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28911 Legańes, Madrid, Spain
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§ Departamento de Estadı́stica y Mateḿatica Aplicada, Universidad de Almerı́a, La Cãnada,
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Abstract. The linearization of products of wavefunctions of exactly solvable potentials often
reduces to the generalized linearization problem for hypergeometric polynomials (HPs) of a
continuous variable, which consists of the expansion of the product of two arbitrary HPs in
series of an orthogonal HP set. Here, this problem is algebraically solved directly in terms of
the coefficients of the second-order differential equations satisfied by the involved polynomials.
General expressions for the expansion coefficients are given in integral form, and they are applied to
derive the connection formulae relating the three classical families of hypergeometric polynomials
orthogonal on the real axis (Hermite, Laguerre and Jacobi), as well as several generalized
linearization formulae involving these families. The connection and linearization coefficients are
generally expressed as finite sums of terminating hypergeometric functions, which often reduce to
a single function of the same type; when possible, these functions are evaluated in closed form. In
some cases, sign properties of the coefficients such as positivity or non-negativity conditions are
derived as a by-product from their resulting explicit representations.

1. Introduction

Consider the second-order differential operator

F [y ](x) = σ(x)y ′′(x) + τ(x)y ′(x) (1)

whereσ(x) and τ(x) are polynomials whose degrees are not greater than two and one,
respectively. If|τ ′| + |σ ′′| 6= 0, then for everyn ∈ N, F has a polynomial eigenfunction
y(x) = yn(x) of degreen corresponding to the eigenvalue

λn = nτ ′ + 1
2n(n− 1)σ ′′.

These polynomials are usually calledhypergeometric-type polynomials(or continuous
hypergeometric-type polynomials, in contrast with those which appear as eigenfunctions of
second-order lineardifferenceoperators); by means of linear changes of the variable, they
can be reduced to one of the four classical families (Hermite, Laguerre, Jacobi and Bessel).
The hypergeometric-type polynomials are involved in the classical eigenfunctions of singular
Sturm–Liouville equations [1–6] as well as in the quantum mechanical wavefunctions of the
exactly solvable potentials [5, 7–10], and they are used in the mathematical modelling of a
great amount of physical and chemical phenomena [3,5,11–14].
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This paperdeals with thegeneral hypergeometric linearization problem, which is the
problem of finding the coefficientsgnmk in the expansion of the product of two (hypergeometric)
polynomials,pn(x)qm(x), in terms of an arbitrary sequence of orthogonal hypergeometric
polynomials{yk(x)},

pn(x)qm(x) =
n+m∑
k=0

gnmkyk(x). (2)

Note that, in this setting, the polynomialspn, qm and yk may belong to three different
hypergeometric families. Particular cases of this problem have been matter of intensive
research (see, e.g., [12, 15] and the bibliography therein), and frequently receive different
names. For example, when the polynomialspn, qm andyk are solutions of the same differential
equation (1), this is usually called the(standard) linearization[12] or Clebsch–Gordan-type
problem[16] for hypergeometric polynomials (the name Clebsch–Gordan is attached because
the structure is similar to the Clebsch–Gordan series for spherical functions [17]). On the other
hand, takingqm(x) = 1 in (2), we are faced with the so-calledconnectionproblem, which for
pn(x) = xn is known as theinversionproblem for the family{yk(x)}.

The literature on the standard linearization and connection problems is extremely vast,
and a variety of methods and approaches for computing the coefficientsgnmk in (2) have been
developed. For the classical families of polynomials, explicit expressions have been obtained,
usually in terms of generalized hypergeometric series, exploiting with this purpose several
of their characterizing properties: recurrence relations, generating functions, orthogonality
weights, etc (see, e.g., [3,12,16,18–20]). Another, rather general, approach allows computation
of the standard linearization and connection coefficients recursively (see, e.g., [15, 20, 21]).
In contrast, the general linearization problem has not yet been solved [12, 15], although
some partial results are known for Jacobi polynomials [14], and explicit expressions for the
coefficientsgnmk whenpn, qm andyk are Laguerre polynomials with different parameters have
also been given [16]. This is somewhat surprising, because there are numerous fundamental
and applied questions related to this problem, such as the linearization of products of basis-set
functions associated to shape-invariant potentials [10], the transformation formulae between
quantum mechanical wavefunctions in different coordinate systems (e.g. the bound-state
wavefunctions on L2(R3) in spherical and parabolic coordinates [22]), the interbasis expansions
for potentials of equal [23] and different [24] dimensionality (e.g. the passage formulae from
theR3 hydrogen wavefunctions toR4 oscillator wavefunctions [22]), the determination of
the Talmi–Brody–Moshinsky coefficients [25] so widely used in nuclear structure, and the
evaluation of two-centre, two- and three-electron integrals in variational atomic analysis [13].

The main aim of this paper is to produce some analytic (in general, integral) representations
for the coefficientsgnmk in (2), extending the method proposed very recently by the authors [26]
to solve the inversion, connection, and standard linearization problems for hypergeometric
polynomials. These analytic expressions ofgnmk are given directly in terms of the coefficients
of the differential equations corresponding to the hypergeometric polynomialspn, qn andyn,
which is often a desirable feature. In fact, products of hypergeometric polynomials appear
naturally when dealing with eigenfunction systems of Sturm–Liouville equations [27,28] and
the Schr̈odinger equations associated to central potentials [7, 17]. Furthermore, the quantum
mechanical equation of motion of numerous physical systems with a shape-invariant potential
can be reduced to a second-order differential equation of hypergeometric character [5,7,8].

In many applications of orthogonal polynomials, it is often important to know whether the
linearization and connection coefficients are positive or non-negative (see, e.g., [12, 29, 30]).
During the last decades, several sufficient conditions for these sign properties to hold have been
derived, both for general polynomials and for the classical families (see, e.g., [12, 30–34]).
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Although thefocus of the present paper is on the explicit computation of the coefficients,
rather than on the study of their sign properties, we shall find that in many cases these sign
properties become obvious from the representations given here; typically, this happens when
the coefficients can be written as a sum of terms which are shown to have the same sign by
taking into account the comments after equation (A.1).

The paper is structured as follows. First, in section 2, the general expressions for the
linearization coefficients are obtained, and the particular cases of the standard linearization
and connection problems are singled out. We also find the remarkable result that, for
hypergeometric polynomials, the linearization coefficients can always be written as a finite
combination of connection coefficients. Later, for illustration, the connection formulae relating
the three classical families of hypergeometric polynomials orthogonal on the real line (Hermite,
Laguerre and Jacobi) are obtained (section 3). The linearization problems for Hermite and
Laguerre polynomials are revisited, and closed expressions are also obtained for the coefficients
of the Hermite expansion of products involving Hermite polynomials (section 4). Some
concluding remarks are given in section 5, and, finally, the definitions and identities for special
functions used throughout the paper are collected in the appendix.

2. General results

We begin by introducing some notation. BelowP is the class of all polynomials with real
coefficients. If{yn(x)}n∈N stands for the sequence of monic hypergeometric polynomials
corresponding to operator (1), then we denote byyn,k(x), with n, k ∈ N, the monic polynomial
eigenfunction of degreen of the operator

Fk[y ](x) = σ(x)y ′′(x) + τk(x)y
′(x) τk(x) = τ(x) + kσ ′(x) (3)

with |τ ′k| + |σ ′′| 6= 0, so that

yn(x) = yn,0(x) y ′n,k(x) = nyn−1,k+1(x). (4)

Analogous notation will be used for other sequences of monic hypergeometric polynomials as
well. For the sake of brevity, below we omit the subindexk whenk = 0.

