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Abstract. General-purpose generative planners use domain-independent search heuristics to
generate solutions for problems in a variety of domains. However, in some situations these
heuristics force the planner to perform ineff ciently or obtain solutions of poor quality. Learning
from experience can help to identify the particular situations for which the domain-independent
heuristics need to be overridden. Most of the past learning approaches are fully deductive and
eagerly acquire correct control knowledge from a necessarily complete domain theory and a
few examples to focus their scope. These learning strategies are hard to generalize in the case
of nonlinear planning, where it is diff cult to capture correct explanations of the interactions
among goals, multiple planning operator choices, and situational data. In this article, we present
a lazy learning method that combines a deductive and an inductive strategy to eff ciently learn
control knowledge incrementally with experience. We present HAMLET, a system we developed
that learns control knowledge to improve both search effic ency and the quality of the solutions
generated by a nonlinear planner, namely PRODIGY4.0. We have identif ed three lazy aspects of
our approach from which we believe HAMLET greatly benef ts: lazy explanation of successes,
incremental ref nement of acquired knowledge, and lazy learning to override only the default
behavior of the problem solver. We show empirical results that support the effectiveness of
this overall lazy learning approach, in terms of improving the eff ciency of the problem solver
and the quality of the solutions produced.

Key words: speedup learning, nonlinear planning, lazy learning, multistrategy learning,
learning to improve plan quality

1. Introduction

Planning uses generalized operators, describing the available actions in a

task domain, to search for a solution to a problem by selecting, instantiating,

and chaining appropriate operators. Control knowledge can be added to the

planning procedure to guide the search, thus improving the planning per-

formance. It has been the focus of attention of several researchers, present
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authors included, to learn control knowledge, i.e., to automate the acquisition
of knowledge that guides the problem solving search process.

One approach to learning control knowledge consists of generating expla-
nations for the local decisions made during the search process (DeJong and
Mooney 1986; Laird et al. 1986; Mitchell et al. 1986; Minton 1988; Pérez
and Etzioni 1992; Katukam and Kambhampati 1994). These explanations
become control rules that are used in future situations to prune the search
space. These deductive approaches invest a substantial explanation effort to
produce provably correct and complete control rules from a single (or few)
problem solving examples and a correct underlying domain theory. They also
require a complete domain theory to obtain the explanations,! although there
has been some work on learning with incomplete, or intractable theories,
such as (Tadepalli 1989). Alternatively, inductive approaches incrementally
acquire correct knowledge by observing a large set of problem solving exam-
ples. These approaches strongly depend on the particular examples seen, but
can also acquire simple and useful rules (Cohen 1990; Leckie and Zukerman
1991).

This article presents a method that combines a deductive and an inductive
approach, integrating three aspects of lazy learning. The results show that
the combination of these three lazy components has several advantages over
eager deductive approaches, such as: reduced learning effort; no need for a
complete domain theory as specifie by domain axioms; and reduced cost of
utilizing the learned knowledge. The lazy aspects we have identifie are:

e Bounded explanation. The learning method explains the successes of
the problem solving episodes f rst by loosely following the dependencies
among choices, and by selecting a bounded set of features that will be
used in the explanations. No proof of correctness or completeness for the
explanations generated is attempted as in eager approaches.

e Incremental refine ent. Upon experiencing new problem solving
episodes, the learning algorithm lazily refi es these explanations with
examples of its successful or failed applications. It incrementally acquires
increasingly correct control knowledge. Since the learned rules are
approximately correct, there should be no need to use a large number
of examples for refin ng them, as do many inductive methods. As dis-
cussed in the editorial of this special issue, there is a difference between
incremental and lazy learning, in that the f rst one refers to how examples
are provided to the learning system, while the second refers to how the
system handles those examples. With respect to this difference, HAMLET is

'In addition to the set of operators and inference rules that describe the primitive problem
solving actions, a complete domain theory includes a set of domain axioms that enables the
proof of the universal truth of the learned knowledge in the domain. 2



both a lazy and an incremental system: examples are given incrementally,
and each one is handled lazily.

e Lazy learning to override only the default behavior. With respect to
identifying which are the learning opportunities, our system can operate
in two learning modes: eager or lazy. In eager mode, it generates a
positive example from every decision that leads to a solution. In lazy
mode, it generates a positive example only if the decision leads to one
of the globally best solutions and it was not the choice selected by the
problem solving default heuristics.

We implemented our learning approach in a system called HAMLET,
standing for Heuristics Acquisition Method by Learning from sFarch Trees
(Barrajo and Veloso 1994; Veloso and Barrajo 1994). HAMLET is integrat-
ed with PRODIGY4.0, the current nonlinear problem solver of the PRODIGY
architecture for planning and learning (Carbonell et al. 1992). HAMLET learns
control knowledge incrementally and inductively to improve both the search
effic ency of the problem solver and to improve the quality of the plans
generated.

The article is divided into seven sections. Section 2 briefl presents
PRODIGY4.0, the substrate nonlinear planner, identifying its choice points and
learning opportunities. It also introduces HAMLET’s architecture, presenting
the generation of the meta-level control rules and their incremental refine
ment. Section 3 describes the Bounded Explanation component of HAMLET.
Section 4 discusses the Refinemen module with the generalization and spe-
cialization algorithms. Section 5 shows empirical results in the blocksworld
domain and in an elaborated logistics transportation domain, where HAMLET
learns rules that improve PRODIGY’s effi iency and the quality of the solutions
of complex planning problems with up to 50 goals and hundreds of literals
in the initial state. Section 6 relates our work with other strategy learning
approaches. We discuss how HAMLET extends the explanation-based strategy
learning method for applications to nonlinear planning. Finally, Section 7
summarizes our conclusions.

2. Overview of PRODIGY4.0 and HAMLET

HAMLET is integrated in the planning and learning architecture PRODIGY
(Carbonell et al. 1990). The current nonlinear problem solver in PRODIGY,
PRODIGY4.0, follows a means-ends analysis backward chaining search
procedure reasoning about multiple goals and multiple alternative opegators



relevant to the goals (Veloso et al. 1995).2 The inputs to the problem solver
algorithm are:

e Domain theory, D (or, for short, domain), that includes the set of operators

specifying the task knowledge and the object hierarchy;

e Problem, specifi din terms of an initial conf guration of the world (initial

state, S) and a set of goals to be achieved (G); and

e Control knowledge, C, described as a set of control rules, that guides the

decision-making process.

PRODIGY’s planning algorithm interleaves backward-chaining planning with
the simulation of plan execution by applying operators found relevant to the
goal to an internal world state. Figure 1 shows an abstract view of PRODIGY’s
planning algorithm. The function backt r ack will return to a prior node,
undoing the effects of applied operators. All sel ect - functions return the
best alternative according to the control knowledge.>

The planning/reasoning cycle, as shown in Figure 1, involves several
decision points, namely:

e the goal to select from the set of pending goals and subgoals (step 3.1.1);

e the operator to choose to achieve a particular goal (step 3.1.2);

o the bindings to choose to instantiate the chosen operator (step 3.1.3);

e apply an operator whose preconditions are satisfie or continue subgoal-

ing on an unsolved goal (step 3): and

e the operator to be applied (step 3.2.1).

