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Abstract. The linearization of products of wavefunctions of exactly solvable potentials often
reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a
continuous variable, which consists of the expansion of the product of two arbitrary HPs in
series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of
the coefficients of the second-order differential equations satisfied by the involved polynomials.
General expressions for the expansion coefficients are given in integral form, and they are applied to
derive the connection formulae relating the three classical families of hypergeometric polynomials
orthogonal on the real axis (Hermite, Laguerre and Jacobi), as well as several generalized
linearization formulae involving these families. The connection and linearization coefficients are
generally expressed as finite sums of terminating hypergeometric functions, which often reduce to
a single function of the same type; when possible, these functions are evaluated in closed form. In
some cases, sign properties of the coefficients such as positivity or non-negativity conditions are
derived as a by-product from their resulting explicit representations.

1. Introduction

Consider the second-order differential operator

FIyIx) = o(x)y"(x) + T(x)y'(x) 1)
whereo(x) and t(x) are polynomials whose degrees are not greater than two and one,
respectively. Ifjz’| + |o”| # 0, then for everys € N, F has a polynomial eigenfunction
y(x) = y,(x) of degreen corresponding to the eigenvalue

Ap =nt’ + ;n(n —1o".

These polynomials are_usually calldd/pergeometric-type polynomial®r continuous
hypergeometric-type polynomials, in contrast with those which appear as eigenfunctions of
second-order lineadifferenceoperators); by means of linear changes of the variable, they
can be reduced to one of the four classical families (Hermite, Laguerre, Jacobi and Bessel).
The hypergeometric-type polynomials are involved in the classical eigenfunctions of singular
Sturm—Liouville equations [1-6] as well as in the quantum mechanical wavefunctions of the
exactly solvable potentials [5, 7-10], and they are used in the mathematical modelling of a
great amount of physical and chemical phenomena [3,5, 11-14].
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This paperdeals with thegeneral hypergeometric linearization problemhich is the
problem of finding the coefficiengs, ., in the expansion of the product of two (hypergeometric)
polynomials, p, (x)g.,(x), in terms of an arbitrary sequence of orthogonal hypergeometric
polynomials{yy (x)},

n+m

Pr(O)Gn () =Y Zumk 3k (). 2
k=0

Note that, in this setting, the polynomia}s,, g, and y, may belong to three different
hypergeometric families. Particular cases of this problem have been matter of intensive
research (see, e.g., [12, 15] and the bibliography therein), and frequently receive different
names. For example, when the polynomja)sg,, andy, are solutions of the same differential
equation (1), this is usually called tlistandard) linearizatiorf12] or Clebsch—Gordan-type
problem[16] for hypergeometric polynomials (the name Clebsch—Gordan is attached because
the structure is similar to the Clebsch—Gordan series for spherical functions [17]). On the other
hand, taking,,(x) = 1 in (2), we are faced with the so-callednnectiorproblem, which for

pn(x) = x™ is known as thénversionproblem for the family{y; (x)}.

The literature on the standard linearization and connection problems is extremely vast,
and a variety of methods and approaches for computing the coeffigignts (2) have been
developed. For the classical families of polynomials, explicit expressions have been obtained,
usually in terms of generalized hypergeometric series, exploiting with this purpose several
of their characterizing properties: recurrence relations, generating functions, orthogonality
weights, etc (see, e.g.,[3,12,16,18-20]). Another, rather general, approach allows computation
of the standard linearization and connection coefficients recursively (see, e.g., [15, 20, 21]).
In contrast, the general linearization problem has not yet been solved [12, 15], although
some partial results are known for Jacobi polynomials [14], and explicit expressions for the
coefficientsg,..x whenp,, g,, andy, are Laguerre polynomials with different parameters have
also been given [16]. This is somewhat surprising, because there are numerous fundamental
and applied questions related to this problem, such as the linearization of products of basis-set
functions associated to shape-invariant potentials [10], the transformation formulae between
quantum mechanical wavefunctions in different coordinate systems (e.g. the bound-state
wavefunctions on £(R3) in spherical and parabolic coordinates [22]), the interbasis expansions
for potentials of equal [23] and different [24] dimensionality (e.g. the passage formulae from
the R® hydrogen wavefunctions t&* oscillator wavefunctions [22]), the determination of
the Talmi—Brody—Moshinsky coefficients [25] so widely used in nuclear structure, and the
evaluation of two-centre, two- and three-electron integrals in variational atomic analysis [13].

The main aim of this paper is to produce some analytic (in general, integral) representations
for the coefficientg,,,.x in (2), extending the method proposed very recently by the authors [26]
to solve the inversion, connection, and standard linearization problems for hypergeometric
polynomials. These analytic expressionggf; are given directly in terms of the coefficients
of the differential equations corresponding to the hypergeometric polynomials andy,,
which is often a desirable feature. In fact, products of hypergeometric polynomials appear
naturally when dealing with eigenfunction systems of Sturm—Liouville equations [27,28] and
the Schoédinger equations associated to central potentials [7,17]. Furthermore, the quantum
mechanical equation of motion of numerous physical systems with a shape-invariant potential
can be reduced to a second-order differential equation of hypergeometric character [5, 7, 8].

In many applications of orthogonal polynomials, it is often important to know whether the
linearization and connection coefficients are positive or non-negative (see, e.g., [12, 29, 30]).
During the last decades, several sufficient conditions for these sign properties to hold have been
derived, both for general polynomials and for the classical families (see, e.g., [12, 30—34]).



Although thefocus of the present paper is on the explicit computation of the coefficients,
rather than on the study of their sign properties, we shall find that in many cases these sign
properties become obvious from the representations given here; typically, this happens when
the coefficients can be written as a sum of terms which are shown to have the same sign by
taking into account the comments after equation (A.1).

