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Abstract

In this work, a study has been made of the effect of the adhesive layer thickness on the efficiency of

alumina/aluminium armours. Full-scale tests were made shooting armour piercing projectile against panels

thick enough to arrest the projectile and also close to the ballistic limit. The adhesive layer, of different

thickness, was of the toughened epoxy resin. The fire tests revealed the influence of thickness on the

response of the lightweight protection. Numerical simulations were performed to analyse the experimental

results. The anaysis showed an optimum adhesive layer thickness for the best performance of the

lightweight protection considered.
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1. Introduction

The protection of solids against high velocity impacts (above 500m/s) has been studied

intensively in the last decades. The use of ballistic projectiles with cores of greater hardness called

for more efficient armours, introducing new materials and new protection systems. This
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development has been remarkable in lightweight armours in which weight is a key factor if the

target is mobile (vehicles, aircraft, security corps). The fuel cost of civil or military vehicles and

planes increases if heavy protective panels are added to the structure; the mobility of security and

defence corps decreases if the personnel wear heavy jackets or helmets. Dual hardness panels have

shown improved efficiency over monolithic metallic armours [1] since the hard layer, which firstly

receives the impact, serves to erode the core of the projectile, while the softer layer absorbs its

kinetic energy. Foremost among the various types of dual hardness armours are those with tiles of

advanced ceramic as the hard layer and aluminium alloys or steel as the backing plate; the ceramic

tiles being bonded to the rear plate by an adhesive layer (Fig. 1). Fibre-reinforced polymers could

also be used for the rear plate for better efficiency, but metal have the double advantage of being

cheaper than fibre laminates and of serving the structural as well as the protective function. On

comparing the weight of conventional steel armour plating (Rolled Homogeneous Armour of 60

Rockwell C hardness) with that of ceramic armours, it is found that the latter are up to 65%

lighter if carbides, nitrides or borides are used as the hard layer (Fig. 2), but the higher cost of

these ceramics counter-balances the use of alumina for armour applications, except for personal

protection or in the design of systems in which the weight is of prime importance.

The behaviour of ceramic/metal panels against impact may be determined by deterministic or

by probabilistic techniques [2]. In the former, numerical codes or simplified engineering models

are used to simulate the impact problem. In the other approach, experimental data can provide a

probability of perforation curve (Fig. 3) of which each region is related to one of the situations

depicted in Fig. 4. In this Fig. ‘‘A’’ corresponds to projectile arrest, ‘‘C’’ to target perforation and

‘‘B’’ to the range of impact velocities at which perforation is probable. The critical impact velocity

at which the probability of perforation is P% is known as ballistic limit vP.

projectile

ceramic tile

rear plate

adhesive layer

Fig. 1. Layout of a ceramic lightweight armour.
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Some workers have shown the influence of the adhesive layer in the ballistic behaviour of the

armour when perforation takes place. Full-scale fire tests performed by Marshall [3] evidenced

that the residual velocity of the projectile after perforation may be influenced by the adhesive type

that joins the ceramic to the rear plate. James [4] studied the influence of the mechanical

impedance of the adhesive on the behaviour of the armour. A more detailed study is found in [5]

in which the effect of the type and of the thickness of the adhesive layer are considered for add-on

armours, which diminish the kinetic energy of the projectile before it impacts on the main armour.
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Fig. 2. Areal density needed to arrest 7.62 AP projectile at 800m/s vs. armour cost [11].
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Fig. 3. Probability of perforation vs. impact velocity.
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However, this effect must also be studied in the other two regions; in some applications, such as

personnel armouring, the degree of protection must be complete and no penetration must occur;

even the projection of debris to the rear side or an excessive deflection of the panel must be

avoided. The effect of the adhesive layer on the velocity below which no perforation occurs, is also

of great interest.

Here we study the effect of the adhesive thickness on the efficiency of alumina/aluminium

armours in regions ‘‘A’’ (projectile arrest) and ‘‘B’’ (ballistic limit). Ballistic tests and numerical

simulations allowed a description of the interaction between ceramic tile and metallic backing

plate trough this polymeric layer and revealed the existence of an optimum value in the adhesive

layer thickness for the best performance of the lightweight protection.

2. Experimental tests

A set of fire tests were carried out with Morgan Matroc 98% purity alumina tiles bonded to the

aluminium 2017-T6 backing plate with a Hysol EA-9361 toughened epoxy resin. Two different

armour configurations were analyzed; their geometry was selected to give similar values of areal

density with different alumina and aluminium thicknesses in order to get performances just below

or above perforation conditions (Table 1). The ceramic tiles, of 100� 100mm2 in configuration I

and 51� 51mm2 in configuration II, were enclosed in a frame of SAE 4130 steel to reproduce a

tile-array configuration.