An explicit expression for these polynomials is provided by the Rodrigues formula. Fix

ω(x) = exp

(∫ x τ (t)− σ ′(t)
σ (t)

dt

)
ωk(x) = [σ(x)]kω(x) k > 0. (5)

Thenωk(x) is a solution of the so-called Pearson’s equation, [σ(x)ωk(x)]′ = τk(x)ωk(x). If

An,k =
n−1∏
j=0

(
τ ′k +

n + j − 1

2
σ ′′
)−1

=
n−1∏
j=0

(
τ ′ +

n + j + 2k − 1

2
σ ′′
)−1

(6)

then

yn,k(x) = An,k

ωk(x)

dnωn+k(x)

dxn
. (7)

In what follows, we assume, additionally, the existence of two values−∞ 6 a < b 6 ∞
such that

ω(x) ∈ C(a, b) lim
x→a+

ω1(x)x
k = lim

x→b−
ω1(x)x

k = 0 k > 0. (8)

This assumption leads to orthogonality of{yn(x)} with respect to the weight functionω(x) on
the interval [a, b] (see [5]),∫ b

a

yn(x)ym(x)ω(x) dx = ~nδn,m ~n = (−1)nn!Anγn (9)
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where{γn} denotes the sequence of generalized moments ofω(x),

γn =
∫ b

a

ωn(x) dx. (10)

Likewise, every sequence{yn,k(x)} is then orthogonal with respect to the weight functionωk(x)

on the same interval,∫ b

a

yn,k(x)ym,k(x)ωk(x) dx = ~n,kδn,m ~n,k = (−1)nn!An,kγn+k. (11)

Let us denote by{pn(x)} and {qm(x)} two (possibly different) polynomial sequences,
not necessarily orthogonal or hypergeometric. The orthogonality relation (9) for the sequence
{yn(x)} leads to the following explicit expression for the Fourier coefficientsgnmk of the general
linearization formula (2):

gnmk = 1

~k

∫ b

a

pn(x)qm(x)yk(x)ω(x) dx. (12)

This equation enables us to computegnmk in a straightforward way provided that the explicit
expressions of the three polynomials involved are known. However, as we shall show in the
following, the hypergeometric nature of the polynomials can be used to derive alternative
expressions for the linearization coefficients, which may be written in terms of the coefficients
of the underlying differential operators and are computationally more efficient.

Taking advantage of equations (7) and (9), we can rewrite (12) as

gnmk = (−1)k

k!γk

∫ b

a

pn(x)qm(x)
dkωk(x)

dxk
dx. (13)

It is easy to verify that for everyP ∈ P there exists aQ ∈ P such that

dj

dxj
[ωk(x)P (x)] = ωk−j (x)Q(x) j 6 k.

Thus, integrating by partsk times and taking into account the boundary conditions (8), Leibniz’s
rule allows us to rewrite (13) in the form

gnmk = 1

k!γk

j+∑
j=j−

(
k

j

)∫ b

a

djpn(x)

dxj
dk−j qm(x)

dxk−j
ωk(x) dx (14)

wherej− = max(0, k −m), j+ = min(k, n).
In comparison with (12), (14) has two main advantages. Firstly, it does not require the

knowledge of the explicit expression of the polynomialsyk(x). Secondly, although in both
casesgnmk is expressed as a three-level summation of terms which are essentially the moments
of a weight function, the degree reduction by derivatives provides a smaller number of terms
when (14) is used. For instance, the number of terms in the expressions forgnnn given by (12)
and (14) are, respectively,(n + 1)3 and

n∑
j=0

(n− j + 1)(j + 1) = 1
6(n + 1)(n + 2)(n + 3).

Equation (14) is especially useful when the derivatives of the polynomialspn(x) andqm(x)
have simple expressions. In particular, takingpn(x) = xn andqm(x) = 1, we can obtain a
solution for the inversion problem in terms of the moments of the weightsωk(x) [26]: the
coefficientιnk in the expansion

xn =
n∑
k=0

ιnkyk(x)
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is given by

ιnk =
(
n

k

)
1

γk

∫ b

a

xn−kωk(x) dx.

Let us assume now that bothpn(x) and qm(x) are also monic polynomials of
hypergeometric type. Formula (14) can then be written, using (4), in the form

gnmk = 1

γk

j+∑
j=j−

(
n

j

)(
m

k − j
)
Inmk(j) Inmk(j) =

∫ b

a

pn−j,j (x)qm+j−k,k−j (x)ωk(x) dx.

(15)

This equation is feasible for the computation of the generalized linearization coefficients
whenever the explicit expressions of the polynomials involved in the integral are known,
as is the case, e.g., for the classical hypergeometric families (see the appendix). For general
families of polynomials, when only the coefficients of the corresponding differential operators
are available, we can make one more step and find an equivalent expression forgnmk that
does not require the knowledge of the explicit expressions of the polynomials. Initially, we
restrict our attention to the standard linearization and connection problems, for which simpler
formulae can be derived from (15).

In the particular case when the three families of hypergeometric polynomials coincide,
we have a solution for the (standard) linearization (or Clebsch–Gordan) problem. Using the
orthogonality property (9), equation (2) simplifies to

yn(x)ym(x) =
n+m∑

k=|n−m|
lnmkyk(x) (16)

and (15) now reads as

lnmk = 1

γk

j+∑
j=j−

(
n

j

)(
m

k − j
)
Inmk(j) Inmk(j) =

∫ b

a

yn−j,j (x)ym+j−k,k−j (x)ωk(x) dx.

(17)

Using equation (7) foryn−j,j (x), the previous expression for the integralsInmk(j) can be
written as

Inmk(j) = An−j,j
∫ b

a

dn−jωn(x)
dxn−j

ym+j−k,k−j (x)[σ(x)]k−j dx.

Observe that by (4) and (7), for 06 j 6 n,

dj

dxj

(
1

ωk(x)

dnωn+k(x)

dxn

)
= n!

(n− j)!
An−j,k+j
An,k

1

ωk+j (x)

dn−jωn+k(x)

dxn−j
.

Thus, integrating by partsn− j times and taking into account the boundary conditions (8),

Inmk(j) = (−1)n−jAn−j,j
∫ b

a

ωn(x)
dn−j

dxn−j
(ym+j−k,k−j (x)[σ(x)]k−j ) dx.

Using the Leibniz rule and equation (4),

Inmk(j) = (−1)n−jAn−j,j
i+∑
i=i−

(
n− j
i

)
(m− k + j)!

(m− n− k + 2j + i)!

×
∫ b

a

ym−n+2j−k+i,k−2j+n−i (x)
di [σ(x)]k−j

dxi
ωn(x) dx
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wherei− = max(0, n−m+k−2j), i+ = min{n−j, (k−j) deg[σ(x)]}. Now we can substitute
the explicit expression of the remaining polynomial, given by the Rodrigues formula (7), and
integrate by parts again, which yields

Inmk(j) = (−1)m+k+jAn−j,j
i+∑
i=i−

(
n− j
i

)
(−1)i(m− k + j)!

(m− n− k + 2j + i)!
Am−n+2j+i−k,k−2j+n−i

×
∫ b

a

ωm(x)
dm−n+2j−k+i

dxm−n+2j−k+i

(
[σ(x)]2j−k+i d

i [σ(x)]k−j

dxi

)
dx. (18)

In spite of its apparent complexity, this formula has the advantage that no derivatives of
the weight functions are involved; it does not make use of the explicit expressions of the
polynomials either. In fact, if we knowσ(x) we can easily express the integrals appearing in
(18) as a linear combination of the moments of the weight functionωm(x), which makes this
equation suitable for symbolic manipulation.