The paper is structured as follows. First, in section 2, the general expressions for the
linearization coefficients are obtained, and the particular cases of the standard linearization
and connection problems are singled out. We also find the remarkable result that, for
hypergeometric polynomials, the linearization coefficients can always be written as a finite
combination of connection coefficients. Later, forillustration, the connection formulae relating
the three classical families of hypergeometric polynomials orthogonal on the real line (Hermite,
Laguerre and Jacobi) are obtained (section 3). The linearization problems for Hermite and
Laguerre polynomials are revisited, and closed expressions are also obtained for the coefficients
of the Hermite expansion of products involving Hermite polynomials (section 4). Some
concluding remarks are given in section 5, and, finally, the definitions and identities for special
functions used throughout the paper are collected in the appendix.

2. General results

We begin by introducing some notation. Beldwis the class of all polynomials with real
coefficients. If{y,(x)},ey Stands for the sequence of monic hypergeometric polynomials
corresponding to operator (1), then we denote,hy(x), with n, k € N, the monic polynomial
eigenfunction of degree of the operator

Filyl(x) = o (x)y"(x) + 7e(x)y'(x) T (x) = 7(x) + ko' (x) 3)
with |z/| + |o”| # O, so that
Yn(X) = yno0(x) Vo () = nyn_15+1(x). 4)

Analogous notation will be used for other sequences of monic hypergeometric polynomials as
well. For the sake of brevity, below we omit the subindexhenk = 0.
An explicit expression for these polynomials is provided by the Rodrigues formula. Fix

w(x) = exp(/x % dz) wr(x) = [o(0)]fw(x) k> 0. (5)
Thenwy (x) is a solution of the so-called Pearson’s equation, [0 (£3d]’ = . (x)wi (x). If

n—1 +i-1 -1 n—1 +i+2%—1 -1
Apk = l_[ <r,§ T {2 o”) = l_[ (r/ O e e 2 U”) (6)

j=0 j=0
then
App o
n,k Wy+k ()C) . (7)
wr(x)  dx?
In what follows, we assume, additionally, the existence of two values < a < b < o0
such that

yn,k(-x) =

w(x) € C(a,b) |im+a)1(x)xk = |irTb1 w1(x)x¥ =0 k>0. (8)

This assumption leads to orthogonality{®f (x)} with respect to the weight functian(x) on
the interval [a, § (see [5]),

b
f )Y O A = 2080 20 = (=11 Any ©)



where{y,} denotes the sequence of generalized momenitsof,

b
v = f o (x) . (10)

Likewise, every sequende, . (x)} is then orthogonal with respect to the weight functigx)
on the same interval,

b
/ Ik Yk OO Ax = kS s = (—1 Ay, (L1)

Let us denote by p,(x)} and{g, (x)} two (possibly different) polynomial sequences,
not necessarily orthogonal or hypergeometric. The orthogonality relation (9) for the sequence
{y.(x)}leads to the following explicit expression for the Fourier coefficignts of the general
linearization formula (2):

1 b
Enmk = }f_k/ pn(-x)qm (x)yk(x)w(x) dx. (12)

This equation enables us to compygig, in a straightforward way provided that the explicit
expressions of the three polynomials involved are known. However, as we shall show in the
following, the hypergeometric nature of the polynomials can be used to derive alternative
expressions for the linearization coefficients, which may be written in terms of the coefficients
of the underlying differential operators and are computationally more efficient.

Taking advantage of equations (7) and (9), we can rewrite (12) as
(=1 [° d“ay (x)
K /a P (X) G (X) o dx. (13)

It is easy to verify that for every e P there exists @ € P such that

8nmk =

d’
a7 k@O P )] = 0 (1) Q(x) j <k
X -

Thus, integrating by partstimes and taking into account the boundary conditions (8), Leibniz’s
rule allows us to rewrite (13) in the form

1 I /K b iy (x) A g (x)
" Ky ' ' ‘ d 14
st klyx =r (J) /a dx/ dxk—i @y (x) dx (14)

wherej_ = max(0, k — m), j. = min(k, n).

In comparison with (12), (14) has two main advantages. Firstly, it does not require the
knowledge of the explicit expression of the polynomigl¢éx). Secondly, although in both
caseg,.x is expressed as a three-level summation of terms which are essentially the moments
of a weight function, the degree reduction by derivatives provides a smaller number of terms
when (14) is used. For instance, the number of terms in the expressigns.fgiven by (12)
and (14) are, respectively; + 1)° and

n—j+DG+D=tn+Dn+n+3).
i=0

J
Equation (14) is especially useful when the derivatives of the polynomidals) andg,, (x)
have simple expressions. In particular, takpgx) = x" andg,,(x) = 1, we can obtain a
solution for the inversion problem in terms of the moments of the weights) [26]: the
coefficient:,; in the expansion

n
X =) tuyi(x)
k=0



is given by

1 b
I (n)_/ X"y (x) dx.
k Yk Ja

Let us assume now that both,(x) and g, (x) are also monic polynomials of
hypergeometric type. Formula (14) can then be written, using (4), in the form

1 J+ n m . . b
Enmk = % J; j k—j Lumi(J) Lomi(J) = ,/; Pnquj(x)61m+j7k,k7j (X)wp(x) dx.

(15)

This equation is feasible for the computation of the generalized linearization coefficients
whenever the explicit expressions of the polynomials involved in the integral are known,
as is the case, e.qg., for the classical hypergeometric families (see the appendix). For general
families of polynomials, when only the coefficients of the corresponding differential operators
are available, we can make one more step and find an equivalent expressigp,ftnat

does not require the knowledge of the explicit expressions of the polynomials. Initially, we
restrict our attention to the standard linearization and connection problems, for which simpler
formulae can be derived from (15).

In the particular case when the three families of hypergeometric polynomials coincide,
we have a solution for the (standard) linearization (or Clebsch—Gordan) problem. Using the
orthogonality property (9), equation (2) simplifies to

n+m

yn(x)ym(x) = Z lnmkyk(x) (16)

k=|n—m|

and (15) now reads as

== ()" Yoy 2 (')—/b (Yo by (V)eog ()
nmk — Vi =~ ] k—] nmk (] nmkJ) = ; Yn—j,j\X) Ym+j—k k—j (X)W (X) OX.