Default decisions at all these choices can be directed by explicit control
knowledge. Figure 2 sketches the general decision search tree considered by
PRODIGY. The decision cycle frst encounters steps 3.1.x (i.e., selection of
goal, operator, and bindings), followed by the same set of steps 3.1.x, or by
applying an operator in steps 3.2.x.

Although PRODIGY uses powerful domain-independent heuristics (Stone et
al. 1994) that guide the decision making process, it is still diff cult and costly
to characterize when these heuristics are going to succeed or fail. Therefore,
learning is used for automatically acquiring control knowledge to override
the default behavior, so that it guides the planner more eff ciently to solutions
of good quality.*

2PRODIGY4.0 is a successor of the previous linear planner, PRODIGY2.0 (Minton et al. 1989),
and PRODIGY’s frst nonlinear planner, NOLIMIT (Veloso 1989). We use the term “nonlinear”
for a planner that can fully interleave subplans for different goals.

3We will use boldface for functions whose defnitions appear in the article, and
typescript font for functions whose defnitions do not appear. We will not study
PRODIGY4.0 in detail, and, therefore, we did not use any boldface in its def nition.

*Independently of the base-level planning algorithm, researchers should fnd learning
opportunities to override the planning default behavior when it leads the planner into failure,
ineff cient performance, or solutions of poor quality (Veloso and Blythe 1994). 4



Function Prodigy4.0 (S,G,D,(C)

S is the state of the problem

G is the set of goals to be achieved, pending goals

D is the domain description: operators and objects hierarchy

C is the set of control rules (control knowledge)

P is the plan, initially

O is a variablized operator (from the set of operators in D)

B is a substitution (bindings) of the variables of an operator

Op is the operator O instantiated with bindings B

O is the set of chosen instantiated operators not yet in P, initially ()
A is the set of applicable operators (a subset of )

Go is the set of preconditions of all operators in O, Go=Uo 5 co preconditions(Op)

While G Z S AND search tree not exhausted
1.G=Go-§
2.A+0
Forall Op € O | preconditions(Op)C S do A < AU {Op}
3.If sel ect - subgoal - or - appl y(G, A, S, C)=subgoal
Then 3.1.1. G «sel ect - goal (G,S,(C)
3.1.2. O <sel ect -rel evant - oper at or (G, D, S,C)
3.1.3. B «sel ect - bi ndi ngs(0O, S,()
314.0+~ 0OUOB
Else 3.2.1. Op «+sel ect - appl i cabl e- oper at or (4,S,()
3.2.2. S +appl y(Os,S)
323.0 «+~ 0-0OB
3.2.4. P «+ enqueue- at - end(P,Og)
4. If there is a reason to suspend the current search path
Then backt r ack.
ST < the planning search tree.
Return plan P and ST

Figure 1. PRODIGY4.0’s planning algorithm.

HAMLET is integrated with the PRODIGY planner. The inputs to HAMLET
are a task domain (D), a set of training problems (P), a quality measure
(Q), a learning mode (L), and an optimality parameter (O). @), L, and O will
be explained shortly. The output is a set of control rules (C). HAMLET has
two main modules: the Bounded Explanation module, and the Refinemen
module. Figure 3 shows HAMLET’s modules and their connection to PROPIGY.
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Figure 3. HAMLET’s high level architecture.

The Bounded Explanation module generates control rules from a PRODIGY
search tree. These rules might be overly specifi or overly general. The
Refinemen module solves the problem of being overly specifi by general-
izing rules when analyzing positive examples. It also replaces overly general
rules with more specifi ones when it fnds situations in which the learned
rules lead to wrong decisions. HAMLET gradually learns and refine cgntrol



rules, in an attempt to converge to a concise set of correct control rules (i.e.,
rules that are individually neither overly general, nor overly specific . S7" and
ST, are planning search trees generated by two calls to PRODIGY’s planning
algorithm, C is the set of control rules, and C’ is the new set of control rules
learned by the Bounded Explanation module.

Figure 4 outlines HAMLET’s learning algorithm.

Function Hamlet (P, D,Q, L, O)

‘P is the set of training problems

D is the domain description

@ is a quality measure

L is the learning-mode, which can be either /azy or eager

O is the boolean optimality parameter

C is the set of learned control rules, initially ()

P is a problem

ST is the search tree for solving a problem P without control knowledge, C = )
ST is the search tree for solving a problem P with control knowledge C

C' is the new set of control rules learned from solving P

Forall P € P do
ST <sear ch- t r ee(Prodigy4.0(initial-state( P),goal(P),D, 1))
STe <—sear ch-t r ee(Prodigy4.0(initial-state( P),goal(P),D, C))
C' +Bounded-Explanation(ST,Q, L, O)
C «<Refinemen (ST, ST¢,C,C")

Return C

Figure 4. A high-level description of HAMLETs learning algorithm.

For each problem P in the set of training problems P, HAMLET calls
PRODIGY4.0 twice. In the frst call, PRODIGY generates a search tree ST
to identify the optimal solutions. This is done by solving P without any
control rules, exhausting the search space.” HAMLET generates new positive
examples from S7’, as ST was not pruned by any control rules. In the second
call, PRODIGY uses the current set of learned control rules C and produces a
search tree ST. HAMLET identif es possible negative examples by the pruned
search tree, ST, with the complete search tree ST'. Positive and negative
examples are used to refin the learned rules to produce the new set of control
rules C.

S PRODIGY also generates a plan that HAMLET does not use. 7



3. Bounded Explanation

The Bounded Explanation module learns control rules by lazily choosing
“key” decisions (as will be characterized later) made during the search for a
solution and extracting the information that justifi s these decisions from the
search space. The explanation procedure consists of three phases: Labeling the
search tree; Credit assignment; and Generation of control rules. The Bounded
Explanation module behaves lazily in two aspects:

e In contrast with eager approaches that learn control knowledge for
planning (e.g., (Minton 1988; Etzioni 1993)), HAMLET does not require
learning initially correct or complete knowledge. Incremental refinemen
will be responsible for the correctness of the control knowledge at the end
of the learning process. Therefore, there is no need for additional domain
axioms.

e It does not require to learn from all search paths, as opposed to an eager
learner that would learn from all decision nodes. In our experiments with
multiple domains, we found that there is no need to learn from all decision
nodes. Instead, one could only learn from the ones that: lead to successful
solutions; were not the best alternative considered; and belonged to the
path of the best solution (according to a quality measure, Q).

Function Bounded-Explanation (ST, 0, L, O)

ST is the search tree of solving a problem P without control knowledge, C = ()
( is a quality measure

L is the learning-mode, which can be either lazy or eager

O is the boolean optimality parameter

C’' is the set of new learned control rules

C' <Label(r oot (ST),Q, L, O)

If O =True

Then Return f ol | ow best - pat h(root(ST))
Else Return C’

Figure 5. Bounded Explanation high level algorithm.



Figure 5 shows a high level description of the Bounded Explanation algo-
rithm. The algorithm takes as input a search tree S7" generated without using
the learned control knowledge, the quality measure (), the learning-mode L,
and the optimality parameter O. It returns a new set of control rules learned
from the search tree decisions. The function Label , explained in subsection
3.1, assigns labels to each node of the search tree and possibly learns control
rules. If the optimality parameter is true, then it will delay learning until it
fin shes labeling the whole tree, so that it learns only from the path to the best
solution (function f ol | ow- best - pat h). If false, it will learn at the same
time that it labels the nodes of the search tree.

