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When applying reinforcement learning in domains with very large or continuous state spaces,
the experience obtained by the learning agent in the interaction with the environment must be
generalized. The generalization methods are usually based on the approximation of the value
functions used to compute the action policy and tackled in two different ways. On the one hand by
using an approximation of the value functions based on a supervized learningmethod. On the other
hand, by discretizing the environment to use a tabular representation of the value functions. In this
work, we propose an algorithm that uses both approaches to use the benefit of both mechanisms,
allowing a higher performance. The approach is based on two learning phases. In the firs one,
a learner is used as a supervized function approximator, but using a machine learning technique
which also outputs a state space discretization of the environment, such as nearest prototype
classifier or decision trees do. In the second learning phase, the space discretization computed
in the firs phase is used to obtain a tabular representation of the value function computed in the
previous phase, allowing a tuning of such value function approximation. Experiments in different
domains show that executing both learning phases improves the results obtained executing only
the firs one. The results take into account the resources used and the performance of the learned
behavior. C©

1. INTRODUCTION

The reinforcement learning task (RL) can be define as the automatic acquisi-
tion of an action policy by some agent in a given environment. The learning phase is
define by two main properties. The firs one is that learning is performed following
a trial and error interaction of the learning agent with its environment. Through this
interaction, the agent obtains the experience required for learning to solve a task.
The second property refers to the information included in that experience, which is
typically based on states, actions, and a reinforcement signal. Such a reinforcement
signal indicates to the agent how good the execution of the last action to solve the
task has been1.

Model free RL algorithms2 are based on the computation of the action-value
function, Q(s,a) for each policy π . This function is define as the expected reward
that will be received by an agent if it is located in a state s, the firs action that
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it executes is action a, and then, it follows the action policy π . If the optimal Q

function is computed, the optimal action policy can be computed too, so most RL
literature focuses on computing and representing such a function.

The Q-learning algorithm3 is one of the most widely used ones for computing
the action-value function. Given any experience tuple of the type 〈s, a, s ′, r〉, where s

is a state, a is an action, s ′ is the state achieved when executing a from s, and r is the
immediate reinforcement received, it updates the Q function following Equation 1.

Q(s, a) ← (1− α)Q(s, a)+ α[r + γ max
a′

Q(s ′, a′)] (1)

This equation uses the discount parameter γ , following a discounted infinit horizon
criteria of optimality. Also, it introduces a learning parameterα. Ifα is 1, the equation
is known as the deterministic update function of Q-learning, and it is simplifie as
shown in Equation 2.

Q(s, a) ← r + γ max
a′

Q(s ′, a′) (2)

Q-learning updates the value of Q for a define action and state, so the update
only affects them, and no other states and/or actions. The optimal Q function
is progressively approximated while updates are performed. One problem of this
approach is that if we have very large or continuous state and/or action spaces,
performing enough updates for every state and action so that the Q function is
correctly approximated requires a large amount of experience.

Given that this approach is unpractical in some cases (because typically, the
amount of experience is limited), it is preferable that the updates performed for an
action and a state modify the value of Q, not only for them, but also for similar
states and actions. Implementing this approach consists of findin a function ap-
proximator, Q̂θ , whose output depends on a reduced set of parameters θ . The idea
is that a modificatio in one of these parameters produces a different output of the
approximator for different states and actions. So, small modification in θ , which
are due to a new approximation value of Q̂θ for a define action and state, may
produce changes in the Q̂θ approximation for a large set of actions and states.

The motivation of this work is to fin a method to compute the action-value
function in model free RL. The method assumes a reduced set of actions and finit
trials, where positive and discrete rewards can be obtained only when a goal area
is achieved. It is based on findin discretizations of the state space that are adapted
to the value function being learned. In this case, we learn the action value function,
Q(s, a), instead of the state value function, V (s), learned in dynamic programming.4
The method is based on two learning phases. The firs one is a model free version
of the smooth value iteration algorithm,5 which we have called iterative smooth
Q-learning (ISQL). This algorithm, which executes an iterative supervised learning
of the Q function, can be used to obtain a state space discretization too. This new
discretization is used in a second learning phase, which we have called multiple
discretization Q-learning (MDQL), to obtain an improved policy. Both learning
phases, ISQL and MDQL, compose the algorithm that we have called two steps
reinforcement learning (2SRL).
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The paper is organized in two folds. The firs one begins in the following sec-
tion with a brief summary of the generalization problem, introducing some of the
main approaches used, but deepening in variable resolution discretization methods.
Sections 3 and 4 show two approaches based, one on supervised learning func-
tion approximation (ISQL), and the other on state space discretizations. Section 5
discusses the disadvantages and limitations of both approaches with some initial
experimentation.

The second fold of the paper begins in Section 6, where the 2SRL method
is presented, describing the improvement over the results obtained by previous
approaches, as it is shown in Section 7. Section 8 shows the experiments performed
over the car on the hill domain. Also, it describes some comparative results of the
new method with the results obtained by variable resolution discretizations (VRD)6
over the Acrobot domain. Lastly, Section 9 presents the conclusions and further
research.

2. RELATED WORK

Function approximation of the value functions in reinforcement learning7 has
been addressed mainly in two different ways. The firs one consists of discretizing
the state space to obtain a reduced and discrete one, so tabular representations of
the value functions can be used. In this case, each of the parameters in θ define
a different region of the state. Uniform discretization has achieved good results,8
but only in low-dimensional domains, where a high resolution does not increase the
number of states too much. A very large state space produces unpractical computa-
tional requirements in dynamic programming methods, and unpractical amounts of
experience in model-based methods.9

Variable resolution methods10 are applied to increase the resolution of the
discretization only in the areaswhere it is required, i.e., in the areaswhere differences
in the value function and/or in the policy are found.6 A kd-tree is typically used
to represent the state space, so each leaf contains the approximation of the value
function for the represented state. These leaves can be split into two, whenever
is needed, following different criteria. A model-free version of this approach has
also been introduced.11 In that case, the leaves of the kd-tree contain the L Qai

(s)
values, for i = 1, . . . , L, one for each action, instead of a single V (s) value.
The problem of this approach is that the split mechanism of a leaf depends on
differences on the Qi(s) value of any action, so a resolution that could be good for
an action may be increased because the need of different actions. To solve this, one
discretization per action should be required, as it will be introduced later in this
paper. New developments on VRD also include the action space in the discretization
process, generating a discretization of the “joint” space,12 and hence, automatically
discretizing the action space too.

