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In this article we consider systems of parallel hard superellipsoids, which can be viewed as a possi-
ble interpolation between ellipsoids of revolution and cylinders. Superellipsoids are characterized by
an aspect ratio and an exponent a (shape parameter) which takes care of the geometry, with a =1
corresponding to ellipsoids of revolution, while o = oo is the limit of cylinders. It is well known that,
while hard parallel cylinders exhibit nematic, smectic, and solid phases, hard parallel ellipsoids do
not stabilize the smectic phase, the nematic phase transforming directly into a solid as density is
increased. We use computer simulation to find evidence that for o > a., where a. is a critical value
which the simulations estimate to be in the interval 1.2-1.3, the smectic phase is stabilized. This is
surprisingly close to the ellipsoidal case. In addition, we use a density-functional approach, based on
the Parsons—Lee approximation, to describe smectic and columnar ordering. In combination with a
free—volume theory for the crystalline phase, a theoretical phase diagram is predicted. While some
qualitative features, such as the enhancement of smectic stability for increasing «, and the probable
absence of a stable columnar phase, are correct, the precise location of coexistence densities are

quantitatively incorrect.

PACS numbers: 61.30.Cz,64.70.mf
I. INTRODUCTION

Hard interaction models have played an important role
in the understanding of the nature and structure of sim-
ple liquids and crystals made of particles with spherical
symmetry. For anisotropic particles, the hard ellipsoid
(HE) and hard-spherocylinder (HSC) models have played
a role similar to that of the hard-sphere model (HS) in
simple liquids, though these models are not so univer-
sal as the HS model. In particular, HE and HSC fluids
exhibit an isotropic-nematic phase transition but, while
the HSC fluid shows a stable smectic phase, all evidence
to date suggests that the HE fluid does nott. Clearly,
the formation of the smectic phase must be the result of
delicate packing effects directly related to particle shape.
This feature of the HE fluid is a clear disadvantage in the
formulation of perturbation theories for liquid crystals?.

The problem of why hard ellipsoids do not get sta-
bilised into a layered smectic structure is in intriguing
one. The properties of a perfectly aligned fluid of ellip-
soids can be mapped onto those of hard spheres, and the
HS fluid does not exhibit phases with order intermediate
between the fluid and the crystal. On top of that, orienta-
tional freedom probably plays against smectic formation.
Recent simulation work on parallel hard ellipsoids aug-
mented by an isotropic square well have shown that, in
this system, smectic layers can be stabilised?; however, in
view of the rather artificial model potential used, the re-
sult probably does not reflect any essentially interesting

underlying property of ellipsoids.

The physical reason for the absence of smectic order in
the HE fluid obviously lies in the geometrical properties
of an ellipsoid. Wen and Meyer? addressed the general
problem of smectic formation in fluids of parallel hard
rods. They provided an explanation in terms of the en-
tropy gain involved in the increased packing efficiency in
smectic layers, which more than outweighs the entropy
loss associated with the onset of layering with respect
to the nematic phase. This efficiency is very much re-
duced in ellipsoids due to particle shape, since ellipsoids
arranged in a layer leave too much void space. Alter-
natively one may think that increasing packing, which
would involve filling this space, entails interlocking be-
tween the layers, which promotes crystalline order but
discourages formation of the smectic phase.

A question that can be asked to understand this prob-
lem from a different perspective is the following: if we
perturb the shape of an ellipsoid in the direction of a
spherocylinder or a cylinder, both of which exhibit smec-
tic phases®, for which particle shape does smectic sta-
bility set in? The answer to this question may provide
some further insight into the relation between particle
geometry and smectic stability. As a bonus, it would
help formulate more useful hard—body models that can
be used in perturbation theories.

Only a few previous studies have addressed this is-
sue. Of particular relevance to our study is that of
Evans®, who used an Onsager second-virial coefficient
approximation to investigate smectic formation in flu-
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ids made of hard ellipsoids, hard spherocylinders and
hard ellipocylinders, a particle with a shape somehow
intermediate between that of the first two. The ellip-
soids, both parallel and with unconstrained orientations,
did not form a smectic phase before the crystal, while
the other particles did at some particular density prior
to crystallization. It was concluded that ellipsoids are
pathological in that they do not form a smectic phase®.