Function Label (N, Q, L, O)

N is the node HAMLET is going to label

Q is a quality measure

L can be either eager or lazy

O is the optimality parameter

C is the set of new control rules without ref nement, initially @
S is the set of successors of node [NV

Forall s € § do C < C U Label(s, @, L, O)

Case of
oIfS =10
Then Case of

If sol uti on- pat h(IN) Then node- | abel (N)«success
Iff ai | ed- pat h(IV) Then node- | abel (IN)<«failure
Ifuntri ed(N) Then node- | abel (N)«unknown
e If3s € § | node- | abel (s)=unknown
Then If L =eager AND s’ € S | node- | abel (s")=success
Then C « C U Store-or-learn-rule(N, ), L, O)
Else node- | abel (N)<«unknown
e If3s € S | node- | abel (s)=success AND As’ € S | node- | abel (s")=unknown
Then C < C U Store-or-learn-rule(N, Q, L, O)
o IfVs € § node- | abel (s)=failure:
Then node- | abel (N)<«failure
Return C

Figure 6. High level description of HAMLET’s labeling procedure.

3.1. Labeling the Search Tree

HAMLET traverses the search tree bottom-up, starting from the leaf nodes.
After labeling the leaf nodes, the algorithm propagates the labels up to the
root of the search tree, using the algorithm described in Figures 6 and 3.
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Figure 7. (a) A sketch of a PRODIGY search tree, where each leaf node is labeled as success
(v/) or failure (X); (b) The same tree after HAMLET labels it and attaches the optimal solution
length from each node. The black nodes correspond to the operators applied to the state. A
solution is the sequence of applied operators in a path from the root node to a success leaf
node.

HAMLET assigns three kinds of labels to each node of the tree:
e success, if the node corresponds to a correct solution plan;
e failure, if the node is a dead end in the search space; and

e unknown, if the planner did not expand the node, and thus we do not
know whether this node can lead to a solution.

The parameter learning-mode controls the way to label a node, as well as
the way in which it assigns credit (discussed in next subsection). If its value is
eager, HAMLET will eagerly label as success every node that has at least one
success child, even if it did not explore all its subtrees. If its value is lazy, then
HAMLET will label as success only the nodes that explored all their subtrees,
and had at least one success child. The function St or e-or -1 earn-rul e
(Figure 9) decides f rst whether to learn from the node’s decision. If it decides
learning, it also considers whether directly learning a control rule from the
node’s decision (function | ear n), or delaying the learning process until the
end of the tree labeling: it stores now the decision with function St or e
and later learns it with function | ear n. In the second case, HAMLET would
only learn from nodes in the optimal path (see subsection 3.2). The function
| ear n creates and returns a new control rule according to the target concept
corresponding to the decision made in the node, the state at that node, and
the meta-level information from the search tree (see Subsection 3.3). Figure
7 shows an illustration of the labelling procedure.®

%In this example, there are no unknown labeled nodes. 10



Figure 7(a) shows an example of a typical search tree, in which each
leaf node is labeled by the PRODIGY planner as success (y/) or failure (X).
Figure 7(b) shows how HAMLET propagates labels to the root of this tree.
In general, there might be several solutions to a problem as shown by the
different solution paths. The nodes in each solution path are also labeled with
the length of the optimal solution that can be reached from this node.

3.2. Credit Assignment

Credit assignment is the process of selecting important branching decisions
for which learning will occur. It is done concurrently with labeling. Two
parameters, optimality parameter O and learning-mode L, control the way
in which HAMLET assigns credit. If O is true, the system learns only from the
paths that lead to optimal solutions of the problem. It waits until the whole
tree is labeled to generate the control rules, since this is the only way to know
when a node is in an optimal solution path. If optimality parameter is false,
HAMLET learns from every path to a solution. In this case, it does not have to
wait to fin sh the credit assignment and labeling to generate the control rules.
Instead, it interleaves credit assignment and generation of the control rules.

When we fi st designed HAMLET, it would learn from every node in a
solution path. If all the possible solutions to a given problem are of the same
quality (according to a given criteria), or one is only concerned with learning
to produce the solutions more effic ently, then this eager approach is correct.
However, we wanted to create a learning system capable of also improving the
quality of the solutions provided. Therefore, we created a parameter, learning-
mode, that would control the way in which HAMLET assigns credit. If it is
eager, HAMLET views a branching decision as a learning opportunity only if
the decision leads to any solution. If lazy, a decision is a learning opportunity
if it leads to an optimal solution and differs from the default decision made
by the domain-independent heuristics. As discussed in Section 5, eager mode
learns many more rules than /azy mode. We found that /azy mode was almost
always more effic ent in solving problems, and also the solutions obtained
were better according to the quality measure ().

Figure 8 shows the learning opportunities that HAMLET fi ds in the example
search tree of Figure 7(b). In Figure 8(a), the thick solid lines show the
branching decisions that would be learned in /azy mode. In Figure 8(b), the
dashed lines indicate the additional decisions learned in eager mode.

3.3. Generation of Control Rules

At each decision choice to be learned, HAMLET has access to information on
the current state S, and on the meta-level planning information, suchygs the
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Figure 8. The learning opportunities corresponding to the example labeled tree of Figure 7(b).
The default decisions are the left-most successors of every node.

goals that have not been achieved, the goal the planner is working on, and
the possible applicable operators. This information is used by the generation
module (the function | ear n in Figure 9) to create the applicability conditions
(i.e., the antecedents of the control rules). The relevant predicates of the
current state are selected using goal regression (Waldinger 1981).

Function Store-or-learn-rule (N, @), L, O)

N is the node HAMLET is going to label

@ is a quality measure

L can be either eager or lazy

O is the optimality parameter

B is the set of best successors of N according to )

node- | abel (V)< success
If L =eageror def aul t-al ternative(N)¢B
Then If O=True
Then st or e(N, B)
Return ()
Else Return {I ear n(V, B)}
Else Return ()

Figure 9. Auxiliary function for HAMLET’s labeling procedure. 12



HAMLET learns fiv kinds of select control rules, corresponding to
PRODIGY’s decisions as discussed in Section 2. These are the generalized
target concepts:’

e decide to apply an operator for achieving a goal;

e decide to subgoal on an unachieved goal;

e sclect an unachieved goal;

e sclect an operator to achieve some goal; and

e select bindings for an operator when trying to achieve a goal.

They are instantiated on each domain by replacing the above variables
(words in italics) by specifi names of operators and goals. For instance,
there will be one target concept of the type select-operator for each possible
<operator, goal> pair, where goal refers to the goals that can be achieved
by operator. As an example in the blocksworld, two target concepts will be
select unstack for achieving holding-object and select pick-up for achieving
holding-object. HAMLET generates a set of rules for each target concept,
where the antecedent of each rule is described as a conjunctive set of tests.®
As HAMLET can learn several rules for the same target concept, the set of all
rules can be viewed as the disjunction of conjunctive rules.

Each of the fve kinds of generalized target concepts has a template for
describing its antecedents as shown in Figure 10. The templates share a set
of common predicates for all kinds of control rules, but each kind has certain
local predicates. Below are the predicates used in the antecedents of all f ve
types of control rules (i.e., the common predicates):

e True-in-state assertion: tests whether assertion is true in the current state

of the search.

e Other-goals list-of-goals: tests whether any of the goals in list-of-goals
is an unachieved goal.

e Prior-goals list-of-goals: tests whether any goal in /list-of-goals is the
top-level goal that created the subgoal which the planner is currently
trying to achieve.

e Type-of-object object type: tests whether object is of type type.

