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The change in nature of radial transport in numerical simulations of near-critical

dissipative-trapped-electron-mode turbulence is characterized as the relative strength of an

additional diffusive transport channel ssubdominant to turbulenced is increased from zero. In its

absence, radial transport exhibits the lack of spatial and temporal scales characteristic of

self-organized-critical systems. This dynamical regime survives up to diffusivity values which, for

the system investigated here, greatly exceeds the expected neoclassical value. These results,

obtained using a novel Lagrangian method, complete and extend previous works based instead on

the use of techniques imported from the study of cellular automata fJ. A. Mier et al., Phys. Plasmas

13, 102308 s2006dg. They also shed further light on why some features of self-organized criticality
seem to be observed in magnetically confined plasmas in spite of the presence of mechanisms which

apparently violate the conditions needed for its establishment.

I. INTRODUCTION

The concept of self-organized criticality sSOCd appeared
in the late 1980s as a possible unifying explanation for some

of the observed dynamics of very different physical and bio-

logical complex systems.
1
This concept brings together

ideas, such as, nonlinear self-organization and critical behav-

ior: critical, because systems in such a state exhibit the same

properties that thermodynamical systems in phase transi-

tions, such as, spatial self-similarity, temporal persistence

smemory effectsd and long-term sdivergentd correlations;
self-organized, because no external tuning is needed to reach

the SOC state. These features are in contrast to those found

in purely diffusive systems, characterized by uncorrelated

dynamics and spatial and temporal locality.

In the mid 1990s, it was proposed that the SOC para-

digm might help to understand some of the observations of

nondiffusive, strange radial transport in tokamak plasmas.
2,3

sThese ideas have later been considered for other magnetic
confinement devices as well, such as stellarators or

reversed-field-pinches.
4d The main requirement for these

ideas to be applicable appeared to be the existence of a com-

petition between two mechanisms with clearly separated

scales: the external fueling and heating, which push the

plasma radial profiles beyond their local instability thresh-

olds; the turbulence which ensues profile flattening and

brings them again below threshold. Soon, numerical fluid

simulations of near-marginal pressure-gradient-driven

plasma turbulence became available which showed that the

radial transport indeed exhibited SOC-like features if the

aforementioned dynamical cycle is properly captured.
5,6

However, doubts were also quickly cast upon the relevance

of SOC ideas if additional elements, known to be present in

magnetically confined plasmas, were also considered. One

such example was the presence of an additional diffusive

transport channel simultaneously with the near-critical

turbulence.
7
Such a channel is provided by neoclassical dif-

fusion in real plasmas, as well as by any other types of co-

existing supercritical turbulence.

In a previous work,
8
we addressed the relevance of SOC

in the presence of subdominant diffusion in the context of

numerical simulations of dissipative-trapped-electron-mode

sDTEMd turbulence in cylindrical geometry. We found that a
considerably strong subdominant diffusivity is required for

the system dynamics to cease exhibiting SOC-like features.

For the parameters used, this value exceeded the neoclassical

value in more than one order of magnitude. The character-

ization of the transport dynamics in the system was however

done by constructing time series of a global sEuleriand quan-
tity, the turbulent activity, which quantified the turbulent ra-

dial transport in the simulation and was then examined with

a methodology reminiscent of what is typically used in cel-

lular automata.
9
This analysis is however not fully satisfac-

tory from a quantitative viewpoint. A more proper character-

ization of the dynamics would require the study of the sradial
part of thed Lagrangian characteristics of the turbulent flow.
This study is the objective of the present paper. The influence

of diffusion on the dynamics is thus quantified by introduc-

ing tracers in the simulations, and characterizing their trajec-

tories for different values of the subdominant diffusivity. The

information gathered in this way not only confirms the con-

clusions previously reported using more qualitative methods,

but it also provides new quantitative information from which

effective models for radial transport can be constructed. In
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addition, the method used to characterize the Lagrangian in-

formation is novel and quite advantageous with respect to

other tracer methods previously used in the literature, most

of which are based on random walk analogs.

The paper is organized as follows. In the next section

sSec. IId we review the model used, paying special attention
to the elements that ensure the appearance of SOC-like

dynamics and to the coupling of the turbulent and the ssub-
dominantd diffusive transport channels. Details about how
the tracer particles are advanced will also be provided. Next,

in Sec. III, the method that will be used to characterize the

tracer trajectories will be presented. The main results ob-

tained from this method will be described in Sec. IV, for

different values of the subdominant diffusivity. Finally, in

Sec. V some conclusions are drawn.

