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Abstract

This paper presents a numerical analysis of the expansion of a mild steel ring with of 50mm diameter, 1mm thickness

and a cross section of 1mm2. A hardening relation which takes into account strain, strain rate and temperature is proposed

to define precisely the thermoviscoplastic behaviour of the material considered in the study. As a second step, an algorithm

to integrate the thermoviscoplastic constitutive equations, including the hardening law, is implemented in the commercial

finite element code ABAQUS/Explicit via a user subroutine. Finally, this tool is used to simulate the problem of a ring

expanding radially in a broad range of strain rates, covering both low and high initial velocities (from 1 to 370m/s). The

aim is to analyse the effect of loading velocity on the number of fragments resulting from the multiple failure of the ring

and also the influence of the hardening behaviour of the material on the number of fragments and on the failure mode of

the ring, considering different values of the plastic strain hardening exponent n0. A simple failure criterion was used, based

on a critical value of the equivalent strain which depends on the hardening exponent. The numerical predictions, in perfect

agreement with the experimental observations, are compared with several analytical or numerical models used to solve the

same problem in other materials such as aluminium, steel or copper.
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1. Introduction

For experimental analysis of the dynamic behaviour of materials, several kinds of tests such as tension,

compression or shear may be used, although it is only the last one that allows to reach large deformations,

close to g � 1. Among non-conventional test which extends to large plastic strains at high strain rates, the most

known is that of ring expansion. Fig. 1a shows the failure strain of a steel with mechanical properties similar to

that used in this work (rn ¼ r=K ¼ 13:68 kgm 3MPa 1 with s ¼ K ē p
n

and K ¼ 570MPa), obtained by two

different dynamic loading methods. The failure strains reached with the ring expansion test seem to be higher

than those observed in dynamic tensile tests. Ductility increases monotonically with expansion velocity [1], the
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high ductility observed during ring expansion being generally related to inertial effects [1,4]. The experiment

consists of loading a ring of radius R at a roughly constant velocity V0 which varies from 50 to 300m/s. The

dynamic loading is procured by a magnetic field or by the use of explosives (Fig. 1b), the former providing a

more uniform impact velocity V0 in time. Several experimental set-ups have been proposed for these tests, the

first one by Niordson in 1965 [5]. Currently, the materials used in the experimental tests are aluminium [4,6,7]

or copper [6], and typical values of the strain rate reached during the experiments are within the range

103p_ep104 s 1. As stated above, the expansion process is used to determine the dynamic behaviour of the

material and specifically the number of fragments and the failure mode which appear at very high expansion

rates. After testing the ring, the fragments were recovered, counted and examined to establish the effect of

applied velocity V0 on the number of fragments.

Physical phenomena occuring during the test are complex, and the resulting fragmentation pattern is the

consequence of the competition between failure modes related to dynamic loading such as shear banding, and

those characteristic of static loading such as void growth, fracture nucleation and necking. In addition, during

the impulsive loading, elastic and plastic waves strongly interact with necking and fracture processes, so

numerical simulation of the expansion process would provide valuable complementary information about the

experimental procedure and a precise prediction of the number of fragments in terms of imposed radial

velocities and strain rates _e0 ¼ V 0=R. A 3D Finite Element simulation was used for the analysis of

dynamically loaded rings, focusing on mild steels since few results were available for this type of ductile

material (estaticfailure � 30% [8]). A precise constitutive relation [9] covering hardening, strain rate and temperature

sensitivity, validated for several strain rates and temperatures [8], was coupled to the commercial FE code

ABAQUS/Explicit through an original thermoviscoplastic algorithm proposed in [10]. A parametric study is

also given to analyse the effect of the hardening exponent on the number of fragments. The FE model is

compared with an analytical model proposed in [11], which uses a linear perturbation technique to capture the

dynamic necking, and that of a numerical approach which considers elements with a cohesive law to predict
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Fig. 1. (a) Evolution of the failure strain in dynamic loading, comparison between dynamic tensile test and ring expansion [1] and (b)

configuration of the loading conditions by explosive or by magnetic field in the ring expansion test [2,3].
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the failure of the ring [7]. The effect of the strain hardening exponent on the failure mode was also investigated

in view of the fact that, with low strain hardening, the Critical Impact Velocity (CIV) appears to change

radically the shape of the fragments, as was also observed in the perforation test [12].

2. Constitutive relation

To simulate the process of ring expansion, a reference material with well-known mechanical behaviour was

used: a mild steel ES, commonly used in the automotive industry. With an average grain size f � 16mm, it is

isotropic and shows strain rate and temperature sensitivity. The chemical composition is given in Table 1.