The local predicates that are used in some, but not all, kinds of control

rules, are:

e Target-goal goal: tests whether goal is one of the unachieved goals.

e Current-goal goal: tests whether goal is the current goal the planner is
trying to achieve.

"HAMLET does not yet learn rules to control the choice of which operator to apply (see
step 3.2.1 in Figure 1), as this decision has only been recently added to PRODIGY4.0 as a
control choice point.

8Some of the tests are, in fact, disjunctive, such as other-goals and prior-goals. 13



(control-rule name
(if (and (current-goal goal-name)
[(prior-goals (/iteral™))]
(true-in-state literal)*
(other-goals (literal™))
(type-of-object object type)™))
(then select operators operator-name))

(@)

(control-rule name

(if (and (applicable-op operator)
[(prior-goals (literal™))]
(true-in-state literal)*
(other-goals (/iteral™))
(type-of-object object type)™))

(then decide {apply|sub-goal}))

(©

(control-rule name

(if (and (current-operator operator-name)
(current-goal goal-name)
[(prior-goals (literal™))]
(true-in-state literal)*
(other-goals (literal™))
(type-of-object object type)™))

(then select bindings bindings))

(b)

(control-rule name

(if (and (target-goal literal)
[(prior-goals (literal™))]
(true-in-state literal)*
(other-goals (/iteral™))
(type-of-object object type)™))

(then select goals literal))

(d)

Figure 10. Templates (regular expressions) of the f ve kinds of target concepts. They correspond
to the decisions: (a) operator decision; (b) bindings decision; (c) decide to apply or subgoal,
(both have the same antecedent); and (d) goal decision.

e Current-operator operator: tests whether operator is the operator
PRODIGY is considering to achieve a goal.

e Applicable-op instantiated operator: tests whether instantiated operator

is applicable in the current state.

After a rule is generated, HAMLET replaces specifi constants inherited
from the considered planning situation with variables of corresponding types.
Distinct constants are replaced with differently named variables. When the
rule is applied, different variables must always be matched with distinct
constants. The latter heuristic can be relaxed when generalizing rules.

3.4. Example

We show now a simple example of how control knowledge can be generated.
The domain we use is a logistics-transportation domain (Veloso 1994b). In
this domain, packages must be delivered to different locations in several
cities. Packages are carried within the same city in trucks and across cities
in airplanes. At each city, there are several locations, such as post off ces
and airports. The domain consists of a set of operators to load and ypload



packages into and from the carriers at different locations, and to move the
carriers between locations. Consider the problem in Figure 11, where there are
three cities, each with one airport. Initially, there is one package, packagel,
at airportl, and one airplane, planel, at airport2. The goal of the problem is
to bring both packagel and planel to airport3.

cityl Ccityl

- packagel cnyz @ city2
City3 City3
- 4

=] gac kagel
lanel
initial State Goal Statement

Figure 11. An illustrative example — initial state and goal statement.

(control-rule select-bind-fl -airplane-1 (operator FLY-AIRPLANE
(if (and (current-operator f y-airplane) (preconds
(current-goal ((<plane> AIRPLANE)
(at-airplane <planel> <airport3>)) (<from> AIRPORT)
(true-in-state (<to> AIRPORT))
(at-airplane <planel> <airport2>)) (at-airplane <plane> <from>))
(other-goals (effects
((at-object <packagel> <airport3>)))))  ((add (at-airplane <plane> <to>))
(then select bindings ((<plane> . <planel>) (del (at-airplane <plane> <from>)))))

(<from> . <airport]l>)
(<to> . <airport3>))))
(@) (b)

Figure 12. (a) Control rule created by HAMLET; (b) The operator FLY-AIRPLANE. The rule
controls the selection of the bindings for instantiating the operator’s variables.

After PRODIGY solves the problem, HAMLET learns the rule shown in Figure
12, which would be the one that a standard EBL system would learn. The rule
says that the planner should f'y an airplane, planel, from airportl to airport3
if the goal is to have the airplane at airport3, it is initially in airport2, and
it has another goal of having a package, packagel, at the same destination
airport, airport3. This rule is erroneous, since it does not capture why it should
fy from airportl, instead of fly ng from airport2, which is where planel is
in the current state. What is missing is the location of packagel in the state.
If packagel is at airportl, then everything is explained correctly, as it is
captured by the rule in Figure 13. However, if packagel is at airport2 in the
state of another similar problem, then this rule would fre incorrectly, lgading



to a nonoptimal solution, as shown in Subsection 4.3. While traditional EBL
systems could not recover from this erroneous rule, HAMLET’s refine ent
approach specializes the rule, correcting it, as explained in Section 4.

(control-rule select-bind-f y-airplane-2
(if (and (current-operator f y-airplane)
(current-goal (at-airplane <planel> <airport3>))
(true-in-state (at-airplane <planel > <airport2>))
(true-in-state (at-object <packagel> <airportl >))
(other-goals ((at-object <packagel> <airport3>)))))
(then select bindings ((<plane> . <planel>)
(<from> . <airportl>)
(<to> . <airport3>))))

Figure 13. Rule learned by HAMLET after specializing the overly general rule in Figure 12.

4. Refin ment. Generalization and Specialization

The rules generated by the Bounded Explanation module may be overly
specific as also noticed by (Etzioni and Minton 1992), or overly general, as
we showed in Section 3. To address this problem, HAMLET uses the Ref nement
module, which generalizes the learned rules by analyzing new examples of
situations where the rules are applicable, and specializes the overly general
rules when it fnds new negative examples. We have devised methods for
generalizing and specializing four aspects of the learned knowledge:

e Current state: The predicates from the state are the frst ones to be
removed, since their presence in the antecedents of the control rules is
the reason why most of the rules are overly specific

e Subgoaling structure: We may relax the subgoaling links, for example
as captured by the prior-goal predicate, since the same goal can be
generated as a subgoal of many different goals.

e [nteracting goals: Another way of relaxing the preconditions of rules
consists of identifying the correct subset of the set of pending goals that
affect a particular decision.

e Object hierarchy: Finally, it is also important to fi d the generalization
level to which the variables in the control rules belong, considering the
ontological type hierarchy that is available in the nonlinear version of
PRODIGY.

HAMLET’s refinemen component behaves lazily in that it delays general-

izing until new examples are found, and when these examples are fouggl, the



Function Refin ment (ST, ST¢,C,C")

ST is the search tree of solving a problem P with C = {)

ST is the search tree of solving a problem P with control knowledge C

C is the set of learned control rules

C' is the set of new control rules without ref nement

T is the set of target concepts for which there is at least one new negative example
R is a new learned control rule of the set C’

Forall R € C' do C +Generalize(R, C)

T «find-negative-exanpl es(ST, ST¢)
Forall T € T do C «Specialize(T, C)

Return C

Figure 14. A high-level description of the Ref nement algorithm.

generalization does not consider all previously seen examples, but only the
ones that are being used at that time for their corresponding target concepts.
This can be considered similar to other lazy learning systems that only keep
prototypes of the different classes (Porter et al. 1990). However, a major
difference with these approaches is that HAMLET still keeps all examples seen
that are not subsumed by others.’ This is needed for refinemen purposes, as
explained later in this section. A future research direction would study the
possibility of only keeping some of them by computing the set of predicates
that most probably will correctly refin an overly general control rule.

