L1 for impulse
noise.

Fig. 6 shows the squared error between the
truncated impulse response of the ARMA and the
true channel for the complex LS-ARMA and
SVM–ARMA algorithms. It is observed that an
improvement of up to 8 dB in the estimation error
of the truncated impulse is obtained.

5. Conclusions
A generalized SVM framework to formulate

digital LSP problems has been proposed. The
framework has been applied in three relevant
signal processing domains with simple considera-
tions. All these applications have been shown to
take advantage of the SVM approach. In parti-
cular, the SVM-AR method for PSD estimation
provides more robust and stable results than
standard approximations; the SVM-gamma filter
equalizers and channel estimation schemes. Re-
sults suggest that other signal processing problems
could be successfully solved under this SVM
framework for LSP, and a wide field is open for
the formulation and application of other classical
signal processing tools.
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