In the present paper we again address this problem by
studying a continuum of particle shapes, in the limit of
parallel particles, but this time interpolating between the
ellipsoid and the cylinder by means of a model, the hard
superellipsoid (HSE) of revolution, containing an expo-
nent « that can be varied continuously. Monte Carlo
(MC) simulations are used to analyse the stability of the
smectic phase and other phases with partial positional or-
der (i.e. columnar phase) of the parallel model (PHSE),
in the region of geometries close to the ellipsoid, and
an approximate phase diagram as a function of « is ob-
tained. The columnar phase is not stable in the phase
diagram. MC simulations of freely rotating cut spheres
have shown that the columnar phase can be stabilised
for some range of aspect ratios’. However simulations of
parallel cylinders do not give conclusive evidence for the
presence of columnar symmetry in the phase diagram?,
and a recent fundamental measure theory (FMT) for par-
allel cylinders® also rules out the columnar phase as a
thermodynamically stable phase. However, one of the
conclusions of the present paper is that the smectic phase
can be stabilised with respect to the nematic phase for
some type of PHSE particles. Therefore, in the approxi-
mation of parallel particles, ellipsoids do not seem to be
pathological; rather it is a continuum of particle shapes,
close to the ellipsoidal, that do not exhibit smectic order.
To complement these studies, a density—functional the-
ory based on the Parsons—Lee approach? was used to in-
vestigate the relative stability of the smectic phase with
respect to other phases with lower symmetry. For the
crystal phase, a free-—volume approximation is used. The
main conclusion that can be drawn is that the Parsons—
Lee approximation, in combination with free—volume the-
ory, only gives a qualitative picture of the relative stabil-
ity of the phases. The precise location of the transition
points are incorrect. Other features, such as the fact that
the columnar phase is not stable, appear to be correctly
described. Resort to other, more sophisticated theories,
e.g. of the FMT type, would be needed to obtain a bet-
ter description. However, although the initial framework
of the FMT for general convex particles was initially de-
veloped by Rosenfeld!?, its application only works for
isotropic fluids, as it was shown in Ref.2!. For some sim-
ple geometries (such as parallelepipedic) the FMT can
be formulated from first principles with restricted par-
ticle orientations!?2. The generalisation of the FMT to
geometries like the ones described here seems to be a
rather difficult task.

II. PARTICLE MODEL

We consider parallel particles with symmetry of revo-
lution (axially symmetric about the z axis). The superel-
lipsoid results by making a superellipse in the z—z plane
revolve around the z axis, with the equation
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a and b are the semi-lengths of the particle in the xy
plane and along the z axis, respectively, and « is the
shape exponent. This equation defines a particle with
a geometry interpolating between the ellipsoid (o = 1)
and the cylinder (o = 00). Note that the PHSE model is
different from that used by Evans®, whose model inter-
polates between an ellipsoid and a spherocylinder. Fig.
[ depicts a few bodies (with a = b, which could be called
superspheres) for different values of a. Thermodynamic
and structural properties of such a fluid of parallel par-
ticles scale trivially with particle elongation, so that it is
sufficient to consider the case a = b = 0¢/2, with og the
particle breadth.
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Figure 1: Superellipsoids with a = b (superspheres) for values
of a equal to 1, 1.5, 2 and 5 (from left to right).

The stable low—density phase of the PHSE model is a
nematic phase (all particles oriented along the z axis and
with their centers of mass disordered positionally). At
high densities we expect a solid phase with some crys-
talline structure (the question of which structure is sta-
bilised will be addressed later). At intermediate densities
we could, in principle, expect different phases with partial
order (smectic or columnar) to get stabilised, depending
on the value of a.

III. THEORETICAL TOOLS

To explore the phase behaviour of the PHSE model we
used constant—pressure MC simulation. We have simu-
lated systems of N = 1-2 x 103 particles, with o = 1.0~
2.0. Both compression runs from the low-density nematic
phase and expansion runs from a high-density crystalline
structure were conducted. From these, equations of state
are obtained, and the different phases may be identified.
Relative stability between nematic, smectic and crystal
phases (some of which, as we will see, undergo a first—
order phase transition) cannot be ascertained, since no
attempt was made at computing absolute free energies.



Structural quantities, such as density profiles along the
ordering direction, p(z), and radial distribution functions
parallel and perpendicular to this direction, g(z) and
g1 (R), were also calculated. All this information allows
us to get a picture of the trends in phase behaviour that
can be expected as the exponent « is varied.

