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The problem of calculating the information entropy in both position and momen-
tum spaces for the nth stationary state of the one-dimensional quantum harmonic
oscillator reduces to the evaluation of the logarithmic potential Vn(t)
52*2`

`
„Hn(x)…2 ln ux2tue2x2

dx at the zeros of the Hermite polynomial Hn(x).
Here, a closed analytical expression for Vn(t) is obtained, which in turn yields an
exact analytical expression for the entropies when the exact location of the zeros of
Hn(x) is known. An inequality for the values of Vn(t) at the zeros of Hn(x) is
conjectured, which leads to a new, nonvariational, upper bound for the entropies.
Finally, the exact formula for Vn(t) is written in an alternative way, which allows
the entropies to be expressed in terms of the even-order spectral moments of the
Hermite polynomials. The asymptotic (n@1) limit of this alternative expression
for the entropies is discussed, and the conjectured upper bound for the entropies is
proved to be asymptotically valid. © 1997 American Institute of Physics.
@S0022-2488~97!00709-3#

I. INTRODUCTION

In the framework of the modern density functional theory,1–5 the physical and chemica
properties of a many fermion system may be completely described by means of the single-p
probability density, which is to be denoted byr~r! in position space andg~p! in momentum space
The spread or extent of these quantum-mechanical probability densities is measured
Boltzmann–Shannon information entropy, which for one-dimensional systems is defined a

Sr52E
2`

`

r~x!ln r~x!dx, ~1!

in position space, and

Sg52E
2`

`

g~p!ln g~p!dp, ~2!

in momentum space. These entropies are closely related to fundamental and/or experim
measurable quantities, such as, e.g., the kinetic energy and the magnetic susceptibility,
makes them useful in the study of the structure and dynamics of atomic and mole
systems.6–10 Moreover, they have been applied to a wide range of quantum-mechanical prob
such as the mathematical formulation of the position-momentum uncertainty principle11–13 and
spreading of wave packets,14,15approximate calculations of energy eigenvalues and eigenstate
means of the maximum-entropy principle,16,17 and time evolution of chemical reactions.18

a!Expanded version of a talk presented at the International Workshop on Orthogonal Polynomials in Mathematical
~Madrid, June 1996!.
0022-2488/97/38(10)/5031/13/$10.00
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5032 Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
The calculation of position and momentum entropies for physically interesting quantum
has been the subject of considerable effort in recent years. It has been shown19,20 that, for the
stationary states of many important systems, such as D-dimensional harmonic oscillat
hydrogen atom, the entropies can be expressed in terms of the integrals

En[2E
2`

`

„pn~x!…2 ln„pn~x!…2w~x! dx,

where pn(x) are orthogonal polynomials with respect to the weight function w(x). These inte
are called ‘‘entropies of the orthogonal polynomials pn(x), ’’ and they are closely related to th
Lp-norms, whose study is of independent interest in the theory of general orthogonal and ex
polynomials.21

Asymptotic formulas for En in the n→` limit have been obtained in the case when pn(x) are
general orthogonal polynomials on a finite interval,22 or Freud orthogonal polynomial
@w(x)5exp(2uxum), m.0# on the whole real axis.21,23,24However, the analytical value of thes
entropies is only known for Chebyshev polynomials of the first and second kinds, in an
form, and for Gegenbauer polynomials in an approximate way.19 The problem of determining the
entropies of general orthogonal polynomials remains open.

For the nth eigenstate of the one-dimensional harmonic oscillator Hamiltonian,

H5
p2

2m
1

1

2
mv2x2,

the probability densities for position and momentum are expressed in terms of the Hermite
nomial Hn(x),

r~x!5
a

2nn!Ap
„Hn~ax!…2e2a2x2

, g~p!5
1

2nn!Apa
„Hn~p/a!…2e2p2/a2

,

wherea[(mv)1/2 ~we choose units such that \51!. The corresponding entropies of position
momentum can be written as

Sr52 ln a1Sn , Sg5 ln a1Sn , ~3!

where

Sn5 ln~2nn!Ap!1n1
1

2
1

1

2nn!Ap
En~H ! ~4!

is given in terms of En(H), the so-called entropy of Hermite polynomials, whose expression

En~H !52E
2`

`

„Hn~x!…2 ln„Hn~x!…2e2x2
dx. ~5!