Let us consider now the connection problem

pn(x) =
n∑
k=0

cnkyk(x) (19)

where{pn(x)} is the sequence of monic polynomial eigenfunctions of the operator

G[y ](x) = σ̃ (x)y ′′(x) + τ̃ (x)y ′(x) (20)

and deg[pn(x)] = n. Taking into account thatq0(x) = 1 for any sequence{qn(x)} of monic
polynomials, we readily see thatcnk = gn0k, so that the connection coefficientscnk can be
obtained as the particular casem = 0 of both (12) and (15). Again, it turns out to be much
more convenient to use (15), which leads to

cnk = 1

γk

(
n

k

)
Ink Ink =

∫ b

a

pn−k,k(x)ωk(x) dx. (21)

Using this formula,cnk is expressed as a simple summation withn − k + 1 terms, while (12)
would give a double summation with(n + 1)(k + 1) terms. Furthermore, (21) does not require
the use of the explicit expression ofyk(x).

By equation (7), the previous formula forInk can be written as

Ink = Ãn−k,k
∫ b

a

ωk(x)

ω̃k(x)

dn−kω̃n(x)
dxn−k

dx (22)

or, equivalently, integrating by partsn− k times,

Ink = (−1)n−kÃn−k,k
∫ b

a

ω̃n(x)
dn−k

dxn−k

(
ωk(x)

ω̃k(x)

)
dx. (23)

A common situation in connecting polynomials of the same family, but with different
parameters, is wheñσ(x) = σ(x). In this case, if we put̃ω(x) = f (x)ω(x), the previous
equation takes the form

Ink = (−1)n−kÃn−k,k
∫ b

a

f (x)ωn(x)
dn−k

dxn−k

(
1

f (x)

)
dx (24)

which may be useful if the derivatives of 1/f (x)have simple expressions.
For arbitrary families of polynomials, the generalized linearization problem can always

be reduced to a combination of two connection and one standard linearization problems: if we
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write

pn(x) =
n∑
s=0

cns(p)ys(x) qm(x) =
m∑
t=0

cmt (q)yt (x)

ys(x)yt (x) =
s+t∑

k=|s−t |
lstkyk(x)

(25)

then we have

pn(x)qm(x) =
n∑
s=0

m∑
t=0

s+t∑
k=|s−t |

(cns(p)cmt (q)lstk)yk(x)

so that the generalized linearization coefficientsgnmk in (2) may be computed as

gnmk =
∑

|s−t |6k6s+t
cns(p)cmt (q)lstk. (26)

It is a remarkable fact that, in the case when all the involved polynomials are of hypergeometric
type, equation (15) enables us to express the linearization coefficients in termsonly of two
connection coefficients, namely those corresponding to the expansions of the polynomials
pn−j,j (x) andqm+j−k,k−j (x) in series of the{yr,k(x)},

pn−j,j (x) =
n−j∑
r=0

c
(j,k)

n−j,r (p)yr,k(x) qm+j−k,k−j (x) =
m+j−k∑
s=0

c
(k−j,k)
m+j−k,s(q)ys,k(x). (27)

Substituting these expressions into (15) and using the orthogonality relation (11), we obtain

gnmk = 1

γk

j+∑
j=j−

(
n

j

)(
m

k − j
)
Inmk(j)

Inmk(j) =
r+∑
r=0

c
(j,k)

n−j,r (p)c
(k−j,k)
m+j−k,r (q)~r,k

(28)

wherer+ = min(n − j,m + j − k). In particular, for the standard linearization coefficients
lnmk given by (17) the previous formula does apply withp = q = y, and we can omit the
arguments of the connection coefficients to simplify the notation.

Next, we shall illustrate the application of the general results given in this section by using
them to find explicit expressions for the coefficients in the connection formulae relating the
three classical families of monic polynomials, orthogonal on the real axis (Hermite, Laguerre
and Jacobi), as well as in several linearization formulae involving these families. In fact,
as a rule we give two different expressions for each set of coefficients: namely, as a sum of
binomial type and as a hypergeometric series (see equation (A.2)); the conversion of the former
into the latter has been either carried out or checked using theMathematicapackage HYP by
C Krattenthaler [35]. All the necessary definitions and well known identities are gathered in
appendix A.1, which we shall often make use of without explicit reference to it.

3. Connection formulae

Leaving aside the trivial case of the Hermite–Hermite connection, for which we simply have
cnk = δn,k, there are eight connection formulae of the form (19) relating the Hermite, Laguerre
and Jacobi families of orthogonal polynomials. In this section, we obtain explicit expressions
for the connection coefficients of these eight problems using equations (21)–(24). Most of
these expressions are already known in the literature, while others seem to be new; in the
former case, references where the results can be found are indicated. Likewise, whenever we
find sign properties for the coefficients that are already known, the corresponding references
are also indicated.
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3.1. Expansionsin series of Hermite polynomials

Following from (21) and (22),

pn(x) =
n∑
k=0

cnkHk(x) cnk = 1√
π

(
n

k

)
Ink (29)

where

Ink =
∫ ∞
−∞

pn−k,k(x)e−x
2
dx = Ãn−k,k

∫ ∞
−∞

dn−kω̃n(x)
dxn−k

e−x
2

ω̃k(x)
dx. (30)

3.1.1. Connection with Laguerre polynomials.Forpn(x) = L(α)n (x), the second expression
for Ink in (30) reads

Ink = (−1)n−k
∫ ∞
−∞

dn−k
(
xα+ne−x

)
dxn−k

e−x
2

xα+ke−x
dx.

Using Leibniz’s rule to evaluate the derivative in the right-hand side, together with the well
known moments of the weight exp(−x2), we find that

Ink = (−1)n−k0(n + α + 1)
[(n−k)/2]∑
j=0

(
n− k

2j

)
0(j + 1

2)

0(k + 2j + α + 1)

where, as usual, the square brackets denote integer part of the expression within. The same
result can be obtained more easily by substituting in the first formula of (30) the explicit
expression ofpn−k,k(x) = L(α+k)

n−k (x) given in (A.11). Thus, with account of (29), we obtain
(cf [18, p 216])

cnk = (−1)n−k
(
n

k

) [(n−k)/2]∑
j=0

(
n− k

2j

)(
1

2

)
j

(k + 2j + α + 1)n−k−2j

= (−1)n−k(k + α + 1)n−k

(
n

k

)
2F2

(
k−n

2 , k−n+1
2

k+α+1
2 , k+α2 + 1

∣∣∣∣14
)
. (31)

From the first of these expressions, we readily see that the sign ofcnk is (−1)n−k.