II. DISSIPATIVE TRAPPED ELECTRON MODE
FLUID MODEL

The model and numerical implementation used is the

same as in Ref. 8. The relevant turbulent mode is the so-

called dissipative trapped electron mode sDTEMd.10,11 The
simulations consider a deuterium plasma confined in a peri-

odic cylinder ssee Fig. 1d of radius a=0.5 m and length

L=2pR0, with R0=2 m so that the equivalent toroid has an

inverse aspect ratio «=a /R0=0.25. To define the position

inside the cylinder we use cylindrical coordinates sr, u, Zd, r

being the radius normalized to a, u the poloidal angle, and Z

the axial position which is related to the toroidal angle

Z=fR0. The plasma is confined by a magnetic field with an

axis value of B=1 T, and a safety factor qsrd=1.3+0.5r2. To
derive the equations of the model,

10
the ions sdeuteriumd are

treated as a cold fluid whilst the electrons are considered

under the adiabatic approximation, except for trapped elec-

trons. The latter make the electron density and electrostatic

potential fluctuations to be out of phase, a fact which is in-

troduced in the model via an id term sin k-spaced,

ñe

n̄e

=
ef̃

Te

s1 − idd , s1d

and which ultimately causes the net radial transport. In Eq.

s1d, ñe and n̄e are, respectively, the fluctuating and average

electron densities; Te is the electron temperature; e is the

modulus of the electron charge; f̃ is the fluctuating electro-

static potential and d is the shift coming from trapped elec-
trons, which can be estimated using gyrokinetic arguments.

10

Physically, the ad hoc introduction of d in Eq. s1d captures in
a simple manner the phase difference between density and

potential fluctuations caused by the presence of nonadiabatic

trapped electrons, which is needed to drive a net outwards

radial flux.

A. Equations

Starting from the ion continuity equation, using Eq. s1d
plus quasineutrality, and considering the long-wavelength

limit, the model is reduced to two equations describing the

time evolution of the fluctuating and the surface-averaged

ion densities, ñisr ,u ,fd and n̄isrd, respectively. The equation
for the first one is

10

dñi
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− rs
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'

2 ñi
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+ V
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Here, ñi is normalized to nax; n̄is0d. The convective deriva-
tive in the first two terms represents the temporal evolution

of the fluctuations including the ion polarization drift. The

third term is the diamagnetic drift. Next comes the destabi-

lizing term for the drift waves, which is due to the trapped

electrons. Indeed, Deff is antidiffusivity si.e., negative diffu-
sivityd introduced by the phase shift: d=kuDeff /V*n, where

V
*n;csrs /Ln is the diamagnetic velocity. Here, cs;ÎTe /mi

is the sound speed, rs=cs /Vi is the ion Larmor radius, and

Lnsrd; n̄iudn̄i /dru−1 is the density characteristic length. The
fifth term provides parallel sto the magnetic fieldd damping
for ions, ni being the ion collision frequency. In contrast to

all other terms, this term is introduced ad hoc to model par-

allel collisional damping. The sixth and seventh terms are a

numerical diffusivity and hyperviscosity needed to ensure

numerical stability. Finally, the last one is a nonlinear term

representing the E3B drift convection. Note that, due to the

long-wavelength limit taken, no polarization drift nonlinear-

ity is present in this model.

The equation for the surface-averaged density n̄i is
8
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D 3 ẑG · ='ñiL
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FIG. 1. sColor onlined Geometry of the simulations discussed in the text.
Inset: snapshot of contours of ion density fluctuations for the D0=0 case

sred→positive; blue→negatived.
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The left-hand side of the equation represents the evolution in

time of the density profile. The first term of the right-hand

side is the source needed to drive the system towards local

instability. Otherwise, once the profile flattens and fluctua-

tions are quenched, any turbulent transport would be discon-

tinued. It is composed of two pieces:
5
a term constant in

time, S0srd, chosen so that the steady-state ion density profile
in the absence of the nonlinearity is parabolic n̄i=naxs1−r2d;

the second part of the source, S̃sr , td, is random both in time
and radius, with zero average and independent of the angular

coordinates. The following term on the right-hand side rep-

resents the subdominant diffusive channel, which will be

treated as a tunable quantity in order to study the dependency

of transport dynamics on Dext. fAs detailed in Ref. 8, the
profile of Dext is divided in three regions, the middle one

being coincident with the interval where turbulence develops

ssee belowd. The values on the outer and inner regions are
kept fixed and chosen to avoid the piling up of density at the

boundaries of that interval. Only the middle diffusivity is

varied from simulation to simulation.g The last term, in
which the bracket stands for surface-averaging, represents

the coupling between the density fluctuations and the mean

profile. Note that there is also a coupling in the reverse di-

rection: Any local change in n̄i affects the fluctuations via the

density scale length, Lnsrd, which is hidden in the diamag-
netic and nonlinear terms in Eq. s2d.