A number of tensile, double shear and perforation tests have been performed during the last decade to

characterise this material, with special attention to the precise reciprocity effects between the strain rate and

temperature T, the quantities defining the process of thermal activation [12,13], with tests over a broad range

of _e and T. The original constitutive relation applied in this paper is based in part on the theory of dislocations

[13], the evolution of microstructure being taken into account by one or two internal state variables sj (density

of dislocation and density of mobile dislocation), leading to a hardening relation which, in a general simplified

form, may be written as

s ¼ g½ēpðsjÞ; _̄e
p;T ; sj ; hð_̄e

p;TÞ�, (1)

where T is the absolute temperature and ē p the equivalent plastic strain. However, such a formulation is too

complicated to be implemented directly into FE codes, mainly due to the complexity of each equation, and the

difficulty of incorporating the large number of physical constants (around 20) to be determined, whereas

phenomenological approaches are better adapted to numerical analyses. To reduce the number of constants

and to facilitate the utilisation in a FE code, a semi phenomenological approach was proposed in [8,9,12]. This

set of constitutive relations encompasses strain hardening and strain rate and temperature sensitivity through

a lower number of constants, limited to eight, and this model with fewer constants allows to cover the same

tendencies as those predicted by the physical approach. In this formulation the stress of plastic flow is

presented in an additive form:

sðē p; _̄e p;TÞ ¼
EðTÞ

E0

½smðē
p; _̄e p;TÞ þ s � ð_̄e p;TÞ�, (2)

where sm and s* are, respectively, the internal and the effective stress component. The first term is directly

related to the strain hardening of the material and the second defines the contribution of thermal activation

(combination of temperature and strain rate). E(T) is of the Young’s modulus as a function of temperature;

this expression is based to some extent on physical considerations:

EðTÞ ¼ E0 1ÿ
T

Tm

exp y� 1ÿ
Tm

T

� �� �� �

, (3)

where E0 is the Young’s modulus at T ¼ 0K, y* is constant of the material and Tm is the melting temperature.

The explicit form proposed to define the two stress components is inspired by the physical approach [13 15]

via the theory of thermal activation. The components are given by the following expressions:

sm ¼ Bð_̄e p;TÞðe0 þ ē pÞnð
_̄e p;TÞ, (4)

s� ¼ s�0 1ÿD1

T

Tm

� �

log
_emax

_̄e p

� �� �m�

, (5)

Table 1

Chemical composition of mild steel ES

Mn Al Cr C Ni S Cu Si P N Ti

0.203% 0.054% 0.041% 0.03% 0.018% 0.011% 0.009% 0.009% 0.008% 0.0063% 0.002%
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where e0 is the strain characterising the yield stress, Bð_e;TÞ and nð_e;TÞ are respectively the modulus of

plasticity and the strain hardening exponent, _ec is the critical strain rate, experimentally obtained and typically

very low, m* is the coefficient that characterises the temperature and strain rate sensitivity, D1 is the material

constant, s�0 is the effective stress at T ¼ 0K and _emax is the maximum strain rate limiting the validity of the

model. /dS is the MacCauley brackets, /dS ¼ 0 if do0 in other cases /dS ¼ d.

The temperature increase due to adiabatic heating is defined by the following relation:

Tðē pÞ ¼ T0 þ
b

rCp

Z emax

ee

sdē p, (6)

where T0 is the initial temperature, r is the density of material, Cp is the specific heat at constant pressure

assumed constant during numerical simulation and b is the Quinney Taylor coefficient which defines the ratio

of the plastic work transformed into heat. Although this coefficient varies with the plastic deformation [16,17],

a constant value, equal to b ¼ 0:9, is assumed. The effect of temperature is precisely considered in this

hardening equation through a number of terms. This is of great importance, notably when high strain rates

arise in the material. In this kind of problem, adiabatic heating causes a large temperature increase that

changes the elastic and plastic wave speeds, both properties being related to the Young’s Modulus and to the

strain hardening. The temperature rise slows the propagation of the two waves, inducing, at large strain rates,

a trapping of the plastic wave and a localisation of deformation. Hence, the decrease of the Young’s Modulus

with temperature (Fig. 2a) is considered in the constitutive model through Eq. (3) and both the hardening

exponent and the modulus of plasticity in the internal stress account for thermal (and strain rate) effects

throughout the following expressions:

nð_̄e p;TÞ ¼ n0 1ÿD2

T

Tm

� �

log
_̄e p

_emin

� �� �

, (7)

Bð_̄e p;TÞ ¼ B0

T

Tm

log
_emax

_̄e p

� �� � n

, (8)

where n0 is the strain hardening exponent at T ¼ 0K, D2 is a constant, _emin and _emax are the minimum and

maximum strain rates assumed in the model, B0 is a constant and v is the temperature sensitivity. The

restriction imposed on the hardening exponent (nX0) to avoid negative values at high strain rates permits to

expose the plastic behaviour which appears during plastic deformation caused by the competition between

thermal softening and strain hardening (Fig. 2b).
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Fig. 2. (a) Evolution of the elastic property with temperature allowing a prediction of thermal softening during high strain rate by
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The transition from isothermal to adiabatic conditions for the ES mild steel was found experimentally at a

strain rate _etransitionp ¼ 10 s 1. This transition initiates the thermal softening phenomenon and reduces the strain

hardening exponent n ¼ q logs=q log ē pj_̄e p . The analytical results, in the form of sðē pÞ curves obtained by the

constitutive relation, are shown in Fig. 3 for different initial values of n0.