The values of Sn have been numerically calculated up to n5500,19 while for n@1 they are
approximately given by the asymptotic formula

Sn; ln~pA2n!21, ~6!

which has been rigorously proved by means of the theory of strong asymptotics of
polynomials,23 and can also be derived from the semiclassical ~Wentzel–Kramers–Brillouin! ap-
J. Math. Phys., Vol. 38, No. 10, October 1997
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5033Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
proximation for one-dimensional quantum systems.25,26On the other hand, the variational inequa
ity relating entropy and standard deviation for arbitrary one-dimensional random variables,12

SA< 1
21 ln~A2pDA!,

together with Eq. ~3! and the well-known values of DX and DP for the harmonic oscil
eigenstates,

~DX!25S n1
1

2D 1

a2 , ~DP!25S n1
1

2Da2,

yields the upper bound

Sn< 1
21 ln A~2n11!p. ~7!

However, the exact analytical value of Sn has been calculated only in the simplest cases n50
n51.19 For the ground state (n50) we have

S05 ln~Ap!1 1
2, ~8!

so that in this case the equality sign holds in ~7! and the entropy sum Sr1Sg52Sn attains the
lower bound in the optimal entropic uncertainty relation for one-dimensional position
momentum,11,12

Sr1Sg>11 ln p,

while in the first excited state (n51) we have

S15 ln~2Ap!2 1
21g, ~9!

whereg is Euler’s constant. The main aim of the present work is to find the generalization of
results to arbitrary values of n.

The Hermite polynomial Hn(x) has n real and simple zeros, and is of the fo
Hn(x)52nxn1O(xn21) ~see, e.g., Ref. 27!, so that it can be factorized as

Hn~x!52n)
i51

n

~x2xn, i!,

where xn, i ( i51,2,...,n) is the ith root of Hn(x). Introducing this expression into the logarithm
function in ~5!, and taking into account the normalization integral for Hermite polynomials,

E
2`

`

„Hn~x!…2e2x2
dx52nn!Ap,

we see that En(H) can be written in the form20

En~H !522nn!Ap ln~22n!12(
i51

n

Vn~xn, i!, ~10!

where Vn(t) is the logarithmic potential of the Hermite polynomial Hn(x), defined as

Vn~ t !52E
2`

`

„Hn~x!…2 lnux2tue2x2
dx. ~11!
J. Math. Phys., Vol. 38, No. 10, October 1997
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5034 Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
The n ~real and simple! zeros of Hn(x) are symmetrically distributed around the origin, sin
Hn(2x)5(21)nHn(x).27 Therefore, it is readily seen that Vn(2t)5Vn(t), and Eq. ~10! can also
be written as

En~H !522nn!Ap ln~22n!12eVn~0!14(
i51

m

Vn~xn, i!, ~12!

where xn, i ( i51,2,...,m) is the ith positive root of Hn(x), and we have introduced the convenie
notations

m[Fn

2G , e[n22m. ~13!

In the latter equation, the square brackets denote integer part of the expression within, so te is
equal to 0 or 1 according to whether n is even or odd.

Equations ~10! and ~12! show that the problem of calculating En(H), and hence Sn , reduces
to the evaluation of Vn(t) at the zeros of Hn(x). In Sec. II below we obtain a closed analytic
expression for Vn(t) in terms of1F1 and2F2 hypergeometric functions, which, unlike the recu
sive formula derived in Ref. 20, provides us with analytical expressions for En(H) and Sn when
the exact location of the zeros of Hn(x) is known. An inequality for the values of Vn(t) at the
zeros of Hn(x) is conjectured, which leads to a new upper bound for Sn , stronger than that in Eq
~7! for n odd. Finally, in Sec. III, it is shown that the exact formula for Vn(t) can be written as an
infinite series involving the Gauss2F1 hypergeometric function, which enables us to expr
En(H) and Sn in terms of the even–order spectral momentsm2k(n) of the Hermite polynomials.
Comparison of the asymptotic (n@1) limit of this alternative expression with Eq. ~6! prove
asymptotic validity of the conjectured upper bound for Sn .