The discretization approach is used in Section 3, where the VQQL algorithm
is described. However, we will show that discretization methods may obtain poor
results if they are not supervised by the action value function being learned, mainly
because they can lose the Markov property.13 Continuous U trees has also been used
for discretizing the state space, avoiding violations of the Markov assumption.14
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The second approach for learning the Q function consists of the supervised
learning of tuples 〈s, a, qs,a〉, where s is a state, a is an action, and qs,a is the Q̂ value
approximated for that state and action. Any supervised learning method can be used,
each of them definin a set of parameters θ to be computed.15−17 In the literature,
several related work based on this approach can be found, as the application of
neural networks for playing Backgammon.18 In this case, the set of parameters θ

to compute is the architecture of the network and the weights of the different links
among the neurons, so that the neural network outputs a good approximation of
the optimal Q function. Instance-based methods19 can also be applied, as well as
locally weighted regression,20 or self organizing maps.21 This approach is studied
in Section 4, where we defin the iterative smooth Q-learning (ISQL) algorithm,
based on the smooth value iteration algorithm,5 which will be tested using different
function approximators.

3. A DISCRETIZATION-BASED APPROACH

The firs approach for function approximation that we present here is based
on the discretization of the state space. An instance of this approach is the VQQL
model, define next.

3.1. VQQL

The VQQL algorithm (vector quantization for Q-learning)22,23 is based on the
unsupervised discretization of the state space. We use vector quantization meth-
ods, and more specificall , the generalized Lloyd algorithm (GLA),24 also called
k-means. This method generates a set of prototypes that together with the nearest
neighbor rule define Voronoi regions.25 Each of these regions clusters a set of states
of the original state space representation. Figure 1 shows how to represent the action
policy following this approach.

The use of vector quantization and the generalized Lloyd algorithm to solve
the generalization problem in RL algorithms requires two consecutive phases:

Learning the quantizer. Designing the vector quantizer, D(s), is composed of
B prototypes from the input data obtained from the environment during
exploration.

Learning the Q function. Once the vector quantizer is designed (i.e., the envi-
ronment is clustered into B different states), the Q function must be learned,
generating the Q table composed of B rows and a column for each action.

The VQQL algorithm was firs applied in the simulation league within the
RoboCup domain.26 The vector quantization technique takes advantage of the sta-
tistical characteristics of the domain to reduce its size, considering only relevant
areas from the whole domain. The algorithm has been applied to learn the ball in-
terception skill of a goalie,22 and in cooperative multi-robot observation of multiple
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Figure 1. Function approximation with VQQL.

moving targets (CMOMMT),27 to obtain collaborative behaviors in a multirobot
observation task.23,28 These experiments show that the nearest prototype approach
used to discretize the state space produces better results than uniform discretiza-
tions. However, it still has two main problems. The firs one is that the right number
of prototypes or regions must be decided by the designer. Depending on the prob-
lem, a higher or lower resolution could be required, and different learning and test
processes are required to fi that parameter.

The second one is the loss of theMarkov property,13 given that the discretization
is unsupervised, so regions that break the Markov property may be introduced, as it
is described next.

3.2. Loosing the Markov Property: Nondeterminism Introduction

When the state space is discretized, it is possible that the new state space
discretization does not satisfy theMarkov condition. The loss of theMarkov property
has as its main consequence the introduction of nondeterminism in the domain,13 as
described in the following example. The classical exploration domain or grid world,
as shown in Figure 2a, is a domain where a robot has to learn to arrive to the goal area
from random initial positions in a continuous state space. For simplicity reasons,
we will use a version where robot actions are limited to follow cardinal points, i.e.
“go East,” “go North,” “go West,” and “go South.” The grid size is 5× 5, and all
actions produce a motion of size one. If the robot tries to execute an action that ends
out of the grid, the robot is forced to stay in the same position. This situation can
be considered as a blocked situation or a cycle of size one. Longer cycles could be
found if the robot oscillates among several states.
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Figure 2. Grid-world domain. (a) Shows the goal area and (b) the optimal value function for
γ = 0.5.

If we use a reinforcement function that returns a maximum reward of 100
when the robot arrives to the goal area and 0 otherwise, and we use a discount
factor of γ = 0.5, for each executed action, the optimal value function for each cell
is shown in Figure 2b. At the same time, the limits of the value function present
an optimal state space representation that does not lose the Markov property nor
introduces nondeterminism. The limits of the different regions are define by the
discontinuities of the value function, so in this case, only 25 discretized states are
needed. The execution of any action from any state in the same region always
produces a state transition to the same region, receiving the same reward.

Although this is a deterministic domain, it is easy to show that obtaining a state
space representation that keeps the Markov property and, hence, the determinism
in the environment without the use of any prior knowledge is not an easy task.
For instance, since “a priori” we might not know the number and geometry of the
regions, instead of introducing 5× 5 regions, a 6× 6 discretization could have been
used. The result is illustrated in Figure 3. This approximation of the environment
loses the Markov property and introduces a high nondeterminism because, even if
the execution of the same action from the same region always achieves the same
fina region, in some executions the goal could be achieved, while not in others.
So immediate rewards can be different in different executions, resulting in a non-
Markovian and nondeterministic behavior.

Themain problem of this nondeterminism introduction is that the optimal value
functions cannot be correctly approximated, and hence, optimal policies for such a
problem may not be learned either.13 Next section shows a method that theoretically
outputs state space discretizations which maintain the Markov property.
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Figure 3. Example of uniform discretization with 6 × 6 regions in the grid-world domain.