Figure 14 shows the top-level description of the Refinemen module
algorithm. It fir t calls the generalization phase (in case new positive examples
were found, that is, new rules), followed by the specialization phase (in
case any negative example was found). The function fi nd- negati ve-
exanpl es returns the list of target concepts for which there is at least one
new negative example. Negative examples are found by analyzing the differ-
ences between the search trees generated using the learned control rules (S7¢)
and when not using them (S7"). The following subsections describe the refine
ment algorithms. Subsection 4.1 discusses the generalization process, Sub-
section 4.2 presents the specialization process, and Subsection 4.3 presents
an example of specialization.

We use a similar concept to ILP’s #-subsumption (Muggleton 1992). 17



4.1. Inductive Generalization of Control Knowledge

Figure 15 presents the generalization algorithm. Upon generating a new con-
trol rule for a target concept, HAMLET tries to generalize it with previously
learned control rules of the same target concept. If there were none, then the
rule is stored as the only one of its target concept. If there were rules, the
function gener al i ze- r ul e will try to apply the generalization operators
to combine all the rules of the same target concept. If it succeeds, it will create
anew rule and delete the old ones. Also, it will recursively call itself with the
new induced rule. If it fails to generalize the rule with any other rule, the rule
is simply added to the set of rules of the target concept.

Function Generalize (R, C)

R is a new learned control rule

C is the set of learned control rules

T is the target concept of rule R

R is the old set of rules for target concept T’
R’ is the new set of rules for target concept T'

IfR=10
Thent ar get - concept - rul es(T)«{R}
ElseC+C—-R
R’ <generalize-rul e(R,R,T)
IfR =0

Thent ar get - concept - rul es(T")«t ar get - concept - rul es(I)U {R}
Elset ar get - concept - rul es(T)«+ R’
Return C U t ar get - concept - r ul es(T)

Figure 15. Algorithm for the generalization of control rules.

A graphical example of the generalization process within a target concept
is shown in Figure 16. “WSP;” stands foVhole Set of Preconditions for rule;
and refers to the complete description of the current state and all available
information about the meta-level decision on a certain search node.

4.2. Specialization of Overly General Control Rules

HAMLET may generate overly general rules, either by goal regression when
generating the rules, or by applying the generalization step. The overly general
rules need to be specialized. There are two main issues to be addressed: how to
detect a negative example, and how to refin the learned knowledge according
to it, shown in Figure 17. 18
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Figure 16. Three learning episodes of HAMLET within the same target concept. (a) shows the
initial step of bounding the explanation from the Whole Set of Preconditions to R;. (b) shows
a generalization step from another rule R, generating induced rule I;. (c) shows a second
generalization step, generating I, from I; and R3.
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Figure 17. Two cases of negative examples (i.e., situations in which a rule applies incorrectly):
(a) The rule selects a node that leads to a failure path; (b) The rule selects a node that leads to
a node with a longer solution (f ve operators) than the best one (only three).

Defini ion: A negative example for HAMLET is a situation in which a control
rule was applied, and the resulting decision led to either a failure (i.e., instead
of the expected success), or a nonoptimal solution for that decision.

Negative examples are also represented as rules with their whole set of
preconditions, W .SP. They are stored in their corresponding target concept,
and serve two purposes: refin an overly general rule, and establish an upper
limit of generalization for future applications of the generalization module.
Every time a rule is generated by either the Bounded Explanation or when
applying the generalization module, it is checked against the negative exam-
ples of its target concept to determine whether it covers any of them. If so, the
rule is refi ed. This is a lazy aspect in the sense that it does not try to obtain
complete descriptions from all examples of the target concepts. Instead, it
refine on demand the representative examples of each target concept, when
new positive or negative examples are found.

4.2.1. The specialization algorithm

Since there are two kinds of rules (bounded and induced), there are two kinds
of recovering methods. The bounded rules are refine by adding literals from
their corresponding W S P set. The induced rules come from two genggating



rules, so HAMLET tests whether each one of its corresponding generating rules
also covers the negative example. If so, then HAMLET recursively refine that
rule. If not, the induced rule is refine using a set of refinemen operators.
The top-level specialization algorithm is described in Figure 18.

Function Specialize (7', C)

T is an erroneous target concept (a negative example was found)
C is the set of learned control rules

R is the old set of rules for target concept 7'

R’ is the new set of rules for target concept 7', initially @

N is the set of negative examples for T'

C+<~C—-R

Forall R € R do
Ifdescri bes- negati ve- exanpl es(R,N)
Then R' + R'Urefine-rul e(R,N,R"
Else R' + R' U{R}

target-concept-rul es(T)« R’

ReturnC U R/

Figure 18. HAMLET’s specialization algorithm.

Figure 19 shows the case in which, while refin ng an overly general rule
1,10 one of its generating rules, I}, was also overly general. In this case, it
backtracks, and refine I} and I, with the rules that generated them, R;, R;,
and R3. R was also overly general, so it had to backtrack to consider W S P,
generating a refine version of R;, RFj. It generates RF by find ng one
or two preconditions of the set preconds(W S Py) — preconds(R;) that added
to the set preconds(R;) do not cover the negative examples. Then, HAMLET
deletes R;. R, was not overly general, so it created a rule RF> from R, and
11, then deleted I;. Finally, R3; was not overly general, so it generated a new
rule RF3, and deleted I,. The dotted lines represent deleted links, the dotted
boxes deleted rules, and the solid boxes the active rules after refinemen .

4.2.2. Choosing the right precondition to add

HAMLET fi st tries to add preconditions from a set called preferred-preconds.
We have found that the reason why most control rules were overly general
was that they did not consider the needed preconditions (goal regression)
for the other goals present in the decision. Instead of eagerly adding those

10 R; means a directly learned rule, I; a generalized rule, and RF; a specialized rulgo
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Figure 19. Graphical representation of the ref nement of an overly general control rule I,.

preconditions when the rule is created, the refin ment algorithm incrementally
adds the ones that it fnds necessary for solving the over generality. When
trying to add a precondition, HAMLET creates a pool of preconditions that can
be added to the antecedent of the control rule,'! it sorts the pool, and then it
tests each one’s coverage of negative examples. If a rule was directly learned
by the Bounded Explanation module (i.e., it has no previous rules), then the
tests are taken from its corresponding W S P. If it was an induced or refine
rule, the tests are taken from the preconditions of its corresponding generating
rules. The preconditions are always sorted according to an ordering function
that prefers the preconditions that:

e refer to more variables that already appear in preconditions of the control
rule — in this way, we keep the locality heuristic that was proposed in
earlier work (Muggleton 1992; Borrajo et al. 1992a, b; Borrajo and
Veloso 1994), and that empirical results show was effective-;

e refer to literals that have appeared more times in the preconditions of
control rules of the same target concept; and

e refer to tests over the state rather than to prior goals, since computing
a precondition referring to the prior goals is frequently more expensive
than computing a precondition referring to the state.