3.1.2. Connection with Jacobi polynomials.Forpn(x) = P (α,β)n (x), application of Leibniz’s
rule to the second expression forInk in (30) gives

Ink = (−1)n−k

(n + k + α + β + 1)n−k

n−k∑
j=0

(n− j + α + 1)j (k + j + β + 1)n−k−j

×(−1)j
∫ ∞
−∞

Bn−k,j (x)e−x
2
dx

whereBn−k,j (x) =
(
n−k
j

)
(1− x)n−k−j (1 + x)j is a Bernstein polynomial. Taking advantage

of the properties ofBn,k(x), it is easy to expand the last integral as a linear combination of the
moments of the weight exp(−x2) or to compute it recursively. However, a simpler result can be
obtained using in the first formula of (30) the explicit expression ofpn−k,k(x) = P (α+k,β+k)

n−k (x)

given by (A.12), which leads to

Ink =
n−k∑
j=0

(
n− k
j

)
2n−k−j (k + j + α + 1)n−k−j
(n + k + j + α + β + 1)n−k−j

∫ ∞
−∞
(x − 1)je−x

2
dx.
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Evaluatingthe integrals in the right-hand side, the expression forcnk follows in a straightforward
way from (29):

cnk =
(
n

k

) n−k∑
j=0

(
n− k
j

)
(−1)j2n−k−j (k + j + α + 1)n−k−j
(n + k + j + α + β + 1)n−k−j

[j/2]∑
m=0

(
j

2m

)(
1

2

)
m

. (32)

The sum overm can be written as a2F0 hypergeometric function of unit argument and upper
parameters−j/2, (1− j)/2. Alternatively, interchanging the order of summation and shifting
the indexj to l = j − 2m, the previous formula reads

cnk =
(
n

k

) [(n−k)/2]∑
m=0

(
n− k
2m

)(
1

2

)
m

×
n−k−2m∑
l=0

(
n− k − 2m

l

)
(−1)l 2n−k−2m−l(k + l + 2m + α + 1)n−k−2m−l

(n + k + l + 2m + α + β + 1)n−k−2m−l

=
(
n

k

) [(n−k)/2]∑
m=0

(
n− k
2m

)
2n−k−2m( 1

2)m(k + 2m + α + 1)n−k−2m

(n + k + 2m + α + β + 1)n−k−2m

× 2F1

(
2m− n + k, n + k + 2m + α + β + 1

k + 2m + α + 1

∣∣∣∣12
)
. (33)

In the Gegenbauer case, whenα = β, (A.6) leads to a closed expression forcnk,

cnk =
(
n

k

) [(n−k)/2]∑
m=0

(
n− k
2m

)
0(m + 1

2)0(
n+k+1

2 +m + α)

0(n + α + 1
2)0(

k−n+1
2 +m)

=
(
n

k

)
0( 1

2)0(
n+k+1

2 + α)

0(n + α + 1
2)0(

k−n+1
2 )

2F0

(
k−n

2 , n+k+1
2 + α
−

∣∣∣∣1) .
We readily see thatcnk vanishes whenevern− k is odd. Therefore, writingn− k = 2r with r
integer, the connection formula simplifies to [18, p 284]

P (α,α)n (x) =
[n/2]∑
r=0

cnrHn−2r (x)

cnr =
(
n

2r

) r∑
m=0

(
2r

2m

)
( 1

2)m(
1
2)r−m

( 1
2 − n− α)r−m

=
(
n

2r

)
( 1

2)r

( 1
2 − n− α)r

2F0

(−r, n− r + α + 1
2−
∣∣∣∣1) .

(34)

3.2. Expansions in series of Laguerre polynomials

Following from (21) and (22),

pn(x) =
n∑
k=0

cnkL
(α)
k (x) cnk = 1

0(k + α + 1)

(
n

k

)
Ink (35)

where

Ink =
∫ ∞

0
pn−k,k(x) xα+ke−xdx = Ãn−k,k

∫ ∞
0

dn−kω̃n(x)
dxn−k

xα+ke−x

ω̃k(x)
dx. (36)
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3.2.1. Connectionwith Hermite polynomials. For pn(x) = Hn(x), the first expression for
Ink in (36) reads

Ink =
∫ ∞

0
Hn−k(x)xα+ke−x dx.

Thus, by (A.10),

Ink =
[(n−k)/2]∑
j=0

(
n− k

2j

)
(− 1

4)
j (2j)!0(n− 2j + α + 1)

j !

and (35) then yields [18, p 207]

cnk =
(
n

k

) [(n−k)/2]∑
j=0

(
n− k

2j

)
(−1)j

(
1

2

)
j

(k + α + 1)n−k−2j

= (k + α + 1)n−k

(
n

k

)
2F2

(
k−n

2 , k−n+1
2−n−α

2 , −n−α+1
2

∣∣∣∣− 1

4

)
. (37)

3.2.2. Connection with Laguerre polynomials of different parameters.Forpn(x) = L(β)n (x),
the second expression forInk in (36) gives

Ink = (−1)n−k
∫ ∞

0

dn−k(xβ+ne−x)
dxn−k

xα−β dx.

Integrating by partsn− k times (or, equivalently, by direct use of equations (23) or (24)), we
readily find that

Ink = (−1)n−k0(k + α + 1)(β − α)n−k
and, with account of (35), one has (cf [1, p 192], [18, p 209]),

cnk =
(
n

k

)
(−1)n−k(β − α)n−k. (38)

From this result, we readily see that the sign ofcnk is (−1)n−k if β > α [30, 31, 33], while
cnk > 0 if β−α is a negative integer. Finally, ifβ−α < 0 is not an integer,cnk is non-negative
provided thatα − β > n − k − 1, so that all the connection coefficients are non-negative if
α − β > n− 1.

3.2.3. Connection with Jacobi polynomials.Forpn(x) = P (γ,δ)n (x), the first equation in (36)
gives

Ink =
∫ ∞

0
P
(γ+k,δ+k)
n−k (x)xα+ke−x dx.

Using the explicit expression of the monic Jacobi polynomials (A.12), we find that

Ink =
n−k∑
j=0

(
n− k
j

)
2n−k−j (k + j + γ + 1)n−k−j
(n + k + j + γ + δ + 1)n−k−j

∫ ∞
0
(x − 1)j xα+ke−x dx.

Evaluating the integrals in the right-hand side, the expression forcnk follows in a straightforward
way from (35):

cnk =
(
n

k

) n−k∑
j=0

(
n− k
j

)
2n−k−j (k + j + γ + 1)n−k−j
(n + k + j + γ + δ + 1)n−k−j

j∑
m=0

(
j

m

)
(−1)j−m(k + α + 1)m. (39)
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The sumoverm can be written as a2F0 hypergeometric function of unit argument and upper
parameters−j , k + α + 1. Interchanging the order of summation and shifting the indexj to
l = j −m, we obtain the alternative expression

cnk =
(
n

k

) n−k∑
m=0

(k + α + 1)m
n−k−m∑
l=0

(
n− k
m + l

)(
m + l

m

)
× (−1)l2n−k−m−l(k +m + l + γ + 1)n−k−m−l

(n + k +m + l + γ + δ + 1)n−k−m−l

=
(
n

k

) n−k∑
m=0

(
n− k
m

)
2n−k−m(k + α + 1)m(k +m + γ + 1)n−k−m

(n + k +m + γ + δ + 1)n−k−m

× 2F1

(
m + k − n, n + k +m + γ + δ + 1

k +m + γ + 1

∣∣∣∣12
)
. (40)

In the Gegenbauer case, whenγ = δ, equation (A.6) leads to

cnk =
(
n

k

)
0
(

1
2

)
0(n + γ + 1

2)

n−k∑
m=0

(
n− k
m

)
(k + α + 1)m0(m+n+k+1

2 + γ )

0(m+k−n+1
2 )

.