4. A RL ALGORITHM BASED ON A SUPERVISED LEARNING
FUNCTION APPROXIMATOR

Smooth value iteration5 is define as a version of the discrete value iteration,4
where a function approximator is used instead of the tabular representation of the
value function, so the algorithm can be used in the continuous state space case.
That algorithm requires a model of the environment. However, we have transformed
it into a model-free version, following the ideas introduced for the ENNC-QL
algorithm9,29 and the fitte Q iteration algorithm.30 In this case, instead of having
a model of the environment as input, it needs a set of experience tuples obtained
from the interaction of the agent with the environment. Furthermore, the cost-to-go
approximation of the original smooth value iteration can be changed to a delayed
reward one. Thus, a maximum reward, rmax, is received only when the goal is
achieved. A discount parameter, γ , is also applied. This version, which we call
iterative smooth Q-learning (ISQL), is shown in Figure 4. The update equation of
the Q function used is based on Q-learning.

The algorithm assumes a discrete set ofL actions, and hence, it will generateL

function approximators, Qai
(s). Using one function approximation per action is not

required really, given that the action could be introduced as an input of the function
approximator, as it is done with the state.20,31 However, this solution typically
introduces the problem of combining heterogeneous feature spaces (the action and
the state spaces) that, depending on the function approximation used, might require
feature weighting methods,32 and that could mitigate the possible generalization
advantages of this approach.

The algorithm requires a collection of experience tuples, T . Different methods
can be applied to perform this exploration phase, from random exploration to human-
driven exploration.33 In each iteration, from the initial set of tuples, T , and using
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Figure 4. Iterative smooth Q-learning algorithm.

the approximators Q̂iter−1
ai

(s), i = 1, . . . ,L, generated in the previous iteration, the
Q-learning update rule for deterministic domains can be used to obtain L training
sets, T iter

ai
, i = 1, . . . , L , with entries of the kind 〈sj , cj 〉, where cj is the resulting

value of applying the Q update function to the training tuple j , whose state is sj .
In the firs iteration, Q̂0

ai
(s) are initialized to 0, for i = 1, . . . , L, and all s ∈ S.

Thus, when the respective cj are computed, they depend only on the possible values
of the immediate reward, r . If we suppose the r values are always 0, except when a
goal state is achieved, where a maximum reward of rmax is obtained, the only two
values for cj in the firs iteration are 0 and rmax. This is illustrated in Figure 5 for the
domain presented in Section 3.2. The figur shows that for goal areas, the Q value
is 0. For actions “Go East” and “Go North,” instances with cj = rmax appear, while
with the other two actions, all the state space stays with a value of zero (no state can
achieve the goal with a “Go West” nor a “Go South” action).

If we suppose that we are able to perfectly approximate the sets T 0
aj
, in the

following iteration, there will be experience tuples 〈s, ai, s
′〉 for which some Q̂1

a′
i
(s ′)

will be rmax, so examples of the kind 〈s, γ 1rmax〉will appear, and a new approximator
will be learnedwith this new data, as it is shown in Figure 6. By repeating this process
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Figure 5. Expected Q function learned after firs iteration of ISQL.

iteratively, thewhole domainwill be learned from examples of the kind 〈s, γ iter rmax〉,
for iter = 1 to the number of iterations executed, as define in Figure 7.

Another difference with the original algorithm is the end condition. Smooth
value iteration uses as end condition that the cj values computed remain the same in
two consecutive iterations for all the state transitions. However, that end condition
might not be achieved, depending on the function approximator used.5 The end
condition of our variant is that the reward has been propagated from the goal areas
to the whole domain, i.e., there is no state with the initial Q value of zero except the
goal area. This end condition is only useful if the goal areas can be reached from any
position of the state space. If this property is not ensured, the number of iterations
required is the length of the optimal path (measured as the number of executed
actions) from the furthest position of the environment to the goal, say max path.

9



Figure 6. Expected Q function learned after second iteration of ISQL.

So, theoretically, the number of iterations should be, at least, max path. In the
example, this number is 9, and the optimal discretization for each action is given in
Figure 7.

As in the case of,5 we assume absorbing goal states reachable from every state
in the domain, deterministic state transitions, and a limited set of discrete actions of
a define size. Furthermore, if we assume discrete time, and actions taking one unit
of time to be executed, the reinforcement learning problem can be addressed as a
problemwhere the value functions can only take a value in a discrete set {γ irmax, i =
1, . . . , max path}. Therefore, we can apply a supervised learning algorithm with
a discrete set of classes. So we can differentiate among different regions of the
original state space, only by verifying the class to which they belong. From a
variable resolution discretization point of view, the optimal discretization of the
domain for each action (given that each action requires a different approximation) is
given by the limits generated in the corresponding action value function computed by
the iterative smooth Q-learning algorithm, if the assumptions previously introduced
hold.
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Figure 7. Expected Q Function learned after nine iterations of ISQL, that is the optimal Q
function. Borders of the Q-function show a Markovian discretization of the state space.

Furthermore, an important issue of the discretizations obtained is that they
hold the Markov property, in the sense that if we execute an action from any point
in a region, we will always obtain the same reward, and the same V value for the
achieved state, which means that the states in the same region will always receive
the same Q value update.

If the domain is stochastic, the algorithm can be applied as well without
any modification From a practical point of view, stochastic behavior means that
learning examples < s, c >, generated for learning the function approximators in
each iteration, will not exactly follow the distribution shown in Figures 5 to 7,
but some of those examples will be out of its region. However, these examples
could be considered as noise in the data of the supervised learning task, so the only
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requirement is that the supervised learning function approximator used is able to
absorb that noise. Since most ML-supervised induction techniques consider noisy
inputs, this is not a tight constraint.

5. EXPERIMENTS AND RESULTS

The previous two sections have presented different RL approaches that repre-
sent two main research lines, and that will be used in the following experimentation.
On the one hand, discretization-based methods have been applied using two dis-
cretization approaches: uniform and vector quantization.

On the other hand, the ISQL algorithm, based on the supervised approximation
of the value functions has been used. In this case, three different approximation
methods have been applied. C4.5 is an algorithm that builds decision trees,34 and
we will call this ISQL-C4.5. PART obtains decision rules from the tree generated
by C4.5,35 and we will call this ISQL-PART. We have used the implementation of
C4.5 and PART provided by the WEKA tool.36 Lastly, we have applied the ENPC
algorithm (evolutionary nearest prototype classification) 37,38 a nearest prototype
approach that has as its main property that the number of prototypes to use is
automatically computed. We will call this ISQL-ENPC.