17)

Using equation (7) fory,—; ;(x), the previous expression for the integrdls.(j) can be
written as

Inmk(j) - An—jj/b w
), dxni
Observe that by (4) and (7), forQ j < n,
(

Yt j—kk—j ([0 ()] dx.

dxi wp(x)  dx” n—pD Apx wpsj(x)  dxn/
Thus, integrating by parts — j times and taking into account the boundary conditions (8),
) b dn—j .
Lok (j) = (—1)"—1An,,,,/ O () g Ok (Do (0] .

Using the Leibniz rule and equation (4),

A i . Y
Tk () = (-7 74, ;3 (” - ) =K% )

i (m—n—k+2j+i)!

i=i_

b d'[o (x)]*
X/ ym—n+2j—k+i,k—2j+n—i(x)%wn@c) dx



wherei_ = max(0, n—m+k—2j),i» = min{n—j, (k—j) deg[o (x)]}. Now we can substitute
the explicit expression of the remaining polynomial, given by the Rodrigues formula (7), and
integrate by parts again, which yields

(” - j) (=D’ —k+))!

i (m—n—k+2j+i)!

T () = (1™ 94, 3"
b dm7n+2j7k+i ) »di[U (x)]kfj
2j—k+i
X/a @ (X) dxm—n+2j—k+i <[a(x)] dxi ) dx. (18)
In spite of its apparent complexity, this formula has the advantage that no derivatives of
the weight functions are involved; it does not make use of the explicit expressions of the
polynomials either. In fact, if we know (x) we can easily express the integrals appearing in
(18) as a linear combination of the moments of the weight funetig@x), which makes this
equation suitable for symbolic manipulation.
Let us consider now the connection problem

m—n+2j+i—k,k—2j+n—i

Pa(®) =D cuyi(x) (19)
k=0

where{p, (x)} is the sequence of monic polynomial eigenfunctions of the operator
Glyl(x) =& (x)y"(x) + T(x)y'(x) (20)

and deg[p(x)] = n. Taking into account thajy(x) = 1 for any sequencgy,(x)} of monic
polynomials, we readily see that;, = g,0r, SO that the connection coefficientg, can be
obtained as the particular cage= 0 of both (12) and (15). Again, it turns out to be much
more convenient to use (15), which leads to

1/n b
ke = —\ , ) Zuk Tk = | Pors(x)op(x)dx. (21)
Yk k a
Using this formulag,, is expressed as a simple summation with k£ + 1 terms, while (12)
would give a double summation with + 1) (k + 1) terms. Furthermore, (21) does not require
the use of the explicit expression gf(x).
By equation (7), the previous formula féy; can be written as

b n—k -,
Ink = A‘n—k,k'/\ Ok (X) M dx (22)

p(x)  dxn*k

or, equivalently, integrating by parts— k times,

b n—k
an = (_l)n_kgn—k.k/ (Z)n(x)dd— (wk—(X)> dx. (23)

"=k \ @y (x)

A common situation in connecting polynomials of the same family, but with different
parameters, is whefi(x) = o(x). In this case, if we pub(x) = f(x)w(x), the previous
equation takes the form

e b dnfk 1
Tok = (1" A,— w(xX)—— | —— | d 24
(= (-1) Kk / F @0 () o ( F m) x (24)
which may be useful if the derivatives of 1/f (have simple expressions.
For arbitrary families of polynomials, the generalized linearization problem can always
be reduced to a combination of two connection and one standard linearization problems: if we



write

m

Pa@) =Y cne(P)ye®) g () = cmi(@)yi(x)
s=0 . t=0 (25)
Y@y ) = Y Luyi(x)
k=|s—t|
then we have

n m s+t

Pr®)gm() =D 3" (Cns(PICmt (@) yi(x)

5s=0 t=0 k=|s—1|

so that the generalized linearization coefficiegis, in (2) may be computed as

Enmk = Z Cns (D) Cmi (@) st (26)

[s—1|Sk<s+e

Itis aremarkable fact that, in the case when all the involved polynomials are of hypergeometric
type, equation (15) enables us to express the linearization coefficients indalynsf two
connection coefficients, namely those corresponding to the expansions of the polynomials
Pn—j,j(x) andgq,+j—g 1 (x) in series of they, , (x)},

n—j m+j—k
ik k—j.k
Pajj @) =D e D)y @) i () =Y e @ yer (). (27)
r=0 s=0

Substituting these expressions into (15) and using the orthogonality relation (11), we obtain

1 & (n m
nmk = . . z-nm ( )
Sk sz<1><k—1> K

jr=jf (28)
. j k k—j.k
- (]) = Z C,(lj,j)’r (P)C,(nﬁjfk),r (q)%r,k
r=0

wherer, = min(n — j,m + j — k). In particular, for the standard linearization coefficients
L.k given by (17) the previous formula does apply with= ¢ = y, and we can omit the
arguments of the connection coefficients to simplify the notation.

Next, we shall illustrate the application of the general results given in this section by using
them to find explicit expressions for the coefficients in the connection formulae relating the
three classical families of monic polynomials, orthogonal on the real axis (Hermite, Laguerre
and Jacobi), as well as in several linearization formulae involving these families. In fact,
as a rule we give two different expressions for each set of coefficients: namely, as a sum of
binomial type and as a hypergeometric series (see equation (A.2)); the conversion of the former
into the latter has been either carried out or checked usiniiiteematicgpackage HYP by
C Krattenthaler [35]. All the necessary definitions and well known identities are gathered in
appendix A.1, which we shall often make use of without explicit reference to it.