To complement simulation results, a number of the-
oretical analyses have been carried out. In the high-
density region, the classical free—volume theory has been
implemented. The free—volume free—energy density is
written as

v
BF = —Nlog ( 123) 2)
where N is the number of particles, v... the free volume
available to a particle when the others are kept fixed in
their lattice positions, 8 = 1/kT and A is the thermal
wavelength. For parallel hard cylinders this is an an-
alytical function of density. In the general case this is
probably not true, and we have computed vg.. by MC
integration. In the low—density region, a simple virial
expansion for the excess free energy,

BFex| =——/dr/drp )f(r—1)
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has been considered to calculate the nematic—smectic
bifurcation linet3, with an aim to comparing with the
Parson—Lee approach (see later). In the above expansion
f(r) is the Mayer function of two parallel PHSE, and p(r)
the local density distribution. This expansion is meaning-
ful only for the low—density nematic phase and expected
to rapidly fail as the system density is increased, but at
least it may give an indication as to whether the system
is prone to developing smectic ordering and, if so, how
this tendency depends on particle shape. Specifically, we
have applied a bifurcation analysis based on the above
expansion (presented in Appendix A), using second— and
third—order terms in p(r). At higher density, i.e. in re-
gions where the smectic or columnar phases may be sta-
ble, an alternative is to use a Parsons—Lee (PL) scheme?.
In the PL approach, an approximate resummation of the
virial series is performed, using the exact second virial
coefficient. That is, we take

BHS
BPHSE n BPHSE (4)
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where BIS are hard-sphere virial coefficients. With this
scaling of the PHSE virial coefficients, the excess free
energy writes

BFunlp] = 58] ol / dr / ' p(x

where Uyg(n) is the excess free energy per particle of
a HS fluid of the same packing fraction n as our fluid

)f(r=1'), (5)

of PHSE particles. The packing fraction is given by
N = povoy, with po the mean density and vy the parti-

cle volume, given by
3
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where B(z,y) is the beta function. For Upg(n) we use the
Carnahan-Starling expression, ¥us(n) = (4 — 3n)n/(1 —
n)2. In the minimisations of the total free energy,

= [~ /drp {1og A3] — 1}
+ Fexlpl, (7)

where Fex[p] is given by @) or (H), the density profile p(r)
is parametrised in some convenient way. For the smectic
and columnar phases at low densities we use a truncated
Fourier expansion. For high densities a Gaussian param-
eterization is used. Details of these calculations are given
in Appendix B.

Uo(a) =

IV. RESULTS

In this section we use the packing fraction 1 as a con-
venient measure of density. For a given density, since vy
is an increasing function of «, n increases slightly from
the ellipsoid to the cylinder. In Fig. 2 MC data for
reduced presure pug/kT versus packing fraction 7, for
all the particle shapes considered, are shown (from now
on we only show simulation results for the systems with
N ~ 103 particles; selected checks with twice as many
particles did not give any quantitative differences). In all
cases the low—density phase is a nematic (N phase), since
all particles are parallel, whereas the system crystallises
at high density (K phase). We begin by discussing the
high—density region, where the crystal phase is the stable
phase.

As expected, compression runs starting from the low—
density nematic phase (open squares in Fig. [2)) ultimately
create a defected crystal, via a first-order phase tran-
sition (this appears as a clear density discontinuity in
all cases). Expansion runs from a perfect high—density
crystal (filled squares in Fig. [2) give a solid branch
with defect—free structures in most instances. However,
in small systems defects consisting of columns of parti-
cles that have moved along the director by a fraction of
the unit cell are created. This may give the impression
that averaged structures correspond to a stable columnar
phase. A related situation was found in the simulations of
Veerman and Frenkel on parallel hard cylinders®, where
a strong dependence of columnar stability on system size
was found.

To investigate this, we prepared initial configurations
with columnar symmetry at high density; in expansion
runs, the system always stayed as a columnar phase (tri-
angles in Fig. [). Therefore, for large system sizes,
systems with columnar and crystalline structures look
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Figure 2: Equation of state pressure—packing fraction for var-
ious values of shape parameter o (shown in each panel), as
obtained from constant—pressure Monte Carlo simulations.
Open squares: compression runs starting from nematic phase.
Filled squares: expansion runs starting from crystalline phase
with ABC symmetry. Triangles: expansion runs starting from
columnar symmetry. Identification of phases is made with
symbols (N, S and K for nematic, smectic and crystal, re-
spectively).

as though they are actually mechanically stable, and
there seems to be a large free—energy barrier between
the two structures. However, compressions from the ne-
matic never give rise to configurations containing par-
tial columnar order (which would seem easier to gener-
ate than full three-dimensional order). Without explicit
calculation of free energies, no definite conclusion can be
reached on the relative stabilities of columnar and crys-
talline phases; however, given that no clear evidence for
columnar ordering has been found in simulations of par-
allel hard cylinders®, and that FMT calculations on the
same system predict that columnar order is not thermo-
dynamically stable®, we believe it unlikely that a colum-
nar phase may get stabilised in PHSE.