The effective stress s*, which defines the thermally activated component of the stress, is also strongly

affected by temperature (and strain rate). With the proposed hardening relation it is possible to define the high

strain rate sensitivity commonly observed during experimental characterisation of mild steel ES at strain rates

higher than 100 s 1 (Fig. 4).

As stated above, adiabatic heating plays an important role during dynamic loading, frequently triggering

plastic instabilities. But it also influences the mechanical behaviour of the material if the strain rate is not

constant during the loading process, a situation that appears in high-speed cutting or crashworthiness

applications. The proposed hardening equation accounts for this effect. As Fig. 5 shows, the adiabatic heating

induces a decrease of the strain hardening, whereas in the isothermal approach the hardening continues to

increase with plastic deformation (Fig. 5a). This difference is more patent if a delay appears at the onset of

dynamic loading: above a pre-plastic deformation of ē p ¼ 0:1, a jump in the strain rate is followed by a stress

increase beyond the curve corresponding to the purely adiabatic condition. Hence non-isothermal heating

reduces both stress level and rate of strain hardening.

Having shown the ability of the model to reproduce the behaviour of the material under adiabatic

conditions, it is interesting to highlight its capability to fit experimental data over a broad range of strain rates.

Fig. 6 shows how the strain rate sensitivity is well defined in a range of strain rates from 10 4 to 103 s 1 and

covering both isothermal and adiabatic conditions. The hardening equation also shows a high strain rate

sensitivity at strain rates above _̄e p4104 s 1, which is in agreement with the current experimental observations

for mild steels [10]. Thus, the constitutive relation allows a study of a number of dynamic load processes such

as perforation, shear, tension or crash box test. The model is suitable for metals with BCC structure, which

show an additive dependence on the flow stress. It also accounts for the large strain rate sensitivity observed in

BCC metals at very high strain rates, much higher than that of FCC metals exhibiting a lower movement of

screw dislocations. In addition, a complete optimisation algorithm has been developed to determine the
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unique optimal set of constants for each material [12]. To use the constitutive relation coupled to a simulation

tool, the following integration scheme was adopted.

2.1. Implicit integration algorithm

The relations presented, together with constitutive equations following the classical isotropic J2
hypoelastic–plastic theory, should be integrated through a stress update algorithm. To integrate the rate

equations into a large deformation finite element code, incremental objectivity is achieved by rewriting them in

a neutralised or corrotational configuration [18]. Thus, the complicated objective stress rate present in the

0

60

120

180

240

300

360

420

0 200 400 600 800 1000

Mild steel ES

E
ff

e
c
ti
v
e

 s
tr

e
s
s
, 

σ
 *

 (
M

P
a

)

Temperature, T (K)

1 1/s

10 1/s

100 1/s 1000 1/s

Fig. 4. Analytical prediction of the effect of strain rate on the effective stress.

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

Mild steel ES

To = 300 K

T
ru

e
 s

tr
e
s
s
, 

σ
 (

M
P

a
)

True strain, ε

0.001 1/s
Isothermal condition

10 1/s
Adiabatic conditionε = 0.15

ε = 0.2

ε = 0.3

ε = 0.05

10 1/s
Isothermal condition

0

100

200

300

400

500

600

700

0 0.2 0.4 0.6 0.8 1

Mild steel ES

To = 300 K

T
ru

e
 s

tr
e
s
s
, 

σ
 (
M

P
a
)

True strain, ε

0.001 1/s
Isothermal condition

1000 1/s
Adiabatic condition

ε = 0.05

ε = 0.15

ε = 0.2

ε = 0.3

(a) (b)

Fig. 5. Effect of adiabatic heating at high strain rates for different pre plastic deformation. Curves obtained from the hardening equation:

(a) from quasi static and isothermal conditions (from 10ÿ3 sÿ1) to adiabatic conditions (10 sÿ1) and (b) from quasi static and isothermal

conditions (10ÿ3 sÿ1) to adiabatic conditions (103 sÿ1).