The reason for selecting these algorithms is that they work well with the
default parameter values, so they can be easily applied within automatic processes,
as the ISQL algorithm requires. Furthermore, they learn by dividing the space in
regions: regions are each leaf of the decision tree, each rule of the decision rules,
or the Voronoi regions define by the prototypes and the nearest neighbor rule,
respectively. This is an advantage that will be exploited further, as it will be shown
in the following section.

The domain used for experimentation is an offic navigation domain, shown in
Figure 8. It consists of a robot moving inside an offic area. This area is represented
by walls, free positions, and goal areas, all of them of size 1 × 1. The whole
domain is N × M (24 × 21 in our experiments). The possible actions that the
robot can execute are “go North,” “go East,” “go South,” and “go West,” all of size
one. The robot knows its location in the space through the continuous coordinates
(x, y) provided by some localization system. Furthermore, the robot has an obstacle
avoidance system that blocks the execution of actions that would hit walls. Two goal
areas have been located in two different rooms, and the robot is expected to achieve
one of them.

We can introduce in this domain several levels of noise in the perception of the
robot localization. For instance, we could inject a 10% of noise, that means that if
the robot is in the (x, y) position, the perception that it has of its position is (x + nx ,
y + ny), where nx and ny are random variables following a uniform distribution in
the range (−0.10, 0.10). Following this approach, several comparisons have been
done for noise levels of 0% (deterministic domain), 5%, 10%, and 20% of noise.

In all the experiments, training data is obtained from 4,000 trials. Each trial
consists of trying to reach the goal area in a maximum of 10 actions from random
initial positions in the continuous state space. The 10 actions are not enough to reach
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Figure 8. An offic navigation domain.

the goal from most of the initial positions in the domain, but it is a small value to
avoid the robot wastes a long time in the same room. Tests have been performed
over 4,000 trials, each of them with a maximum of 100 actions (value higher than
the required one to reach the goal from the furthest position in the domain).

On each trial, if after the execution of the 100 actions the goal is not achieved,
the trial is considered failed. Next, different experiments performed with different
methods are described.

5.1. Uniform Discretizations

To learn the policy, and once the discretizations are available, the Q-learning
update equation was used to learn the policy, with a value of γ = 0.9 (widely
applied in the RL literature). To improve the results obtained without increasing
the exploration trials, the experience tuples obtained are used up to 20 times in an
iterative process. Furthermore, to improve the convergence, the α parameter is set to
0.2 in the firs iteration, and it is decreased by 0.01 in each step, until the 0 value is
achieved. These values, the best ones we have obtained empirically, produce good
results that could be nonoptimal.

Figure 9 shows the obtained results. The x-axis shows the size of the discretiza-
tion used. In this case, action policies for discretizations of size 400, 504, 676, 1024,
2116, 3721, 6400, and 9801 states have been learned. These sizes are obtained by
using the same number of levels for each coordinate of the domain, except for the
size 504, which is an optimal discretization of 24 × 21, i.e., the right size of the
domain, taking into account that action movement is one (the Markov property is
not lost). The y-axis shows the percentage of successful trials, i.e., trials where the
robot has been able to achieve one of the two goal areas, starting in a random initial
position of the whole domain. Furthermore, different results are shown depending
on the noise level.

The figur shows the optimal solution achieved for the deterministic domain
(noise level set to 0%) and 504 states, obtaining a 100% of successful trials. This
expected result, however, requires a perfect knowledge of the domain, and that the
user define the discretization to the optimal 24× 21 size. However, if the domain

13



Figure 9. Percentage of successful trials with uniform discretizations of different sizes and
different noise levels.

is stochastic, this situation changes as a function of the noise level. So, with a 5%
of noise, the success decreases down to 91.67%; with a noise of 10%, it decreases
down to 84.85%; and with a noise value of 20%, it decreases down to 65.45%. This
is due to the random behavior introduced in the domain by the noise component,
which may do the agent believes that it is in a region where it actually is not.

Without taking into account this handmade solution, Figure 9 shows that for
small sizes of 400, 676, and even 1024 states, the results are poor, and they do not
achieve a 60%. However, for 2116 and 3721 states, the results improve and a 68.2%
is achieved for a noise value of 5%. However, with higher sizes, the performance
decreases again, given that the number of regions is very high, resulting in a poor
use of the experience. A larger amount of experience is expected to increase the
results of the high-resolution discretizations.

When the domain is noisy, the robot typically obtains better results than when
the domain is not. This is due to the random component that the noise introduces,
which improves the exploration of the robot. Furthermore, the higher the resolution
of the discretization is, the more probability the robot has to get out of a loop.

5.2. VQQL

The VQQL algorithm define a previous step for learning the state space
discretization of the original state space. A random exploration is done over the
environment, and the experience tuples obtained will be used to learn the policy too.
Thus, the experience used for learning the model is exactly the same than the one
used in the uniform case of the previous experimentation.

Figure 10 shows the set of prototypes obtained with GLA for 1024 states
and the domain without noise. For different noise levels, different discretizations
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Figure 10. Prototypes of the discretization obtained by GLA of size 1024.

are obtained. Prototypes are only located in relevant areas of the domain, i.e., in
those areas where the robot can walk, and hence, areas where the robot must make
decisions about its following actions. Thus, having prototypes only in these areas
makes all prototypes useful.

Given that the number of prototypes is an input parameter of the algorithm,
we have executed it for the same number of states than in the uniform case. Once
the state space discretizations are computed, action policies can also be computed.
Figure 11 shows the percentage of successful trials where the robot has been able
to reach the goal area. To learn the action policy, the same learning parameters as in
the uniform case are used.

Results are similar to the ones presented in the uniform case, with two main
differences. First, in the VQQL case, the optimal solution is not obtained, and
second, without taking into account the optimal solution, values close to the 70%
are achieved, but with a smaller number of regions.