4.3. Example
Suppose that PRODIGY solves a new problem in which packagel and planel

also have to go to airport3, but this time they are initially in the same airport,
airport2. When solving this problem using the overly general rule in Figure

""HAMLET creates this pool from the rest of preconditions that were not introduced directly
into the rule when it was created. 21



12, PRODIGY yields a nonoptimal solution in the path that applies the rule,
such as:

Plan ‘ Achieved goals ‘

fly airplane(planel,airport2,airport])
fly airplane(planel,airportl ,airport3) (at planel airport3)
fly airplane(planel,airport3,airport2)
load-airplane(objectl,planel airport2)
fly airplane(planel,airport2,airport3)

unload-airplane(object1,planel,airport3) | (at-object objectl airport3)

In order to solve this problem, the specialization algorithm selects a test on
the location of the object, since it is part of the goal regression of the other
pending goals. Then, it creates the new control rule that was shown in Figure
13.

5. Empirical Results

We conducted extensive empirical tests to study the performance of HAMLET’s
learning algorithms in several experimental domains and problems within
domains. We report in this article the results we obtained in two domains, the
blocksworld and the logistics transportation domain.!> The experiments are
mainly of three kinds to test the behavior of the system along the following
dimensions:

e Lazy versus eager learning. We compare the performance of HAMLET
when it learns form the training problems with different eagerness,
namely lazily and eagerly. Following a “lazy” learning biasHAMLET
learns control knowledge only from choices that contradict the default
PRODIGY’s heuristic behavior. Using an “eager” learning biasHAMLET
learns from every successful choice. The experiments interestingly show
that HAMLET performs better with lazy than with eager learning.

e Improvement of plan-generation efficienc and plan quality. We
show how HAMLET’s lazy mode improves the search effic ency of the
Base-Level PRODIGY planner.!> More importantly, the experiments show
that HAMLET learns knowledge capable of improving the quality of the
generated plans.

12'We have gathered results from other domains that will not be presented in this paper.
13 All future references to Base-Level PRODIGY will refer to the planner using only its default
heuristics and no control rule. 22



e Convergence towards the correct learned knowledge. These experi-
ments illustrate the effect from incrementally refinin the learned knowl-
edge. The results show that HAMLET in /azy mode converges to the correct
set of control rules, as a function of the number of training problems seen.

The following subsections describe the experiments and discuss the results.

In all experiments, all problems were randomly generated, different sets of
problems were used for learning and testing, and the distributions used for
both sets of problems were the same. Also, the optimality parameter was
always set to t r ue, quality is measured as the number of operators in the
resulting plan, and every training phase began with no control rules, C = ¢.

5.1. Lazyvs. Eager Learning

This experiment compares HAMLET’s performance in /azy and eager learning
modes. To show the difference between the two learning modes, we carried
out the following experiment in the logistics domain. We trained HAMLET with
the same 400 randomly-generated problems in eager and in lazy modes.'
The learning problems were 200 one-goal problems involving up to four
packages, and 200 two-goal problems involving up to fiv packages. In lazy
mode, 19 rules were learned, while in eager mode, it learned 98 rules.

Then we tested the performance of the learned rules on 475 randomly
generated problems from the same distribution as the learning set. The testing
problems were of increasing complexity, generated by varying the number of
goals in the problems from 1 to 10, and the maximum number of packages
from 5 up to 20. The time bound given for all experiments reported in this
article is 150 x (1+mod(number-goals,10)) seconds.'’ The results are shown
in Tables 1,2 and 3. In Table 1 the f rst column shows the number of problems
solved by Base-Level PRODIGY (281), and using the learned control rules
(239). The second column shows the total time spent, where the time of
the unsolved problems is the time bound. The rest of the columns show the
comparison using only the problems that were solved by both configu ations.
For instance, the third column shows the number of problems in which the
solutions provided by Base-Level PRODIGY were better (i.e., according the
the quality measure used) than using the learned control rules (eight cases)
compared to the number of problems in which using the rules achieved better
solutions than Base-Level PRODIGY (31 cases). The same applies for the other
two columns. Table 2 shows the results using the rules learned in /azy mode

4 Eager mode means calling HAMLET algorithm (Figure 4) with the parameter L =eager,
while /azy mode means calling HAMLET with L =lazy.

15 We also tested using several time bounds, and the results were similar to the ones presented
here. 23



using the same set of problems, and Table 3 shows the comparison between
the two learning modes.

Table 1. Comparison of performance between Base-Level PRODIGY4.0 and PRODIGY4.0 using
HAMLET’s learned rules in eager mode for the logistics domain.

Rules Solved Time | Solved by both (197 problems)

Used Problems | (seconds) | Better solutions | Solution length | Nodes explored |
| norules || 281 | 58900 | 8 | 1208 | 7699 |
| cager (98 rules) || 239 | 72699 | 31 | 1164 | 5560 |

Table 2. Comparison of performance between Base-Level PRODIGY4.0 and PRODIGY4.0
using HAMLET’s learned rules in /azy mode for the logistics domain.

Rules Solved Time | Solved by both (278 problems) |
Used problems | (seconds) | Better solutions | Solution length | Nodes explored |
| norules || 281 | 58900 | 2 | 2995 | 16366 |
|lazy (19 rules) || 334 | 44091 | 89 | 2763 | 13030 |

Table 3. Comparison of performance between PRODIGY4.0 using HAMLET’s learned rules in
lazy and eager modes for the logistics domain.

Rules Solved Time | Solved by both (228 problems)

Used problems | (seconds) | Better solutions | Solution length | Nodes explored |
|eager (98 rules) | 239 | 72699 | 12 | 1593 | 7810 |
| lazy (19 rules) || 334 | 44001 | 44 | 1474 | 6802 |

Discussion. In /azy learning mode, HAMLET performs more eff ciently and
yields higher quality solutions. With respect to effi iency, the number of
solved problems increases from 50% up to 70%, while the time spent on
solving the problems also decreases. In addition, the solutions provided are
much better. More specifi ally, in eager mode, it performs worse for eight
problems and better for 31. In /azy mode, it performs worse in only two
problems, and better in 89! We believe HAMLET’s lazy behavior is responsible
for such good results, given that it learns only when it seems clear that a
decision was the best one in any node in the search tree, and was not chosen
by the default problem solver. That is, the goal of HAMLET is to provide the
problem solver with a learned way of controlling when not to follgy the



default procedure, thus letting the problem solver decide when the default
decision is correct.

There is also an important difference in the behavior of both modes: the
number of learned rules. Since the eager mode learns from every decision, it
learns many more rules, and many more types of rules. For instance, suppose
that operator O; appears in the domain description before operator O, and
both are relevant to the same goal g. Then the default behavior of PRODIGY4.0
is that, when it does not have control knowledge to know which operator to
use, it uses the frst operator that appears in the domain description. Thus, it
will always try O; before O,. If O; is always the best operator to achieve the
goal g, then the lazy mode of HAMLET will never learn a control rule for that
decision, while the eager mode will learn a rule each time that it uses O and
succeeds in achieving a solution. Therefore, eager mode suffers more from
the utility problem than the lazy mode as can be observed in these tables in
the time columns.

With respect to learning time, learning in /azy mode is a relatively fast
process, since it generates fewer rules, and, therefore, spends a short time
learning. The time spent on learning after every PRODIGY4.0 run on a problem
is between two and ten times less than PRODIGY’s search time. In contrast,
learning eagerly can be very slow, since the refinemen procedure needs to
match many more rules against each other. It might take up to 20 times
PRODIGY’s search time.