B. Parameters

Regarding other details specific to the simulations pre-

sented here, the axis density value is nax=10
19 m−3.

We consider a plasma with Te=Taxs1−r2d2, so that the
DTEM instability parameter is the same all across the

radius she;Ln /LTe
=2d. The axis temperature value is

Tax=2.5 keV. The radial region in which rational surfaces

ssusceptible to become unstable and drive turbulenced are
located spans the radial interval frin ,routg= f0.48,0.75g.
Within it, 142 Fourier harmonics have been included. This

number of angular harmonics may seem low compared with

typical simulations of supercritical turbulence in which trans-

port is based uniquely in the energy and enstrophy cascades

in k-space. In our case, transport is dominated instead by the

mean profile relaxation processes, and angular resolution is

less important.
5
We use a radial mesh

8
with 540 nodes within

the interval of interest, frin ,routg, which gives us a radial
resolution of Dr=2.5310−4 m. The step size is Dt=50 /Vi,

which in physical units is about 1 ms sVi,4.83107 rad /sd.
Other relevant parameters are listed in Table I. Finally, note

that the simulations discussed here have different conditions

than those presented in Ref. 8. The safety factor profile is

different to allow for a larger radial interval and more opti-

mal distance between rational surfaces. Temperature and

field strength are also different. As a result, the width of the

computational box is almost three times larger and the ion

Larmor radius srsd is about five times larger. These changes
facilitate the simulations with tracers whilst not modifying

the qualitative features of the dynamics. However, the result

is that the values of D0 at which the dynamical changes take

place are also different. For that reason, we need to vary D0

in the range 0–10−7 a2Vi sapproximately 0–1.2 m2 /s in

physical unitsd.

C. Tracers

In order to characterize the dynamics of transport at the

deepest level, Lagrangian information is required.
13,12

Ob-

taining such information in a real experiment is however

extremely difficult, if not impossible. It can however be rou-

tinely obtained in simulations of electrostatic plasma turbu-

lence by following the trajectories of massless test particles

stracersd as they are advected by the time-evolving E3B

electrostatic turbulent flow.
14–17

The tracer equation of mo-

tion is simply

dr

dt
= Vsr,td = V' + Vi

B

B
, s4d

where the perpendicular velocity is given by

V' = VE3B = − =f̃ 3 B/B2, s5d

The parallel velocity is in principle arbitrary; in our studies,

it is set to zero. Note that the DTEM model prescribed by

Eqs. s2d and s3d does not provide the fluctuating electrostatic
potential directly. It must be obtained by inverting Eq. s1d as
needed.

Regarding particle management, all tracers are started at

a single time and only after the simulation has entered

into the nonlinearly saturated phase. When discussing time

lapses in what follows, they should be understood as mea-

sured from this single initial time. All tracers are randomly

initialized in space within the intervals, r0P f0.50,0.73g,
u0P f0,2pg, and Z0P f0,2pR0g. If a tracer is pushed outside
of the radial interval of interest, frin ,routg, it is randomly
reallocated within whilst keeping the same identity. As we

will see, this prescription helps to squeeze the most informa-

tion out of the method of analysis used, which we describe in

the next section. Note however that this refilling procedure

may not be adequate for other analysis methods, for instance,

it may be used to analyze flight/waiting-time statistics,
14,15,18

but not to compute tracer propagators.
17
This strategy repre-

TABLE I. Values of the parameters that characterize the geometry and

equilibrium in the numerical calculations at the center of radial interval of

interest.

Parameter Value

Ion gyroradius rs=4310−3 m

Ion sound velocity cs=2.23105 m /s

Diamagnetic velocity V
*n=3.73103 m /s

Magnetic shear length Ls=11 m

Temperature scale length LT=0.12 m

Density scale length sequilibriumd Ln=0.24 m

Ion collision frequency ni=100 s
−1

Trapped electron collision frequency neff=10
5 s−1

Drive strength Deff=160 m
2
/s

Inner diffusivity Din=0.1 m
2
/s

Outer diffusivity Dout=0.1 m
2
/s
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sents however a clear advantage, specially in superdiffusive

situations in which tracers tend to cross the system bound-

aries very quickly. Otherwise, an extremely large number of

tracers would be required to achieve reasonable statistics.