5.3. Iterative Smooth Q-Learning with ENPC

The main difference of using the ISQL-ENPC algorithm with respect to using
uniform discretizations and VQQL is that the number of regions is automatically
defined so repeating the experimentation with different discretization sizes is not
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Figure 11. Percentage of successful trials with VQQL for different numbers of regions and
noise levels.

needed. Figure 12 shows the performance obtained in each of the iterations of the
ISQL algorithm with ENPC.

The experiment has been performed for a total of 44 iterations. For each
iteration and noise level in the domain, the success of the learned policy is shown.
The figur shows that the results achieved range from 25% to 45%, obtaining poor
results because of the errors propagated from the goal areas to the whole domain.
Figure 13 shows the evolution of the number of prototypes used while the ISQL-
ENPC algorithm is executed, showing the average number of the four discretizations
(one for each action).

Figure 12. Percentage of successful trials using iterative smooth Q-learning with ENPC.
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Figure 13. Number of prototypes generated with ENPC-QL for different noise levels.

The main effect of introducing noise in the data is an overfittin problem of
the ENPC algorithm to this noisy data, and the introduction of a higher number
of prototypes to increase classificatio rates. However, even when the number of
prototypes increases very much, as with a noise level of 20%, where the number of
prototypes is higher than 7,000, the navigation problem does not seem to be solved
worse than with lower sizes, as shown in Figure 12.

In Section 4, we define the end condition to be the number of iterations
required to propagate the reinforcement in the goal areas to the rest of the domain.
In this example, the number of prototypes seems to stabilize in iteration 25 for noise
levels of 0% and 5%, respectively, whereas with noise values of 10% and 20%, that
occur in iteration 28. Differences among them are due to errors in the propagation
of the reinforcement from the goal.

5.4. Iterative Smooth Q-Learning with C4.5 and PART

The same experiment has been performed for the iterative smoothQ-learning al-
gorithm, using C4.5 and PART as the function approximators. The results
are shown in Figure 14, for a learning process with the same parameters than
in the previous experiments. The figur represents in the x-axis the noise level,
for the previously used values of 0%, 5%, 10%, and 20%. The y-axis shows the
percentage of successful trials.

The figur shows how ISQL-C4.5 is very sensitive to the noise of the domain,
more than the previous ones. So, for the deterministic domain, the success percentage
achieved is 64.8%, but when the noise is increased, this value decreases down to the
22.4%. These results show that depending on the noise of the domain, the parameters
of the C4.5 algorithmmust be modifie from the predefine ones to support a higher
noise (by modifying the pruning phase of the algorithm). This imposes the user
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Figure 14. Percentage of successful trials with C4.5 in iterative smooth Q-learning.

the burden of tuning the parameters, given that different domains may require
different parameters. The number of iterations of the algorithm executed is 29, 27,
27, and 29 for each noise level. This number corresponds to the iterations where the
reinforcement was propagated to the whole domain. The differences among them
are produced by the accumulated error in the propagation of the reinforcement from
the goal areas, as it is the case of ISQL with ENPC.

In the case of ISQL-PART, results are poorer, probably because of the higher
pruning capability of the algorithm for the default parameters. So results are around
40% of success for the deterministic domain, and lower for higher noise levels.

5.5. Conclusions

Table I shows the success obtained by all methods, without taking into account
the optimal handmade uniform discretization. Table II shows the number of regions
generated by each algorithm.

The tables show that VQQL achieves, in general, similar success levels to
uniform discretizations. However, it typically requires a smaller number of states.

Table I. Percentage of success of different methods in the offic navigation domain.

Noise Uniform VQQL ISQL PART ISQL C4.5 ISQL ENPC

0% 63.08 63.75 40.92 64.8 36.77
5% 68.2 69.65 31.85 47.1 35.62
10% 67.65 69.27 29.07 37.6 35.07
20% 64.0 63.05 36.6 22.4 28.52

18



Table II. Number of regions created by different methods in the
offic navigation domain.

Noise Uniform VQQL ISQL PART ISQL C4.5 ISQL ENPC

0% 2116 2116 487 498.5 1437.25
5% 2116 2116 504.25 731 1443
10% 2116 1024 440 649 1737.25
20% 2116 1024 389 552.5 5123.75

In a bidimensional domain, this might not be very important, but it can be critical
in other domains with higher dimensional state spaces, where vector quantization
discretizations are very powerful.28 ISQL-C4.5 achieves similar solutions when
the domain is deterministic, but its performance decreases drastically when noise
increases. ISQL-PART obtains worse results, maybe because of the higher pruning
capability, represented by a smaller number of rules generated, specially when
noise is introduced in the domain. ISQL-ENPC obtains poor results similar to the
ISQL-PART. In general, the poor results of ISQL, in contrast to discretization-based
methods, can be due to two facts. The firs one is that the errors in the propagation
of the reinforcements from goal areas to the rest of the domain produce very poor
policies. The second one is that these errors could increase by the nondeterminism
of the domain, and that supervised learning algorithms such as PART or ENPC
typically work worse in noisy domains.

However, there is a useful result of ISQL. When applied, for instance, with
ENPC, it also outputs a state space discretization for each action, define by the
prototypes of the classifie . In the case of PART, the discretization is define by each
generated rule that can be considered as a region in the space. Last C4.5 generates
a decision tree, whose leaves also defin a discretization of the state space.14 It
might be that these state space discretizations are more accurate than discretizations
obtained without taking into account the value function, as it is the case of uniform
discretizations or VQQL. Therefore, the idea that is extended in the following
sections is to use these discretizations in a second learning phase to improve the
approximation obtained.

