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Information entropy of Gegenbauer polynomials of integer parameter 21. IntrodutionAording to Shannon's information theory [1℄, the only rigorous measure of theunertainty or lak of information assoiated to a ontinuous random variable X withdensity funtion ρ(x), x ∈ R
D, is the entropy

H(X) = −
∫
ρ(x) log ρ(x) dx . (1)In partiular, when ρ(x) is the single-partile probability density for position ofa quantum system, H(X) is the only rigorous measure of the unertainty in theloalization of the partile in position spae. The momentum entropy H(P ) an bede�ned likewise from the single-partile density of momentum γ(p). In the simplestase of a single-partile system desribed in position spae by the wave funtion ψ(x),we have that ρ(x) = |ψ(x)|2 and γ(p) = |φ(p)|2, where the wave funtion in momentumspae φ(p) is the Fourier transform of ψ(x). The sharp inequality [2, 3℄

H(X) +H(P ) ≥ D (1 + log π) (2)plaes a nontrivial lower bound on the sum of the unertainties in position andmomentum, so it provides a quantitative formulation of the position-momentumunertainty priniple. Using the variational inequality that relates information entropyand standard deviation for an arbitrary D-dimensional random variable [1, 3℄,
H(A) ≤ D

2

(
1 + log

2π(∆A)2

D

)
, (3)the entropi unertainty relation (2) leads to the well-known Heisenberg unertaintyrelation

∆X∆P ≥ D

2
, (4)whih proves the former to be stronger than the latter.For many important quantum systems, suh as D-dimensional harmoni osillatorand hydrogen atom, the alulation of position and momentum information entropiesinvolves the evaluation of integrals of the form

E(pn) = −
∫ b

a

(pn(x))2 log (pn(x))2 ω(x) dx , (5)where {pn(x)} denotes a polynomial sequene (deg pn(x) = n) orthogonal on [a, b] ⊆ Rwith respet to the weight funtion ω(x). During the last deade there has been anintense ativity in the study of these integrals, motivated not only by their relevane toquantum physis but also by their lose relationship to other interesting mathematialobjets, suh as the Lp-norms or the logarithmi potentials of the polynomials pn(x). Asurvey on the state-of-the-art in this �eld up to year 2001 an be found in [4℄.The alulation of the entropi integrals E(pn) is generally a very di�ult task,and in most ases only asymptoti results for large values of n are known [4℄. In fat,sine all the zeros of pn are simple and belong to (a, b), when n is not very small even anumerial omputation of E(pn) poses serious di�ulties due to the strongly osillatory



Information entropy of Gegenbauer polynomials of integer parameter 3behaviour of the integrand in (5). In this respet it is worth mentioning Ref. [5℄, whihpresents an e�ient algorithm for the numerial evaluation of E(pn) in the ase whenthe interval (a, b) is �nite.Closed analytial formulas for E(pn) are only known for a few partiular ases ofthe Gegenbauer or ultraspherial polynomials C(λ)
n . We reall that these polynomialsare de�ned as (see, e.g., [6, Se. 4.7℄)

C(λ)
n (x) =

(2λ)n

(λ+ 1
2
)n

P
(λ− 1

2
,λ− 1

2)
n (x) , (6)where (a)n = Γ(a+ n)/Γ(a) denotes the Pohhammer symbol and P (α,β)

n (x) are Jaobipolynomials,
P (α,β)

n (x) =
(α+ 1)n

n!
2F1

( −n, n+ α + β + 1

α + 1

∣∣∣
1 − x

2

)
. (7)For λ > −1

2
, Gegenbauer polynomials form an orthogonal sequene on the interval

[−1, 1] with respet to the weight funtion wλ(x) = (1 − x2)λ− 1
2 ,

∫ 1

−1

C(λ)
n (x)C(λ)

m (x)(1 − x2)λ− 1
2 dx =

21−2λ π Γ(n + 2λ)

