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act
SkeletonAgent is an agent framework whose main feature is to integrate different artificial intelligent skills, like planning or

learning, to obtain new behaviours in a multi agent environment. This framework has been previously instantiated in a deliberative

domain (electronic tourism), where planning was used to integrate Web information in a tourist plan. RoboSkeleton results from the

instantiation of the same framework, SkeletonAgent, in a very different domain, the robot soccer. This paper shows how this

architecture is used to obtain collaborative behaviours in a reactive domain. The paper describes how the different modules of the

architecture for the robot soccer agents are designed, directly showing the flexibility of our framework.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction to develop systems based on software modules (usually

named software agents) that implement different control
e intelligent agents and multi-agent systems strategies (e.g. routing selection, scheduling, planning)

(MASs) technologies (Brenner et al., 1998; Wooldridge
and Jennings, 1994) have provided new solutions to deal
with complex problems in several domains such as data
mining, e-commerce, medicine, stock market, intelligent
manufacturing control, simulation of complex societies,
etc. The MAS techniques provide a natural way to
design and implement decentralized and distributed
systems where each element, or agent, can take its own
control decisions and modify its behaviour using the
environment information or its previous experience.

Two main technologies have been applied in the
development of intelligent distributed systems, MASs
and holonic systems1 (Shen and Norrie, 1999; Leeuwen
and Norrie, 1997). Both approaches have similar goals:
976/$ see front matter r 2005 Elsevier Ltd. All rights reserved.
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to take a decision, and that can use other techniques like
cooperation or negotiation to achieve a particular goal.
The main goal of both approaches is to increase the
adaptability and robustness of the systems. Both
approaches can be characterized by concepts like
autonomy, pro-activeness, coordination, and language
communication to obtain intelligent systems which are
able to adapt to the environment. Other characteristics
such as social organization, cooperation, knowledge
representation, coordination, or negotiation, are neces-
sary to build complex societies of agents. The differences
among both approaches are related on how the
information is managed. In the holonic systems there
is an explicit division between the physical and
information management, whereas in the MAS field
this distinction does not exist. Other characteristics, like
recursivity, is very typical of holonic systems, just as
mobility is usual in MAS technologies. Holons always
cooperate to solve a problem, however the agents in a
MAS can cooperate, or compete to achieve their
particular goals.
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Due to the complexity to build these distributed

� Agenda/skills. The agenda is a dynamic structure that
stores items called acts which are directly related to a
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systems, it is very common to use some kind of
framework that aids engineers to implement the agents
and their desired behaviours. Those frameworks provide
some kind of basic agent with a pre-defined internal
architecture, that can be modified by the programmer.
However, most of the architectures are not very flexible
and it is complicated to use this agent architecture in a
wide range of domains (i.e. deliberative and reactive).
This paper describes a generic multi-agent framework,
called SkeletonAgent, capable of integrating artificial
intelligence (AI) classical techniques to build intelligent
systems. This framework has characteristics learned
from other agent-based models like CooperA (Sommar-
uga et al., 1996), and from multi-agent models like
ABC2, or Retsina (Paolucci et al., 1999; Decker and
Sycara, 1997). Our approach has extended previous
models so that AI techniques (like planning and
learning) can be applied in different domains like Web
information gathering (Knoblock and Ambite, 1997) or
Genetic Programming. The paper briefly describes the
SkeletonAgent architecture (Camacho et al., 2005). The
main goal of the paper is to deal with its instantiation
into the robot soccer domain, i.e. how to build a team of
robot soccer agents that can be used in the RoboCup
simulation league (Kitano et al., 1997). This domain
uses reactive agents where decisions of the players are
based mainly on immediate sensorial information. The
control scheme of the agents follows a REactive
Controllers based Cooperative Architecture (RECCA)
(Fernández et al., 2000), which is a distributed scheme to
achieve the collaboration of soccer agents.

The paper is structured as follows: Section 2 describes
the architecture of a generic software agent, and
the related multi-agent framework (SkeletonAgent).
Section 3 describes the robot soccer domain, reviewing
some agent architectures implemented in that domain,
and describing RECCA. Section 4 provides the instan-
tiation of SkeletonAgent in the RoboCup Simulation
League. Finally, Section 5 summarizes the conclusions
of the research.