6



elastic behaviour law can be computed as a simple time derivative. The rate equations defined above are

form-identical in the neutral configuration and a small deformation formulation could be used. To solve this

system of incremental equations, we used the algorithm proposed in [10]. Now follows a brief description of

the constitutive equations and of the algorithm within the frame of the neutralised configuration.

The yield condition is defined as follows:

f ðsij ; ē
p; _̄e p;TÞ ¼ s̄ÿ syðē

p; _̄e p;TÞ ¼ 0, (9)

where s̄ is the equivalent stress, sy is the yield stress defined by the constitutive equation previously described,

ē p is the equivalent plastic strain and _̄e
p
is the equivalent plastic strain rate:

_̄e p ¼
2

3
_e
p
ij : _e

p
ij

r

, (10)

ē p ¼

Z

_̄e p dt. (11)

Assuming additive decomposition of the deformation tensor (hypoelastic approach) the tensor of total

strain rate _eij is written as a sum of the elastic strain rate tensor _eeij, the plastic strain rate tensor _e
p
ij and the

thermal strain rate tensor _eTij . Elastic strains are related to stress through an isotropic hypoelastic law:

_sij ¼ Cijkl _e
e
kl , (12)

where Cijkl is the stiffness tensor.

The thermal strains tensor is defined as follows:

_eTij ¼ a _Tdij , (13)

where a is the coefficient of thermal expansion and dij is the unit matrix ðdij ¼ 1 if i ¼ jÞ

To define the plastic flow, the normality rule is used which relates plastic strain rate _e
p
ij to the stress after

_e
p
ij ¼

_l
qf

qsij
, (14)
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where _l is the rate plastic multiplier [42]. In addition, considering adiabatic heating, the temperature rate is

defined by the following relation:

_T ¼
b

rCp

sij _e
p
ij . (15)

In the standard Perzyna overstress models [19] , the consistency condition is not used, and excursions of

stress outside the yield surface are allowed [43]. Wang et al. [20] proposed the so-called ‘‘consistency

viscoplasticity models’’ to include rate effects in the consistency condition. In the proposed algorithm, the

consistency model is extended to integrate the thermoviscoplastic rate equations, via the equality of equivalent

stress and yield stress for updated values of plastic strain, plastic strain rate and temperature. In the frame of

the return-mapping algorithms, the consistency condition, Eq. (9), could be written in terms of the equivalent

plastic strain increment corresponding to a time step:

f ðDē pÞ ¼ 0. (16)

Linearising the consistency condition, the following equation is found which allows us to iteratively obtain

Dē p by iteration:

f ðkþ1Þ � f ðkÞ þ
qf

qsij
ÿde

p
ðkÞ2G

qf

qsij

�

�

�

�

ðkÞ

 !

þ
qf

qe p

�

�

�

�

ðkÞ

de
p
ðkÞ þ

qf

q_e p

�

�

�

�

ðkÞ

de
p
ðkÞ

Dt
þ

qf

qT

�

�

�

�

ðkÞ

b

rC p

de
p
ðkÞs

trial
nþ1 ÿ 6GDe

p
ðkÞde

p
ðkÞ

� �

¼ 0

(17)

where k is an iterative index. Solving this equation leads to a generalisation of the well-known radial return

method

d ē
p
ðkÞ ¼

f ðkÞ

3G ÿ qf
qē p

�

�

�

ðkÞ
ÿ 1

Dt
qf

q_̄e p

�

�

�

ðkÞ
ÿ qf

qT

�

�

�

ðkÞ

b
rCp

ðs̄trialnþ1 ÿ 6GDē
p
ðkÞÞ

(18)

The derivatives of the yield function in terms of ē p, _̄e p and T are easily obtained for the proposed hardening

model, since no discontinuities are present in the ranges _emino
_̄e po_emax and 0oToTm [21].

2.2. Analysis of ring expansion by simulation and analytical approach

The numerical analysis was performed using the Finite Element commercial code ABAQUS/Explicit. An

initial mesh with 300 8-node trilinear reduced integration brick elements including hourglass control (C3D8R

in ABAQUS notation [22]) was used to confirm the validity of both the constitutive relation and the algorithm

to simulate the expansion of a ring at very high velocities 1pV 0p500m=s and room initial temperature. The

inner radius of the ring is equal to R0 ¼ 16mm, with a thickness of t ¼ 1mm and a width of l ¼ 1mm (1mm2

square cross section), Fig. 7. Later on, we present a study of the influence of the mesh and of the ring

dimensions. The boundary condition is an imposed radial velocity V0 constant through time.