(n+ λ)n! [Γ(λ)]2
δn,m . (8)The information entropies of Gegenbauer polynomials, on whih we fous in the presentpaper, are thus given by

E(C(λ)
n ) = −

∫ 1

−1

(C(λ)
n (x))2 log (C(λ)

n (x))2(1 − x2)λ− 1
2 dx . (9)The integrals E(C

(λ)
n ) are espeially relevant in the ase when λ is a non-negativeinteger or half-integer number, due to the relationship between the orrespondingGegenbauer polynomials and (hyper)spherial harmonis. As a onsequene, theseintegrals appear in the alulation of the angular omponent of information entropiesin both position and momentum spae for any D-dimensional (D ≥ 2) quantum-mehanial system with a entral potential, suh as the isotropi harmoni osillatoror the hydrogen atom (radially symmetri Coulomb potential) [4, 7, 8, 9℄. They alsoontrol the radial omponent of the information entropy in momentum spae for the

D-dimensional hydrogen atom [4, 7, 8℄.Instead of using the standard de�nition of Gegenbauer polynomials, it is often moreonvenient to work with the polynomials
Ĉ(λ)

n (x) =

(
(n+ λ)n!

λ (2λ)n

)1
2

C(λ)
n (x) , (10)whih are orthonormal on [−1, 1] with respet to the probability density

ŵλ(x) =
Γ(λ+ 1)√
π Γ(λ+ 1

2
)
(1 − x2)λ− 1

2 . (11)The orresponding entropies,
E(Ĉ(λ)

n ) = −
∫ 1

−1

[Ĉ(λ)
n (x)]2 log [Ĉ(λ)

n (x)]2 ŵλ(x) dx , (12)



Information entropy of Gegenbauer polynomials of integer parameter 4are related to E(C
(λ)
n ) by the formula

E(Ĉ(λ)
n ) = log

(
λ (2λ)n

(n+ λ)n!

)
+

Γ(λ)(n+ λ)n!√
π Γ(λ+ 1

2
)(2λ)n

E(C(λ)
n ) , (13)whih readily follows from the previous de�nitions by taking into aount theorthogonality relation (8).The simplest partiular ases of Gegenbauer polynomials are the Chebyshevpolynomials of the �rst and seond kind,

Tn(x) = lim
λ→0

n!

(2λ)n
C(λ)

n (x) , Un(x) = C(1)
n (x) . (14)For both of these families, information entropies an be omputed in losed analytialform, the results being [7, 8℄

E(T̂n) =

{
0 if n = 0 ,
log 2 − 1 if n 6= 0 , (15)

E(Ûn) = − n

n + 1
. (16)In the λ = 2 ase, it was �rst proved in [10℄ that

E(Ĉ(2)
n ) = − log

(
3(n+ 1)

n+ 3

)
− n(n2 + 2n− 1)

(n + 1)(n+ 2)(n+ 3)
− 2√

(n+ 1)3(n + 3)3

T
′′′

n+2(ξ)

T
′′

n+2(ξ)
, (17)where

ξ =
n+ 2√

(n+ 1)(n+ 3)
, (18)and this result was later simpli�ed to [11℄

E(Ĉ(2)
n ) = − log

(
3(n+ 1)

n+ 3

)
− n3 − 5n2 − 29n− 27

(n + 1)(n+ 2)(n+ 3)
− 1

n+ 2

(
n+ 3

n+ 1

)n+2

. (19)In the same work [11℄, it was also obtained the following generalization of (17) toarbitrary integer values of the parameter, λ = l ∈ N:
E(Ĉ(l)

n ) = −snl − rnl

2l−2∑

j=1

(1 − ξ2
j )
H(ξj)

P ′(ξj)

Ĉ
(l+1)
n−1 (ξj)

Ĉ
(l)
n (ξj)