3. Connection formulae

Leaving aside the trivial case of the Hermite—Hermite connection, for which we simply have
ek = Snk, there are eight connection formulae of the form (19) relating the Hermite, Laguerre
and Jacobi families of orthogonal polynomials. In this section, we obtain explicit expressions
for the connection coefficients of these eight problems using equations (21)—(24). Most of
these expressions are already known in the literature, while others seem to be new; in the
former case, references where the results can be found are indicated. Likewise, whenever we
find sign properties for the coefficients that are already known, the corresponding references
are also indicated.



3.1. Expansions series of Hermite polynomials
Following from (21) and (22),
Pn(x) = Xn: Cni Hy (x) Cnk = i<n>Ink (29)
= v \k

where

o) oo An—k . —x?
Tk =/ Paix ()€ dx :Anfk,k'/ ¢ o) e dx. (30)

o0 oo OX"TR ()

3.1.1. Connection with Laguerre polynomialsFor p,(x) = L (x), the second expression
for Z,; in (30) reads

oo dn—k (yatna—x —x2
T, = (_1)nfk d ()C € ) e
nk = oo dxn—k xa+ke—x

Using Leibniz’s rule to evaluate the derivative in the right-hand side, together with the well
known moments of the weight exp(2) we find that

[(n=k)/2] P41
n—k I'G+3)
Ty = (1" T+a+1) ) — 2
(=T rerd =0 (2j )F(k+2j+a+1)

where, as usual, the square brackets denote integer part of the expression within. The same
result can be obtained more easily by substituting in the first formula of (30) the explicit
expression o, 4« (x) = L (x) given in (A.11). Thus, with account of (29), we obtain

(cf[18, p 216])

[(n—k)/2]
_ e n—=k 1 .
o = (=1) <k> E ( 2] ) (§> (k+2j+a+1), 2

j=0

. n —n , k—n+1 1
= (_1)n_ (k +to+ 1)n—k (k) 2F2 < k+a+l 2 ‘_> . (31)

1 84102

From the first of these expressions, we readily see that the sigy isf(—1)"*.

~ o~

N|

3.1.2. Connection with Jacobi polynomialskor p, (x) = PP (x), application of Leibniz’s
rule to the second expression gy, in (30) gives

1t S

S I . jgo(n_J+a+1)j(k+1+ﬂ+1)n_k_j

oo
x (—1)/ / By j(x)e™ dx
—0o0
whereB,_ j(x) = (”;k)(l — x)" %=/ (1 +x)/ is a Bernstein polynomial. Taking advantage
of the properties 0B, ,(x), it is easy to expand the last integral as a linear combination of the
moments of the weight exp-x?) or to compute it recursively. However, a simpler result can be
obtained using in the first formula of (30) the explicit expressiop,af, ; (x) = P“7"™ (x)
given by (A.12), which leads to

n—k n—k—j . 0
K\ 2Rk jra+ D), .
Tu=) (n . > (krjrat ik / (x —1)/e " dx.
—00

j=0 J (n+k+j+a+ﬂ+1)n—k—j




Evaluatinghe integralsinthe right-hand side, the expressionfdiollows in a straightforward
way from (29):

n\ X —k\ (D2 i+ jra+ D), Y2 (1
o= (k) 2 ( J ) (ntk+j+ra+B+D, 2, (2m> (5) ‘ (52

j=0 m=0

The sum over can be written as aFy hypergeometric function of unit argument and upper
parameters-j/2, (1— j)/2. Alternatively, interchanging the order of summation and shifting
the indexj to/ = j — 2m, the previous formula reads

o n [(n—Zk)/Z] n—k 1
e k m=0 2m 2 m
) n—kZ—:Zm n—k—2m\ (D27 %2~k + ]+ 2m + o+ 1)_k_om_s
e l (n+k+l+2m+()l+,3+1)n—k—2m—l
N (G SY: 2n7k72m(%)m(k+2m+a+1)n_k—2m
k om n+k+2m+a+pB+1),_1_om
_ 1

m=0

k+2m+a+1 2 (33)

In the Gegenbauer case, whenr= 8, (A.6) leads to a closed expression &,
<n> [ 2)/2] (n - k) Dm+ DL 4+ )
Cpie =
Tk 2m ) T(n+a+ 1D +m)

— () e ) (e
- 1 k—n+1 —
k) T+ o+ Hr(=2T)

m=0

1).

We readily see that,; vanishes whenever— k is odd. Therefore, writing — k = 2r with r
integer, the connection formula simplifies to [18, p 284]

[n/2]
P = Y ()
r=0
N
- O 34
‘ (2r>,;<2m)(%—”—“)"" h

1 1
= (n>_1 (Z)r—zFo (—r,n —rrets; 1) )
2r)(z—n—a, -
3.2. Expansions in series of Laguerre polynomials

Following from (21) and (22),

_ 1 @ _ 1 n
Pu(Xx) = ;anLk (x) Cnk = m k Lok (35)

where
00 dn—ké*)n(x) xa+ke—x

dxn=% o (x)

o0
Ty = / Ptk (X) x“ e dy = An—k,k/
0 0

dx. (36)



3.2.1. Connectionvith Hermite polynomials. For p,(x) = H,(x), the first expression for
. In (36) reads

o0
Lok =/ H,_ (x)x**e™ dx.
0

Thus, by (A.10),

Tk =

[ /2 (n - k) —5Hi@)Ir(n—2j+a+1)
= 2j Jj!
and (35) then yields [18, p 207]

[(n—k)/2]
n n—k (1
k= -1y k+ta+l), ;2
Cnk (k) ;:0 (2]. )( ) (2)j( ot Dyi—2;

n k=n k—n+l 1
—ras D} e L2 |- ). 37)
2 2

4

3.2.2. Connection with Laguerre polynomials of different parametekfar p,, (x) = LY (x),
the second expression foy; in (36) gives

o) dnfk ;3+ne7x
Tk = (_1),1,/(/ é—xn—k )xdfﬁ dx.
0 X

Integrating by partea — k times (or, equivalently, by direct use of equations (23) or (24)), we
readily find that

T = (1" Tk +a+1)(B - a)ps
and, with account of (35), one has (cf[1, p 192], [18, p 209]),

e = (Z)(—l)”"‘(ﬁ - (39)

From this result, we readily see that the sigregfis (=1 % if 8 > « [30, 31, 33], while

cur = 0if B—a isanegative integer. Finally, f—a < 0is not an integeg;,; is non-negative
provided thatr — 8 > n — k — 1, so that all the connection coefficients are non-negative if
a—B>=>n—1.