As the crystal is expanded to lower density the sys-
tem looses translational order (either totally or partially),
and becomes fluid via a discontinuity in density. Fig.
Blc) shows the radial distribution functions along and
perpendicular to the director, gj(z) and g1 (R), in the
crystal phase for the case a = 1.5. Both present a high
degree of structure, as expected in a crystalline phase.
Therefore all evidence suggests that there is a first—order
fluid—crystal (i.e. freezing) transition.

The question on the nature of the crystalline phase
and how the system is prepared in the expansion runs
deserves some comments. In fact the symmetry of the
structure seems to change at some value of a. The generic
crystal structure consists of stacked triangular layers, ei-
ther in phase (AAA structure) or out of phase. The latter
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Figure 3: Radial distribution functions along (continuous
line) and perpendicular to (dashed line) the director, g (z)
and g1 (R), for the PHSE fluid with « = 1.5; (a) n = 0.38;
(b) n =0.43; and (c) n = 0.53.

may have ABCA..., ABAB..., or random—stacking struc-
tures, all of these being compact structures (i.e. they
share the same value of the close-packing density). A pri-
ori one could consider the AAA, ABC and ABAB struc-
tures to be the most stable candidates, reflecting simple
hexagonal—, face-centred—cubic— and hexagonal—close—
packed-like symmetries, respectively (the final structures
obtained by the simulations do not have these exact sym-
metries, since the intralayer unit—cell distance does not
exactly correspond to the interlayer spacing expected in
these structures; obviously this is a consequence of the
asymmetry of the particles along and perpendicular to
their symmetry axes). The situation, for lack of a more
detailed analysis based on free—energy estimations is, as
usual, uncertain (cf. the old debate on the hard-sphere
crystalt?), presumably due to very small free—energy dif-
ferences. For freely rotating ellipsoids a recent work has
shown the existence of a different crystal packing consist-
ing of a simple monoclinic lattice with a basis of two el-
lipsoids with different orientations*® (of course this struc-
ture cannot occur in our parallel-particle model). In our
case of parallel PHSE particles with o < 1.5, simula-
tions with between 8 to 12 layers along the z direction
may give structures with any type of stacking depending
on how the initial configuration is prepared (in the limit
a = 1, we know that ABC stacking is preferredi?). How-
ever, in the limit o — oo, the AAA structure is clearly
more stable, and it is expected that somewhere in the



interval 1.5 < o < oo there is a change in the nature of
the crystal phase. Some preliminary simulations indicate
that the critical value may be between 1.5 and 2.0 (e.g. a
crystal with a = 1.5, when prepared with AAA stacking,
shows a strong tendency to evolve towards random stack-
ing, whereas the system with o« = 2.0, when prepared
with ABC stacking, evolves towards AAA stacking), but
free—volume theory gives a rather higher value (see later).

Now the central question of the present paper is
whether there exists an intermediate, stable fluid phase
between the low—density nematic and the high—density
crystal phase. In the limit « = 1 (parallel ellipsoids)
ones knows for certain that there are no phases with par-
tial (smectic or columnar) order!. By contrast, in the
opposite limit « = oo (parallel cylinders) previous MC
simulations® indicate that the nematic phase changes to
a smectic phase via a continuous transition. Clearly in
our interaction model, which interpolates between these
two limits, there must be a value of a beyond which
the smectic phase becomes stable. Actually this is the
case. In Fig. [ cases where a smectic phase has been
identified are indicated by a corresponding label (S for
smectic). Evidence for the S phase comes from density
distributions (see later), as the pressure shows no sign
of a N-S transition, pointing to a continuous transition.
We should note that recent simulations on freely-rotating
hard spherocylinders in the limit of infinite aspect ratio
have shown that the nematic-smectic transition is of first
orderi®. Thus, we can conclude that the parallel align-
ment constraint is responsible for the second-order nature
of the N-S transition of hard cylinders, and this could
also be the case in our model. By increasing the pressure
further (compression run), the smectic phase transforms
into a defected crystal phase via a first—order phase tran-
sition.