We have been working on many experiments to fnd additional evidence
of these two slow down phenomena (i.e., number of rules and learning time),
and we have found that the eager mode does not work for most domains.
It overloads the system with control rules, not allowing HAMLET to fi ish
the learning phase due to memory problems. A potential advantage of eager
mode over /azy mode might be that the /azy mode requires the whole search
tree to be expanded for learning control rules, while eager mode can learn
as soon as any solution has been found. Therefore, /azy mode should be
used for domains for which learning in easy problems scales well to complex
problems. We have found empirically that this is true for most of our planning
domains.

Finally, if we compare the solution length and the number of nodes of both
modes against not using the rules, we see that in eager mode it saves 3.6% in
solution length and 27.8% in number of nodes, while in /azy mode it saves
7.7% in solution length and 20.4% in number of nodes. The performance is
almost doubled for /azy mode in solution length, and better for eager mode in
number of nodes. The reason why the savings in number of nodes is bigger
for eager mode is due to the number of control rules it has, which prune more
of the search space.

25



5.2. Improving Eff ciency and Solution Quality

To show that HAMLET improves not only the effic ency of the base-level
problem solver, PRODIGY4.0, but also improves the quality of the solutions
provided by PRODIGY4.0 with the learned knowledge, we have carried out
experiments in the logistics transportation domain, described in Subsection
3.4, and in blocksworld. We use the blocksworld to show a domain in which
HAMLET improves mostly the eff ciency of the problem solver, and logistics
as a domain in which it also greatly improves the quality of the solutions
provided by the problem solver. In this last domain the quality of the solu-
tions is an important aspect, due to the possible unnecessary movements of
the carriers. HAMLET learns knowledge that allows the planner to generate
effective solutions for transporting packages.

Blocksworld results. We trained HAMLET with 200 simple randomly gen-
erated problems of one and two goals, and up to ten blocks. HAMLET gen-
erated 11 control rules. Then, we randomly generated 375 testing problems
of increasing complexity. Table 4 shows the results of those tests. We varied
the number of goals in the problems from one up to ten, and the maximum
number of blocks from f ve up to 50.

Table 4. Results on increasingly complex problems in the blocksworld domain.

Test sets Solved Solved by both (174 problems, 46.4%)
problems Better solutions || Solution length || Nodes explored

Goals | Problems || without | with || without | with || without| with || without| with
rules | rules rules | rules rules | rules rules | rules

1 100 68 100 0 0 245 | 245 || 9227 | 1187
2 100 56 92 1 2 196 | 193 || 3924 | 1258
5 100 45 80 1 3 188 | 180 || 4085 | 1895
10 75 13 34 0 1 76 72 || 11048 | 313
|T0tals| 375 || 182 | 306 || 2 | 6 || 705 | 690 || 28284 | 4653 |
| % | || 48.5% |81.6%|| 1.1% |3.4% || | || Ratio | 6.1 |

Discussion. The results show a remarkable improvement on the Base-Level
PRODIGY solver performance when using the learned control rules. As an
example, it increases the number of solved problems from 48.5% up to
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81.6%, and expands six times fewer number of nodes.!0 It also generates
better solutions using the rules in six occasions, while Base-Level PRODIGY
only generates better solutions in two occasions. These results on solution
quality are not as impressive as in the logistics domain (detailed below) due
to the fact that, in the blocksworld task, most problems have the same number
of operators in all possible solutions to the same problem.

Logistics results. We trained HAMLET in /azy mode with 400 simple randomly
generated problems of one and two goals, and up to three cities and fi e
packages. HAMLET generated 26 control rules. Then, we randomly generated
525 testing problems of increasing complexity. Table 5 shows the results of
those tests. We varied the number of goals in the problems from one up to 50,
and the maximum number of packages from f ve up to 50. Problems with 20
and 50 goals pose very complex problems to fnd good or optimal solutions,
even for humans.

Table 5. Results on increasingly complex problems in the logistics domain.

Test sets Solved Solved by both (279 problems, 53.14%)

problems Better solutions || Solution length || Nodes explored

Goals | Problems || without | with || without | with || without| with || without| with
rules | rules rules | rules rules | rules || rules | rules

1 100 95 100 0 11 327 307 2097 | 1569

2 100 85 94 0 25 528 479 3401 | 2308

5 100 56 82 1 33 865 777 5170 | 3463
10 100 32 68 1 24 770 668 3482 | 2941
20 75 13 39 0 10 505 455 2216 | 1924
50 50 1 10 0 0 34 34 143 141
|Totals| 525 || 282 | 393 || 2 | 103 || 3029 |2720 || 16509 | 12346 |
| % | | 53.7% | 74.9%|| 0.7% |36.9% || | | Ratio | 1.3 |

Discussion. The results show again a remarkable increase in the number of
solved problems using the learned rules, as well as a large number of problems
(103) in which the solution generated using the rules is of better quality,
compared to the two problems in which Base-Level PRODIGY produced a

'Tn 10 goal problems using the learned rules, it expands 35 times fewer number of nodes in
the search tree. 27



solution of better quality. The running times decreased using the rules, but
not significan ly.

Learning control knowledge to improve problem solving performance is
a potential source of inneff ciency due to the tradeoff between the savings
obtained and the cost of using the learned knowledge. This is generally
known as the utility problem in speedup learning (Minton 1988). Interestingly,
HAMLET does not suffer substantially from the utility problem even with no
special organization of the learned knowledge.!” Due to its inductive step
over the control rules of the same type, HAMLET keeps a small number of
control rules, instead of retaining many variations of each rule type. This is
one of the sources of power of the induction step applied to the bounded
explained control rules. Nevertheless, we are currently developing effic ent
methods for organizing and matching the learned control rules. We consider
this organization essential to the overall learning process to avoid a potential
utility problem due to inefficien matching (Doorenbos and Veloso 1993).

After analyzing why some problems were not solved, we concluded that
some rules were not correct after the training phase. This fact led us to carry
on the next set of experiments towards testing the convergence of the learning
approach.

5.3. Convergence to the Correct Control Knowledge

The previous results are important in the sense that they show that the learned
rules after 400 training problems perform well. But someone could ask if
the learned knowledge improves over time when more training problems are
given, or it begins to oscillate in a local maximum, adding and removing the
preconditions of the control rules. This is an important issue for any machine
learning system, especially for a lazy system as HAMLET, since HAMLET relies
on incremental refine ent to correctly characterize the learned control rules.
Therefore, it needs to converge as it sees more training examples.

To show that HAMLET improves with the number of training problems, we
performed the following experiment: we trained HAMLET in /azy mode with
75 problems, 150 problems, and 400 problems in the logistics domain. Then,
we tested the respective learned control rules on the same test set as before
(525 problems of increasing complexity). Table 6 shows results that clearly
illustrate the rules converge towards the correct behavior.

Discussion. After analyzing these results and the previous ones, we noted
that there were problems in which HAMLET did not learn anything. These

17 This is true even for eager mode that learns many more rules than /azy mode. 28



Table 6. Results on convergence in the logistics domain.