Propagation and rarefaction of the waves along the specimen causes a loss of deformation homogeneity and

the onset of a first neck. This induces a lack of radial symmetry and the development of secondary necks. No

geometrical or material imperfections were introduced [23] in the model since they could change the necking

problem [24,25], the numerical uncertainties through the integration process being enough to trigger

instability, as discussed below. The same approach no artificial imperfections used by the authors to

analyse the deformation localisation in dynamic tensile testing [8,26], revealed a change in the necking position

with the impact velocity and a localisation close to the impact side for pulling velocities beyond 100m/s due to

trapping of the plastic wave. Other workers had observed the same effect in rod or sheet steel specimens

[27–30,45].

To arrive at a division of the ring through the development of fragments after necking initiation, it is

necessary to consider a failure criterion. In dynamic tensile tests the failure strain of the specimen depends very

much on the loading velocity, as was observed experimentally by Wood [31] and confirmed by the present

authors with the numerical approach used in this work [8]. As shown in Fig. 8a, a sudden decrease of the

failure strain appears in tensile conditions above the CIV. This could be defined as the pulling velocity which

8



leads to the trapping of the plastic wave, which induces an instantaneous failure of the specimen close to the

loaded end. The CIV effect, which is related to wave propagation [31], is more significant in materials

presenting little hardening.

On the contrary, the failure strain evolution of a ring expanding at very high strain rate is completely

different to that of a tensile test. Fig. 8b shows, for different materials considered for ring expansion testing,

the values of strain at failure ec as a function of the applied velocity. The critical strain continuously increases

and rapidly reaches a plateau. So, a constant value of ec has been adopted to define the failure of the material

in the simulations performed in this analysis.

To determine the value of the strain at failure ec, which should be higher in ring expansion than in a tensile

test, the previous constitutive relation Eqs. (2)–(8) were used. It allows a calculation not only of the strain level

which defines complete failure:

qs

qe
¼ 0 ðec; failureÞ, (19a)

Fig. 7. Definition of reference geometry and mesh used during numerical simulations of ring expansion.
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but also the strain level corresponding to the loss of homogeneity (Considère criterion [32]):

qs

qe
¼ s ðeneck; lost of homogeneityÞ. (19b)

In ductile materials, such as mild steel (reference hardening exponent n0 ¼ 0:28), the failure strain ec is

higher than that at the initiation of necking eneck due to the delay caused by the localisation of plastic

deformation during loading. This can be observed in Figs. 9a and b, which plot critical strains for different

values of strain rate. At n0 ¼ 0:28, eneck quickly decreases with strain rate, remaining close to 0.1 in adiabatic

conditions, see Fig. 9b. Nevertheless, all the analytical predictions of ec in dynamic loading are ten times

greater ec ¼ 1. This value is very high as compared to the failure strain observed in tension, but it is in

agreement with the observations of several workers [3,7,33]. For the simulations, an arbitrary value ec ¼ 1:2
has been used, in agreement with Pandolfi et al. [7] where 1:2pecp1:3. Figs. 9a and b also show the effect of

the hardening exponent on the value of the critical strains; a small hardening n0p0:1 strongly reduces the

failure strain whereas ductility increases with large hardening. The failure criterion used in this work is close to

Drucker criterion in [34,35] since the failure appears when _s_ep0 (unstable material). Since _e is always positive

in the local element, the condition to satisfy the previous condition is necessary to obtain _sp0 which

corresponds to / qs=qe ¼ 0. A secondary effect of n0 on the onset and evolution of the necking process comes

through the modification of the plastic wave speed, which is directly connected to the hardening and the
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density of material, Cp ¼ ðr 1qs=qeÞ1=2 (Fig. A5). Thus we can expect an increase of the number of fragments

N, with a decrease of n0 or an increase of r. This assumption is discussed in the next section.

In ductile materials, the failure criterion here described reproduces the process of necking, depicted in

Fig. 10, leading to the element removal when the neck is completely developed. Since ec is fairly high, the

growth of each neck after loss of homogeneity remains relatively stable until ē p � 1. In brittle materials,

several authors [7,36,37,46] used cohesive elements featuring a force-opening curve with a sudden force

decrease. This weak behaviour could also be characterised by the proposed failure criterion, using a critical

strain ec which decreases as the hardening exponent diminishes. In fact, when the variable time is eliminated

from the curves of Fig. 10, the resultant stress strain relation is close to that defined through the cohesive law.

To introduce a dependence of the failure strain ec on the hardening coefficient n0, the following relation was

proposed:

efailure ¼ ln0, (20)

l being a constant close to l ¼ 4 defined by the reference values n0 ¼ 0:28 and efailure ¼ 1:2 (Table 2). This

approach served to analyse the effect of hardening on the number of fragments. The ratio ec=n0 ¼ 4 is assumed

to be constant. A similar value (between 3 and 4) was used by Triantafyllidis and Waldenmyer [3].