3.2.3. Connection with Jacobi polynomialsEor p, (x) = P"? (x), the first equation in (36)
gives
o0
Tok :/o P,fzzk’erk)(x)x“J'ke’X dx.

Using the explicit expression of the monic Jacobi polynomials (A.12), we find that

n—k n—k—j . )

—k\ 2 Jhk+j+y+1),_i_; .

Tk = E " ) ( , J*y * Dukey / (x — 1)/ x*** e dx.
= J (n+k+j +y+3+1)n,k,j 0

Evaluating the integrals in the right-hand side, the expressiap;féollows in a straightforward
way from (35):

n\ K =\ 2R e+ oy D s () i
= <k>z< / )(n+k+j+)/+5+l)n—k—]‘ Z<m>(_l)] (rar oG9

j=0 J J m=0

10



The sumoverm can be written as aFy hypergeometric function of unit argument and upper
parameters-j, k + o + 1. Interchanging the order of summation and shifting the indéex
| = j —m, we obtain the alternative expression

n\ "E =k (m o+
o= (o) T 3 () ()

m=0 1=0
(=12t +m+l+y + Dpgom
Tk tm Aty 45+ Dy
n\ S n—k\ 2Rkt a+ Dkt m Aty + Dy
N @;( m ) (+k+m+y +5+D, 4,

P mtk—nntk+m+y+35+1
X 2h k+m+y+1

1
=). 40
5) (40)
In the Gegenbauer case, whenr= §, equation (A.6) leads to
(n) T (3) i (n -~ k) (k +o + 1), I (2L 4 )
Cpi = —_— .
T\ Ty + D) m =

We readily see that theith term in this summation vanishes whenexer k — m is odd.
Therefore, writing: — k —m = 2r with r integer, the expression of the connection coefficients
simplifies to

m=0

(n) [ /2 (n -~ k) (=1 Gk +a+ D2
Cnk =
k et 2r (n—r+y+%)r
n k—n k—n+l 1
=(k+a+l),_ F. 2° 2 Z ). 41
(k+ta+1l) k(k)Z 3(”2"‘,”2°‘+1,—n—y+% 4) (41)

The particular casg = 0 of this formula, which corresponds to the expansion of Legendre
polynomials in series of Laguerre polynomials, is given in [18, p 208].

3.3. Expansions in series of Jacobi polynomials

Following from (21) and (22),

n
Pa@) =Y e PO ()
k=0

(42)
. rk+a+p+2) n
k= Dot pAN (k+ o + DIk + B+ 1) \k) ™
where
1
Lok = / Pk () (L = )" (1 +x)*F dx
1
5 1 dnfk ~n 1— k+a 1+ k+p
A / @n(x) ( X)~ (1+x) e (43)
)y dxnk @y (x)

3.3.1. Connection with Hermite polynomialskor p,(x) = H,(x), the first equation in (43)
gives

1
T = / Hy— i (x) (L — )" (1 + x)*F d.
1

1"



Substituting thexplicit expression of the monic Hermite polynomials (A.10), and using (A.7),

;o GO AN et a+ DU+ B+ D)
nk =

IFk+a+p+2)
X[(nfk)/Z] n—k M F k_n+2;n,k+,3+12
m=0 2m m! 2 2k+C(+,3+2

so that from equation (42) we obtain

[(n—k)/2]
_(_ n—kn l’l—k _1\yn 1‘ k—n+2m,k+ﬂ+1
ek = (=1) (k) mZ:O ( o )( 1) (2>m zFl( dratpra 2) (49

In the particular case of Gegenbauer polynomials, when 8, (A.5) implies thatc,;
vanishes whenever — k is odd. Then, writing: — k = 2r with r integer, the connection
formula simplifies to

[n/2]
H,(x) = ) e P25 ()
r=0
4 _1m 1 m 1 r—m
o= ()3 (Z) L EG) (45)
2r = 2m (n—2r+a+g)r7m

_1).

3.3.2. Connection with Laguerre polynomialg-or p,, (x) = LY (x), by the first equation in
(43) we have

1
Z(n> (3)r . 2FO<—r,r—n—ot—%
2r (l’l—2l’+0l+§), -

An equivalent form of this expression is given in [18, p 284].

1
Tu = / L7570 = M1+ 2 dx.
-1

Then, by (A.7) and (A.11),
Fkk+a+HL'k+p+1)
IF2k+a+p+2)

n—k
n—k —-m,k+pB+1
xX%( N )(k+m+y+1),,k,,12F1(2k+a+/3+2'2).

Finally, using (42), we find that

T = (_1)'17k 22k+a+;6+1
nk =

n—k

—k _
ek = (=1 F <Z) Z (n " )(k tm+y+ 1), ol <2kn:-’§:g:;‘2) . (46)

m=0

Again, for Gegenbauer polynomials & 8), equation (A.5) leads to

 cay( “”—Z“/Z] n—k\ Dk +2m+y + 1)y i 2m
ke = k 2m k+a+3),

m=0

k—n k—n+l
= (-1 Fk+y+ D, " 2F3 Fai 1 47)
"k k+a+3 22 Br 114

and the sign of these coefficients is readily shown tg-b&)**. The particular case = 0

of (47), which corresponds to the expansion of Laguerre polynomials in series of Legendre

polynomials, is given in [18, p 216].
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3.3.3. Connectiomwith Jacobi polynomials of different parametersFor p, (x) = P (x),
the first equation in (43) yields