, (20)where snl and rnl are known onstants depending only on n and l, the auxiliarypolynomials P and H are de�ned from the sequene {Pk} (degPk = k) generated bythe reurrene relation
Pk+1(x) = (2l − 2k − 3)xPk(x) − (n + k + 1)(n+ 2l − k − 1)(1 − x2)Pk−1(x) (21)from the initial values P−1(x) = 0, P0(x) = 1 through the formulas

P (x) = P2l−2(x) , H(x) =
2l−2∑

s=0

(−1)sPs−1(x)P2l−s−3(x) , (22)



Information entropy of Gegenbauer polynomials of integer parameter 5and ξj (j = 1, 2, . . . , 2l − 2) denote the zeros of P . The expliit expression of thepolynomial P was later found to be [12℄
P (x) =

(−1)l−1(n + 2l − 1)!

(n+ l)n!

l−1∑

µ=0

(1 − l)µ(l)µ(1/2)µ

(1 − n− l)µ(1 + n + l)µ µ!
(1 − x2)l−1−µ . (23)Regretfully, (20) is not easy to use in pratie. Furthermore, it is not a ompletelyanalytial formula save for small values of l sine, as we readily see from (23), the zeros

ξj of P have to be determined numerially when l ≥ 6‡.As �rst pointed out in [13℄, the entropy of Chebyshev polynomials of the �rst andseond kind an be easily omputed by diret alulation of the orresponding integralsby using the well-known trigonometri representations
Tn(cos θ) = cos nθ , Un(cos θ) =

sin(n + 1)θ

sin θ
, (24)with x = cos θ. Motivated by this observation, in the present paper we aim at evaluatingthe entropi integral E(C

(λ)
n ) for general values of the parameter λ using representationsof the same kind for the Gegenbauer polynomials.We begin by olleting, in Setion 2, the trigonometri representations ofGegenbauer polynomials that will be used later on. Our approah is developed inSetion 3, where we show that it enables us to �nd ompletely analytial expressionsfor E(C

(λ)
n ), in terms of �nite sums, whenever λ ∈ N. The new results obtained for theinformation entropy of Gegenbauer polynomials of integer parameter are summarizedin Setion 4. Finally, in Setion 5 some onluding remarks are given and several openproblems are pointed out.2. Trigonometri representations for Gegenbauer polynomialsThe most widely known trigonometri representation of the Gegenbauer polynomials is(see e.g. [14, p. 302℄)

C(λ)
n (cos θ) =

n∑

m=0

d(λ)
m,ne

i(n−2m)θ =

n∑

m=0

d(λ)
m,n cos(n− 2m)θ , (25)where

d(λ)
m,n =

(λ)m(λ)n−m

m!(n−m)!
. (26)Another representation, due to Szegö [6, 15℄, is

C(λ)
n (cos θ) =

c
(λ)
n

(sin θ)2λ−1

∞∑

ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ , λ > 0 , λ /∈ N , (27)where

c(λ)
n =

22−2λΓ(n+ 2λ)

Γ(λ)Γ(n+ λ+ 1)
, α(λ)

ν,n =
(1 − λ)ν(n+ 1)ν

ν!(n+ λ + 1)ν
. (28)

‡ Likewise, the general expression of E(C
(λ)
n ) given in [9℄ is not ompletely analytial save for smallvalues of n, sine it is expressed in terms of the zeros of C

(λ)
n (x).



Information entropy of Gegenbauer polynomials of integer parameter 6At �rst sight, this representation seems to be less useful than the previous one, beauseit ontains in�nitely many terms. Moreover, it is supposed not to hold when λ ∈ N.However, it is not di�ult to prove that the validity of (27) extends to the ase when λis a positive integer.Proposition 1 The Szegö representation (27) holds true when λ ∈ N. In this ase, itreads
C(λ)

n (cos θ) =
c
(λ)
n

(sin θ)2λ−1

λ−1∑

ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ . (29)Proof If λ ∈ N then α(λ)