III. CHARACTERIZATION OF MOTION:
ANALYSIS OF LAGRANGIAN VELOCITIES

The nature of motion can be characterized using a

method based on recent theoretical work
12
showing that the

effective transport equation for the ensemble-average sover
flow realizationd of any passive scalar advected by a shomo-
geneous, isotropic, self-similard turbulent flow can be de-

rived from a proper characterization of the statistical and

correlation properties of the flow velocity along its charac-

teristic trajectories.

Namely, suppose a passive scalar sdenoted by nd which
is advected by a flow field Vsr , td according to the equation

]n

]t
+ sV · ¹dn = 0, s6d

and whose transport does not affect the flow in any way.

Then, assume V= Ṽ and n=n0+ ñ, where the subindex 0 rep-

resents the ensemble-average operation. The flow must have

a zero average in order to ensure isotropy. Equation s6d then
becomes

]n0

]t
= − kṼ · ¹ñl , s7d

]ñ

]t
+ Ṽ · ¹ñ = − Ṽ · ¹n0 + kṼ · ¹ñl , s8d

where we also use angular brackets to represent ensemble-

averaging. Equation s8d can be solved for the fluctuating part

ñ in terms of =n0 and Ṽ. Then, inserting the result in Eq. s7d,
one obtains

12

]n0

]t
= ¹ · E

0

t

dt8hkṼsr,tdṼfRst8ur,td,t8g ¹ n0fRst8ur,td,t8glj .

s9d

The important quantity here is ṼfRst8 ur , tdg, with Rst8 ur , td
representing the location reached by integrating sbackwards
in timed the differential equation,

dR

dt
= ṼsR,td, Rstd = r , s10d

up to time t8, t. Note that, as t8 varies, Rst8 ur , td moves

along the characteristic trajectory of the flow. ṼfRst8 ur , tdg
is referred to as the Lagrangian velocity.

The method of analysis we will use later is based on the

interesting fact that the ensemble average in Eq. s9d can be
estimated, by means of a methodology reminiscent of path-

integral methods, under quite general assumptions regarding

the statistical and correlation properties of the Lagrangian

velocities along the characteristics of the flow.
12
These prop-

erties thus determine which kind of effective equation will

describe sand thus, the nature ofd the transport of the

ensemble-average of the passive scalar, n0. For instance, it is

well known that transport is diffusive whenever s1d the
Lagrangian velocity becomes uncorrelated of itself quickly

ssay, after a typical time tcd, and s2d it has a finite typical

velocity ssay, Ṽcd. Then, it is straightforward to show that Eq.
s9d can be reduced to the familiar diffusive equation,

]n0

]t
. D

]2n0

]x2
, D , sṼc

2tcd s11d

for time lapses Dt@tc and distances uDxu@ Ṽctc shere, we
have assumed one dimension for simplicityd. The absence of
correlations in the Lagrangian velocity endows the transport

dynamics with a Markovian character. On the other hand,

the Lagrangian velocity must be statistically distributed ac-

cording to a probability density function spdfd Psvd with
a finite variance s

v

2 in order to have a finite typical value

sṼc,Îs
v

2d. The central limit theorem then predicts that it

should follow a Gaussian law,
19
which makes dynamics in-

herit a Gaussian character as well. Note that these two prop-

erties also introduce a typical transport length lc; Ṽctc, from

which D, lc
2
/tc, Ṽc

2tc, as usual.

In contrast, the transport of n0 is no longer well de-

scribed by the classical diffusive equation whenever the

Lagrangian velocities either:
20,21 s1d exhibit long correlations

along the characteristic trajectory, or s2d they lack a finite
typical value. One common occurrence is when the long cor-

relations are such that the resulting flow characteristics are

self-similar under the transformation sx , td→ slHx ,ltd, with
a self-similarity exponent HP s0,1g and with HÞ1 /2. fIn
fact, H=1 /2 corresponds to the case with no correlations,

since it is the self-similarity exponent of the familiar uncor-

related random walk;
19
the motion would then reduce to the

diffusive one already discussed. For that reason, the case

H,1 /2 is usually referred to as anticorrelated and causes

subdiffusive transport; similarly, H.1 /2 is referred to as

spositivelyd correlated, and yields superdiffusive transport.g
If this hypothesis holds, Eq. s9d reduces to12

]n0

]t
= 0Dt

1−2HFD8
]2n0

]x2
G . s12d

Here, aDt
g represents the fractional Riemann–Liouville op-

erator of order g and start point a. D8 is an effective frac-

tional diffusivity, whose precise definition
22
will not be

needed in what follows. It suffices to say that it is an

integral-differential operator that contains integrals over the

whole domain of the independent variable sin this case,
timed. They appear in Eq. s12d because of the long

correlations between the Lagrangian velocities, which imply

that the motion can never be assumed independent of its

past history. In other words, in the diffusive sGaussian,
Markoviand case, past dynamics could be ignored for t@tc;

but for HÞ1 /2, this is not true for any value of tc!