For each type of configuration, three different thicknesses of adhesive were applied: 0.1, 0.5 and

1.1mm. The armours were impacted using a 7.62 AP projectile with a 5.9 g tungsten carbide core

and length=diameter ¼ 3:6 (Fig. 5) launched at 940m/s. Twenty four valid tests were carried out,

i.e., four tests of each configuration and thickness of the adhesive layer, considering valid those in

which the projectile impacted correctly at the center of the target.

After the test the deformation of the metallic plate was measured. Detached from the ceramic,

the plate was cut transversally with a diamond thread at low speed to avoid mechanical damage.

Each cross section (Fig. 6) was photographed with a high-resolution camera and the images were

digitalized to obtain the average profile for each configuration and for each adhesive thickness.

(B) (C)(A)

v = 0 v = 0

v
residual

Fig. 4. Different final situations after impact: Arrest (A), Ballistic Limit (B) and Perforation (C).
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3. Numerical simulation

For the numerical simulation we used the commercial finite difference computer code

AUTODYN-2D [6], specifically developed for problems involving high strain rates. A Lagrangian

mesh with axial symmetry was used for all the solids; projectile, ceramic tile, adhesive layer and

backing plate.

3.1. Material modelling

Different strength models and state equations were used for the materials of the solids involved

in the impact process. For the aluminium and the epoxy resin AUTODYN-2D material libraries

were used, while the mechanical behaviour of tungsten carbide and alumina were described

through a user subroutine.

Fig. 5. 7.62 AP projectile and its core.

Table 1

Armour configurations considered

Configuration Al thickness (mm) A12O3 thickness (mm) Areal density (kg/m2)

I 6.0 12.0 61.1

II 12.0 8.3 63.4
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3.1.1. Aluminium

For the 2017-T6 aluminium back-plate, the Steinberg Guinan strength model [7] was used.

Often adopted for ductile metallic solids subjected to high strain rates, this model assumes that the

shear modulus G rises with pressure and diminishes with temperature according to the expression:

G ¼ G0 1þ
G0

p

G0

� �

p

k1=2
þ

G0
T

G0

� �

ðT T0Þ

� �

, (1)

where G0 and T0 are the reference shear modulus and temperature, G0
p and G0

T are material

constants (G0
T being negative), p is the pressure, T the temperature, and k the compression r/r0.

This model also considers the variation of the yield stress Y with pressure, temperature and

effective plastic strain ep according to:

Y ¼ Y 0 1þ
Y 0

p

Y 0

� �

p

k1=2
þ

G0
T

G0

� �

ðT T0Þð1þ bepÞn
� �

, (2)

and subjected to the following restriction:

Y 0ð1þ bepÞnpYmax, (3)

where Y0 is the reference yield stress and Y 0
p, b and n are material constants. For this material, a

Mie Gruneisen equation of state was adopted, relating pressure, specific volume v ¼ 1=r and the

internal energy e:

p ¼ prðvÞ þ
G

v
½e erðvÞ�, (4)

where G is the Gruneisen gamma defined as

G ¼
G0

k
, (5)

G0 being a reference value, and pr and er are pressure and energy along the Hugoniot, which is

used as the reference curve. Assuming a linear relationship between shock wave velocity U and

Fig. 6. Cross section of the aluminium backing plate after impact.
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particle velocity up such as

U ¼ c0 þ S up, (6)

where c0 is the sound speed velocity, and S is a material constant; the expression for the Hugoniot

pressure and energy are given by

prðvÞ ¼
c20r0ð1 r0vÞ

ð1þ Sðr0v 1ÞÞ2
, (7)

erðvÞ ¼
c20ðr0v 1Þ

2ð1þ Sðr0v 1ÞÞ2
. (8)

Table 2 shows the parameters adopted for the aluminium.

3.1.2. Epoxy resin

For the Hysol EA-9361 epoxy adhesive the Mie Gruneisen equation of state was used.

Due to its low strength, as compared with that of the other materials, the resin was considered as a

fluid resisting high pressures. Table 2 shows the parameters adopted for the epoxy.

3.1.3. Alumina and tungsten carbide

For both kind of materials, the same constitutive model was used with different parameters.