As mentioned above, our simulations indicate that a
smectic phase stabilises for finite «, i.e. in the range
a. < a < oo, where a, is some critical value. Indi-
rect evidence comes from computation of density pro-
files, smectic order parameter (not shown) and correla-
tion functions. In Fig. M the evolution of the density
profile p(z), as density is increased, is shown for the case
« = 1.5. The onset of smectic order is clearly identified
by the smooth appearance of density peaks. The density
profiles exhibit a clear stratification at a packing fraction
Nxns =~ 0.43. That the high—density phase in question is
smectic, and not crystalline, can be concluded from the
radial distribution functions along and perpendicular to
the director, shown in Figs. B(a) and (b), which point to
in—plane fluid-like correlations in the intermediate phase.

Analysis of the case a = 1.2, in contrast, suggests no
evidence for a smectic phase: the nematic fluid freezes
directly into a crystal (see Fig. [)), similarly to the case
of ellipsoids. The intermediate case o = 1.3, however,
does show signs of smectic stability. >From all the in-
formation collected for the various systems analysed, we
estimate the critical value of a associated with the on-
set of stability of the smectic phase to be in the range
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Figure 4: Density profiles p(z) for the PHSE fluid with o =
1.5; (a) n = 0.39; (b) n = 0.43; and (c) n = 0.45.

o =1.2-1.3.

Fig. Bl summarises our results in the form of a phase
diagram of packing fraction 7 vs. inverse exponent o~ !.
For o 2 1.2 the smectic phase (S in the graph) is sta-
ble. Simulation data for the limit & = oo (cylinders,
filled triangles and squares) are taken from simulations
by Veerman and Frenkel®, and are essentially exact as
they were inferred from simulations incorporating free-
energy calculations. Data for hard spheres (filled circles)
are taken from Hoover and Reel”. In the other cases
transition densities for the nematic—smectic, nematic—
crystal and smectic—crystal transitions are only approxi-
mate. As already mentioned, the first (indicated by open
circles) is of second order. The others (open triangles
and squares) are of first-order, with a wide density gap;
since no free energies were computed, we only plot, us-
ing vertical bars, approximate limits of metastability of
the two phases involved (the symbols are only the aver-
age packing—fraction values inferred from the estimated
limits of metastability).

A second aim of our study is to rationalise the findings
from computer simulation using theoretical models. As
mentioned in Sec. III, we have considered three theoreti-
cal models: a low—density virial expansion up to third or-
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Figure 5: Phase diagram in the plane packing fraction n—
inverse shape parameter o~ *. Continuous lines: coexistence
boundaries for the smectic—solid transition from PL theory
for the smectic and FV theory for the solid; shaded region:
two—phase region from previous approximations; dashed line:
nematic-smectic spinodal from PL theory; dotted: nematic-
smectic spinodal from V3 theory; filled triangles: simula-
tion results for coexistence packing fractions of smectic—
solid transition in parallel cylinders (@ = oo) from Veer-
man and Frenkel®, and for liquid-solid coexistence in hard
spheres*? (a = 1); filled square: nematic—smectic spinodal
from computer simulation of Veerman and Frenkel®; open
circles: our simulation estimates for nematic—smectic spin-
odal; open squares: our simulation estimates for first—order
smectic—solid transition; open triangles: our simulation esti-
mates for first—order nematic—solid transition. In the latter
two cases the vertical bars only indicate limits of metasta-
bility. Labels indicate stable phases; N, nematic; S, smectic;
ABC and AAA, crystalline solids with corresponding symme-
tries. Vertical dot—dashed line: approximate limit of degen-
eracy of ABC and AAA structures within F'V theory.

der in density for the low—density nematic phase (V3), a
resummed virial expansion of the Parsons—Lee type (PL)
for intermediate densities, and free-volume (FV) theory
for the high—density crystal. The V3 theory was initially
used to analyse possible bifurcations of the nematic phase
to smectic or columnar phasest. The qualitative results
as far as the continuous nematic—smectic transition is
concerned are the same for both V3 and PL theories;
they only differ quantitatively, as can be seen in Fig. Bl
For large values of a~! (the only available from simula-
tions), the MC data are bracketed by the two theories,
but the trend that the packing fraction at bifurcation
increases with a~! in this regime is captured correctly.
This increase is basically due to the decrease in particle
volume as cylinders change to ellipsoids. The differences
between the V3 and PL predictions can be traced back
to their different treatment of correlations: V3 includes
three-body correlations exactly, but the remaining terms
are neglected, while PL only includes the exact two—-body

correlations but approximately resums the higher—order
density correlations.