1
T = / P )L = 0 @+ 2 d.
-1
Using the explicit expression of the monic Jacobi polynomials (A.12), together with (A.7), we
find that
an — 2n+k+oz+ﬂ+l F(k + /3 + 1)

y i n—k\ (=D"(k+tm+y+D, WTktmtatl
£ n+k+m+y+8+1), 4 T Ck+m+a+p+2)

o\ M

Then, from (42), we obtain the connection formula

n i n—k\ (=12 *k+a+ 1), k+m+y+1)_sn
Cok =
k k m (2k+a+ﬂ+2)m(n+k+m+y+8+1)n—k—m

_ 2k ty D <n>

m=0

(it kty 8+ D), \k

k—nn+k+y+5+Lk+a+1l
X3F2< k+y+12k+a+p+2 1) (48)

which, according to Askey [12, 29], was first derived by Feldheim [36]. A complete
discussion of the non-negativity cases of these coefficients can be found in [32] (see also
[29, 30, 33, 34]). As pointed out by Askey [12], there are three important particular cases
when the hypergeometric function in (48) can be evaluated in closed form by use of standard
summation formulae.

For Gegenbauer polynomials, when= g andy = §, the classical Watson summation
theorem (A.8) leads to

(n) Pk+a+ HLFE+ PGl @ -y +1
Cnk = .
W Ty s IR+ or (I ra -y + 1)

We readily see that,; vanishes whenever— k is odd. Therefore, writing — k = 2r with r
integer, the connection formula simplifies to

[n/2]
PRIV (x) =Y e P45 (x)

r=0 (49)
. (n) () y — ),
T\ m—rty ) —2rva+d),

Now we find thatc,,, > 0 if y > « [12], while the sign ok, is (—1)Y ifa —y > r — 1, sO
that all the connection coefficients have sigrl)" if « — y > [n/2] — 1.

On the other hand, in the particular case wheg y, the3F, hypergeometric function
in (48) reduces to aF; function of unit argument, which can be evaluated in closed form by
means of the Chu—Vandermonde theorem (A.4). We thus obtain,

n\ 2" k+a+ D), gtk —n+pB—5+1),

Cpie = .

T\ vk ra s+, Rk +a+ B+,

These coefficients have sign1)"~*if § > B, while they are non-negativeff—§ is a positive

integer [12]. If8 — § > 0 is not an integer, then the connection coefficients are non-negative
provided tha{s — 8 > n — k — 1, so that all of them are non-negativesit- § > n — 1.

(50)
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A similar simplification of (48) can be achieved wh@gn= § by means of the Pfaff—
Saalschitz formula (A.9), which leads to

n\ (=2 Fk+B+D, i k—n+ta—y+1),
o= <k> (n+k+B+y+1), ((Zk+ta+p+2),
In fact, this case turns out to be equivalent to the previous one because of the symmetry relation
PP (—x) = (=1)" PP (x), and the same happens for the sign of the connection coefficients.
Now, they are positive iy > « [3,12,31,33], while their signie-1y"*ifa —y > n—k—1,
so that all of them have sigr-1"*if o —y > n — 1.

(51)

4. Some examples of generalized linearization formulae

There are 18 different linearization formulae of the form (2) involving the three classical
families, which correspond to the expansion of the six possible products in series of each
family. Since we have just computed the complete set of connection coefficients for these
polynomials, the generalized linearization coefficients can be conveniently evaluated by means
of (28). We shall illustrate how this formula works by means of some examples.

4.1. Expansions of products involving a Hermite polynomial in series of Hermite polynomials

We look for the coefficients of

n+m

pn(x)Hm(x) = Zgnmka(x) (52)
k=0
where H,, (x) denotes the monic Hermite polynomial of degree In this case, we trivially
havecy; 7 .(q) = 8+t SO that (28) reduces to

1 ¢ (n m ik
8nmk = % Z <]) (k _ j>c;(1]’j)qm+jk(p)%m+j—k,k

J=J
Js :
_ ok—m n m (m +] —k)l (k)
" [ e e 9
If pn(x) = H,(x), then we also havefj;",.)_mﬁfk(p) = 8,_j.m+j_- From (53) we readily
see that, in the (standard) linearization formula for Hermite polynomials,

n+m

Hy () Hy (¥) = Y Lyt Hy (x) (54)

k=|n—m|

the coefficient,,,,, vanishes whenever+ m — k is odd, so that the sum ovérin (54) can
be restricted to the valuds= n + m — 2r with integerr. For such values of, the only
non-vanishing term in the summation ovemn the expression fot,,; given by (53) is that
corresponding tg = n — r, so that we have fot = n +m — 2r,

Lo n\ (m\r!
nmk — ; ’ 2r'

Thus we obtain the well known Feldheim formula (cf [37], [1, p 195]),

min(n,m)
Hn (X)Hm (x) - Z (’:) (m> ! Hn+m—2r (x) (55)

"
prd r)2
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The linearizationcoefficients in this formula are obviously positive, which has been found
useful in applications [38]. '

If p,(x) = L (x), the connection coefficients”),,_,
expansion

(p) in (53) correspond to the

n—j

| .

L =Y el (pH ()
r=0

and the expression for these coefficients derived from (31) leads to

N —j +j =N+ o+ 1) g2
ok = _111—m+k2k—m n m n J (m J : m—n J
gom = (=1 2 ( k m+j—k 2

j=i- NN
m—n—k +j m—n—k+1 +j 1
F. 2 L2 - . 56
X2 2<m_k2+a+l+j,m_§+a+j+1‘4) ( )

We readily see that the sign of these coefficients—i4)"**. Likewise, whenp,(x) =
PP (x), using equations (32) and (33) we can wgig, as a double sum of terminatingdp
or o F; hypergeometric functions, which in the Gegenbauer case (8) reduce to a simple
sum of, Fy functions (cf (34)).