We readily see that themth term in this summation vanishes whenevern − k − m is odd.
Therefore, writingn−k−m = 2r with r integer, the expression of the connection coefficients
simplifies to

cnk =
(
n

k

) [(n−k)/2]∑
r=0

(
n− k

2r

)
(−1)r ( 1

2)r (k + α + 1)n−k−2r

(n− r + γ + 1
2)r

= (k + α + 1)n−k

(
n

k

)
2F3

(
k−n

2 , k−n+1
2−n−α

2 , −n−α+1
2 ,−n− γ + 1

2

∣∣∣∣14
)
. (41)

The particular caseγ = 0 of this formula, which corresponds to the expansion of Legendre
polynomials in series of Laguerre polynomials, is given in [18, p 208].

3.3. Expansions in series of Jacobi polynomials

Following from (21) and (22),

pn(x) =
n∑
k=0

cnkP
(α,β)

k (x)

cnk = 0(2k + α + β + 2)

22k+α+β+10(k + α + 1)0(k + β + 1)

(
n

k

)
Ink

(42)

where

Ink =
∫ 1

−1
pn−k,k(x)(1− x)k+α(1 + x)k+β dx

= Ãn−k,k
∫ 1

−1

dn−kω̃n(x)
dxn−k

(1− x)k+α(1 + x)k+β

ω̃k(x)
dx. (43)

3.3.1. Connection with Hermite polynomials.Forpn(x) = Hn(x), the first equation in (43)
gives

Ink =
∫ 1

−1
Hn−k(x)(1− x)k+α(1 + x)k+β dx.

11



Substituting theexplicit expression of the monic Hermite polynomials (A.10), and using (A.7),

Ink = (−1)n−k22k+α+β+10(k + α + 1)0(k + β + 1)

0(2k + α + β + 2)

×
[(n−k)/2]∑
m=0

(
n− k
2m

)
(− 1

4)
m(2m)!

m!
2F1

(
k − n + 2m, k + β + 1

2k + α + β + 2

∣∣∣∣2)
so that from equation (42) we obtain

cnk = (−1)n−k
(
n

k

) [(n−k)/2]∑
m=0

(
n− k
2m

)
(−1)m

(
1

2

)
m

2F1

(
k − n + 2m, k + β + 1

2k + α + β + 2

∣∣∣∣2) . (44)

In the particular case of Gegenbauer polynomials, whenα = β, (A.5) implies thatcnk
vanishes whenevern − k is odd. Then, writingn − k = 2r with r integer, the connection
formula simplifies to

Hn(x) =
[n/2]∑
r=0

cnrP
(α,α)
n−2r (x)

cnr =
(
n

2r

) r∑
m=0

(
2r

2m

)
(−1)m( 1

2)m(
1
2)r−m

(n− 2r + α + 3
2)r−m

=
(
n

2r

)
( 1

2)r

(n− 2r + α + 3
2)r

2F0

(−r, r − n− α − 1
2−
∣∣∣∣− 1

)
.

(45)

An equivalent form of this expression is given in [18, p 284].

3.3.2. Connection with Laguerre polynomials.Forpn(x) = L(γ )n (x), by the first equation in
(43) we have

Ink =
∫ 1

−1
L
(γ+k)
n−k (x)(1− x)k+α(1 + x)k+β dx.

Then, by (A.7) and (A.11),

Ink = (−1)n−k 22k+α+β+10(k + α + 1)0(k + β + 1)

0(2k + α + β + 2)

×
n−k∑
m=0

(
n− k
m

)
(k +m + γ + 1)n−k−m 2F1

(−m, k + β + 1
2k + α + β + 2

∣∣∣∣2) .
Finally, using (42), we find that

cnk = (−1)n−k
(
n

k

) n−k∑
m=0

(
n− k
m

)
(k +m + γ + 1)n−k−m 2F1

(−m, k + β + 1
2k + α + β + 2

∣∣∣∣2) . (46)

Again, for Gegenbauer polynomials (α = β), equation (A.5) leads to

cnk = (−1)n−k
(
n

k

) [(n−k)/2]∑
m=0

(
n− k
2m

)
( 1

2)m(k + 2m + γ + 1)n−k−2m

(k + α + 3
2)m

= (−1)n−k(k + γ + 1)n−k

(
n

k

)
2F3

( k−n
2 , k−n+1

2

k + α + 3
2,

k+γ+1
2 ,

k+γ
2 + 1

∣∣∣∣14
)

(47)

and the sign of these coefficients is readily shown to be(−1)n−k. The particular caseα = 0
of (47), which corresponds to the expansion of Laguerre polynomials in series of Legendre
polynomials, is given in [18, p 216].
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3.3.3. Connectionwith Jacobi polynomials of different parameters.Forpn(x) = P (γ,δ)n (x),
the first equation in (43) yields

Ink =
∫ 1

−1
P
(γ+k,δ+k)
n−k (x)(1− x)k+α(1 + x)k+β dx.

Using the explicit expression of the monic Jacobi polynomials (A.12), together with (A.7), we
find that

Ink = 2n+k+α+β+10(k + β + 1)

×
n−k∑
m=0

(
n− k
m

)
(−1)m(k +m + γ + 1)n−k−m0(k +m + α + 1)

(n + k +m + γ + δ + 1)n−k−m0(2k +m + α + β + 2)
.

Then, from (42), we obtain the connection formula

cnk =
(
n

k

) n−k∑
m=0

(
n− k
m

)
(−1)m2n−k(k + α + 1)m(k +m + γ + 1)n−k−m
(2k + α + β + 2)m(n + k +m + γ + δ + 1)n−k−m

= 2n−k(k + γ + 1)n−k
(n + k + γ + δ + 1)n−k

(
n

k

)
× 3F2

(
k − n, n + k + γ + δ + 1, k + α + 1

k + γ + 1, 2k + α + β + 2

∣∣∣∣1) (48)

which, according to Askey [12, 29], was first derived by Feldheim [36]. A complete
discussion of the non-negativity cases of these coefficients can be found in [32] (see also
[29, 30, 33, 34]). As pointed out by Askey [12], there are three important particular cases
when the hypergeometric function in (48) can be evaluated in closed form by use of standard
summation formulae.

For Gegenbauer polynomials, whenα = β andγ = δ, the classical Watson summation
theorem (A.8) leads to

cnk =
(
n

k

)
0(k + α + 3

2)0(
n+k+1

2 + γ )0( 1
2)0(α − γ + 1)

0(n + γ + 1
2)0(

n+k+3
2 + α)0( k−n+1

2 )0( k−n2 + α − γ + 1)
.

We readily see thatcnk vanishes whenevern− k is odd. Therefore, writingn− k = 2r with r
integer, the connection formula simplifies to

P (γ,γ )n (x) =
[n/2]∑
r=0

cnrP
(α,α)
n−2r (x)

cnr =
(
n

2r

)
( 1

2)r (γ − α)r
(n− r + γ + 1

2)r (n− 2r + α + 3
2)r
.

(49)

Now we find thatcnr > 0 if γ > α [12], while the sign ofcnr is (−1)r if α − γ > r − 1, so
that all the connection coefficients have sign(−1)r if α − γ > [n/2]− 1.