Once the failure criterion was defined, the simulation of ring expansion was made using the above-

mentioned hardening equation to analyse the number of fragments that appear on increasing the imposed

radial velocity speed V0. This study is compared with the results obtained by other workers from different

materials: several experimental data; an analytical approach for 6061 aluminium based on the linear

perturbation technique [11] and numerical simulations for 1100 aluminium using cohesive elements [7]. The

constitutive relation used in the analytical approach is a power law s ¼ K ē p
n
_̄e p

m

with no strain rate sensitivity

(K ¼ 183MPa, n ¼ 0:223 and m ¼ 5� 10 7 corresponding to 6061 aluminium), whereas the one considered in

the numerical study (referenced in [38]) is more sophisticated and takes into account strain, strain rate and

temperature:

s̄ ¼ sy 1ÿ
T ÿ T0

Tm ÿ T0

� �a� �

1þ
ē p

e
p
0

� �1=n

1þ
_̄e p

_e
p
0

� �� �1=m

. (21)

Table 2

Failure strain used during numerical simulations with different hardening exponents

n0 ec l

0.1 0.40 4

0.28 1.20 4.28

0.35 1.4 4

0.4 1.6 4
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tc εc = εfailure
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 ∂ε
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∂σ
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Fig. 10. Definition of the failure criterion used during numerical simulations in terms of strain level and stress.
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Using the parameters given in [7] for a 1100 aluminium, this equation gives a marked strain rate sensitivity

at _̄e p41000 s 1. The constants of the power law were estimated in aluminium ðK ¼ 133:22MPa; n ¼

0:038 and m ¼ 0:01Þ and in mild steel (Fig. 3) for comparison in terms of the hardening exponent value, which

is the parameter with most influence on the number of fragments N.

The important parameter is also the definition of the behaviour at very high strain rate, i.e. a high stress

increase of a strain level imposed (Figs. A2 and A5).

Using the previous experimental results obtained for different kinds of aluminium, it is possible to analyse

experimentally some of the effects. In this case, the curve in Fig. 11 shows that at very high imposed velocity,

the number of fragments will be higher for a small hardening coefficient. The strain rate transition in these two

materials from athermal to thermal activation (described by a quick stress increase) is similar and equal to

_e41000 s 1. This value corresponds to the strain rate reached during ring expansion since 2000p_ep6250 s 1

for the ring radii considered in this work ð16pR0p50mmÞ. Our numerical simulations studied only the

hardening effect, coupled with strain rate sensitivity and adiabatic heating. In brittle failure at high applied

velocity, this effect will be lower since the plastic deformation increase in the failure zone will be close to zero.

2.2.1. Numerical results for the reference geometry and mesh

The ring geometry, modelled with the mesh shown in Fig. 7, was submitted to radial velocities V0 ranging

from 1 to 500m/s. In order to reach the final number of fragments in each simulation, enough time should be

allowed. The inertial effect acting on the initial fragments frequently induces bending, failure, and separation

of new pieces, particularly at velocities V 0o10m=s. Undoubtedly, these latter fragments are not a

consequence of plastic instabilities but they should be considered in the comparison with experimental results.

The results of the simulations, some of them depicted in Fig. 12a h, clearly show a marked influence of the

imposed velocity on the number of fragments, which increase from one (for the lowest velocity V0 ¼ 1m=s) to
more than 30. Plotting N versus V0 (Fig. 13) and regarding the evolution of N, three regions appear: a first one

with a small increase at 1pV 0p100m=s, a linear increase at 100pV 0p300m=s and a quick increase at

V04300m=s. Using the same mesh density (two elements through thickness and one element through width)

and constitutive equations, the expansion of three additional geometries was also simulated (Table A2) to

analyse the geometric effects. Fig. 13 shows that the geometry has little effect.
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Fig. 12. Evolution of the number of fragments with the applied velocity.
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A comparison of the numerical simulations for mild steel with the experimental results obtained in a

34CrNiMo6 steel [2] is shown in Fig. 13. Since the adiabatic strain rate transition is similar in both metals

(close to _eadia � 100 s 1), there is a good agreement in the evolution of the number of fragments with the

velocity, tending to infinite (large number) at V04300m=s.
Not only are the number of fragments correctly predicted by simulations but also the failure mode. With

large ductility the process of fragmentation is linked to necking. Thus, in our approach, the number of

fragments is not affected by the failure criterion since the critical strain is relatively large in comparison with

the level of strain corresponding to the loss of homogeneity, as discussed previously. In brittle material the

failure appears quickly during the numerical simulations with no necking. Fig. 14 illustrates the good

agreement with the failure mode obtained in experimental results in both ductile [6] and brittle materials [33].