2. SkeletonAgent
In this section, we briefly describe our software agent
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framework, where we address the main characteristics of
the agent and multi-agent architecture defined by this
framework.

2.1. Agent architecture
Agents in SkeletonAgent are composed of several re
� K

th

software modules (Camacho et al., 2005). Fig. 1 shows
those modules and their interconnections.
sk
ill of the agent. These acts represent the actions
at the agent is considering to select and carry out at
given moment. The content of these messages

epends on the current implementation domain. For
stance, in the RoboSoccer domain, selecting the act
kick the ball’’ from the agenda will perform the
gent skill (a routine) that carries out this act. As
plained before, an agenda contains acts. Some
f them can be decomposed into lower-level acts,
hich are subsequently introduced into the agenda.
hen a particular act (atomic, or low level) cannot be
ecomposed further, it will be executed by the agent.
hose executable acts are actually the skills of the
gent. Automatic access to the Web, or executing
planner are examples of skills. The SkeletonAgent
gent architecture provides a simple mechanism
use any AI module as a new skill. If this new
ill cannot be decomposed it is simply launched as
n atomic act. Moreover, if the skill can be
ecomposed in several sub-acts, these can be inde-
endently managed in the agenda (Camacho et al.,
005).
euristics/control module. Agents have a set of
euristics that are used to decide at any time what
ct to select from the agenda. SkeletonAgent provides
so
me standard behaviours like: last in/first out
IFO), first in/first out (FIFO), or a ControlPrio

olicy which allows the selection of the oldest acts, so
at they can eventually be executed. These policies
ave to be selected before running the agent and
main fixed during execution time.
nowledge base. This module stores the knowledge
at can be used by the agent skills. The architecture
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does not provide a language for representing generic 2.2. Multi-agent architecture
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knowledge. The programmer can use any structure
that is required (files, databases, variables, etc). The
actual knowledge stored depends on the domain.
Examples for the RoboSoccer domain will be given in
Section 4.2.
� Yellow pages. This module stores the knowledge that
an agent has about all the agents belonging to its

team. This information consists of a list made up of
the name of its partners, and the name of the skills
they can accomplish. Any skill can be considered as
an abstraction of an action that will be accessible to
other agents in the team. In fact, it means that the
agent has meta-knowledge about itself (through its
skills definition) and its partners.
� Communication module. Agents in SkeletonAgent use
a communication language to share information. The
the system. There are two types of them:

�

control module decides when to send messages, and it
is also the module which receives messages from
other agents. Once the control module has received a
message, it can be distributed to any other module of
the agent. The communication process is implemen-
ted by three interconnected submodules: the commu-

nication manager module, that manages the messages
received from the language module in the input/
output queue; the language module, that translates the
internal data (used by the agent) into the commu-
nication language used by the agent (i.e. an standard
KQML message) or vice versa; and finally, the
communication module that is responsible for serial-
izing and deserializing the information, so the
message can be sent (received) through (from) the
physical network.

There are a variety of multi-agent frameworks for
designing intelligent agents and behaviour models.
Although they have different focus of interest, all these
frameworks provide coherent, high-level views of
intelligent agency. However, much of the complexity
of building intelligent agents is in the low-level details,
especially when building agents that exhibit high degrees
of competence while interacting in complex environ-
ments. The flexibility of SkeletonAgent arises from its
modular architecture conception and implementation of
both the agents and the relationship among them. Any
agent is designed using a set of software components,
that are specified in the design phase. Although it is
possible to use the pre-defined modules provided by the
framework, any of them can be modified or replaced.
This allows to build MAS for any kind of domain
(deliberative or reactive). Other architectures, and
frameworks, like Jade, JATLite, ZEUS, JAFMAS, etc.
provide some kind of agent template (classes, libraries,
etc.) that can be used to implement the agent. However,
the modification of its internal behaviour (and compo-
nents) is usually a hard task.
In this section, how to implement societies of
agents by means of the model outlined in the previous
section is described. Our architecture, SkeletonAgent,
provides a reusable code to help with the development
of different kind of MASs. The main goal of this
framework is to easily allow the integration of AI
solving problem techniques (like planning or machine
learning) (Camacho et al., 2005; Aler et al., 2003) in
both deliberative and reactive domains. There are
three main roles in the system: users, solvers, and
information agents. Therefore, our system follows a
three-layer architecture, as other approaches like Re-
tsina (Paolucci et al., 1999; Decker and Sycara, 1997).
As we also want to implement teams of agents, a new
kind of agents has been included (control agents). Every
team is managed by a specialized agent named
CoachAgent (CCH). It is necessary to use a single
ManagerAgent (MNG) to manage the different teams.
The flexibility of the coordination and cooperation
approach will allow to our agent-based systems to
modify their behaviours and adapt their capabilities to
the main characteristics of the domain. Therefore, in
SkeletonAgent (like other MAS frameworks), any
system implemented needs at least the following agents
to work properly:

� Control agents. They manage the different agents in
� ManagerAgent (MNG). This agent is similar to
AMS agents (as in FIPA). Its main roles are to add
and remove other agents from the system, and to
control which agents are active in the agent
society. This agent is responsible for building a
team of agents. To do this, when any agent
requests to be inserted in the society, the MNG

determines which teams require this agent.
� CoachAgent (CCH). They control a team of
agents, guaranteeing stability and smooth coop-
eration of the active agents. The CoachAgents
report problems directly to the MNG (for
instance, when a new agent is required for the
team). These agents are also used to guarantee that
the yellow pages of the team members are
coherent.

Execution agents. These agents are responsible for
achieving the different goals of the system. To
coordinate different teams of agents it is possible to

include a new skill in the control module of the
agents. Currently, there exist different kind of
execution agents; we have implemented agents which
are able to use a planner to solve problems
(PlannerAgents), information agents that can retrieve
Web data (WebAgents), or agents that can interact
with the RoboSoccer simulator.

3



In summary, the main characteristics of a MAS that teams of players (software agents) (Noda, 1999) that are
c
c
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can be implemented within this framework are:
� Agents in the system use message-passing to com- S
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�

�

(3

3.

p

municate with other agents.
All the agents have the same architecture and they are
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specialized in different tasks through the implemen-
tation of different skills.
Although the communication language is the same
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o distinguish two different types of communication
messages. On the one hand, there are control
messages whose main goal is to manage the
behaviour of the system (control communication
module). On the other hand, execution messages are
used to share knowledge and tasks among the agents,
to achieve desired goals (execution communication).

To start the MAS correctly, it is necessary to perform
the following steps:

(1) First, the MNG is executed.
in
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(2)
 Agents in the system need to register themselves with
the MNG. Once a CCH has registered, the MNG will
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select the necessary execution agents from its white
pages and will build an operative team. If there are
not enough agents, the CCH will wait for them. To
build a team the MNG selects the execution agents
and provides the necessary information to the CCH.
Once the information of the agents has been stored
in CCH’s yellow pages, it updates the yellow pages
of its execution agents. To select the necessary agents
to build a group, the MNG uses the Ontology of the
CCH agent.

) Once a team is built, the execution agents can only
communicate with the agents belonging to its team
or with its CCH.
c
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The next subsections introduces the RoboCup do-
main, as well as the control algorithm used for the
RoboSoccer agents. Then, the design of this MAS,
as well as the control algorithm will be provided in the
next section.

3.1. RoboCup and MAS

The Robot World Cup Initiative (RoboCup) (Kitano
et al., 1997) provides a standard problem, soccer, for the
research of AI and intelligent robotics. Added to the real
robot leagues, RoboCup provides a software platform,
called Soccer Server simulator, for research and simulate
several problems which appear with real robots. The
Soccer Server is an environment for confronting two
ontrolled by several types of systems. A match is
arried out in a server-client style: a server, Soccer
erver, provides a virtual field and simulates all move-
ents of a ball and players. The clients become the
layers’ brains and control their movements. Commu-
ication between the server and each client is done
ia UDP/IP sockets. Therefore, users can use any
ind of programming system which has UDP/IP
cilities. In another level of the communications,
ifferent protocols are developed between the clients
nd the server to transmit sensor information and agent
ontrol commands.
Given this platform, several architectures have been

pplied to control a RoboSoccer team. In Matellán and
orrajo (2001), an agenda-based architecture is used to
tegrate the different skills of the players, each of them
omposed of different basic actions such as kick the ball,
r send a message to another player. However, when
tegrating these actions in order to obtain complex
ehaviours, the designer must decide on a number of
ierarchical levels in the control architecture, as defined
Stone (2000). This decision depends on the knowledge