ν,n = 0 when ν ≥ λ, so that (27) redues to (29). We will provethis equality by indution on λ. When λ = 1 (29) is obviously true sine it redues to theseond equation in (24), the well-known trigonometri representation for the Chebyshevpolynomials of the seond kind. Now, assume that the result holds for λ = m − 1(m ∈ N). We take advantage of the following reurrene relation for the Gegenbauerpolynomials [6, Eq. (4.7.27)℄,
nC(λ)

n (x) = (2λ+ n− 1)xC
(λ)
n−1(x) − 2λ(1 − x2)C

(λ+1)
n−2 (x), (30)whih in trigonometri form (x = cos θ) an be restated as

C(λ)
n (cos θ) =

1

2(λ− 1) sin2 θ

[
(2λ+ n− 1) cos θC

(λ−1)
n+1 (cos θ) − (n+ 2)C

(λ−1)
n+2 (cos θ)

]
.(31)Using this formula for λ = m and substituting (29) on the right-hand-side we arrive at

C(m)
n (cos θ) =

2c
(m)
n

(sin θ)2m−1

[
cos θ

m−2∑

ν=0

α
(m−1)
ν,n+1 sin(n+ 2ν + 2)θ

− n+ 2

n +m+ 1

m−2∑

ν=0

α
(m−1)
ν,n+2 sin(n+ 2ν + 3)θ

]

=
c
(m)
n

(sin θ)2m−1

[
m−2∑

ν=0

α
(m−1)
ν,n+1 sin(n+ 2ν + 3)θ +

m−2∑

ν=0

α
(m−1)
ν,n+1 sin(n + 2ν + 1)θ

− 2(n+ 2)

n +m+ 1

m−2∑

ν=0

α
(m−1)
ν,n+2 sin(n+ 2ν + 3)θ

]

=
c
(m)
n

(sin θ)2m−1

m−1∑

ν=0

(
α

(m−1)
ν−1,n+1 + α

(m−1)
ν,n+1 − 2(n+ 2)

n+m+ 1
α

(m−1)
ν−1,n+2

)

× sin(n + 2ν + 1)θ , (32)where in the last step we have used that α(m−1)
m−1,n+1 = 0 and α(m−1)

ν,n+1 = 0 whenever ν < 0.A straightforward alulation shows that
α

(m−1)
ν−1,n+1 + α

(m−1)
ν,n+1 − 2(n+ 2)

n+m+ 1
α

(m−1)
ν−1,n+2 = α(m)

ν,n , (33)and (29) is thus proved to hold also for λ = m. �



Information entropy of Gegenbauer polynomials of integer parameter 7The fat that the sum in (27) terminates after a �nite number of terms when λ ∈ Nsuggests that Szegö's representation may be useful to evaluate the entropy of Gegenbauerpolynomials of integer parameter. Aordingly, in what follows we shall assume that
λ ∈ N unless otherwise indiated.3. Evaluation of the entropi integralWith the hange of variable x = cos θ, the integral (9) takes the form

E(C(λ)
n ) = −

∫ π

0

(C(λ)
n (cos θ) )2 log (C(λ)

n (cos θ) )2 sin2λ θ dθ . (34)Using Szegö's representation (29) for one of the two Gegenbauer polynomials in
(C

(λ)
n (cos θ))2, (34) an be rewritten as

E(C(λ)
n ) = −1

2
c(λ)
n

λ−1∑

ν=0

α(λ)
ν,n

(
J (λ)

ν,n − J
(λ)
ν+1,n

)
, (35)where

J (λ)
ν,n :=

∫ π

0

C(λ)
n (cos θ) cos(n + 2ν)θ log (C(λ)

n (cos θ))2dθ . (36)Now, using the standard representation (25) we have that
C(λ)

n (cos θ) cos(n+ 2ν)θ =
1

2

n∑

m=0

d(λ)
m,n cos 2(m+ ν)θ +

1

2

n∑

m=0

d(λ)
m,n cos 2(n−m+ ν)θ .(37)Taking into aount the symmetry property d(λ)