II. CALCULATION OF THE LOGARITHMIC POTENTIAL AND THE ENTROPIES

To calculate Vn(t), we first make use of the multiplication formula for Hermite polynomi
~see, e.g., Ref. 28!,

Hm~x!Hn~x!5 (
j50

min~m,n!
m!n!2j

~m2 j!! ~n2 j !! j !
Hm1n22 j~x!,

which in the particular case m5n gives, writing j5n2k,

„Hn~x!…252nn!(
k50

n S n
kD H2k~x!

2kk!
.

Substituting this equation in the expression ~11! of the logarithmic potential Vn(t), we find

Vn~ t !52nn!(
k50

n S n
kD W2k~ t !

2kk!
, W2k~ t !52E

2`

`

H2k~x!lnux2tue2x2
dx. ~14!

Now we are faced with the problem of calculating the integrals W2k(t), which can also be
considered as logarithmic potentials for Hermite polynomials and thus have independent in
To achieve this goal, we consider the Taylor series expansion

W2k~ t !5(
r50

` W2k
~r !~0!

r!
t r . ~15!
J. Math. Phys., Vol. 38, No. 10, October 1997
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5035Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
Making the change of variables x5y1t in Eq. ~14!, we have

W2k~ t !52E
2`

`

H2k~y1t!lnuyue2~y1t!2
dy.

By repeated application of Leibniz’s rule for differentiating under the integral sign, and taking
account that, from Rodrigues’ formula for Hermite polynomials,

dr

dzr „e2z2
Hn~z!…5~21!re2z2

Hn1r~z!,

we obtain

W2k
~r !~ t !5~21!rW2k1r~ t !,

so that Eq. ~15! reads

W2k~ t !5(
r50

`
~21!rW2k1r~0!

r!
t r . ~16!

The parity property Hn(2x)5(21)nHn(x) implies that W2k1r(0)50 if r is odd, and Eq. ~16!
simplifies to

W2k~ t !5(
r50

`
W2k12r~0!

~2r !!
t2r, W2k12r~0!522E

0

`

H2k12r~x!e2x2
ln x dx.  ~17!

The integrals W2k12r(0) may be evaluated by means of the following result,27

E
0

`

H2n~x!xne22ax2
dx5~21!n

22n2~n13!/2

Apa~n11!/2
GS n11

2 DGS n1
1

2DFS 2n,
n11

2
;

1

2
;

1

2a D ,

where F(a,b;c;z)52F1(a,b;c;z) is the Gauss hypergeometric function, which is valid
Rea . 0, Ren . 21. In our case, witha5 1

2 and n5k1r, we obtain

E
0

`

H2k12r~x!xne2x2
dx5~21!k1r

22k12r21

Ap
GS n11

2 DGS k1r1
1

2DFS 2k2r,
n11

2
;

1

2
;1D .

~18!

The hypergeometric function of unit argument on the right-hand side can be simplified usin
property29

F~2n,b;c;1!5
~c2b!n

~c!n
,

where n is a positive integer or zero, c is not a negative integer or zero, and (z)n is Pochhammer’s
symbol,

~z!n5
G~z1n!

G~z!
5~21!n

G~12z!

G~12z2n!
. ~19!

We thus have
J. Math. Phys., Vol. 38, No. 10, October 1997



hen

we

5036 Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
FS 2k2r,
n11

2
;
1

2
;1D5

~2n/2!k1r

~ 1
2!k1r

5
G~ 1

2!G~k1r2n/2!

G~k1r1 1
2!G~2n/2!

,

and Eq. ~18! then reads

E
0

`

H2k12r~x!xne2x2
dx5~21!k1r22k12r21GS n11

2 D G~k1r2n/2!

G~2n/2!
.

Differentiating this equation with respect ton, we obtain

E
0

`

H2k12r~x!xne2x2
ln x dx5~21!k1r22k12r21GS n11

2 D G~k1r2n/2!

G~2n/2!

3
1

2 S cS n11

2 D2cS k1r2
n

2D1cS 2
n

2D D ,  ~20!

wherec(z)5G8(z)/G(z) is the logarithmic derivative of the gamma function. In the case w
k1r50, this formula reduces to

E
0

`

H0~x!xne2x2
ln x dx5

1

4
GS n11

2 DcS n11

2 D ,

so that we readily get

W0~0!52
1

2
GS 1

2DcS 1

2D5
Ap

2
~g12 ln 2!. ~21!