6. TWO STEPS REINFORCEMENT LEARNING

Several splitting criteria can be used for incrementally discretizing the state
space in deterministic dynamic programming problems.6 They tried to introduce
more regions in those areas where value and/or policy approximation is harder, i.e.,
areas of the state space where discontinuities of one or both functions are found,
depending on the criteria. These discontinuities can be understood as areas where
very different values of the value function can be found. In the same way, ISQL tries
to differentiate the max path different values of the value function, obtained from
{γ i, i = 1, . . . , max path}, as define in Section 4.. So, it is trying to discriminate
among different regions of the state space with different values of the action value
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Figure 15. The two steps of the 2SRL algorithm.

function. The difference is that, in this case, the resolution is define by max path,
and so, by the size of the actions, instead of a criteria define by the designer, such
as policy disagreement or value nonlinearity.6

Definin the resolution based on the size of the actions, and hence, the number
of actions required to solve the task, provides one main advantage: It is a parameter
very easy to understand by the designer of the system. Furthermore, if algorithms
like ENPC38 or C4.534 are used in the ISQL phase, no initial coarse discretization
must be provided by the user, as it is reported inMunos andMoore6 and, Reynolds39
given that both algorithms begin with discretizations of size 1.

The idea of the algorithm that we call two steps reinforcement learning (2SRL),
is that, even if iterative smooth Q-learning obtains poor policies, if the function ap-
proximator used for each action outputs also a state space discretization, these dis-
cretizations may correctly defin the limits of the action value function (Figure 15).

The discretizations obtained in this firs phase can be used to tune, in a sec-
ond phase, the action value function obtained in the previous phase, following a
multiple (one per action) discretization-based approach. We have called this second
phase multiple discretization Q-learning (MDQL). This is different than multi grid
methods40 used to maintain different discretization levels at the same time, typically
in a hierarchy.

The need of this newphase ismotivated by the two assumptions of ISQLdefine
in Section 4 that might not be true: the domain may not be deterministic, and we
probably do not have enough experience, nor perfect approximators to correctly
compute the optimal action value function, as the experimentation of the previous
section has shown.

Figure 6 illustrates the structures required to represent the action policy used by
this method in its two phases. The left box shows the structures required by iterative
smooth Q-learning (in this case, with ENPC). In the right box, the structures used
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for representing the action policy in the multiple discretization Q-learning phase
are shown, requiring one state space discretization for each action. This phase is
not equal to the VQQL scheme, where only one discretization is used, as shown in
Figure 1, and it is different to other VRD methods. For instance, Moore and Munos
approximate the state value function, and hence, they only need one discretization,
and Reynolds uses the same discretization for all the actions when it approximates
the action value function.

The figur also shows how to move from the firs scheme to the second one.
Prototypes of the approximator ENPCi will be used as the discretization Di(s),
and the classes of ENPCi will be located in column i of the generated Q table,
providing an initialization of the Q table in the second learning phase. Each ENPCi

approximation may have a different number of prototypes, so the number of rows
of the table is given by the maximum number of prototypes of the L approximators,
and zero values can be used to complete the columns with less prototypes.

Once the translation from the firs scheme to the second one is done, a new
learning phase can be executed. A main difference with the firs one is that now, the
stochastic Q-learning update function described in Equation 1 will be used instead
of the deterministic one (Equation 2), because the state space discretization obtained
in the firs phase may not be totally accurate, as it indeed happens as it was shown
in Section 5.

The second learning phase can be executed with new experiences or with the
same ones used in the firs phase. In the experimentation performed next, the second
approach is applied using the same experiences several times, as it was performed
when uniform discretizations and VQQL were applied.

7. EXPERIMENTS WITH 2SRL

This experimentation receives as input the experimentation described in
Section 5. 2SRL is executed in two phases, ISQL and MDQL. The firs one was
executed in Section 5. for the offic navigation domain. In this section, we show
the experiments performed with 2SRL, when using both ENPC (2SRL-ENPC) and
PART (2SRL-PART) as function approximators. The learning process is the same
than the followed for VQQL and uniform discretizations.

For 2SRL-ENPC, results are summarized in Figure 16, which shows the per-
formance for each noise level. Also, the results shown in Figure 12 for ISQL-ENPC
have been included for comparison reasons. As in that case, results for each iteration
of the ISQL phase are shown.

The figur shows that in only 20 iterations, for all noise levels, the behaviors
learned achieve a range of 70%–80%, typically 10% higher than the behaviors
learnedwith uniform andVQQLdiscretizations, and 30%higher than executing only
the ISQL algorithm. So, it shows that, even if ISQL does not achieve good results,
the discretizations that it computes by using ENPC as a function approximator
achieve a better approximation of theQ function in the MDQL phase. Furthermore,
the sizes of the discretizations are computed automatically by the ENPC algorithm,
providing this method with another advantage.
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Figure 16. Percentage of successful trials when executing the multiple discretization Q-learning
phase.

The MDQL phase has also been executed over the discretization generated
by decision rules (PART) previously obtained. Table III shows the different results
achieved for all the methods applied, but without taking into account the optimal
handmade uniform discretization.

The table shows how 2SRL improves the results of executing only the ISQL
phase, both for ENPC and for PART. However, with PART, results are not so good
as for ENPC. This happens probably because it generates a small number of regions,
as it was shown in Table II, so the limits in the value function are not define as well
as in the ENPC case.

As a conclusion, 2SRL, specially when it uses ENPC, is able to solve the offic
navigation problem in an efficien way, achieving better results than other methods
without the need of definin the size of the discretization. This is done not only
for a deterministic case, but for cases with a strong stochastic component, with a

Table III. Comparative results of the different methods
in the offic navigation domain.

Noise Level (%)

Algorithm 0 5 10 20

Uniform 63.08 68.2 67.65 64.00
VQQL 63.75 69.65 69.27 63.05
ISQL-PART 40.92 31.85 29.07 36.6
2SRL PART 68.95 58.62 61.85 56.45
ISQL-ENPC 36.67 35.62 35.07 28.52
2SRL ENPC 77 75.4 78.62 73.45
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Figure 17. Graphical representation of the car on the hill domain.

noise value of 20%, where the results are close to the deterministic case, and even
higher than for the optimal 24× 21 uniform discretization, that achieved a 65.45%
of success.

8. ADDITIONAL EXPERIMENTATION

In this section, we extend the experimentation performed over the 2SRL algo-
rithm, introducing comparisons with other approaches.