On the other hand, in the particular case whenα = γ , the3F2 hypergeometric function
in (48) reduces to a2F1 function of unit argument, which can be evaluated in closed form by
means of the Chu–Vandermonde theorem (A.4). We thus obtain,

cnk =
(
n

k

)
2n−k(k + α + 1)n−k(k − n + β − δ + 1)n−k
(n + k + α + δ + 1)n−k(2k + α + β + 2)n−k

. (50)

These coefficients have sign(−1)n−k if δ > β, while they are non-negative ifβ−δ is a positive
integer [12]. Ifβ − δ > 0 is not an integer, then the connection coefficients are non-negative
provided thatβ − δ > n− k − 1, so that all of them are non-negative ifβ − δ > n− 1.
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A similar simplification of (48) can be achieved whenβ = δ by means of the Pfaff–
Saalscḧutz formula (A.9), which leads to

cnk =
(
n

k

)
(−2)n−k(k + β + 1)n−k(k − n + α − γ + 1)n−k
(n + k + β + γ + 1)n−k(2k + α + β + 2)n−k

. (51)

In fact, this case turns out to be equivalent to the previous one because of the symmetry relation
P
(α,β)
n (−x)= (−1)nP (β,α)n (x), and the same happens for the sign of the connection coefficients.

Now, they are positive ifγ > α [3,12,31,33], while their sign is(−1)n−k if α−γ > n−k−1,
so that all of them have sign(−1)n−k if α − γ > n− 1.

4. Some examples of generalized linearization formulae

There are 18 different linearization formulae of the form (2) involving the three classical
families, which correspond to the expansion of the six possible products in series of each
family. Since we have just computed the complete set of connection coefficients for these
polynomials, the generalized linearization coefficients can be conveniently evaluated by means
of (28). We shall illustrate how this formula works by means of some examples.

4.1. Expansions of products involving a Hermite polynomial in series of Hermite polynomials

We look for the coefficients of

pn(x)Hm(x) =
n+m∑
k=0

gnmkHk(x) (52)

whereHm(x) denotes the monic Hermite polynomial of degreem. In this case, we trivially
havec(k−j,k)m+j−k,r (q) = δm+j−k,r , so that (28) reduces to

gnmk = 1

γk

j+∑
j=j−

(
n

j

)(
m

k − j
)
c
(j,k)

n−j,m+j−k(p)~m+j−k,k

= 2k−m
j+∑

j=j−

(
n

j

)(
m

k − j
)
(m + j − k)!

2j
c
(j,k)

n−j,m+j−k(p). (53)

If pn(x) = Hn(x), then we also havec(j,k)n−j,m+j−k(p) = δn−j,m+j−k. From (53) we readily
see that, in the (standard) linearization formula for Hermite polynomials,

Hn(x)Hm(x) =
n+m∑

k=|n−m|
lnmkHk(x) (54)

the coefficientlnmk vanishes whenevern + m − k is odd, so that the sum overk in (54) can
be restricted to the valuesk = n + m − 2r with integerr. For such values ofk, the only
non-vanishing term in the summation overj in the expression forlnmk given by (53) is that
corresponding toj = n− r, so that we have fork = n +m− 2r,

lnmk =
(
n

r

)(
m

r

)
r!

2r
.

Thus we obtain the well known Feldheim formula (cf [37], [1, p 195]),

Hn(x)Hm(x) =
min(n,m)∑
r=0

(
n

r

)(
m

r

)
r!

2r
Hn+m−2r (x). (55)
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The linearizationcoefficients in this formula are obviously positive, which has been found
useful in applications [38].

If pn(x) = L(α)n (x), the connection coefficientsc(j,k)n−j,m+j−k(p) in (53) correspond to the
expansion

L
(α+j)
n−j (x) =

n−j∑
r=0

c
(j,k)

n−j,r (p)Hr(x)

and the expression for these coefficients derived from (31) leads to

gnmk = (−1)n−m+k2k−m
j+∑

j=j−

(
n

j

)(
m

k − j
)(

n− j
m + j − k

)
(m + j − k)!(n + α + 1)m−n−k+2j

2j

× 2F2

(
m−n−k

2 + j, m−n−k+1
2 + j

m−k+α+1
2 + j, m−k+α2 + j + 1

∣∣∣∣14
)
. (56)

We readily see that the sign of these coefficients is(−1)n−m+k. Likewise, whenpn(x) =
P
(α,β)
n (x), using equations (32) and (33) we can writegnmk as a double sum of terminating2F0

or 2F1 hypergeometric functions, which in the Gegenbauer case (α = β) reduce to a simple
sum of2F0 functions (cf (34)).

4.2. Linearization formulae for Laguerre polynomials

Let us consider now the linearization problem

L(α)n (x)L
(β)
m (x) =

n+m∑
k=0

gnmkL
(γ )

k (x) (57)

whereL(α)n (x) denotes the monic Laguerre polynomial of degreen and parameterα; according
to (12), the linearization coefficientsgnmk have the integral representation

gnmk = 1

0(k + γ + 1)k!

∫ ∞
0
L(α)n (x)L

(β)
m (x)L

(γ )

k (x)xγe−x dx.

Equation (28) now reads

gnmk = 1

0(k + γ + 1)

j+∑
j=j−

(
n

j

)(
m

k − j
)
Inmk(j)

Inmk(j) =
r+∑
r=0

c
(j,k)

n−j,rc
(k−j,k)
m+j−k,r0(r + k + γ + 1)r!

(58)

where the connection coefficients correspond to the expansions

L
(α+j)
n−j (x) =

n−j∑
r=0

c
(j,k)

n−j,rL
(γ+k)
r (x) L

(β+k−j)
m+j−k (x) =

m+j−k∑
r=0

c
(k−j,k)
m+j−k,rL

(γ+k)
r (x).

From (38), we find that the explicit form of these coefficients is

c
(j,k)

n−j,r =
(
n− j
r

)
(−1)n−j−r (α − γ + j − k)n−j−r

c
(k−j,k)
m+j−k,r =

(
m + j − k

r

)
(−1)m+j−k−r (β − γ − j)m+j−k−r .
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Substituting theseexpressions into (58), we obtain

gnmk =
j+∑

j=j−

(
n

j

)(
m

k − j
) r+∑
r=0

(
n− j
r

)(
m + j − k

r

)
r!(k + γ + 1)r

×(γ − α + k − n + r + 1)n−j−r (γ − β + k −m + r + 1)m+j−k−r . (59)

We readily see that, ifγ − α andγ − β are non-negative integers, thengnmk > 0. This result
generalizes the non-negativity condition obtained by Koornwinder [34] for the particular case
whenα andβ are integers andγ = α + β. We also see from (59) that, ifγ − α (resp.γ − β)
is not an integer, the non-negativity of the linearization coefficients still holds provided that
γ −α > n− 1 (resp.γ −β > m− 1). On the other hand, ifα− γ > k− j− andβ − γ > j+,
then the sign ofgnmk is (−1)n+m−k, so that all the linearization coefficients have this sign if
α − γ > m andβ − γ > n.

The summation overr in (59) can be expressed as a3F2 hypergeometric function of unit
argument, which leads to

gnmk =
j+∑

j=j−

(
n

j

)(
m

k − j
)
(γ − α + k − n + 1)n−j (γ − β + k −m + 1)m+j−k

× 3F2

(
j − n, k − j −m, k + γ + 1

γ − α + k − n + 1, γ − β + k −m + 1

∣∣∣∣1) . (60)

In the particular case whenγ = α + β, the expression for the linearization coefficients given
by the previous formula can be further simplified by taking advantage of the Pfaff–Saalschütz
summation theorem (A.9), which yields

gnmk =
j+∑

j=j−

(
n

j

)(
m

k − j
)
(k −m + n− j + α + 1)m+j−k(m− n + j + β + 1)n−j

=
(
m

k

)
(n−m + k + α + 1)m−k(m− n + β + 1)n

× 3F2

( −n,−k,m− n− k − α
m− k + 1, m− n + β + 1

∣∣∣∣− 1

)
. (61)

We already know, from the discussion after (59), thatgnmk > 0 if α, β ∈ Z, while if α (resp.
β) is not an integer the linearization coefficients are still non-negative provided thatα > m−1
(resp.β > n − 1). Equation (61) enables us to improve on the latter result, since inspection
of its right-hand side shows that, ifα (resp.β) is not an integer, the non-negativity of the
linearization coefficients holds under a less restrictive condition, namely thatα > m− n− 1
(resp.β > n−m− 1); in particular, the coefficients are non-negative in them = n case.