The PL theory, together with the FV theory for the
crystal, were used to compute the nematic—solid and
smectic—solid transitions. These are first-order transi-
tions, with a wide density gap. The two—phase region
merges with the nematic—smectic spinodal coming from
lower densities at a critical end—point located at o, ~ 1.2;
this value approximately agrees with that inferred from
the simulations. For lower values of a there is direct coex-
istence between nematic and solid phases, and the theory
also seems to agree with simulations in the limit of hard
spheres (this agreement is fortuitous as it is well known
that the PL theory is inappropriate to model spatial cor-
relations in the hard-sphere fluid; the weighted-density
theory® or a theory based on FMT2? are known to be
more adequate). In the opposite limit (cylinders), how-
ever, there is a big discrepancy with simulation, not only
in the location of the nematic—smectic spinodal and the
smectic—solid phase transition, but also in the density gap
of the latter which is significantly overestimated as com-
pared to the MC simulations. In this limit the weighted-
density type theories, developed for a HSC fluid2?, are
obviously more appropriate to predict the spatial corre-
lations. The PL and FV theories were also used to com-
pute the smectic—columnar and columnar—solid transi-
tions. These results are not plotted in the phase diagram
since the region of columnar stability is always preempted
by crystallization directly from the smectic phase; this
feature also agrees with simulations which, as mentioned
before, do not seem to give conclusive evidence for stable
columnar ordering in this model.
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Figure 6: Equation of state for the PHSE system with a =
1.5. Symbols: MC results; continuous line: nematic branch as
obtained from CS approximation; dashed line: smectic branch
from PL theory; dotted line: solid branch according to FV
theory.

The quality of the different approximations, in the den-
sity range where each of them was used, can be checked
by examining the equation of state (EOS). This is done



in Fig. [ which refers to the case « = 1.5. The fig-
ure also contains the MC simulation data. The PL the-
ory, which reduces to the Carnahan—Starling approxima-
tion for the nematic phase (continuous line), represents
correctly the EOS up to packing fractions of n ~ 0.4,
just before the transition to the smectic phase occurs
(nns =~ 0.43). The PL theory is not as accurate for the
smectic phase (dashed line), since it overestimates the
pressure. The nematic—smectic transition density (bifur-
cation point) is reasonably well reproduced. In the solid
branch (dotted line), the equation of state is accurately
represented (in fact better as the density approaches the
close—packing limit), as expected, but the smectic—solid
transition is not correctly reproduced (value of pressure,
location of transition densities and density gap), due to
the defects in the smectic and solid equations of state.

V. CONCLUSIONS

We can conclude from our study that there is clear
evidence that in the PHSE fluid smecticity begins to be
favoured entropically beyond a critical value of the expo-
nent o, ~ 1.2-1.3; this is surprisingly close to the value
corresponding to ellipsoids (o = 1). Therefore, the fluid
of parallel hard ellipsoids does not seem to be patholog-
ical or special in not exhibiting a stable smectic phase;
rather, there is a family of particle shapes beyond the
ellipsoid that do not possess stable smectic phases, al-
though the extent of the family in parameter space is
small.

The explanation for this behaviour lies, of course, in
the packing efficiency of these hard—particle fluids. The
formation of the smectic phase is the result of a deli-
cate packing effect directly related to particle shape. In
the HE fluid, the ellipsoidal geometry creates a large ten-
dency for particles to interlock at their ends, which favors
the stabilisation of the crystal phase with detriment to
the smectic phase. This effect is not relevant in the case
of HSC and sets in at some intermediate particle shape.

Our simulation results seem to indicate that the colum-
nar phase is not stable for this family of parallel rods.
But free-energy computations will be needed to settle
this question. However, in common with the case of par-
allel cylinders, it is not likely that the columnar phase
will be stable in our model. All these conclusions corre-
spond to the model of parallel particles. Analysis should
be extended to consider particles with free orientational
degrees of freedom. Given the high degree of orienta-
tional order of the smectic phases, we do no think the
conclusions drawn from our study will be changed sub-
stantially.

As a byproduct of our analysis, we have assessed the
validity of various theoretical approximations by compar-
ison with the simulation results. A combination of free—
volume and PL theories qualitatively predicts the correct
phase stability, but the agreement is far from quantita-
tive, except in the parameter region close to the spheres;

in particular, the value of shape anisotropy beyond which
smectic stability sets in is quite in agreement with sim-
ulations. Use of the PL theory to consistently describe
all phases is not adequate, since this theory progressively
degrades as order builds up in the system: therefore, the
agreement is probably fortuitous.