m,n = d
(λ)
n−m,n, whih readily follows fromthe expliit expression of the oe�ients d(λ)

m,n, the previous equation simpli�es to
C(λ)

n (cos θ) cos(n + 2ν)θ =

n∑

m=0

d(λ)
m,n cos 2(m+ ν)θ , (38)so that

J (λ)
ν,n =

n∑

m=0

d(λ)
m,n

∫ π

0

cos 2(m+ ν)θ log (C(λ)
n (cos θ))2dθ . (39)De�ning the integrals

I(λ)
m,n :=

∫ π

0

cos(2mθ) log (C(λ)
n (cos θ))2dθ , (40)from (35) and (39) we �nd that E(C

(λ)
n ) is given by

E(C(λ)
n ) = −1

2
c(λ)
n

λ−1∑

ν=0

α(λ)
ν,n

n∑

m=0

d(λ)
m,n

(
I

(λ)
ν+m,n − I

(λ)
ν+1+m,n

)
. (41)An alternative expression for the entropi integral E(C

(λ)
n ) whih turns out to bemore onvenient in pratie an be obtained by notiing that

E(C(λ)
n ) = −1

2
c(λ)
n

λ−1∑

ν=0

α(λ)
ν,n

{
n∑

m=0

d(λ)
m,nI

(λ)
ν+m,n −

n+1∑

m=1

d
(λ)
m−1,nI

(λ)
ν+m,n

}

= −1

2
c(λ)
n

λ−1∑

ν=0

α(λ)
ν,n

{
n∑

m=1

(
d(λ)

m,n − d
(λ)
m−1,n

)
I

(λ)
ν+m,n + d

(λ)
0,nI

(λ)
ν,n − d(λ)

n,nI
(λ)
ν+n+1,n

}
. (42)



Information entropy of Gegenbauer polynomials of integer parameter 8Aording to (26), d(λ)
m,n = 0 when −λ < m < 0 or n < m < n + λ. Let us restritinitially to the ase when λ 6= 1, so that d(λ)

−1,n = 0 and d(λ)
n+1,n = 0. This allows us towrite the previous formula in the more ompat form

E(C(λ)
n ) = −1

2
c(λ)
n

λ−1∑

ν=0

n+1∑

m=0

α(λ)
ν,n

(
d(λ)

m,n − d
(λ)
m−1,n

)
I

(λ)
ν+m,n

= −1

2
c(λ)
n

λ−1∑

ν=0

n+1+ν∑

m=ν

α(λ)
ν,n

(
d

(λ)
m−ν,n − d

(λ)
m−ν−1,n

)
I(λ)
m,n . (43)Using again that d(λ)

m,n = 0 when −λ < m < 0 as well as when n < m < n + λ, wean extend the lower and upper limits in the inner summation to 1 and n + λ − 1,respetively, provided that the terms m = 0 and m = n+λ are treated separately. Thuswe �nd that
E(C(λ)

n ) = −1

2
c(λ)
n

(
α

(λ)
0,nd

(λ)
0,nI

(λ)
0,n − α

(λ)
λ−1,nd

(λ)
n,nI

(λ)
n+λ,n +

n+λ−1∑

m=1

β(λ)
m,nI

(λ)
m,n

)
, (44)where

β(λ)
m,n =

λ−1∑

ν=0

α(λ)
ν,n

(
d

(λ)
m−ν,n − d

(λ)
m−ν−1,n

)
. (45)It an be seen that (44) also holds when λ = 1 by noting that in this ase its right-handside oinides with that of (42).In order to apply (44), we need to evaluate the integrals I(λ)

m,n with 0 ≤ m ≤ n+ λ.This goal an be ahieved by means of omplex integration tehniques, whih enable usto obtain the following result.Theorem 1 For λ ∈ N,
I

(λ)
0,n = 2π log

(
(λ)n

n!