bout the model of the domain. If the model is very well
nown, it is possible to obtain a very detailed descrip-
on of each task, so the domain, and how to solve the
sks in it, can be deeply described and hierarchized.
hen the model is very dynamic, stochastic, and
nknown, as in the case of RoboSoccer, the develop-
ent of this hierarchy of tasks is not easy to create,
iven that the model of the domain must be created
ynamically while interacting with it, and how to
tegrate pre-defined knowledge with the models being
arned is not an easy task. Thus, reactive architectures
re very robust in domains where a description of the
odel is not known, and are hard to build. However, to
oordinate reactive systems or reactive agents, a
entralized reasoning is typically used, which indicates
each agent the task that it has to solve. However, in

omains like the RoboSoccer, a centralized reasoning
annot be implemented, because it requires a perfect
nowledge of the domain, and a high communication
apability that is not provided by the soccer server
mulator. A simple way to control the team members
nd to obtain a collaborative behaviour among the
gents can be achieved through the implementation of
e RECCA which is described next.

.2. RECCA

The goal of this control architecture, designed for
oboSoccer agents, is that the different players of the
am are able to keep a team formation (Fernández
t al., 2000). This formation defines the number and
cation of the players in the field, for instance, a 4-4-2
rmation (four defenders, four midfield players, and

4



two forwards) or any other formation (4-3-3, 5-3-2,

instance, given the situation of Fig. 2, let us assume that

Fig. 2. Local areas and leaders.
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etc.). The main characteristic of this approach is that the
formation is kept only by using local information. This
means that the players will play without knowing the
absolute locations of other players, so they will only use
the visual information that they receive in each moment,
minimizing the communication among players. So it is
desirable that the players maintain the formation
whatever the situation of the game is, i.e. if they own
the ball, if they are defending, etc. The architecture is
based on three elements. Firstly, a formation type (for
instance, 4-4-2, 5-2-2, etc.) is defined. The team must
follow that formation, which can be modified by the
coach of the team, but it is supposed that it will not
change many times in a match.

The second component to maintain the formation of
the team is the global leader. The global leader is the
player that owns the ball, or that is supposed to be able
to obtain it, and it is the only global information that all
the agents must share. The global leader of the team
changes in time, and is the centre of the play for its team.
So, if one player is the global leader, all the other players
will play using it as the central point of the team. The
decision about who the global leader is, is defined by a
reduced communication protocol. If a player is very
close to the ball but it is not the global leader, it can send
a message to the rest of the team members informing
that he is the new leader, obtaining the ball. Further-
more, a global leader may give the leadership to another
team member by, for instance, passing him the ball.

The last element of the architecture is the player role.
Each player plays a role in the team. This role is defined
by three elements: (i) the play area or absolute positions
where the player can be located; (ii) the local leader of
the role; and (iii) the soccer role, i.e. whether the player
is a defender, midfield player, or an attacker. Fig. 2
shows the play areas and local leaders for a team with a
4-3-3 formation. The play area of each player is defined
by the rectangles, and the local leaders are defined by
arrows. The global leader (which owns the ball) is the
only player who does not have a local leader.

The play area associated to each player is defined ‘‘a
priori’’, and depends on the formation. These areas must
be big enough to allow the players to cover the field and
to follow their local leader, but small enough to
maintain the coherence of the team. The local goal of
each player is to follow his local leader. The idea is that
if the players are able to follow their local leader, they
will keep the formation of the team. Depending on the
definition of the local leaders, the location of each player
in the field may change. The definition of the local leader
of each player depends on the global leader. This means
that depending on who the global leader is, the local
leader of each player may be different. This relationship
among global and local leader is pre-defined with
the play strategy and the formation of the team. For
the player that owns the ball decides to pass to the
player in its left. Then, the receiving player becomes
the global leader. Based on the new global leader, all the
players updates their local leaders to the situation
defined in Fig. 3. In the figure, the leadership relation-
ships that have changed are bolded. For instance, the
new global leader becomes also the local leader of the
past global leader. In the same way, it becomes the local
leader of all the midfield players.

The relationship between the local leader and the
global leader has been defined by hand, but optimal
configurations for different formations could be learned.
In Reynolds (1999), the concept of leader is also used
when implementing following leader behaviours is a
game. In that case, the goal is to provide some
characters with the capability of following a leader
without crowding and staying out of the leader’s way. In
our case, leader following requires the same capabilities,
but it is also constrained by vision limitations.