If, in addition, a finite typical value for the Lagrangian

velocity is also lacking, a finite transport typical length can

no longer be defined. Mathematically, this translates into a

pdf for the Lagrangian velocities which has an infinite vari-

ance. In this case, the central limit theorem predicts
19
that the

4



pdf should be a ssymmetricd Lévy law with exponent

aP s0,2d. Lévy laws can be expressed in closed analytical
form only via their Fourier transform.

19
In the symmetric

case, this expression is La,sskd=exps−saukuad, where s is a

scale factor. However, it follows from their definition that

these stable laws decay as Lasvd,uvu−s1+ad for large values of

their argument, which is the cause of their lack of a finite

variance. The transport equation derived from Eq. s9d is, in
this case,

12

]n0

]t
= 0Dt

1−aHFD9
]an0

]uxua
G . s13d

Here, ]wn /]uxuw is the Riesz fractional derivative22 of order
w. It is again an integral-differential operator which contains

an integral over the whole spatial domain, and reduces to the

usual Laplacian for a→2. Its appearance is a reflection of

the fact that no location is sufficiently far from a given point

to have a negligible effect on transport at that point, since all

extreme values of the Lagrangian velocities are statistically

meaningful. Note also that the fractional integral in time dis-

appears only if H=1 /a, which is the self-similarity exponent
for uncorrelated motion if a,2.

The method we will use to characterize the nature of

transport in our simulations is based on these ideas. Noting

that the flow characteristics coincide with the trajectories fol-

lowed by the tracers, we use them to provide independent

realizations sas many as tracersd of Lagrangian velocity time
series. Since our interest is on radial transport, we will only

examine the correlation and statistical properties of the ra-

dial component of the Lagrangian velocities. The shape of

their pdf will provide a quantitative estimate for the exponent

a s2, if Gaussian; ,2, otherwised. The self-similarity expo-
nent H will then give a quantitative measure of the degree of

correlation s1 /a, for uncorrelated; ,1 /a, if anticorrelated;
.1 /a, if correlatedd.

Before proceeding to the next section, it only remains to

sketch upon the method used to determine H. We will use a

variation of the traditional rescaled-range method introduced

by Hurst to quantify correlation in Gaussian-distributed

series.
23
The original method consists on the construction of

the rescaled-range of the Lagrangian velocity time series,

Vi , i=1, . . . ,N, via

fR/Sgstd ;

max
1økøt

Wsk,td − min
1økøt

Wsk,td

ÎkV2lt − kVlt
2

. s14d

Here, Wsk ,td;oi=1
k Vi−kkVlt and k·lt represents the average

up to time t. When the signal is self-similar, fR /Sg,tH and

H is the self-similarity sor Hurstd exponent. The prescription
must however be changed for Lévy-distributed entries. In-

deed, since their variance is infinite, the denominator of the

rescaled-range scales with t and distorts the exponent, which
would no longer be the self-similarity exponent. The fix is

easy: We substitute the square-root of the variance by the

1 /sth power of any moment of order s.0, with s,a, since
these are all finite.

19

IV. ANALYSIS OF THE RESULTS

We proceed now to describe the results of applying the

method described in Sec. III to s,105d tracers advected by
the DTEM turbulence in four simulations with different

values of the subdominant diffusivity, D0=0, 3310−9,

1.5310−8, and 10−7, in a2Vis,1.23107 m2 /sd units. In or-
der to facilitate the interpretation of the results, we first char-

acterize the smallest sradiald length and time scales of the
turbulence. This is important because, in real physical sys-

tems, self-similarity cannot be expected to hold for arbitrary

small and large scales. In our case, it is limited from below

by the radial correlation length and the Lagrangian decorre-

lation time, and from above by the system radius and the

shortest of two times: the mean tracer confinement time and

the simulation duration. The range of scales over which self-

similarity may appear must lie between these limiting scales

and is usually referred to as the mesoscale.
24,25

In our simu-

lations, the mesoscale extends for a decade in the spatial

domain, whereas in the temporal domain it spans about two

decades.