) (46)and, when m ≥ 1,
I(λ)
m,n =

(2λ− 1)π

m
+

π

(2m)!

d2m

dz2m

(
log

λ−1∑

ν=0

α(λ)
ν,n(z

2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

. (47)Proof Taking into aount that C(λ)
n (−x) = (−1)nC

(λ)
n (x), (40) an be written as

I(λ)
m,n =

1

2

∫ 2π

0

cos(2mθ) log |C(λ)
n (cos θ)|2dθ

=

∫ 2π

0

cos(2mθ) log |C(λ)
n (cos θ)| dθ

=

∫ 2π

0

cos(2mθ) log |einθC(λ)
n (cos θ)| dθ , (48)



Information entropy of Gegenbauer polynomials of integer parameter 9where in the last step the fator einθ has been introdued for later onveniene. Usingthe Szegö representation (29) for the Gegenbauer polynomial C(λ)
n (cos θ), the previousequation reads

I(λ)
m,n =

∫ 2π

0

cos(2mθ) log

∣∣∣∣∣
c
(λ)
n einθ

sin2λ−1 θ

λ−1∑

ν=0

α(λ)
ν,n sin(n + 2ν + 1)θ

∣∣∣∣∣ dθ . (49)We will ompute the integral
I(λ)

m,n =

∫ 2π

0

cos(2mθ) log

(
c
(λ)
n einθ

sin2λ−1 θ

λ−1∑

ν=0

α(λ)
ν,n sin(n+ 2ν + 1)θ

)

dθ , (50)whose real part equals I(λ)
m,n. Introduing the hange of variable z = exp(iθ) we arrive at

I(λ)
m,n =

1

2i

∮

|z|=1

z4m + 1

z2m+1
log q(z)dz , (51)where

q(z) = zn C(λ)
n

(
z + z−1

2

)
= c(λ)

n 22λ−2(−1)λ

∑λ−1
ν=0 α

(λ)
ν,n(z2n+2λ+2ν − z2λ−2ν−2)

(1 − z2)2λ−1
. (52)The singularities of the integrand are z = 0, whih is a pole of order 2m + 1, and allthe zeros of q(z), whih are branh points. If {xn,j}n

j=1 denote the zeros of C(λ)
n (x),whih are known to be simple, real and loated in (−1, 1), then the zeros {zn,j}2n
j=1 ofthe funtion q(z) are

zn,j+ n
2
∓n

2
= exp(i arccosxn,j) = xn,j ± i

√
1 − x2

n,j , j = 1, 2, . . . , n . (53)This means that the {zn,j}2n
j=1 are all loated on the unit irle, whih an also be seenfrom the fat that z = exp(i arccosx) maps (−1, 1) onto the unit irle. Therefore, theintegrand of (51) has 2n branh points loated on the ontour of integration. To avoidthis di�ulty we onsider the same integral along the slightly di�erent ontour Γ (seeFigure 1), whih is also losed. Notie that the logarithmi branhes an be hosen togo from the branh points to the exterior of the unit disk, so that Γ does not ross them.Sine the only singularity inside Γ is z = 0 we now have

∮

Γ

z4m + 1

z2m+1
log q(z)dz = 2πiRes(z4m + 1

z2m+1
log q(z), z = 0

)
. (54)The integral along Γ an be deomposed as

∮

Γ

z4m + 1

z2m+1
log q(z)dz =

2n∑

j=1

(∫

ǫj

z4m + 1

z2m+1
log q(z)dz +

∫

γj

z4m + 1

z2m+1
log q(z)dz

)

, (55)where ǫj denotes the ar of irumferene of radius ε that surrounds the branh point
zn,j and γj denotes the ar on the unit irle that onnets ǫj and ǫj+1 (γ2n onnets ǫ2nand ǫ1). Parameterizing z = zn,j + εeiθ we �nd that
∫