The damage model proposed by Cortés et al. [8] was adopted for both the alumina and the

tungsten carbide. This model associates the degree of ceramic fragmentation with a damage

variable Z affecting the yield stress according to the equation:

Y ¼ ð1 ZÞY i þ ZY c, (9)

Table 2

Aluminium and epoxy parameters for the Steinberg–Guinan model and the Mie–Gruneisen EOS

Material parameter Aluminium 2017-T6 Epoxy Hysol EA 9361

r0 (kg/m
3) 2785 1186

Y0 (MPa) 290 —

G0 (GPa) 28 —

Ymax (MPa) 420 —

b (MPa) 125

n 0.1 —

G0
T (MPa/K) ÿ17.6 —

G0
p 1.8 —

Y 0
p 1.89� 10ÿ2 —

G0 2 1.13

c0 (m/s) 5328 2730

S 1.338 1.49
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where Yi takes into account the strength of the intact fraction trough a Drucker Prager yield

criterion:

Y i ¼ Apþ B, (10)

A and B being material constants.

The term Yc of equation accounts for the fragmented fraction which behaves as a frictional

medium according to the Coulomb law:

Y c ¼ mp, (11)

where m is the internal friction coefficient.

The evolution of the damage parameter-within the range [0,1]-is specified by the relation:

_Z ¼ _Z0ðp0 pÞ if pop0;

_Z ¼ 0 if pXp0;

(

(12)

where p0 is the threshold pressure for damage growth and Z0 is a material constant.

A linear equation of state was adopted for these material in the form:

p ¼ K
r

r0
1

� �

, (13)

K being the bulk modulus of the ceramic material, r its density and r0 its reference density.

Table 3 shows the parameters adopted for these ceramic materials.

3.2. Erosion criteria

One of the most important aspects in the numerical simulation of ballistic impacts is the erosion

criteria for the materials. This not only drives the removal of distorted zones of the mesh but also

allows a simulation of target erosion. Here the instantaneous effective geometric strain ēcrit was

adopted as the erosion parameter. Since the critical value of this strain greatly affects the

simulation, it was previously tuned for each material by comparing experimental and numerical

results of different Depth of Penetration tests. Eight preliminary impacts were performed onto

10� 10� 10 cm3 aluminium blocks with and without an 8.3mm thick ceramic tile bonded on it

Table 3

Alumina and tungsten carbide parameters for the Cortes et al. model [8]

Material parameter Alumina 98% purity Tungsten carbide

r0 (kg/m
3) 3740 15000

K (GPa) 228 500

G (GPa) 150 257

_Z0 (Paÿ1) 0.0025 0.00025

p0 (MPa) ÿ100 ÿ2500

m 0.5 0.5

A (MPa) 446.7 2200

B 2.7 1.6
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with a 0.4mm adhesive layer. All these materials, and the projectile, were those used for the

experimental work. The penetration data were measured with an ultrasonic device. Experimental

mean values plus and minus standard deviation for the reference penetration (uncovered

block) and for the residual penetration (covered block) were respectively 42.071.0mm and

20.070.5mm. The critical values of ēcrit (Table 4) were fixed to fit the penetration depth on the

metallic block.

3.3. Grids

A Lagrangian axisymmetric mesh of around 10,000 nodes was used for all the solids: projectile,

ceramic tile, adhesive layer and backing plate. Of each configuration, 12 different adhesive

thickness were studied, from 0.1 to 1.1mm with an increment of 0.1mm. Mesh density was refined

close to the symmetry axis.

4. Results

From both the experimental test and the numerical simulations it was clear that in

configuration I, the armour produced projectile arrest (region A of Fig. 3) for all the thicknesses

of adhesive. Configuration II showed cases of arrest and also of perforation. For a better

understanding of the influence of the adhesive thickness, the following variables were analysed:

Shear strain in the adhesive layer.

Damage in the ceramic tile.

Aluminium backing plate deformation.

Remaining armour thickness (when projectile arrest).

Projectile residual velocity (when perforation).

For an analysis of these variables by numerical simulation, the nodes shown in Fig. 7 were

considered.

4.1. Shear strain in the adhesive layer

In the course of penetration, ceramic fragments were dispersed radially from the path of the

projectile, producing shear strains grz (see Fig. 7 for axes orientation) in the material up to

Table 4

Critical values for the erosion criteria

Material ecrit

Aluminium 1

Epoxy 1.5

Alumina 3

Tungsten carbide 4
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fracture. The effect of the thickness of the adhesive on the strain rate is expressed by

_grz ¼
vc vb

ha
, (14)

where vc and vb are the radial velocities at the points of the ceramic and backing plate in contact

with the adhesive layer, and ha the adhesive layer thickness, so low values of ha lead mean higher

shear strain rates. Figs. 8 and 9 show the temporal evolution of this deformation at a distance of

5.4mm from the axis of symmetry for the two configurations alumina/aluminium. The thinner

layers of adhesive were seen to induce larger shear strains followed by premature failure and easy

removal of the ceramic tile. This was confirmed experimentally (Fig. 10): in most of the armours

with the thinnest layer of adhesive the ceramic tile was completely removed after impact, whereas
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Fig. 7. Position of the nodes choose for the measurement of the analysed variables.