A. Smallest meaningful turbulent scales

The smallest meaningful spatial scale of the turbulence

in the direction of interest si.e., radiald is given by the radial
correlation function of the fluctuating ion density,

Cu0,f0

rad sDd =
1

sñ
2 E drñisr,u0,f0dñisr + D,u0,f0d . s15d

Here, sñ
2
is the perturbed ion density variance; u0, f0 are

some prescribed poloidal and toroidal angles, and the radial

integral is carried out over the interval of interest: frin ,routg.
Figure 2sad shows the radial profiles of the fluctuating ion
density and Fig. 2sbd the corresponding correlation functions
for different directions in the f0=0 toroidal plane for the
D0=0 case. From the decay of these functions, we infer that

FIG. 2. sColor onlined sad Instantaneous radial fluctuating density profile
sD0=0 cased at f=0 plane for poloidal positions u=0, u=p /2, u=p, and

u=3p /2. sbd Radial autocorrelation functions of the four signals in sad.
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the radial coherence has a typical value of rd.0.01a, which
provides an estimate for the average radial eddy size.

The smallest meaningful temporal scale is given by the

Lagrangian decorrelation time, defined as the lapse of time

needed for the radial Lagrangian correlation function,

Cr
Lagst − t8d ; kVrfRstur0,t8d,tgVrfr0,t8gl , s16d

to go through zero for the first time. Here, Vr represents the

radial component of the tracer velocity. Even when Cr
Lag ap-

pears to depend not only on t− t8, but also on the initial

position r0, that dependence disappears if the turbulence is

approximately homogeneous. The Lagrangian decorrelation

times vary between 5 Dt sremember, Dt.1msd for the
D0=0 case, to 10 Dt for the largest diffusivity sD0=10

−7d.
Other temporal scales of interest are the zero-distance

Eulerian decorrelation time, the mean tracer confinement

time, and the simulation time. Values for all of them are

collected in Table II. The Eulerian time is computed, simi-

larly to what we did in the Lagrangian case, from the zero-

distance, radial Eulerian correlation function Cr
Eulst− t8d

;kVrfr0 , tgVrfr0 , t8gl, which also becomes independent of r0

after ensemble-averaging.

B. Determination of the fractional exponents
a and H via the Lagrangian method

First, we discuss the exponent a. Figure 3sad shows the
Lagrangian velocity pdfs sdotted linesd for all values of the
background diffusivity, together with the corresponding

Lévy fits sdashed linesd. The particle refilling procedure pre-
viously discussed has no other effect on the calculation than

improving the statistics. The deviation from Gaussianity is

strongest for D0=0 supper paneld, in which a,0.98. A
gradual transition from nonlocality sa,2d to Gaussianity
sa=2d is apparent as the subdominant diffusivity increases
ssee also Table IIId. Note also that the Gaussian character is
not fully exhibited even at the largest diffusivity value exam-

ined, since a,1.73 still provides a better fit to the data than
a Gaussian, at least in a chi-square sense.

Regarding the self-similarity exponent, H, Fig. 3sbd
shows its “instantaneous” value as a function of the time

lapse t for all values of D0. This instantaneous value is com-

puted using sH=tfR /Sg−1dfR /Sg /dtd, which is exact for a
perfectly self-similar process ssince then fR /Sg~tHd. As we
mentioned previously, self-similarity should be expected

only within the mesoscale range, represented in the plots by

vertical lines. The lower limit is s5–9d ms, consistent with
the Lagrangian decorrelation times. The upper limit is set by

the mean confinement time of the tracers, much shorter than

the simulation duration ssee Table IId. No correlation can be

maintained beyond this range since tracers leaving the region

are reallocated randomly within. For that reason, the upper

end of the mesoscale appears in the plots as a sudden drop of

the instantaneous H value towards 0.5, which is the uncorre-

lated value, beyond the upper limit. The only case in which

this drop is not clearly distinguished from the behavior

within the mesoscale is for the largest value of D0. As dis-

cussed in what follows, the dynamics are already almost dif-

fusive in that case, which means that almost no dynamical

difference exists between confined and relocated particle mo-

tion. Note also that the fact that particles keep their identity

after reallocation works to our advantage here as well, since

it improves the statistics of H over the mesoscale range with-

out compromising the validity of the method.

The mean value of H over the mesoscale reveals strong

superdiffusive transport sH,0.74.1 /2d in the case of ab-
sence of subdominant diffusion. This result, together with the

strongly non-Gaussianity sa,0.98,2d, is consistent with
the superdiffusive transport via correlated avalanches charac-

teristic of SOC-like dynamics which was previously reported

in Ref. 8 for simulations in similar conditions. However, note

that the current analysis surpasses the findings of that work,

in the sense that the quantitative values for the exponents

TABLE II. Basic time scales sin units of Dt,1 msd.