ǫj

z4m + 1

z2m+1
log q(z)dz =

∫

ǫj

(zn,j + εeiθ)4m + 1

(zn,j + εeiθ)2m+1
log q(zn,j + εeiθ) iεeiθdθ −→

ε→0
0 , (56)
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ε1

Re

Im

1

1

γ2n

γ

z

εi

n,2n

γ
i

zn,1

n,i 1z
Γ

Figure 1. Integration ontour used to avoid the branh points on the unit irle.where we have used that x log x→ 0 as x→ 0. Thus, taking the limit ε→ 0 in (55) weonlude that ∮
|z|=1

z4m + 1

z2m+1
log q(z)dz =

∮

Γ

z4m + 1

z2m+1
log q(z)dz . (57)Taking into aount that the residue of a meromorphi funtion h(z) in a pole z0 oforder 2m+ 1 is given byRes(h(z), z = z0) =

1

(2m)!

d2m

dz2m

(
(z − z0)

2m+1h(z)
)∣∣∣∣

z=z0

, (58)use of (54) and (57) into (51) leads to
I(λ)

m,n =
π

(2m)!

d2m

dz2m

[
(z4m + 1) log q(z)

]∣∣∣∣
z=0

. (59)In the ase m = 0, the previous equation redues to
I(λ)

0,n = 2π log q(0) = 2π log
(
c(λ)
n 22λ−2(−1)λ+1α

(λ)
λ−1,n

)
, (60)so that

I
(λ)
0,n = 2π log

∣∣∣c(λ)
n 22λ−2α

(λ)
λ−1,n

∣∣∣ = 2π log

(
(λ)n

n!

)
, (61)whih proves the �rst part of the theorem§. On the other hand, if m ≥ 1 then wereadily see from (59) that I(λ)

m,n ∈ R, so I(λ)
m,n = I(λ)

m,n. Furthermore, in this ase the fator
(z4m + 1) in the right-hand side of (59) an be omitted, sine at z = 0 its value equalsunity while all its derivatives do vanish. We thus �nd that

I(λ)
m,n =

π

(2m)!

d2m

dz2m

[

log

(∑λ−1
ν=0 α

(λ)
ν,n(z2n+2λ+2ν − z2λ−2ν−2)

(1 − z2)2λ−1

)]∣∣∣∣∣
z=0

, (62)
§ This part an also be proved using the mean value theorem for harmoni funtions (f. [7, Se. VI℄).
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d2m

dz2m

(
log(1 − z2)

)∣∣∣∣
z=0

=
d2m

dz2m

(
−

∞∑

k=1

z2k

k

)∣∣∣∣∣
z=0

= −(2m)!

m
(63)when m 6= 0. �The fat that the Szegö representation (29) has a �nite number of terms playsan essential role in the proof of Theorem 1. Although we are mainly interested inevaluating the integrals I(λ)

m,n when λ ∈ N, it is worth pointing out that these integralsan be alulated in a similar way for all possible values of λ, provided that we use thestandard trigonometri representation (25) instead of the Szegö representation for theGegenbauer polynomial inside the logarithm. This generalization is ontained in thenext theorem.Theorem 2 For λ ∈ R, λ > −1
2
,

I
(λ)
0,n = 2π log

(
(λ)n

n!

) (64)and, when m ≥ 1,
I(λ)
m,n =

π

(2m)!

d2m

dz2m

(
log

n∑

j=0

d
(λ)
j,nz

2n−2j

)∣∣∣∣∣
z=0

. (65)Proof We proeed as in the proof of Theorem 1, but now we use the omplex form of thestandard trigonometri representation (25) for the Gegenbauer polynomial C(λ)
n (cos θ)in (48). Thus we arrive at

I(λ)
m,n =

π

(2m)!