On the other hand, both G(z) andc(z) have simple poles forz50, with residues 1 and21,
respectively. Therefore, when k1r.0, we can take the limitn→0 in Eq. ~20! to obtain

E
0

`

H2k12r~x!e2x2
ln x dx52

Ap

4
~21!k1r22k12rG~k1r !, k1r.0,

which in turn leads to

W2k12r~0!5
Ap

2
~21!k1r22k12rG~k1r !, k1r.0. ~22!

We can evaluate W2k(t) by substituting Eqs. ~21! and ~22! into ~17!. In the case k50,
have

W0~ t !5W0~0!1(
r51

`
W2r~0!

~2r !!
t2r5

Ap

2 S g12 ln 21(
r51

`
~21!r22rG~r !

G~2r11!
t2rD .  ~23!

Using the recurrence and duplication formulas for the gamma function,27,29

G~z11!5zG~z!, G~2z!522z21~ 1
2!zG~z!,
J. Math. Phys., Vol. 38, No. 10, October 1997
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5037Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
together with ~19!, and shifting the summation index to s5r21, Eq. ~23! can be written in t
of a 2F2 hypergeometric function,

W0~ t !5
Ap

2 S g12 ln 222t2 2F2S 1,1;
3

2
,2;2t2D D .  ~24!

On the other hand, for k.0 we have

W2k~ t !5(
r50

`
W2k12r~0!

~2r !!
t2r5

Ap

2
~21!k22k(

r50

`
~21!r22rG~k1r !

G~2r11!
t2r, ~25!

and use of the duplication formula for the gamma function and Eq. ~19! leads to

W2k~ t !5
Ap

2
~21!k22k~k21!!M S k,

1

2
,2t2D , ~26!

where M (a,c,z)51F1(a;c;z) is Kummer’s confluent hypergeometric function. Substituting E
~24! and ~26! into ~14!, we finally obtain

Vn~ t !52nn!ApS g

2
1 ln 22t2 2F2S 1,1;

3

2
,2;2t2D1

1

2 (
k51

n S n
kD ~21!k2k

k
M S k,

1

2
,2t2D D ,

~27!

which is the sought for closed analytical expression for the logarithmic potential Vn(t) defined by
Eq. ~11!.

In the particular case t50, using the identity

g12 ln 21(
k51

n S n
kD ~21!k2k

k
52cS m1e1

1

2D , ~28!

whose proof can be found in the Appendix, Eq. ~27! reduces to

Vn~0!522n21n!Apc~m1e1 1
2!. ~29!

The function Vn(t) in Eq. ~27! is plotted against t for 0<n<5 in Fig. 1. Therefrom we s
that Vn(t) has n local minima, which are located at the zeros of Hn(x),20 and the value of Vn(t)
at these minima decreases monotonically asuxn, iu increases. We also observe that it holds
inequality

Vn~xn, i!<Vn~0!, ~30!

which is strict for xn, iÞ0. We conjecture Eq. ~30! to be valid for all n, although we have not b
able to prove it analytically. On the other hand, Vn(0),0 for all n>1, since then27,29

cS m1e1
1

2D52g22 ln 212 (
k51

m1e
1

2k21
.0, ~31!

so that the absolute value of Vn(xn, i) increases monotonically withuxn, iu. This implies, in view of
Eqs. ~10! and ~12!, that the contribution of the zeros of Hn(x) to the entropy Sn increases as so
does their absolute value.

A closed formula for the entropy of Hermite polynomials En(H) can be obtained by combin
ing Eqs. ~10! and ~27!,
J. Math. Phys., Vol. 38, No. 10, October 1997



5038 Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
FIG. 1. Logarithmic potential Vn(t) for 0<n<5, as given by Eq. ~27!.
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5039Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
En~H !52nn!ApS ng22(
i51

n

xn, i
2

2F2S 1,1;
3

2
,2;2xn, i

2 D1 (
k51

n S n
kD ~21!k2k

k (
i51

n

M S k,
1

2
,2xn, i

2 D D .

~32!