The control algorithm of all the players (except the
goal keeper, which is implemented differently) is defined
in Fig. 4. It shows that all the information used to take
the decisions is local to each player. The only global
information is which player is the global leader, so it is
shared by all the team. Each of the actions shown in the
flow represents high-level acts that can be executed by
the agents. For instance, the first action that all the
players do is to verify if they are blocked by another
player, i.e. if another player is in its way, and to unblock
the situation. There are several different acts defined.
For instance, ‘‘look for the ball’’ is an act where the
player rotates to find the ball. Acts like ‘‘go to the ball’’,
‘‘get closer to my local leader’’, or ‘‘go to the centre of
my play area’’ makes the agent move to different

5



Fig. 3. Local areas and leaders.
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Fig. 4. RECCA control algorithm for players.
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locations. ‘‘Change global leader’’ and ‘‘look for the of this domain: only two teams, each of them composed
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local leader’’ are the only two communication acts. In
the first one, the new global leader is communicated to
the rest of the players. In the second one, a player ask
for the position of its local leader, so its local leader, or
any other player who knows his position, may answer
this question.

The control scheme has two main branches. The first
one, if the player is the global leader, where it tries to go
forward or pass the ball to a partner. The second one, if
the player is not the local leader, where it tries to stay in
its play area, following to its local leader. Each of the
actions shown in the flow could be studied to improve
the behaviour of the team so, for instance, if a player is
not the global leader, instead of keeping in the centre of
its play area, he could search for a good position to
receive the ball, etc.
4. RoboSkeleton: design of a team of RoboSoccer agents
This section describes a specific instantiation of
SkeletonAgent in the RoboCup domain, which we have
called RoboSkeleton. It is a multi-agent team of
software robots (reactive agents) that allows us to
implement different control strategies for playing soccer.

4.1. Multi-agent characteristics of RoboSkeleton

The general multi-agent architecture that supports
SkeletonAgent was introduced in Section 2.2, showing
three main kinds of agents: manager agents, coach
agents and execution agents. Fig. 5 shows how this
architecture has been adapted to the RoboSoccer
domain.

Manager agent appears to control the number of
agents in the system, taking into account the restrictions

Robo Soccer Simulator
Manager
Agent

Communication

Team 1 Team 2

Goal
Keeper

Team 2
Coach

Team 1
Coach

Agent1,1

Agent1,10

Agent 2,1
Player

Player

Player

Agent 2,10
Player

Goal
Keeper

Fig. 5. RoboSkeleton multi agent architecture.
of 11 players. In the case of implementing robot soccer
teams in the Soccer Server simulator, this manager agent
is implemented by the simulator itself, which is the
element to which the different agents of the different
teams must connect. Nevertheless, Soccer Server simu-
lator implements all the roles defined in Section 2.2 for
this kind of agent, i.e. to add and remove other agents
from the system (one coach and 11 players per team),
control which agents are active in the agent society and
group agents in teams.

A coach agent manages the agents of a team,
guaranteeing stability and smooth operations of the
active agents, as defined in Section 2.2. Therefore, in the
RoboSoccer domain, this agent must define the play
strategy of the team, the role that each player must play,
etc. In the robot soccer domain, coaching is demonstrat-
ing a very important impact in the results obtained by
the teams (Riley et al., 2002). We suppose that our coach
has three main capabilities, following the ideas intro-
duced in Riley and Veloso (2001). The first one is
modelling opponent behaviour in order to characterize
it from a pre-defined set of different possible opponent
models. The second one, and once opponent behaviour
has been characterized, is deciding the right play
strategy. And lastly, communicating the new strategy
to the players. This last capability is the only one
implemented up to now in our software, but we
will show how the architecture should work with the
other ones.

Execution agents are responsible for achieving the
different goals of the system, that in the RoboSoccer
domain is defined as winning the match. In this case,
RECCA defines two different kind of agents, the goal
keeper and the rest of the players, i.e. defender, midfield,
and forward players. The role of each player depends on
the coach, so it does not need to be defined at this level.

4.2. Characteristics of RoboSkeleton agents

This section provides a detailed description about the
specific characteristics of each agent in the RoboSkele-
ton system. Table 1 describes the specific agent
characteristics.