8.1. Car on the Hill

This domain, widely used in the RL community,13 consists of pushing a car
until it reaches the top of a mountain, preferably with the lowest speed, as Figure 17
shows. It is a bidimensional domain, with an x component referring to the position
of the car, and a v component referring to the velocity of the car. The x component
value ranges from −1 to +1, whereas the velocity ranges from −4 to 4.

From the RL point of view, the goal of the car is to obtain a maximum reward
in each trial. Each immediate reward depends on the state of the car, i.e., on its
position and velocity, as define in the reinforcement function in Equation 3.

r(x, v) =
{
0 if − 1 ≤ x < 1
f (v) if x ≥ 1 (3)

where f (v) is a linear function that returns a positive reward only when the car
arrives to the goal, i.e., the top of the mountain (x ≥ 1). Maximum reinforcement
of +1 is obtained when the velocity is 0, and a null reward when the velocity is
maximum (−4 or 4). There are two actions in this domain, pushing the car with a
force of 4 or −4, in the direction shown by the figur (thrust).

Training data is obtained from 4,000 trials. Each trial tries to reach the goal
area from a random location by executing a maximum of 150 actions. Tests have
been performed over 1,000 trials, each of them with a maximum of 150 actions.
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Figure 18. Percentage of successful trials with uniform discretizations and VQQL.

8.1.1. Uniform Discretizations and VQQL Results

Since we do not know “a priori” what is the optimal discretization size, state
space representations of different sizes have been used. In the VQQL case, the
GLA algorithm must be applied to obtain such state space discretizations. In the
uniformcase, the state space discretizations are handmade, using the samenumber of
discretization levels for each component, x and v. The process performed for learning
the action policy is the same than the one applied for the offic navigation domain.
Figure 18 shows the percentage of successful trials for uniform discretizations and
VQQL, using the same sizes.

The figur shows that uniform discretizations and VQQL achieve success
percentages of around 80%, for small state space representations (256 and 400
states). This value is optimal, given that there are initial positions from which the
car exits the figur from the left (x ≤ −1), independently of the policy it follows
(around 20% of the initial positions). These results are worse for bigger state spaces,
where the use of the experience acquired from the 4,000 learning trials is not
exploited because the state space being learned is so large. Thus, if the percentage
of successes is taken into account, these two methods obtain good results for most
of the state space sizes.

However, if the end velocity is observed, the results achieved above cannot
be considered as good. Figure 19 shows the average speed that the car has when
arriving to the goal for the uniform and VQQL cases. The figur shows that an
average velocity of arriving to the goal smaller than 1 is achieved only when the
number of prototypes is high (for 2116 states). This shows that, although with a
small number of states, we can obtain policies that make the car reach the goal area
in a high percentage of the trials, the velocity of arriving to this goal area may also
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Figure 19. Average velocity of arriving to the goal with uniform discretizations and VQQL.

be very high, if the number of states is not big enough. This shows the difficult of
findin the right size of the state space of these approaches.

8.1.2. 2SRL

The application of ISQL to the car on the hill domain requires only one con-
sideration. The algorithm assumes a unique positive reward at the end of a trial that
must be propagated to the rest of the environment. However, in this domain, the
reinforcement function is a linear function that takes a continuous set of values from
0 to 1. To solve this problem, the reinforcement function has been discretized (for
all techniques) to the known set of values that the value function can take, i.e., the
succession of values define by γ irmax, for i = 1, . . ., ∞. We will explore in the
future whether this limitation is a strong one, and, in that case, how to overcome
it. Furthermore, for speeds higher than 2, the reinforcement achieved is considered
zero. Also, the end condition of the algorithm cannot be applied, given that there are
areas in the domain from where the goal area cannot be reached, so the algorithm
is executed 49 iterations (empirically enough to propagate the reinforcements from
the goal to the rest of the domain). Once these modification in the reinforcement
function are performed, the application of both phases of 2SRL (ISQL and MDQL)
is direct.

The learning process is the same than the one followed for VQQL and uniform
discretizations. The evolution of the learning performance is shown in Figure 20.
For comparison reasons, we also include the results obtained by executing only the
firs step of the algorithm (ISQL-ENPC).

ISQL-ENPC is able to reach the goal in almost 70% of the trials, after at
least 35 iterations. So, using the ENPC algorithm as a function approximator, the
results obtained on successful trials are worse than the ones obtained by uniform
discretizations and VQQL.
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Figure 20. Percentage of successful trials when executing 2SRL-ENPC in relation to just exe-
cuting the ISQL-ENPC phase.

For 2SRL, we can see that in only 14 iterations, values close to 80% are
achieved, so successful results are obtained faster (convergence rate), and the results
are improved (around a 10%) with respect to the result of the ISQL phase. Figure 21
shows how these advantages are extrapolated to the average velocity, achieving
results below 1 consistently.

From these results, we can draw twomain conclusions. Uniform discretizations
obtain very good results, similar to the ones obtained with VQQL. So, in this
domain, very results can be achieved with both methods, taking into account that
a right number of regions must be used to obtain the best results. Iterative smooth
Q-learning (ISQL) is not able to achieve these results due to the errors propagated
from the initial approximations of the Q function to the rest of the domain. The
results using the two phases of 2SRL are also close to the optimal. Moreover, this
approach, from the variable resolution discretization point of view, has an advantage:
the resolution of the discretization is automatically computed in the ISQL phase.

8.2. Acrobot

The experiments in the Acrobot domain have two goals. On the one side, to
test the 2SRL method in a domain with a higher dimensional state space, four
dimensions in this case. On the other side, to compare the results obtained by 2SRL
with other VRD algorithms, specificall with the results reported in. Munos and
Moore.6 Therefore, we have simulated the experiments performed in that work,
using the implementation of the domain provided at Remi Munos Web page.a

ahttp://www-2.cs.cmu.edu/∼munos.
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Figure 21. Average velocity when reaching the goal, executing 2SRL-ENPC and ISQL-ENPC.

This problem consists of a two-link arm with one actuator at the elbow, as it
is shown in Figure 22. The state is composed of four variables, θ1 and θ2, and the
velocities of the two bars. The goal is to locate the Acrobot in its inverted vertical
position in the minimum time. That position is define by a narrow range, π

16 on
both angles around the vertical position define by θ1 = π

2 and θ2 = 0. When that
location range is achieved, the system receives a reward of+1. Otherwise it receives
a reward of 0.