An obvious avenue to improve the theoretical treat-
ment is to use a more sophisticated theory, which is still
to be formulated. A promising approach is FMT, which
one hopes would correctly predict the relative stability of
non-uniform phases; this belief is based on FMT calcula-
tions applied to the particular case of parallel hard cylin-
ders, as shown in Ref2. However, the extension of this
theory to superellipsoidal geometry would demand the
use of strong approximations, in the line of Ref.2! where
only the first terms of the excess free-energy asymptotic
expansion with respect to k~! (with x the particle as-
pect ratio) are taken into account. This procedure could
disrupt the high predictive power of FMT as concerns
the precise location of phase transitions and the relative
stability of different non-uniform phases. Further inves-
tigation of this problem would be needed but is left for
future work.

Interesting questions on the effect of particle shape on
the depletion interaction between two anisotropic bod-
ies mediated by small spherical particles can be studied
within the present model. Recent studies have shown
that particle geometry has a strong effect on the deple-
tion forces?2. The present model can be used to tune the
geometry of the particle with a single parameter, from
ellipsoids to cylinders, and allows the study of the evo-
lution of the depletion potential with respect to a when
two superellipsoids are immersed in a sea of small hard
spheres. Work in this direction is in progress.
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Appendix A: SPINODAL INSTABILITY OF N-S
TRANSITION

The spinodal instability coincides with the location of
the continuous N-S phase transition. The instability con-
dition can be calculated by solving the following set of
equations

o _ de(n,q)
1= pé(n, q) =0, ~oq =0, (A1)



where é(1), ) is the Fourier transform of the direct corre-
lation function. The equations are to be solved for n* and
q*, which are the value of the packing fraction and the
wave number of the smectic phase, both at bifurcation.
The second equation refers to the absolute minimum of
—&(n, q) as this is a strongly oscillatory function of g.
To calculate the spinodal curve a model for the direct
correlation function is needed. The third virial approach,

Eqn. @), gives
é(n,q)
where the Fourier transform of the Mayer function f(q) =

J dre'® f(r) gives the following result for a PHSE particle
with unit breadth and height:

— f(q) = 4—7T/01 dzzsin [q (1 —

= f(g) + pA(q), (A2)

2a) 1/(200} . (A3)

q
and
—Aq) = /dreiqu(r)AV(r), (A4)
AV (r) = /dr'f(r’)f(r —1). (A5)

For each value of ¢ (which is understood to be given in
units of og), taken from a set of equally-spaced points,
the function A(g) was calculated by MC integration for a
fixed . Then the equations (Al were solved to find the
spinodal curve n*(«). Finally, the Parsons-Lee approach

gives é(n, q) = 2Wus(n) f(q).

Appendix B: PARAMETERIZATIONS OF THE
PARSONS-LEE THEORY

The density distributions for smectic and columnar
symmetries were parameterized using two different ap-
proaches. The first, based on a Fourier expansion, is
more adequate for relatively low mean densities, while the
other, a parameterization based on two parameters (one
being a measure of the width of the density peaks, the
other being the smectic or columnar lattice parameters —
periods), is more appropriate for high—density phases, as
the numerical convergence of the minimization schemes is
much easier when the parameter space is reduced to two
variables. We have used the following parameterization
for the density profile of the smectic phase:

P
pl2) =1 (‘;>

exp (A cosgz), (B1)

where pg = d~! fod dzp(z) is the mean density, ¢ = 27/d
the wave number (d being the smectic period), A\ the
minimization parameter, and () the zeroth order mod-
ified Bessel function. Inserting this expression into the
Parsons—Lee functional, Eqn. (@), we find the following

expression for pex = BFex/N, the excess part of the free-
energy per particle and unit thermal energy:

\IJHS(n) -1 /d > / nF /
Pox = — d dzp(2) dz'p(2") f(z = 2"),
T Nl
(B2)
where BIS = 4vp(a) (since the volume of the refer-

ence HS particle is made to comc1de with that of the
PHSE). Also we have defined f(z = [dri f(ry) as the
integrated Mayer function over the transverse area, with

r; = (x,y). Note that the HS free-energy per particle is
Uys(n) = (4—3n)n/(1 —n)% By calculating the integral
involved in Eq. (B2) we find explicitly
Pex = 2\I]HS(77)CaX()‘; 04)7 (B3)
where
3a 1 1
Co = =—B =, —|, B4
2 (a 204) (B4)
1 q*z
x(A o) = 10_2()\)/ dz(1 — 22>V, (2)\cos 5 ) ,
0
(B5)

and ¢* = 27mog/d. Finally, the ideal part of the free-
energy per particle and unit thermal energy, ¢iq =
BFia/N, can be found as

_ LN
Pid = 11177 IO()\)

), (B6)

where I (z) is the first order modified Bessel function.
We have minimized the total energy ¢ = @iq + pex with
respect to A and d for a fixed value of 7.