Alternatively, using Eq. ~12! instead of ~10!, and taking into account Eqs. ~29! and ~31!, we o

En~H !52nn!ApS ng22e (
k51

m1e
1

2k21
24(

i51

m

xn, i
2

2F2S 1,1;
3

2
,2;2xn, i

2 D
12(

k51

n S n
kD ~21!k2k

k (
i51

m

M S k,
1

2
,2xn, i

2 D D . ~33!

In turn, from these results, using Eq. ~4!, we obtain for Sn the expressions

Sn5 ln~2nn!Ap!1n1
1

2
1ng22(

i51

n

xn, i
2

2F2S 1,1;
3

2
,2;2xn, i

2 D
1 (

k51

n S n
kD ~21!k2k

k (
i51

n

M S k,
1

2
,2xn, i

2 D , ~34!

and

Sn5 ln~2nn!Ap!1n1
1

2
1ng22e (

k51

m1e
1

2k21
24(

i51

m

xn, i
2

2F2S 1,1;
3

2
,2;2xn, i

2 D
12(

k51

n S n
kD ~21!k2k

k (
i51

m

M S k,
1

2
,2xn, i

2 D , ~35!

respectively, which are the generalizations of Eqs. ~8! and ~9! to arbitrary values of n
example, in the n52 case, the zeros of the polynomial H2(x)54x222 are 61/&, so that we
have

S25 ln~8Ap!1
5

2
12g222F2S 1,1;

3

2
,2;2

1

2D28MS 1,
1

2
,2

1

2D14MS 2,
1

2
,2

1

2D ,

while in the n53 case the zeros of H3(x)58x3212x are 0 and 6A3/2, and we have

S35 ln~48Ap!1
5

6
13g262F2S 1,1;

3

2
,2;2

3

2D212MS 1,
1

2
,2

3

2D112MS 2,
1

2
,2

3

2D
2

16

3
M S 3,

1

2
,2

3

2D .

Fully analytic, though increasingly cumbersome, expressions of this kind may be written for
n<9, since then Hn(x)5xeH̃m(x2), where H̃m(x) is a polynomial of degree m<4.

Using Eqs. ~10! and ~29!, the conjectured inequality ~30! yields an upper bound for En(H),

En~H !<22nn!ApS ln~22n!1ncS n1e11

2 D D52nn!nApS g22 (
k51

m1e
1

2k21D ,  ~36!
J. Math. Phys., Vol. 38, No. 10, October 1997
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5040 Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
where, recalling Eq. ~13!, we have written m1e in the equivalent form (n1e)/2, and the second
expression is obtained from the first one by using ~31!. Introducing the previous equation in
we get

Sn< lnS n!Ap

2n D 1n1
1

2
2ncS n1e11

2 D5 ln~2nn!Ap!1
1

2
1nS 11g22 (

k51

m1e
1

2k21D .

~37!

This conjectured upper bound for Sn turns out to be stronger than that given by Eq. ~7! when n
odd, and coincides with the exact value not only for n50, but also for n51 @see Eqs. ~8! and

III. ALTERNATIVE EXPRESSIONS

Using Eq. ~23! for W0(t), and Eq. ~25! for W2k(t), k.0, Eq. ~27! can be written as

Vn~ t !52nn!ApS g

2
1 ln 21

1

2 (
r51

`
~21!r~r21 !!

~2r !!
~2t!2r

1
1

2 (
k51

n S n
kD ~21!k2k

k! (
r50

`
~21!rG~k1r !

~2r !!
~2t!2rD ,

which, taking advantage of Eq. ~28!, and writing again (n1e)/2 instead ofm1e, simplifies to

Vn~ t !52n21n!ApS 2cS n1e11

2 D1(
r51

`
~21!r~r21 !!

~2r !!
~2t!2r

1 (
k51

n S n
kD ~21!k2k

k! (
r51

`
~21!rG~k1r !

~2r !!
~2t!2rD . ~38!

Taking into account Eq. ~19!, together with the identity29

S n
kD5

~21!k~2n!k

k!
,

the summation over k in the double series of Eq. ~38! can be performed in terms of the
hypergeometric function,

(
k51

n S n
kD ~21!k2kG~r1k !

k!
5~r21 !!„F ~2n,r;1;2!21….