Now let us turn to (59). Interchanging the order of summation and shifting the indexj to
l = n− r − j , this formula can be written as

gnmk = m!
r+∑
r=0

(
n

r

)
(k + γ + 1)r (γ − β + k −m + r + 1)m+n−k−2r

(m + n− k − 2r)!0(k − n + r + 1)

× 3F2

(
r − n, k −m− n + 2r, γ − α + k − n + r + 1

β − γ − n + r, k − n + r + 1

∣∣∣∣− 1

)
. (62)

In the particular case whenα = β = γ , the 3F2 hypergeometric function in the right-hand
side of this equation reduces to a1F0 one, which can be evaluated in closed form by means
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of (A.3). Thus we find that the solution of the standard linearization problem for Laguerre
polynomials,

L(α)n (x)L
(α)
m (x) =

n+m∑
k=|n−m|

lnmkL
(α)
k (x) (63)

is given by

lnmk = m!
r+∑
r=0

(
n

r

)
2m+n−k−2r (k + α + 1)r (k −m + r + 1)m+n−k−2r

(m + n− k − 2r)!0(k − n + r + 1)

= 2m+n−kn!m!

(m + n− k)!0(k − n + 1)0(k −m + 1)

× 3F2

(
k−m−n

2 , k−m−n+1
2 , k + α + 1

k − n + 1, k −m + 1

∣∣∣∣1) . (64)

These coefficients are non-negative, as follows from the discussion after (59); this result is a
particular case of a rather general non-negativity theorem for integrals of products of Laguerre
polynomials of the same parameter, which is related to the combinatorial interpretation of
these integrals [12, lecture six]. It is worth noting that, while alternative expressions for the
Laguerre linearization coefficients in the casesγ = α +β andα = β = γ can be found in the
literature [16,37], the remarkably compact expressions (61) and (64) appear to be new. Let us
also note that the hypergeometric function in (64) can be evaluated in closed form by means
of the Pfaff–Saalscḧutz formula (A.9) in the caseα = − 1

2.

5. Conclusions

In this work, we have described a method to solve the general hypergeometric linearization
problem, i.e. the expansion of products of two arbitrary continuous hypergeometric-type
polynomials in terms of a sequence of orthogonal hypergeometric polynomials. Our approach
allows us to find integral representations for the associated linearization and connection
coefficients, in terms of the coefficients of the differential operators corresponding to the
involved polynomials, which are suitable for symbolic manipulation. To illustrate the method,
we have found the explicit expressions of connection and linearization coefficients for the three
classical families with real orthogonality (Hermite, Laguerre and Jacobi). These coefficients
are generally given in the form of terminating hypergeometric series, which at times can be
evaluated in closed form by means of classical summation theorems. In several cases, we have
been able to obtain sign properties such as positivity or non-negativity conditions from the
explicit representations found for the coefficients.

It is worth noting that an affine transformation of the variable preserves the hypergeometric
character of the polynomial families, so that our method is also applicable in these cases.
Furthermore, the present approach can be extended straightforwardly to hypergeometric
polynomials in a discrete variable [39], as well as toq-polynomials [40]. It is complementary
to the recursive approach [15], which supplies the linearization coefficients recurrently but
makes use of two or more characterization properties of the involved polynomials.

In our opinion, our method is a good starting point on the long road to solving
the general problem of linearization of products of arbitrary special functions other than
hypergeometric-type polynomials. Particular cases of this general problem corresponding to
Bessel functions, Whittaker functions, Jacobi functions, spheroidal wavefunctions and some
associated hypergeometric polynomials have been recently considered [28,41]. Some further
steps on the aforesaid road are the following, as yet unsolved, problems: the linearization
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of basis-setfunctions, the expansion of products of special functions in terms of orthogonal
hypergeometric-type polynomials, the expansion of arbitrary special functions in terms of
products of two hypergeometric-type polynomials [42], the linearization of products of
two Nikiforov–Uvarov functions [5], the linearization and connection of two associated
hypergeometric-type polynomials, the determination of generating functions of products of
two hypergeometric-type functions [43], and the study of linear dependences among products
of basis-set functions [44]. Solutions to these problems would give us profound insight into
the algebraic properties of the special functions themselves, which would be very useful in
other branches of mathematics and applied science since, in particular, it would allow us to
gain insight into the matrix elements of the observables characterizing quantum mechanical
systems.
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Appendix A. Notations and formulae

A.1. Some special functions

We use the standard notations for the Gamma function, binomial coefficients and the
Pochhammer symbol, as well as their well known identities

(x)n = x(x + 1) . . . (x + n− 1) = 0(x + n)

0(x)
= (−1)n0(1− x)

0(1− x − n)(
z

k

)
= (−1)k(−z)k

k!
0(2z) = 22z−10(z + 1

2)0(z)

0( 1
2)

.

(A.1)

Assumingn to be a non-negative integer, we readily see from the definition of the Pochhammer
symbol that(x)n > 0 if x > 0, while the sign of(x)n is (−1)n for x < 1− n. On the other
hand, if 1− n 6 x 6 0, (x)n = 0 if x ∈ Z, while otherwise its sign is(−1)[1−x] .

The generalized hypergeometric functionpFq is defined as

pFq

(
a1, a2, . . . , ap
b1, b2, . . . , bq

∣∣∣∣x) = ∞∑
k=0

(a1)k(a2)k . . . (ap)k

(b1)k(b2)k . . . (bq)k

xk

k!
. (A.2)

In the simple case whenp = 1, q = 0, Newton’s binomial theorem states that

1F0

(
a

−
∣∣∣∣x) = (1− x)−a. (A.3)

For the Gauss hypergeometric function (p = 2, q = 1) we have the special values (see,
e.g., [18]),

2F1

(−n, b
c

∣∣∣∣1) = (c − b)n
(c)n

(A.4)

(Chu–Vandermonde sum),

2F1

(−n, c
2c

∣∣∣∣2) =


0 if n is odd
( 1

2)n/2

(c + 1
2)n/2

if n is even
(A.5)
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and

2F1

(
a, b
a+b+1

2

∣∣∣∣12
)
= 0( 1

2)0(
a+b+1

2 )

0( a+1
2 )0(

b+1
2 )
. (A.6)

We also have the useful integration formula (see, e.g., [18, p 69]),∫ b

a

(x − a)µ−1(b − x)ν−1(cx + d)γ dx

= (b − a)µ+ν−1(ac + d)γ
0(µ)0(ν)

0(µ + ν)
2F1

(−γ, µ
µ + ν

∣∣∣∣c(a − b)ac + d

)
. (A.7)

Finally, two important results concerning the3F2 hypergeometric function are the classical
Watson’s summation theorem (see, e.g., [1, section 4.4] or [4, section 5.2.4]),

3F2

(
a, b, c
a+b+1

2 , 2c

∣∣∣∣1) = 0( 1
2)0(c + 1

2)0(
a+b+1

2 )0( 1−a−b
2 + c)

0( a+1
2 )0(

b+1
2 )0(

1−a
2 + c)0( 1−b

2 + c)
(A.8)

and the Pfaff–Saalschütz formula (see, e.g., [1, p 66]),

3F2

(
a, b,−n

d, a + b − n− d + 1

∣∣∣∣1) = (d − a)n(d − b)n
(d)n(d − a − b)n . (A.9)

The previous summation formulae hold whenever the hypergeometric series in the left-hand
side are either terminating (here we always assume the parametern to be a non-negative integer)
or convergent; a detailed account of the validity conditions of each theorem can be found in
the indicated references.