4.2. Linearization formulae for Laguerre polynomials

Let us consider now the linearization problem
n+m
LOOLP ) =" gami Ly (x) (57)
k=0
whereL® (x) denotes the monic Laguerre polynomial of degre@d parameter; according
to (12), the linearization coefficients,,, have the integral representation

1 o0
- - () B) ) Y a—X
nmk = Tk +y + Dl /; LY (x)L) (x)L,” (x)xVe " dx.

Equation (28) now reads

1 Ly m
nmk = 5,7 1 . 1 av Lumk (J
Sk = Fsy v D) o (j)(k—j) k)
= (58)
Lk () = Y e e T + ke +y + Dl
r=0

where the connection coefficients correspond to the expansions

m+j—k

, oy , ‘
L) = "N Lohay L @y = Y I L,
r=0

n—j,r=r m+j—k m+j—k,r

r=

From (38), we find that the explicit form of these coefficients is

(k—j,k) _ (m +j —k

Cpnil =
m+j—k,r r

>(_l)m+j—k—r(/3 I j)m+j—k—r~
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Substituting thesexpressions into (58), we obtain

e m S n—j\(m+j—k
= 2 ()L () ey

=i
X()/ —atk—n+r+ 1)n—j—r(y - /3 tk—m+r+ 1)m+j—k—r~ (59)

We readily see that, i — « andy — B are non-negative integers, then,, > 0. This result
generalizes the non-negativity condition obtained by Koornwinder [34] for the particular case
wheng andp are integers angd = o + 8. We also see from (59) that, f — « (resp.y — 8)
is not an integer, the non-negativity of the linearization coefficients still holds provided that
y —a >n—1(respy — B > m—1). Onthe otherhand,if —y > k—j_andB —y > ji,
then the sign ok,,.x is (—1)"*"~%, so that all the linearization coefficients have this sign if
a—y>mandg —y > n.

The summation over in (59) can be expressed ag/ hypergeometric function of unit
argument, which leads to

J+ n m
o= 3 (0)(," ) —a vk b= ek D
=7

j—nk—j—mk+y+1
Xan(y—a+k—n+1,y—ﬂ+k—m+1‘1)' (60)

In the particular case when = « + 8, the expression for the linearization coefficients given
by the previous formula can be further simplified by taking advantage of the Pfaff—-Satalsch
summation theorem (A.9), which yields

e m
8nmk = Z (j><k_j)(k_m+n_j+a+1)m+j—k(m_n+j+13+1)n—j
Jj=j-

= (’Z)(n—m+k+a+1>m_k(m—n+ﬂ+1)n

o« o F. —n,—km—-n—k—«
sh2 m—k+lm—-n+pg+1

- 1) . (61)

We already know, from the discussion after (59), that, > O if «, 8 € Z, while if « (resp.
B) is not an integer the linearization coefficients are still non-negative provided that — 1
(resp.8 > n — 1). Equation (61) enables us to improve on the latter result, since inspection
of its right-hand side shows that, df (resp.8) is not an integer, the non-negativity of the
linearization coefficients holds under a less restrictive condition, namelgythat: —n — 1
(resp.8 > n —m — 1); in particular, the coefficients are non-negative infthe- n case.

Now let us turn to (59). Interchanging the order of summation and shifting the ihttex
[ =n —r — j, this formula can be written as

_ li n (k+y+1)r(y_ﬁ+k_m+r+1)m+n—k—2r
Sk =10 L\ (m+n—k—2r)T(k—n+r+1)

r—nk—m-n+2r,y —at+tk—n+r+1
X3F2< B—y—n+rk—n+r+1 ’_1>' (62)

In the particular case whan = 8 = y, the3F, hypergeometric function in the right-hand
side of this equation reduces tg Ay one, which can be evaluated in closed form by means
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of (A.3). Thus we find that the solution of the standard linearization problem for Laguerre
polynomials,

n+m

LOWLY ) = Y L L () (63)

k=|n—m|
is given by
lnmk =m! i (n) 2m+n_k_2r (k ta+t 1)r (k —m+r+ 1)m+n7k72r
=0

m+n—k—-2nNT'tk—n+r+1)
2m+n—k

r

n!'m!
S mAn -k —n+DHr'k—m+1)
k—m—n k—m—n+1l
R ktatl
2 2 ’
X3FZ( k—n+lk-m+1 1)' (64)

These coefficients are non-negative, as follows from the discussion after (59); this result is a
particular case of a rather general non-negativity theorem for integrals of products of Laguerre
polynomials of the same parameter, which is related to the combinatorial interpretation of
these integrals [12, lecture six]. It is worth noting that, while alternative expressions for the
Laguerre linearization coefficients in the cages « + 8 anda = 8 = y can be found in the
literature [16, 37], the remarkably compact expressions (61) and (64) appear to be new. Let us
also note that the hypergeometric function in (64) can be evaluated in closed form by means
of the Pfaff-Saalsditz formula (A.9) in the case = —%.

5. Conclusions

In this work, we have described a method to solve the general hypergeometric linearization
problem, i.e. the expansion of products of two arbitrary continuous hypergeometric-type
polynomials in terms of a sequence of orthogonal hypergeometric polynomials. Our approach
allows us to find integral representations for the associated linearization and connection
coefficients, in terms of the coefficients of the differential operators corresponding to the
involved polynomials, which are suitable for symbolic manipulation. To illustrate the method,
we have found the explicit expressions of connection and linearization coefficients for the three
classical families with real orthogonality (Hermite, Laguerre and Jacobi). These coefficients
are generally given in the form of terminating hypergeometric series, which at times can be
evaluated in closed form by means of classical summation theorems. In several cases, we have
been able to obtain sign properties such as positivity or non-negativity conditions from the
explicit representations found for the coefficients.

Itis worth noting that an affine transformation of the variable preserves the hypergeometric
character of the polynomial families, so that our method is also applicable in these cases.
Furthermore, the present approach can be extended straightforwardly to hypergeometric
polynomials in a discrete variable [39], as well agtpolynomials [40]. It is complementary
to the recursive approach [15], which supplies the linearization coefficients recurrently but
makes use of two or more characterization properties of the involved polynomials.