The firs step was to execute the system for the uniform discretization case, with
different discretization sizes. The values used for the parameters were γ = 0.93,
and a time step of 0.01. However, actions are considered to have a length of 0.5,
given that the action size using a time step of 0.01 is very small for changes on
the discretized state (even for high-resolution discretizations). The learning method
is the same one than in previous experiments. Experience tuples are obtained from
8000 exploration trials initiated in random locations of the state space. Each of those
trials has a length of 20 actions. The test is performed over 256 trials of a maximum

Figure 22. Acrobot domain.
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Figure 23. Results on the acrobot domain using uniform discretizations.

length of 40 s, following the parameters applied in. Munos and Mooreb Figure 23
summarizes the results.

The figur shows the percentage of trials that achieved the goal. The figur
shows that the best result is obtained for 10,000 states. That makes a different with
the results for VRD reported inMunos andMoore.6 In model free methods, as in this
case, increasing the state space not always increases the performance, so a balance
must be found between the state space size and the amount of experience used to
learn. Opposite to that, VRD is a model-based method, which find the optimal
policy for the discretization that it obtains, and it always improves performance
when the discretization size is increased.

Furthermore, the results are not directly comparable with the results described
for VRD in Munos and Moore.6 Uniform discretization described in this work
follows a finite-di ference method, meaning that the same region always returns the
same V or Q value for all the states in the region. VRD follows a finite-elemen
approach, so the same region may produce different values depending on the exact
position in the region of the state that we are evaluating.41 These different schemes
produce different dynamics, so performances are hardly comparable.c

Once uniform results are obtained, we have executed the two phases of the
2SRL algorithm. Figure 24 shows the percentage of successful trials. These values
are shown for the different approximations obtained in the different iterations of the
ISQL-ENPC algorithm, as well as for 2SRL-ENPC.

The figur shows that, executing the two phases of the algorithm, the average
number of successful trials improves the values over the ISQL case, in more than a

bTests were performed over 1024 trials to improve statistical properties of the results, and
then mapped to the case of 256 trials for comparison.

cThank Rémi Munos for the discussion and comments on this topic.
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Figure 24. Average number of goals obtained by ISQL-ENPC and 2SRL-ENPC.

10%. The number of iterations executed was only 18, because of the big increment in
the number of prototypes, shown in Figure 25. The figur shows that the increment of
the number of prototypes generated by ISQL-ENPC is exponential with the number
of iterations, and in 18 iterations is above 25,000. This high number introduces
strong execution restrictions on the algorithm, given that the ENPC implementation
used has a complexity in classificatio which is linear with the number of prototypes,
instead of logarithmic,which could be obtainedwith amore efficien implementation
(using, for instance, kd-trees42).

Figure 25. Number of prototypes obtained by ISQL-ENPC.
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Figure 26. Average number of goals obtained by ISQL-PART and 2SRL-PART.

The same experiment is repeated but using PART decision rules instead of
ENPC for approximating the action value function to obtain the state space dis-
cretization. Results are summarized in Figures 26 and 27. As in the previous case,
Figure 26 shows the improvement in performance when executing the two phases
of the algorithm. Furthermore, Figure 27 also shows that the number of regions
generated usually grows exponentially with the number of iterations, even in this

Figure 27. Number of regions obtained by ISQL-PART.
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case, the number of regions obtained is much lower than when using ENPC. Also,
the number of regions is very small when compared to the results reported in Munos
and Moore,6 which uses values one order of magnitude bigger.

9. CONCLUSIONS AND FUTURE WORK

We have presented a new RL method for domains with continuous state spaces
based on the supervised discretization of such state spaces. This new method,
called 2SRL, is composed of two main learning phases based on two approaches:
supervised function approximation, using the iterative smooth Q-learning algorithm,
and state space discretization methods, using the multiple discretization Q-learning.

The algorithm has two main advantages. First, the two phases have shown
better results over methods based on only one of the approaches. So, this method
can be applied to approaches which only execute the firs phase. For instance, the
Q-RRL algorithm43 is a relational reinforcement learning algorithm very similar
in structure to the iterative smooth Q-learning algorithm presented here, but using
relational data instead of feature-based data. Furthermore, Q-RRL uses a logical
Q-tree to approximate a Q-table, so a state space discretization is obtained in the
same way that was presented in this work for C4.5 tree or the decision rules. So, a
second learning phase could be added over that state space representation obtained
after executing Q-RRL to tune the Q-learning approximation obtained. The second
advantage is that the number of parameters and/or knowledge thatmust be introduced
in order the algorithm to work correctly is very low, and hence, easily applicable to
new domains.

The relationship among losing the Markov property when using state space
discretizations and the nondeterminism introduction in domains originally deter-
ministic has been shown. So, losing the Markov property can be understood as a
problem of nondeterminism introduction that could be efficientl tackled. In this
sense, the ISQL algorithm is based on the idea that, when generating an action
policy, the nondeterminism in the domain can be considered noise of a deterministic
domain if the function approximator used is able to absorb that noise. This is very
useful when definin the limits among the different regions of the state space with
strong borders in the value function, obtaining very good action policies, as it was
shown for the offic navigation domain.

Another difference with previous work based on state space discretizations is
that they typically use the same discretization for each action. Here, we show that in
model freemethodswhere the action-value function,Q(s, a),must be approximated,
it is possible that each action requires a different number of resources or state space
discretizations. This introduces the idea of using one state space discretization per
action. But, the discretizations are simpler than the required ones if only one new
state space is computed. We would like to compare both approaches in the future.

Additional research will also be the study of the use of different exploration and
exploitation strategies to improve the usefulness of the algorithm in real domains,
where initial explorationsmay not be easily performed. The effects of these strategies
to the 2SRL algorithmmust be studied, as well as efficien methods for obtaining the
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function approximation of the Q function in the firs learning phase. For instance,
concepts like the “support” set of states, or the “rollout” tests, could be introduced
in the ISQL phase, as it was introduced in smooth value iteration.5
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