Concerning the effect of n0, we observed an increase of N if n0 decreases (Table A2 or Fig. 15a). However,

the number of fragments N in ductile material is limited and does not reach infinity value because of the

characteristic necking length lneck, Fig. 14. Thus, it is possible to define a minimum value using an initial radius

R0 and a characteristic length. For example, at 2 or 3mm, and R0 ¼ 16mm, the minimum number of

fragments at high applied velocity varies between 34pNminp50 increasing with R and decreasing with lneck.

The N increase for low value of n0 is due to the definition of a brittle material behaviour, with a sudden

instability ðec � n0Þ and a small neck length l̄neck ! 0. The failure mode appears without necking (Fig. A1)

leading to a rapid increase of the number of fragments.

As stated previously, differences in the number of fragments were analysed, not only in relation to the

applied velocity but also in relation to two material properties: hardening and density. The effect of the first

property was an increase of N if n0 decreased, Fig. 15a. Since hardening is connected to the CIV effect, a low

value of the hardening exponent easily induces the trapping of the plastic wave and of plastic deformation on

the internal radius. Moreover, according to the failure model adopted for the simulation, brittle behaviour of

the material is then expected and the separation of fragments develops rapidly without necking, Fig. 14.

Similar results were found by Mercier and Molinari [39] in a complete study using the linear perturbation

technique. Regarding the effect of density on the number of fragments N, it was also observed that its increase

leads to a rise of N, as anticipated previously, Fig. 15b. Again, the phenomenon is directly related to the plastic

wave propagation since density, like hardening, directly affects the plastic wave speed Cp ¼ ðr 1qs=qeÞ1=2.
Also, the numerical simulation predicted brittle failure/necking at large/small values of the density. Similar
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observations had been observed during perforation tests of this material [12] and correlated to CIV using

experimental results published by Wood [31]. In relation to the strain-rate exponent (m* in Eq. (5)), no effect

on the number of fragments was found. Fig. A2 shows that this exponent primarily affects the stress level but

not the strain rate transition.

Now our numerical results are compared with several experimental results and analytical predictions

obtained in materials such as aluminium, Fig. 16. In the first comparison only the shape of the curve is

analysed, and a good agreement is observed between our numerical results and experimental results obtained

for aluminium and steel, notably in the number of fragments, this number again increasing at very high

applied velocity.

In the following curves, the comparison is focused only on steel. Our numerical results obtained for a mild

steel ES are compared with some experimental results obtained with a 34CrNiMo6 steel [2] and with others

obtained by the linear perturbation analysis proposed by Mercier and Molinari [11] for different values of

necking strain, Fig. 17. Our numerical predictions agree well with the experimental results. The disagreement

with the linear perturbation approach appears only at very high imposed velocity since the number of

Fig. 14. Effect of n0 on the failure mode at V 0 100m=s.Comparison with experimental observation in ductile and brittle materials [6,33].
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fragments seems to stay constant. The main reason is that neither the strain rate sensitivity (m-0) nor the

thermal effect are introduced, which leads to a plateau of stress. In our case, the temperature increase at very

high strain rate changes the value of n (Eq. (7)), inducing an additional effect. However, the number of

fragments is relatively close to that in the experiments at V 0p250m=s. The third reason, is certainly connected

to the omission of elastic and plastic wave propagation which induces a quick increase of the number of

fragments N if the CIV is reached or when the first neck appears. For example, in this mild steel ES, the CIV

was estimated at about 100m/s in tensile state [8].
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To validate the previous results, an analysis was made of the mesh dependence. The results reported in the

next section are only to validate the numerical results. Three complementary meshes were used with triangular

elements as reported in [7] (Fig. 18).

2.2.2. Mesh dependence solution

In order to check the influence of the type of element and the mesh refinement on the results of the

numerical simulations, three additional models were completed with 6-node triangular prisms (C3D6 in

ABAQUS notation [22]) following the work of Pandolfi et al. [7]. Fig. 19 presents these meshes, with their

elements/nodes equal to 208/416, 601/906 and 1316/1488. The cubic element model was of 300 elements and

900 nodes.

The results obtained with the three meshes were similar: sudden increase of N at above velocities

V 0X300m=s, so the numerical simulations obtained with the previous mesh (Fig. 7) may be generalised to

explain the physical pattern which appears during ring expansion. The only difference was in the failure mode

which is commonly closer to shear failure in the triangular element, due to the shape of the mesh. This type of

element seems to be better able to define the ring expansion of brittle material which appears by shear or by

crack but not by necking. With this type of element the shape of crack propagation is more realistic.

Using relatively simple numerical simulations of the process of fragmentation, a good prediction was

obtained of the number of fragments with the applied velocity. Some physical parameters responsible for this

effect also showed their influence.