Time scale D0=0 D0=10
−7 a2Vi

Lagrangian decorrelation time 5 10

Eulerian decorrelation time 40 60

Confinement time 130 56

Simulation time 104 104

FIG. 3. sColor onlined sad Probability density functions of tracer Lagrangian
velocities for different values of the subdominant diffusivity D0 stop:
D0=0; second: D0=3310−9 a2Vi; third: D0=1.5310−8 a2Vi; bottom:

D0=10
−7a2Vid. Best sin a chi-square sensed Lévy fit is shown in dashed

black lines for all cases. sbd Hurst exponent of Lagrangian velocity series vs
elapsed time for the same cases as in sad. The mesoscale is marked by
arrows.

TABLE III. Values of a, self-similarity exponent H and b s;aHd obtained
from the Lagrangian method for different values of the background diffu-

sivity D0.

D0 s310−7 a2Vid a H b

0 0.9860.02 0.7460.09 0.7360.10

0.03 1.3960.02 0.6460.07 0.8960.11

0.15 1.5260.02 0.6260.06 0.9460.10

1 1.7360.02 0.5660.10 0.9760.18
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provide now, by means of Eq. s13d, effective radial transport
equations. As a curiosity, note also that the Lagrangian ve-

locity series is anticorrelated, since H,0.74,1 /as,1.02d,
in spite of yielding superdiffusive transport. This situation,

impossible for Gaussian-distributed statistics in which super-

diffusion necessarily requires positive correlation, is now

possible because of the presence of Lévy statistics.

As the subdominant diffusivity D0 increases from zero

we find that the self-similarity exponent H decreases. This,

combined with the fact that a also tends to the Gaussian

value means that transport, in spite of being still mostly car-

ried by turbulence sif an effective diffusivity is computed

using Dturb, G̃ /¹n,10−6, one order of magnitude larger
than the largest D0 usedd, approaches a more diffusivelike
behavior, again in consistence with the findings from Ref. 8.

But it is only at the largest D0 that such diffusivelike behav-

ior starts to become fully apparent. Indeed, for D0,10−7, we
find H.0.56 and a.1.73, which implies that H,1 /a
=0.58, the uncorrelated value. But for smaller diffusivities,

SOC-like features are sill dominating the dynamics. To

conclude, it is interesting to compare this value of the diffu-

sivity, which in physical units is D0,1.2 m2 /s, with the neo-

classical prediction for the parameters of the simulation,

Dneo,Î2eq2rs
2nei,5310−3 m2 /s, meaning that neoclassi-

cal diffusion is too weak to allow for a significative departure

from superdiffusion in our system, at least for the parameter

values used in our calculations.

C. Comparison with CTRW-based methods

In order to better appreciate the advantages of the La-

grangian method, we proceed now to estimate fractional

transport exponents using a more standard method based on

the old concept of continuous-time random walks,
26,27

popu-

larly referred to as CTRWs. The simplest CTRWs model the

transport of particles which are assumed to move from their

initial position by taking a step sor flightd D, with probability

psDd, after having waited for a lapse of time w, with prob-

ability cswd. The CTRW is then defined when the two pdfs,

psDd and cswd, are prescribed. It is then straightforward to
prove that, if p is a Gaussian law with variance s2 and c an
exponential with mean m, the motion of the density of walk-
ers nw is governed by the classical diffusive equation,

20

]nw

]t
= B

]2nw

]x2
, B ,

s2

m
. s17d

Note, however, that a finite variance s2 implies a finite

transport typical length l,Îs2, and that a finite mean

waiting-time m means that transport becomes essentially

Markovian for time lapses t@m. If one wants to include
non-Gaussian, non-Markovian transport in this context, one

needs to choose instead pdfs with infinite variances and/or

means. The central limit theorem
19
suggests again the use of

symmetric Lévy pdfs of index aP s0,2d for psDd. Also
within the nonsymmetric members of the Lévy family with

index less than 1, one can find appropriate one-sided pdfs

which decay as cswd,w−s1+bd with bP s0,1d and thus lack a

finite mean. With these choices, the density of tracers can be

lengthily but straightforwardly shown to follow an effective

transport equation of the form
28,29

]nw

]t
= 0Dt

1−bFB8
]anw

]uxua
G . s18d

The analysis of the motion of an arbitrary population of

particles can then be done after assimilating the motion of

the particles of interest shere, the radial motion of tracersd to
a CTRW by coming up with a suitable definition of what

constitute a flight and a waiting-time. Then, one constructs

their pdfs and determines the two tail exponents a and b. If
a,2 and/or b,1, transport is nondiffusive. Note, however,

that there are important sif subtled differences between this
method and the Lagrangian one, in spite of the fact that Eqs.

s13d and s18d are formally identical after equating b=aH.