� Control agent: ManagerAgent (MNG). As we have
stated before, in the RoboCup application of the

multi-agent SkeletonAgent architecture, this agent is
�

implemented by the Soccer Server simulator, so it has
not been implemented following the standard agent
architecture.
Control agent: CoachAgent (CCH). The acts that this
agent manages are related to defining and commu-
nicating the strategy to the players. This communica-
tion can be defined at the beginning of a match, but

acts for identifying the strategy of the opponent, and

7



from that model, defining a new strategy, are
included. The knowledge base introduces two kind

�

�

executed. The last two kinds of skills are the ones
defined in the RECCA control architecture shown in

Table 1

Specific attributes in the RoboSkeleton agents

Manager agent Coach agent Goal keeper Player

Agenda The following acts are defined:

� Communicate the strategy

to the players

� Extract opponent model

� Define new play strategies

from opponent models

The following acts are defined:

� Look for the ball

� Locate in goal

� Catch the ball

The following acts are defined:

� Look for the ball

� Look for the leader

� Change leader

� Others

Heuristics/

controlmodule

FIFO/sequential FIFO RECCA

Skills It can communicate with the

player agents to inform about

changes in play parameters,

like play strategy, size of the

play areas, etc.

Low level skills to catch the

ball and to kick it to another

team member

All the skills related with

playing soccer, as well as

capabilities to connect to the

other agents

Knowledge base Opponent models, play

strategies, information relating

opponent models and

successful play strategies

Play strategies, global and

local leader information

Yellow page

Communication

module

Soccer Simulator Language

and UDP/IP protocol

Soccer Simulator Language

and UDP/IP protocol

Soccer Simulator Language

and UDP/IP protocol
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of information. On the one hand, the information
required to model the behaviour of the opponent. On
the other hand, the information required to define the
play strategy from the opponent model. Players are
very homogeneous, so no yellow pages are required,
given that the rest of agents will be treated as equal.
Communication module follows the ideas of Skele-
tonAgent, establishing the three communication
levels.
Execution agent: Goal keeper. The goal keeper has an
independent implementation from the rest of the
players. His only behaviour is to keep in his goal, and
th
S
co
la
h
p

to move only when a forward player kicks the ball to
the goal. This last action can be hand-made pro-
grammed or learned with machine learning methods,
as defined in Fernández and Borrajo (2000). Knowl-
edge managed is limited to sensorial information.
Execution agent: Player. There are three kinds of
skills, that compose a hierarchy of skills. The first one
is a basic skill that corresponds with an action
se

S
th
fo

4.

fa
q

executable in the simulator, like the turn and move

soccer server commands. The second one is a single
skill, that is composed of a sequence of basic skills,
but that does not require external information to be
executed, for instance, a sequence of dash commands.
The third level is composed of skills that can involve
complex behaviours, and can be composed of basic
and single skills, and decisions can be taken depend-
ing on additional information of the agent, the server,
etc., that can be received while the skill is being
Fig. 4.
Even though the players follow a reactive behaviour,
some information is managed: on the one hand,
information computed from the information received
through the sensors; on the other hand, information
required to execute the RECCA control scheme, such
as the size of the play area and the relationship
among global and local leaders, that are given by the
play strategy. Furthermore, global leader is the only
knowledge shared by the team, and it requires a
communication process among the agents. Players
are homogeneous, so no yellow pages are required.

Communication among the agents can follow the
ree layers architecture defined for SkeletonAgent in
ection 2.1. Thus, the UDP/IP protocol is used in the
mmunication layer; the Soccer Server communication
nguage is used in the language layer; and each agent
as its own communication manager Module, defined to
rocess all the messages received and that it needs to
nd to other players. Furthermore, with the Soccer
erver simulator, all communications are centralized by
e server because any other kind of communication is
rbidden by RoboCup simulation league rules.

3. RoboSkeleton validation

To evaluate the RoboCup team implemented, several
ctors can be taken into account, both from the
uantitative (number of goals scored, lost balls,

8



successful passes, etc.) and the qualitative point of view tested playing with different teams with the same play

� In the first experiment, the original team plays against

�
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(individual and team coordination, play strategy execu-
tion, etc.). The goal of this work is to show that
SkeletonAgent can be successfully applied on the robot
soccer domain so, in this case, we have considered
evaluating the qualitative factors that define the control
module of the RoboSkeleton agents, given that our
main interest is, in this case, to verify the capability of
the architecture to execute coordinate global beha-
viours, and not to develop high quality low-level ones.