For the columnar phase, the parameterization chosen
is a sum of Gaussian peaks centered at the sites of the
triangular lattice:

AopoA
p(I‘J_) _ Op(;- cell Zex
k

p {—)\0 (r. —Ri)?|, (B7)

and normalized in such a way that integration over the
unit cell of area Acen = \/§a2/2 (a being the lattice pa-
rameter of the triangular cell) gives the mean density pg.
The position of the lattice sites are Rx = kia; + kqas

(ks € Z) with a, = 5 (V3. (-1
the triangular lattice. The Gaussian width is controlled
by the parameter \g which, together with a, define the
set of minimization variables. The excess part of the
free-energy per particle can be calculated as

C Z 2(Rk

1/a” 1/(2c)
X / drr [1 - (Ta*)za} e 31,
0

) being the vectors of

Pex = ;ACCH\IJHS

5



where v = X\a?, a* = a/oo, R = |Rk|/a, and

. _ V3

= 7(@*)2 (the unit cell area in dimensionless

units). Correspondingly the ideal part of the free-energy
per particle is defined by

ga = I [Vim/@en] -1+~ [ o [an

x e ln lz e_(r_ﬁR;)Q] (B9)

k

An useful approximation for the ideal part when v > 1
can be obtained by taking Ry — 0 in Eqn. (B9), with
the result

eia = [V3iry/(2m)] - 2. (B10)
Also, the excess part (BS) can be approximated by taking
only the terms k = (0,£1), k = (£1,0), k = (1,-1) and
k = (—1,1) in the sum (i.e. considering only the nearest
neighbours of a given site).

Now we proceed to describe the other parametriza-
tion used for minimization at low densities: a truncated
Fourier expansion of the density the density profile. This
expansion for the smectic symmetry is

N

1+ Z Pn cos(qnz)] ,  (B11)

n>0

p(z) = pob(z) = po

with p, the Fourier amplitudes. Using this parameter-
ization, the excess part of the free-energy per particle
reads

N
Pex = Uns(n) Y _ 0nTuph, (B12)

n>0
where 0, = (1 + d,,0)/2 and

4G, [

an Jo

T, dzzsin [qn (1 -2 1/(2a)} , (B13)
with g, = qoon, while the ideal part is

1/2
pia =Inn—1+2 / d=(dz)Inw(dz).  (B14)
0

For the columnar symmetry the Fourier expansion of
the density distribution reads

N1,N»

1 + Z pnlnz

ni,na>0
2 2

X cos( wnlx) cos< any) , (B13)
a3 a

where pn,n, are the two-dimensional Fourier amplitudes.
After insertion of Eqn. (BIH) into the Parsons-Lee ex-
pression for the excess free energy, we obtain

p(ri) = pop(ri) = po

N1,N2
@CX:\I/HS(U) Z 0”1”2Tn1n2p37,1n25
nl,n2>0
for the excess free-energy per particle, where 0,,,, =
(On14n2,0 + 0ny 0+ 0ny 0 +1) /4, and

(B16)

1
Tnlnz = 4004/ dZZ (1 — ZQQ) 1/(20t) JO(anmZ)v (B17)
0

with Jy(z) the zeroth order Bessel function and

2m [n?

+nZ. The ideal part of the free-energy
per particle for columnar symmetry can be calculated as

] V3a/2 a—z/v/3
id = In —1—|——/ d:c/ d
¥id n 3v3a2 Jo A Y

x P(z,y) ny(z,y). (B18)

This time the total free-energy per particle should be
minimized with respect to the lattice parameter a and
also with respect to the Fourier amplitudes py,n,. While
the Fourier parameterizations were used for the min-
imization of the total free-energy of the smectic and
columnar phases at low densities (up to n ~ 0.55), the
corresponding parameterizations using only two param-
eters, described above, were used to minimize the free
energies per particle of these phases at higher densities.
Both approaches were checked for consistency at inter-
mediate densities.
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