A.2. Classical hypergeometric polynomials

We deal with the three classical families ofmonichypergeometric polynomials orthogonal on
the real axis: Hermite, Laguerre and Jacobi, with their standard notation. In particular, we use
the following explicit formulae (see, e.g., [45]):

• Hermite polynomials:

Hn(x) =
[n/2]∑
k=0

(
n

2k

)
(− 1

4)
k(2k)!

k!
xn−2k = xn 2F0

( −n
2 ,

1−n
2−
∣∣∣∣− 1

x2

)
. (A.10)

• Laguerre polynomials:

L(α)n (x) = (−1)n
n∑
k=0

(
n

k

)
(k + α + 1)n−k(−x)k

= (−1)n(α + 1)n 1F1

( −n
α + 1

∣∣∣∣x) α > −1. (A.11)

• Jacobi polynomials:

P (α,β)n (x) =
n∑
k=0

(
n

k

)
2n−k(k + α + 1)n−k
(n + k + α + β + 1)n−k

(x − 1)k

= 2n(α + 1)n
(n + α + β + 1)n

2F1

(−n, n + α + β + 1
α + 1

∣∣∣∣1− x2

)
α, β > −1.

(A.12)

In the particular case whenα = β, Jacobi polynomials are called Gegenbauer or
ultraspherical polynomials. In turn, some especially important particular cases of
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Table A1. General data of the three classical families of monic orthogonal polynomials on the real
axis.

pn(x) Hn(x) L
(α)
n (x) P

(α,β)
n (x)

(a, b) (−∞,∞) (0,∞) (−1, 1)
σ (x) 1 x 1− x2

τ(x) −2x α + 1− x β− α − (α + β + 2)x

ωk(x) e−x2
xα+ke−x (1− x)α+k(1 + x)β+k

γk
√
π 0(k + α + 1) 22k+α+β+10(k+α+1)0(k+β+1)

0(2k+α+β+2)

An,k (−2)−n (−1)n (−1)n

(n+2k+α+β+1)n

pn,k(x) Hn(x) L
(α+k)
n (x) P

(α+k,β+k)
n (x)

Gegenbauer polynomials are the Legendre polynomials (α = β = 0), Chebyshev
polynomials of the first kind (α = β = − 1

2), and Chebyshev polynomials of the second
kind (α = β = 1

2).

All the necessary data concerning these families of polynomials (see, e.g., [1]) are gathered in
table A1.
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[6] Lesky P 1991 Orthogonal polynomials and eigenvalue problems, unpublished

Lesky P 1996 Finite and infinite systems of continuous classical orthogonal polynomialsZ. Angew. Math. Mech.
76181–4 (in German)

[7] Bagrov V G and Gitman D M 1990Exact Solutions of Relativistic Wave Equations(Dordrecht: Kluwer)
[8] Dehesa J S, Dominguez Adame F, Arriola E R and Zarzo A 1991 Hydrogen atom and orthogonal polynomials

Orthogonal Polynomials and their Applicationsed C Brezinskiet al (Geneva: Baltzer) pp 223–9
[9] Khare A and Bhaduri R K 1994 Exactly solvable non-central potentials in two and three dimensionsAm. J. Phys.

621008–14
Znojil M 1996 Jacobi polynomials and bound statesJ. Math. Chem.19205–13

[10] Jia C S, Wang X G, Yao X K, Chen P C and Xiao W 1998 A unified recurrence operator method for obtaining
normalized explicit wavefunctions for shape-invariant potentialsJ. Phys. A Math. Gen.314763–72

[11] Hobson E W 1968The Theory of Spherical and Ellipsoidal Harmonics(New York: Chelsea)
Avery J 1989Hyperspherical Harmonics, Applications to Quantum Theory(Dordrecht: Kluwer)

[12] Askey R 1975Orthogonal Polynomials and Special Functions (Regional Conf. Series in Appl. Math. vol 21)
(Philadelphia, PA: SIAM)

[13] Budzinski J 1992 Evaluation of two-centre, two- and three-electron integrals involving correlation factors over
Slater-type orbitals: II. Kinetic and potential energy integrals and examples of numerical resultsInt. J.
Quantum Chem.41359–70

[14] Vilenkin N Ja and Klymik A U 1993Representations of Lie Groups and Special Functionsvol II (Dordrecht:
Kluwer)

[15] Ronveaux A, Area I, Godoy E and Zarzo A 1997 Lectures on recursive approach to connection and linearization
coefficients between polynomialsSpecial Functions and Differential Equationsed K Srinivasa Raoet al
(New Delhi: Allied)

Lewanowicz S 1998 A general approach to the connection and linearization problems for the classical orthogonal
polynomialsPreprint

[16] Niukkanen A W 1985 Clebsch–Gordan-type linearization for the products of Laguerre polynomials and
hydrogen-like functionsJ. Phys. A Math. Gen.181399–417

20



[17] Edmonds A R M1957Angular Momentum in Quantum Mechanics(Princeton, NJ: Princeton University Press)
[18] Rainville E D 1960Special Functions(New York: Macmillan)
[19] Rahman M 1981 A non-negative representation of the linearization coefficients of the product of Jacobi

polynomialsCan. J. Math.33915–28
Lewanowicz S 1998 The hypergeometric functions approach to the connection problem for the classical

orthogonal polynomialsPreprint
[20] Markett C 1994 Linearization of the product of symmetric orthogonal polynomialsConstr. Approx.10317–38
[21] Ronveaux A, Zarzo A and Godoy E 1995 Recurrence relation for connection coefficients between two families

of orthogonal polynomialsJ. Comput. Appl. Math.6267–73
Lewanowicz S 1996 Second-order recurrence relation for the linearization coefficients of the classical orthogonal

polynomialsJ. Comput. Appl. Math.69159–70
Godoy E, Ronveaux A, Zarzo A and Area I 1997 Minimal recurrence relations for connection coefficients

between classical orthogonal polynomials: the continuous caseJ. Comput. Appl. Math.84257–75
[22] Kibler M, Ronveaux A and Negadi T 1986 On the hydrogen-oscillator connection: passage formulae between

wavefunctionsJ. Math. Phys.271541–8
[23] Kleinsdienst H and L̈uchow A 1993 Multiplication theorems for orthogonal polynomialsInt. J. Quantum Chem.

48239–47
[24] Kostelecky V A and Russell N 1996 Radial Coulomb and oscillator systems in arbitrary dimensionsJ. Math.

Phys.372166–81
[25] Shlomo S 1983 Sum rules for harmonic oscillator bracketsJ. Phys. A Math. Gen.163463–9
[26] Sánchez-Ruiz J and Dehesa J S 1998 Expansions in series of orthogonal hypergeometric polynomialsJ. Comput.

Appl. Math.89155–70
Artés P L, Dehesa J S, Martı́nez-Finkelshtein A and Śanchez-Ruiz J 1998 Linearization and connection
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