Section 3.2 introduced the fact that the main goal of
RECCA is that the soccer players are able to keep a play
strategy, for instance, 4-4-2, or any other one. This is a
global parameter that must be defined. Other three local
elements were defined for each player: the role, the local
leader, and the size of the play area associated to the
player. From these four elements, we have performed
several experiments to define the global one, i.e. the play
strategy, and one of the local ones, the play area of each
player. The goal of this experimentation is to define
which is the more accurate one. This accuracy is
obtained visually by the designer, by observing if the
formation of the team is kept, and if each player is able
to follow his local leader, or if the local leader is lost,
and hence, formation is also lost.

4.3.1. Defining the play strategy

For defining the play strategy, the structure 4-4-2
(four defenders, four midfield players, and two attack-
ers) is used as a basic play strategy. This basic team is
faced against other teams with different play strategy. In
the first evaluation, the basic team plays against another
with a 5-5 strategy, i.e. only two lines of players. When
these two teams are playing, it was observed that while
the basic team was able to keep the play strategy, the
other team was not. The main problem appears when
the players try to follow their local leader when both are
located on the same play line (given that there are only
two lines). So, the player places himself in his line
horizontally with respect to his leader, while attacking
or defending are actions that typically must be executed
vertically in the field. Then, the opposite case was tested,
executing several matches of the basic team against
another with a 4-3-2-1 play strategy. Even though this
team maintains the team structure better than the 5-5
one, the increment in the number of lines increases the
effort to maintain the team strategy. The 4-4-2, as in the
previous case, is able to keep the formation of the team
for a longer time. Therefore, we can conclude that the
RECCA control architecture does it better when a 4-4-2
play strategy is followed, even though it can be
instantiated with different ones.

4.3.2. Defining the play area size of the players

For tuning the play area, the basic team tested in the
previous test, with the 4-4-2 play strategy, is used. It is
strategy but with different sizes of the play area of the
different players:
another, where the play area of each player has been
homogeneously increased. This new team seems to
maintaining the cohesion of the team better, given
that the player can stay closer to each local leader,
independently of the position of the global leader.
In the second experiment, instead of increasing the
play area of all the players homogeneously, the ones

of the attackers and the defenders have been
increased in a higher proportion than the midfield
player ones. At the same time, the midfield areas have
been modified to more accurate areas that try to
minimize the effort of the team to keep the play
strategy.

We can conclude that increasing the team area
improves the capability of each player to follow its
local leader, given that they can move in a higher area of
the field. However, it can make the players keep very
close among themselves, localizing all of them in a small
area, which cannot be good when playing real matches.
This element shows the difficulty of defining a metric
that allows us to empirically measure the goodness of a
strategy, or certain parameters such as the area size of
the players, and this is the reason we have not used it in
this work. Testing them with real teams would require a
finer tuning of low-level skills that have not been carried
out up to now.

5. Conclusions
This paper has presented the instantiation of Skele-
tonAgent, a flexible architecture for building MAS, in
the robot soccer domain. This instantiation, named
RoboSkeleton, implements a team of agents that can
be executed in the RoboSoccer domain, following a
reactive behaviour. With the adaptation of the archi-
tecture to this new domain, we show the flexibility of our
approach, and how it can be adapted following the
requirements of very different application domains.

The RoboCup domain is an interesting domain where
the SkeletonAgent architecture can be successfully used
to design the different agents of the MAS. For instance,
in relation to the multi-agent architecture, the Robo-
Soccer domain has shown it requires a manager-coach-
execution agent scheme, related to the RoboSoccer
coach and players, respectively. Furthermore, the agent
architecture is useful too, even though sometimes not all
the modules are required.

In the future, several topics will be addressed with
RoboSkeleton: the tuning of the skills and integrating
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f SkeletonAgent allows to apply it into very hetero-
eneous domains: currently we are using this architec-
ure in two, a genetic programming (Aler et al., 2003)
omain and in a distributed searching of electronic news
Camacho and Aler, 2005) domain. In the future,
e would like to apply our architecture in new
omains such as the intelligent manufacturing (Shen
nd Norrie, 1999).
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