Substituting this equation into ~38!, we obtain

Vn~ t !52n21n!ApS 2cS n1e11

2 D1(
r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!t2rD , ~39!

which is an alternative expression for the logarithmic potential Vn(t).
The entropy of the Hermite polynomials defined by Eq. ~10! can thus be written in the

En~H !52nn!ApS 2 ln~22n!2ncS n1e11

2 D1n(
r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!m2r~n!D ,

~40!
J. Math. Phys., Vol. 38, No. 10, October 1997



yno-

ns,

d

ur-

y the
nown

noulli

r

5041Jorge Sánchez-Ruiz: Entropies of the harmonic oscillator eigenstates
wherem r(n) (r50,1,2, . . . ) are the spectral moments around the origin of the Hermite pol
mial Hn(x), i.e., the quantities

m r~n!5
1

n (
i51

n

~xn, i!
r , ~41!

and Eq. ~4! then yields

Sn5 lnS n!Ap

2n D 1n1
1

2
2ncS n1e11

2 D1n(
r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!m2r~n!.

~42!

This new expression for Sn is less useful than Eqs. ~34! and ~35! for practical calculatio
since, unfortunately, there are no global and compact expressions for the momentsm2r(n), but
they have to be recurrently generated. For Hermite polynomials,m r(n) vanishes when r is an od
integer, while it can be shown30 that

m0~n!51, m2~n!5
n21

2
,

and for r>2 the even spectral momentsm2r(n) are determined by means of the nonlinear rec
rent formula

~2n122s!ms23~n!22ms21~n!1nS (
t51

s24

ms232t~n!m t~n!D 50, s>5.

However, Eq. ~42! turns out to be more appropriate than Eqs. ~34! and ~35! to displa
relation between our exact results and the asymptotic approximation ~6!. Use of the well-k
asymptotic expansions for the gamma and psi functions29 gives

ln~n! !;S n1
1

2D ln n2n1
1

2
ln~2p!1O~n21!,

cS n1e11

2 D; lnS n1e

2 D1O~n22!; ln n2 ln 21
e

n
1O~n22!,

where the remaining terms of these expansions can be explicitly written in terms of Ber
numbers. Substituting these results into Eq. ~42!, we obtain

Sn; ln~pA2n!1
1

2
2e1n(

r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!m2r~n!1O~n21!. ~43!

Comparison of this equation with ~6! leads to the asymptotic formula

n(
r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!m2r~n!;e2

3

2
1o~1!. ~44!

Finally, we note that, comparing the exact formula for Sn , Eq. ~42!, with the conjectured uppe
bound ~37!, the latter turns out to be equivalent to the inequality
J. Math. Phys., Vol. 38, No. 10, October 1997
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(
r51

`
~21!r22r~r21 !!

~2r !!
F~2n,r;1;2!m2r~n!<0, ~45!

which Eq. ~44! implies to be, at least, asymptotically valid. When n is even, the validity of
~37! and ~45! follows from that of Eq. ~7!, which then places a stronger upper bound on Sn than
~37!. For n odd, however, Eq. ~37! is stronger than ~7!, so that the problem of finding a pro
its general validity remains open.
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APPENDIX: PROOF OF EQ. (28)

Equation ~28! follows from the identity

(
k51

n S n
kD ~21!k2k

k
52 (

k51

n
12~21!k

k
, ~A1!

which is the particular case x52 of the more general formula

f ~x![(
k51

n S n
kD ~21!kxk

k
52 (

k51

n
12~12x!k

k
. ~A2!

The validity of Eq. ~A2! can be proved by induction over n, and also by considering
Newton binomial expansion of f8(x),

f 8~x!5
1

x (
k51

n S n
kD ~2x!k5

~12x!n21

x
.

Making the change of variables 12x5t, and taking into account that

tn21

t21
5 (

k50

n21

tk,

we readily obtain

f ~x!5E ~12x!n21

x
dx5(

k51

n
~12x!k

k
1C.

Finally, the value of the integration constant C is determined from the condition f (0)50, w
leads to Eq. ~A2!.

The expression 12(21)k vanishes if k is even, while it is equal to 2 if k is odd, so that o
the odd values of k give a nonvanishing contribution to the right-hand side of ~A1!. Ifn52m
1e, with m5@n/2# and e50,1 for n even and odd, respectively, the last nonzero term in
summation is that corresponding to k52m12e21 ~2m215n21 for n even and 2m115n
for n odd!. Writing k52 l21, we have
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(
k51

n
12~21!k

k
5 (

k51

2m12e21
12~21!k

k
52 (

l51

m1e
1

2 l21
,

and taking into account Eq. ~31! we complete our proof of ~28!.
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