10



some pieces remained attached to the backing plate when the thicker layer was used. This could be

of importance in later impacts, affecting the multi-hit capability of the armour.

4.2. Damage in the ceramic tile

One of the most important stages of the impact process in terms of efficiency of the ceramic

tile is the initial phase immediately after contact with the projectile [9,10]. During the first
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Fig. 9. Shear strain time history in the adhesive for different adhesive layer thicknesses for configuration II.

Fig. 10. Comparison of the remaining ceramic tile after impact for an epoxy adhesive layer of thicknesses of 0.1mm

(left) and 1.1mm (right).

11



microseconds of the impact event, conical cracks propagate from the border of the contact zone.

Fragmentation of the ceramic at the rear of the tile begins when the elastic compression wave has

travelled through the whole thickness; when this wave reaches the ceramic/adhesive interface,

bending of the tile generates circumferential tensile stresses and radial cracks propagate

backwards (Fig. 11). Thus, this fragmentation process is prevented when a stiff layer is placed

behind the ceramic tile [5]. The duration, t*, of this process [10] may be calculated from

t� ¼
6hc

uc
, (15)

in which hc stands for the thickness of the tile and uc the speed of propagation of the elastic waves.

In our analysis, the order of magnitude of t* is a microsecond. Figs. 12 and 13 illustrate the

temporal evolution of damage in the rear of the ceramic tile along the axis of symmetry in the two

alumina/aluminium configurations. Fragmentation is notably influenced by the thickness of the

adhesive in the first microseconds, the more so in the thickest layers. Bending of the rear face of

the ceramic tile, which causes its radial cracking, is lesser with thinner layers of adhesive because

Fig. 11. Ceramic fragmentation process.
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the more rigid metal plate is closer to the tile. In fact, damage is hardly perceptible when the layer

of resin is 0.1mm. This lesser damage in the ceramic tile at the initial stage of fragmentation

checks the penetration for the projectile and raises the degree of protection.

4.3. Aluminium backing plate deformation

The efficiency of the metallic plate may be estimated from the degree of its plastic deformation

after impact. This is a notable mechanism of the absorption of the kinetic energy of the projectile

during penetration: the larger the area affected and the greater the distortion of the rear panel, the

greater the dissipation of energy. The fire test of configuration I showed that the deformation of
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the backing plate increases with the thickness of the adhesive (see the curves in Fig. 14), and the

same trend is apparent in the result of the simulations. The numerical analysis showed that with

thicker layers of adhesive, the energy of the projectile, distributed over a wider area of the

aluminium plate (Fig. 15), gives rise to a greater deformation. Hence this absorption of energy

improves the quality of protection. No similar analysis was possible for configuration II: so many

perforations were obtained that measurements of deformation were ruled out.

4.4. Remaining armour thickness and residual velocity of projectile

To establish a connection between the thickness of the adhesive layer and the efficacy of the

protection, a study must be made of the variables involved in the whole response to impact. The

Fig. 15. Influence of the adhesive layer thickness on the extension of the load transmission zone. Thin layer (left), thick

layer (right).
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numerical analysis of configuration I showed that the best protection is achieved with a thickness

of the adhesive of 0.3mm (Fig. 16). The same is true of the data of configuration II which has

examples of arrest and of penetration (Fig. 17). As mentioned above, the thickness of the adhesive

has a contrary effect on the efficacy of protection in terms of the variables ceramic damage and

backing plate deformation: a thin layer of resin hinders the fragmentation of the ceramic by

reduces the zone of the backing plate that helps to absorb energy. These opposing trends justify

the appearance of the optimum according to our observations.

5. Conclusions

The study of the influence of the adhesive layer thickness on the efficiency of lightweight

ceramic armours, analysed by experimental testing and numerical simulation, showed that the

efficacy of the armour is affected by three different effects related to the adhesive thickness: shear

stress on the adhesive decreases with a thick layer, avoiding its failure and holding the ceramic

material attached to the backing plate after impact, ceramic spalling is reduced with thin adhesive

layers that prevent bending of the hard tile and energy absorption by the backing plate is greater

with a thick layer, which facilitates load transfer from ceramic to metal. Therefore a variation of

the thickness of the adhesive layer affects the efficiency of the armour and a value of 0.3mm was

found optimum for every alumina/aluminium configuration considered.
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