First, note that nw in Eq. s18d represents the actual density of
the tracers being used to expose the flow characteristics,

whilst n0 in Eq. s13d represents the ensemble-average of the
advected passive scalar. Secondly, bø1 in Eq. s18d due to
some restrictions imposed by the CTRW construction,

12,20

whilst aHø2 in Eq. s13d. The equations for 1,aH,2 are

related to the so-called fractional wave equation,
30
which are

essentially different from a CTRW.

Ignoring these subtleties, we proceed to apply the

CTRW method to the tracer data. An additional difficulty

appears at this point since, in the case of turbulent simula-

tions, tracers are never at rest. Some definition of what con-

stitutes a jump and a waiting time must be provided by the

user, and its appropriateness may affect the outcome of the

analysis. Here, we will use those proposed in Ref. 30, al-

though others have also been used in the literature.
14,15,31

They are based on the intuitive idea that tracers are “trapped”

while circulating around some eddy, and execute a jump

FIG. 4. sColor onlined sad Probability density functions of flights for
different values of the subdominant diffusivity D0 stop: D0=0; second:

D0=3310−9 a2Vi; third: D0=1.5310−8 a2Vi; bottom: D0=10
−7 a2Vid. Best

sin a chi-square sensed Lévy fit is shown in dashed black lines for all cases.
sbd Probability density function of waiting times for the same values. Best
power-law/exponential fit is shown in dotted/dashed black lines for all cases.
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when they move radially over more than one eddy. In terms

of the radial component of their Lagrangian velocity, it

should then be expected that the radial velocity would stay

small sand varying sign rapidlyd while trapped, and become
large swith a well defined signd while jumping. Then, it is
sufficient to choose an appropriate threshold value, and de-

fine the flight as the radial distance moved while the velocity

stays over that value; similarly, a waiting time is defined as

the time that the velocity stays below the threshold.
32 sFor

completeness, we have also tried another usual definition for

flights: The radial distance moved while velocity maintains

its sign
31
which, at least in our case, yields a very similar

value for the a-exponent.d
Results are shown in Fig. 4. Frame sad shows the pdfs of

the flights for all diffusivities, together with the best symmet-

ric Lévy fits in dashed lines. Frame sbd shows the pdfs of the
waiting times, together with best power-law fits. In contrast

to the results from the Lagrangian method, a large distortion

is apparent in the tails of all pdfs. This is due in part to

subsampling problems associated with the system finite-size,

and in part to the definitions used. For instance, in the case of

the flights, particles leaving the computational box from po-

sitions near to the center cannot perform flights bigger than

half the total radial size of the computational box s0.27ad,
but these flights can be performed by particles closer to the

boundaries sat least, with one signd. This situation translates
into a subsampling of the tails, and thus all Lévy fits have

been done considering only values up to 60.15a. The

waiting-times also exhibit strong distortions, that appear as

an exponential tail at large values. Although the central part

can still be used to estimate b sexcept for the largest diffu-
sivityd, the method is clearly far from satisfactory.

The values of a and b obtained with the CTRW method

have been collected in Table IV, together with the value of

the self-similarity exponent computed using H=b /a. In spite
of the difficulties mentioned sand the subtle differences of
interpretation discussed previouslyd, the results are consistent
with the values of a and H sand the derived exponent
b=aHd obtained in the previous section with the Lagrangian
method ssee Table IIId. But we feel that the advantages and
cleanliness of the Lagrangian method in the context of tur-

bulence, especially in superdiffusive cases in which tracers

stay confined for short times, are apparent. It should be noted

that this is not a limitation of the CTRW methods themselves

and that, in cases in which the limited system size is not so

important si.e., subdiffusive transportd, they should perform
similarly well.

V. CONCLUSIONS

In this paper we have analyzed numerical simulations of

DTEM plasma turbulence in cylindrical geometry, in the

presence of an additional subdominant diffusive channel, in

order to study the persistence of SOC-like features in the

dynamics as a function of the subdominant diffusion. The

variations in the nature of radial transport have been deter-

mined by characterizing the changes in the statistical and

correlation properties of the radial components of the flow

velocity along the characteristics of the flow for various sub-

dominant diffusivity values. We have shown that this method

provides a robust way to estimate fractional transport expo-

nents in the context of numerical plasma turbulence, with

multiple advantages with respect to other methods already

existent in the literature.
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