Fig. 18. (a) Fine mesh 1 used in numerical simulations; (b) fine mesh 2 and (c) super fine mesh 3.
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3. Conclusion

Using a thermoviscoplastic model that coupled thermal and viscosity effects with an original integration

algorithm, the problem of ring expansion was examined. Fracture was also analysed using a critical strain level

based on the CIV and the Considère criterion. The numerical calculations were made with ABAQUS/Explicit

in adiabatic conditions, including elastic and plastic wave propagation. This process governs the rise of the

number of fragments at very high applied velocity since the slower plastic wave propagation during the

process induces unloading zones with reflected elastic waves that provoke local necking. However, the necking

instability is essentially geometrical in nature at low and intermediate applied velocity.

The numerical analysis has also shown the effect of physical parameters such as hardening, material density

and sensitivity to strain rate, and also the geometric effects in the internal and external radius. Only n0, r and

the transition of strain rate sensitivity seem to affect the prediction of the number of fragments. The effect of

temperature was reflected in the hardening coefficient which decreases during plastic deformation when the

plastic work is converted into heat. In fact, the observations are similar to those of the instability study [40] in

which hardening stabilises the initiation of instability, in contrast to the softening effect of temperature.

The proposed model confirms the validity of the constitutive model and the algorithm used previously to

model processes such as dynamic tension, perforation, shear and buckling. Complementary to the effort made

on the development sophisticated elements [7] or mesh refinement [7,34], it is clear that a strong point of an

appropriate simulation is the constitutive relation used to define the thermoviscoplastic behaviour of the

material [34,41].
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Appendix A

Constant used to define the thermoviscoplastic behaviour of our mild steel and definition of the number of

fragment with applied velocity, Tables A1 and A2.
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Table A1

Constants used during numerical simulations

Our constitutive relation

B0 591.6 MPa Modulus of plasticity

n0 0.285 1 Strain hardening exponent

e0 1.8� 10ÿ2 1 Initial strain

D1 0.48 1 Material constant

V 0.2 1 Temperature sensitivity

s0
* 406.3 MPa Effective stress at 0K

M 2.8 1 Rate strain sensitivity

D2 0.19 1 Material constant

E0 212 GPa Modulus of elasticity at 0K

y* 0.59 1 Homologous temperature

Tm 1600 K Melting point temperature

_emax 107 sÿ1 Saturation strain rate

_emin 10ÿ5 sÿ1 Minimal strain rate

Cp 470 J kgÿ1Kÿ1 Specific heat

b 0.9 1 Quinney Taylor’s coefficient

r 7800 Kgmÿ3 Mass density

a 10ÿ5 Kÿ1 Thermal expansion

Johnson Cook model Case 1

A 57.27 MPa Material constant

B 479.93 MPa Material constant

N 0.316 1 Strain hardening exponent

C 0.0362 1 Material constant

_e0 10ÿ3 sÿ1 Minimal strain rate

m 0.28 1 Temperature sensitivity

Troom 300 K Room temperature

Johnson Cook model Case 2

A 57.27 MPa Material constant

B 479.93 MPa Material constant

n 0.316 1 Strain hardening exponent

C 0 1 Material constant

_e0 10ÿ3 sÿ1 Minimal strain rate

m 0.28 1 Temperature sensitivity

Troom 300 K Room temperature

Table A2

Effect of the geometry on the number of fragments at different applied velocities

Vo (m/s) n0 R0 R1 N n0 R0 R1 N n0 R0 R1 N n0 R0 R1 N

1 0.28 16 17 1 0.28 20 21 1 0.28 32 34 1 0.28 50 51 1

10 2 2 1 2

20 2 NC NC NC

30 NC NC 4 NC

50 4 NC 5 NC

100 5 4 8 7

150 9 10 8 9

170 NC NC NC NC

180 9 NC NC NC

200 9 12 10 11

250 12 16 12 NC

270 14 NC NC NC

300 15 17 12 16

350 17 20 19 NC

352 17 NC NC NC
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Table A2 (continued )

Vo (m/s) n0 R0 R1 N n0 R0 R1 N n0 R0 R1 N n0 R0 R1 N

400 20 20 18 NC

450 31 23 26 23

500 NC NC NC NC

NC, not calculated.
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Fig. A2. Effect of the coefficient of strain rate sensitivity m* on the flow stress.
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Effect of the characteristic length, Fig. 14, on the number of fragment and effect of the constant m*,

Eq. (5), on the definition of the strain rate sensitivity. A large value of m* allows to define the strain

rate sensitivity of steel with high yield stress or Aluminium alloys (no strain rate sensitivity until _e � 103 s 1

(Figs. A1–A6).
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Fig. A3. Temperature increase during ring expansion at different applied velocities.
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Fig. A6. Effect of applied velocity on the number of fragments N [2,44].
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Temperature increase during ring expansion for different applied velocity inducing a decrease of the

hardening nð_e;TÞ during loading, Fig. A4.
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