In our opinion, our method is a good starting point on the long road to solving
the general problem of linearization of products of arbitrary special functions other than
hypergeometric-type polynomials. Particular cases of this general problem corresponding to
Bessel functions, Whittaker functions, Jacobi functions, spheroidal wavefunctions and some
associated hypergeometric polynomials have been recently considered [28,41]. Some further
steps on the aforesaid road are the following, as yet unsolved, problems: the linearization
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of basis-sefunctions, the expansion of products of special functions in terms of orthogonal
hypergeometric-type polynomials, the expansion of arbitrary special functions in terms of
products of two hypergeometric-type polynomials [42], the linearization of products of
two Nikiforov—Uvarov functions [5], the linearization and connection of two associated
hypergeometric-type polynomials, the determination of generating functions of products of
two hypergeometric-type functions [43], and the study of linear dependences among products
of basis-set functions [44]. Solutions to these problems would give us profound insight into
the algebraic properties of the special functions themselves, which would be very useful in
other branches of mathematics and applied science since, in particular, it would allow us to
gain insight into the matrix elements of the observables characterizing quantum mechanical
systems.
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Appendix A. Notations and formulae

A.1. Some special functions

We use the standard notations for the Gamma function, binomial coefficients and the
Pochhammer symbol, as well as their well known identities
F(x+n) (=1)"TA—x)

1“2()? B 1[’(1—x —n)
k z—
<lz€> _ ( 1)}; i F(22) = 2 F(Z‘l" 5)(2)

[ r'(3)
Assuming: to be a non-negative integer, we readily see from the definition of the Pochhammer
symbol that(x),, > 0if x > 0, while the sign ofx), is (—=1)" for x < 1 — n. On the other
hand, if 1—n < x <0, (x), = 0if x € Z, while otherwise its sign is—1)1 1.
The generalized hypergeometric functiph, is defined as

)y =x(x+D...(x+n—-1) =

(A.1)

qu <a1, az,...,ap x) _ X (ar(az)i . .. (ap)k x_k (A2)
by, b2, ..., by = (b (b2 - - . (g k!
In the simple case whep = 1, g = 0, Newton’s binomial theorem states that
1Fo (f x) = (1-x) " (A.3)
For the Gauss hypergeometric functigh £ 2, ¢ = 1) we have the special values (see,
e.g., [18]),
—n, b _ (C - b)n
2l ( ¢ 1) (On (A4
(Chu-Vandermonde sum),
0 if nisodd
—-n,c _ 1
21 ( 2c 2> - —(2)1’/2 if niseven (A-5)
(C + §)n/2
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and

a.b |1\ TR
Fil g |z ) = —2—2—. A.6
? 1(—’5 : 2) NCSNC=S (A9
We also have the useful integration formula (see, e.g., [18, p 69]),
b
/ (x —a)* b —x)""Yex +d)Y dx
- F)l'(v) —y.u|cla—b)
=0 -—a)*"" Yac+d)y L F T —]. A.7
e S R = (A7)

Finally, two important results concerning th€> hypergeometric function are the classical
Watson’s summation theorem (see, e.g., [1, section 4.4] or [4, section 5.2.4]),

) _ F(%)F(C+ %)F(%ﬂ)r(lfg—b +0)
CrEhrEhHrEE sordt +o)

and the Pfaff-Saalséitz formula (see, e.g., [1, p 66]),

3F2 ( a, b, —n ‘1) _ (d - a)n(d - b)n (Ag)

(A.8)

d,a+b—n—d+1 _(d)n(d_a_b)n.

The previous summation formulae hold whenever the hypergeometric series in the left-hand
side are either terminating (here we always assume the parantetex a non-negative integer)

or convergent; a detailed account of the validity conditions of each theorem can be found in
the indicated references.

A.2. Classical hypergeometric polynomials

We deal with the three classical familiesmbnichypergeometric polynomials orthogonal on
the real axis: Hermite, Laguerre and Jacobi, with their standard notation. In particular, we use
the following explicit formulae (see, e.qg., [45]):

e Hermite polynomials:

[n/2] 1k 01—
n (_4_1) (Zk)' n—2k n _n7 L 1
Hn(x):kzg(%)Tx =x",Fo( 27 2 - (A.10)
e Laguerre polynomials:
L& (x) = (=1 ) (’;) (k+a + 1), 4(—x)"
k=0
=(-D"(a+1),1F1 <a_+n1 x) o> —1 (A.11)

e Jacobi polynomials:
- 2Kk + o+ 1),
Pn(a.ﬂ)(x) — Z <n> ( o ) k (X _ 1)k
=\ (ntk+tat+p+1),

_ 2"(a+1), F —n,n+ta+pf+1 1—x
T ra+prD, a+l 2

o, B> -1

(A.12)

In the particular case whea = g, Jacobi polynomials are called Gegenbauer or
ultraspherical polynomials. In turn, some especially important particular cases of
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Table Al. General data of the three classical families of monic orthogonal polynomials on the real

axis.

Pn ()C) H, ()C) L,Sa) (x) nyuvﬁ) (X)

(a,b) (—00,00) (0, 00) -1,1)

(T(x) 1 X 1— x2

T(x) —2x a+l—x B—a—(a+B+2x

ok (x) e? otkgx (1 — x)7k (1 + x)pH

2k+a+f+1

Vi N3 Fk+a+1) 2 r<l;1(<k+ﬁ;13£(k+ﬂ+l)
- a1y

A R,

po) Hio) L@ R

Gegenbauer polynomials are the Legendre polynomials=( 8 = 0), Chebyshev

polynomials of the first kindo{ = 8 = —%), and Chebyshev polynomials of the second
; 1
kind (@ = 8 = 3).
All the necessary data concerning these families of polynomials (see, e.g., [1]) are gathered in
table Al.
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