Solved Solved by both
Training problems Better solutions Ratio Ratio Ratio
problems Solution Length || Time Nodes
without | with || without| with without/ without/ || without/
rules | rules rules | rules with rules with rules || with rules
75 53.71% | 63.62% || 0.35% |25.89% 1.11 0.49 1
150 53.71% [ 65.71% || 0.72% | 31.9% 1.06 0.33 1.25
400 53.71% | 74.86% || 0.72% | 36.92% 1.08 0.32 1.34

problems belong to two different groups. The fi st group are problems that
were too easy. They were solved by PRODIGY with no search, or the default
strategy made the right decisions in the frst place. The second group of
problems were too complicated, so PRODIGY could not expand the whole
search tree in the given time bound (usually 100 seconds), and, therefore,
HAMLET could not learn any control rule. Here, there is some underlying
assumption (bias) that influence HAMLET’s behavior: HAMLET will learn
better from medium difficul y problems. Having this bias in mind, the
training problems were randomly generated so that: they were not too easy,
such as problems in which the goals are true in the initial state; and they were
not too complicated, such as problems with more than two goals. We believe
that this is not an over simplifying assumption: control knowledge learned
from them will still be applicable to easier or more diffi ult problems. As we
have shown, the learned knowledge, even coming from a “biased” training
phase, transfers well to more complicated problems, and does not interfere in
the default PRODIGY behavior with simpler problems.

Since training can benefi from well-suited training problems, we are
currently developing a better training schema in which problems are not
generated randomly, but are biased towards the kinds of problems from which
HAMLET learns better. This domain-independent biased generation of train-
ing problems should improve the convergence of HAMLET, and also reduce
the training effort. We also plan to analyze, for each domain, the number of
training problems that will be needed to obtain a certain degree of accuracy,
based on research from computational learning theory (Valiant 1984).

6. Related Work

Most previous lazy learning approaches have been inductive approaches, such
as the work in instance-based (Aha et al. 1991), memory-based (Stanfigl and



Waltz 1986), or exemplar-based learning (Porter et al. 1990). Only some of
the work has been applied to planning, usually in the context of analogy or
case-based reasoning (Hammond 1989; Hanks and Weld 1995; Kambhampati
1989; Kettler et al. 1994; Veloso 1994a, b). Most of this work concerns
domain-specifi algorithms. Also, although these approaches demonstrated
some useful lazy learning behavior, they did not, as we have, compare lazy
and eager learning modes. The two main differences with these approaches
are: control rules represent knowledge to control individual decisions, while
cases chain multiple decisions together allowing therefore a global control
of the planning process; and control rules fi e only if their antecedents fully
match, while cases allow partial matching.

Many of the inductive systems require many examples for learning complex
defin tions, since they do not use prior knowledge that can guide the search
of generalized hypothesis. Some new techniques have been developed that
use prior knowledge, but they are still mainly used for learning domain
theories (e.g., (Quinlan 1990; Muggleton 1992)), instead of learning control
knowledge.

Similar work on lazy learning includes Lazy Explanation-Based Learn-
ing, LEBL (Tadepalli 1989) and Lazy Partial Evaluation, LPE (Clark and Holte
1992). While LEBL refine the knowledge by introducing exceptions, HAMLET
modifie the control rules themselves by adding or removing their applicabil-
ity conditions. Also, LEBL applies to games, while we use HAMLET for general
task planning. Finally, LEBL does not consider plan quality. In turn, LPE learns
from all search paths, following a more eager approach than HAMLET’s lazy
mode, and has been used in a linear problem solver (Prolog) to solve contraint
satisfaction problems, instead of applying it to nonlinear planning.

Most of the planners that learn follow an eager deductive approach. They
try to eagerly and correctly explain the problem solving choices from a single
episode or from a static analysis of the domain defin tion. These speedup
learning systems are usually applied to problem solvers with the linearity
assumption, such as the ones applied to logic programming problem solvers
(Quinlan 1990; Zelle and Mooney 1993; Muggleton 1992), special-purpose
problem solvers (Langley 1983; Mitchell et al. 1983), or other general-
purpose linear problem solvers (Etzioni 1993; Fikes et al. 1972; Leckie
and Zukerman 1991; Minton 1988; Pérez and Etzioni 1992). These prob-
lem solvers are known to be incomplete and incapable of find ng optimal
solutions (Rich 1983; Veloso 1989).

If we remove the linearity assumption, we are dealing with nonlinear prob-
lem solvers. In this article we show that nonlinear problem solving offers
new learning opportunities where domain-dependent control knowledge can
be used to further improve not only the problem solver’s performance but also
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the quality of the solutions produced. Moreover, eagerly constructing correct
explanations of the nonlinear problem solver’s successes and failures from a
single example is computationally expensive, since it is difficu t to defin the
right language for describing the relations among goals when making deci-
sions. Also, even if those needed predicates are kept, goal regression leads
in nonlinear planning to control knowledge that is either overly general or
overly specifi . Some approaches to learning in nonlinear planning are (Estlin
and Mooney 1995; Bhatnagar 1992; Laird et al. 1986; Leckie and Zukerman
1991; Kambhampati and Kedar 1991; Pérez and Carbonell 1994; Ruby and
Kibler 1992; Veloso 1994b; Veloso et al. 1995). The main difference with
our approach is the lazy aspects of HAMLET, and the way in which learned
knowledge is represented. While improving problem solving eff ciency has
been studied frequently, learning to improve solution quality has only been
recently pursued by some researchers, including (Pérez and Carbonell 1994;
Ruby and Kibler 1992). We differ from Pérez and Carbonell’s work in that
HAMLET performs inductive refinemen of the control rules, and in the way
positive examples are generated. Ruby and Kibler’s approach differs in the
knowledge representation of the learned control knowledge, since it is a
case-based learner.

7. Conclusions

We have described a learning approach, HAMLET, that lazily acquires suc-
cessful and failure control patterns for a nonlinear problem solver. Within
HAMLET, lazily means the combination of three lazy aspects:

e It learns rules that are not provenly correct by bounding the explanation
of the problem solving successes to a reduced set of features that explain
why a certain decision is the best one. The explanation does not consider
the whole search tree, nor does it try to prove that it is correct. Hence,
this is a lazy learning approach.

e It incrementally refine learned control rules. Since the rules might not
be correct, they might fail to (optimally) solve future problems. HAMLET
does not eagerly try to fnd those erroneous applications of the control
rules, but lazily waits until it fi ds a negative example. Also, it refi es
on demand the descriptions of the target concepts, using only a subset of
the examples found.

e Theserules are learned only at the decision points that override the default
behavior of the problem solver, instead of at all the decision points (i.e.,
as is done by other learning mechanisms). This is again a /azy learning
approach for determining which rules should be learned. 31



The combination of these fi st two /azy aspects results in a system that can
solve problems more eff ciently, achieving better solutions than the heuristic-
based problem solver.'® Also, this lazy aspect allows HAMLET to learn useful
control rules in nonlinear planning, which is a complex task to perform by
eager approaches: it is difficu t to describe the complete extra domain theory
that eager approaches require in nonlinear planning (Minton 1988; Katukam
and Kambhampati 1994). Furthermore, the results show that the third lazy
aspect has several advantages over an eager learner since it achieves better
solutions more eff ciently, requires fewer learning resources (i.e., learning
time and memory), and it suffers less from the utility problem.

Finally, HAMLET has been tested in a variety of experiments involving
complex planning problems. The empirical results support the effectiveness of
HAMLET’s learning approach, in terms of improvement in planning effic ency,
in the quality of plans generated, and in its incremental convergence towards
the correct knowledge. In summary, HAMLET’s learning power comes most
directly from its overall lazy learning approach.
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