d2m

dz2m

[
(z4m + 1) log

(
n∑

j=0

d
(λ)
j,nz

2n−2j

)]∣∣∣∣∣
z=0

, (66)from whih (64) and (65) readily follow. �In order to arry out the sums in (44), the next step is to obtain losed formulasfor the derivatives I(λ)
m,n with 1 ≤ m ≤ n + λ. Despite its greater generality, Theorem2 turns out to be less useful than Theorem 1, beause (47) expresses the integrals interms of the logarithm of a polynomial that has 2λ terms, while in (65) they are given interms of the logarithm of a polynomial with n+ 1 terms. As we shall see, the di�ultyin obtaining a losed formula for the derivatives of suh funtions inreases with thenumber of terms in the polynomial. Therefore, if we want an expression of I(λ)

m,n for a�xed value of λ and any n ∈ N Theorem 1 is more helpful, partiularly for small valuesof λ.In the ase λ = 1 we readily notie from (47) that, if 1 ≤ m ≤ n+ 1, then
I(1)
m,n =

π

m
+

π

(2m)!

d2m

dz2m

(
log(1 − z2n+2)

)∣∣∣∣
z=0

=
π

m
+

π

(2m)!

d2m

dz2m

(

−
∞∑

k=1

z(2n+2)k

k

)∣∣∣∣∣
z=0

= π

(
1

m
− δm,n+1

)
. (67)



Information entropy of Gegenbauer polynomials of integer parameter 12When λ ≥ 2, the polynomial inside the logarithm has more terms and the above trikdoes not work. However, we an obtain losed formulas for the derivatives in (47) bymeans of Faà di Bruno's formula for the derivatives of the omposition of two funtions,whih states that (see e.g. [16℄)
dmf(g(z))

dzm
= m!

m∑

k=0

f (k)(g(z))
∑

k1,k2,...,km

m∏

j=1

[g(j)(z)]kj

(j!)kjkj !
, (68)where the inner summation is extended over all partitions satisfying

k1 + k2 + · · · + km = k , k1 + 2k2 + · · ·+mkm = m. (69)This formula enables us to �nd expliit expressions for I(λ)
m,n with λ ≥ 2, as stated in thefollowing two propositions.Proposition 2 In the ase λ = 2, when 1 ≤ m ≤ n+ 2

I(2)
m,n =

π

m

[
3 −

(
n+ 3

n+ 1

)m ]
+ π

n+ 3

n+ 1
δm,n+2 . (70)Proof In this ase, appliation of Faà di Bruno's formula (68) to the derivatives in (47)gives‖

d2m

dz2m

(
log

1∑

ν=0

α(2)
ν,n(z2n+4+2ν − z2−2ν)

)∣∣∣∣∣
z=0

= (2m)!
2m∑

k=1

dk

dzk
(log z)

∣∣∣∣
z=−α

(2)
1,n

×
∑

k1,k2,...,k2m

2m∏

j=1

[
dj

dzj (
∑1

ν=0 α
(2)
ν,n(z2n+4+2ν − z2−2ν))

∣∣∣
z=0

]kj

(j!)kjkj!
. (71)On the one hand, for k ≥ 1,

dk

dzk
(log z) =

(−1)k+1(k − 1)!

zk
, (72)so that

dk

dzk
(log z)

∣∣∣∣
z=−α

(2)
1,n

= −(k − 1)!

(α
(2)
1,n)k

. (73)On the other hand, all the derivatives of the polynomial in (71) vanish at z = 0 exeptwhen j = 2 and j = 2n + 4, so we must set kj = 0 if j 6= 2 and j 6= 2n + 4. Conditions(69) then read
k2 + k2n+4 = k , 2k2 + (2n + 4)k2n+4 = 2m. (74)Sine k2 and k2n+4 are non-negative integers, these equations only admit the solution

k2n+4 = 0, k2 = k = m when m ≤ n + 1, while in the ase m = n + 2 we have to addthe solution k2n+4 = k = 1, k2 = 0 to the previous one. Therefore, (71) simpli�es to
d2m

dz2m

(

log

1∑

ν=0

α(2)
ν,n(z2n+4+2ν − z2−2ν)

)∣∣∣∣∣
z=0

= −(2m)!

[
1

m

(

−
α

(2)
0,n

α
(2)
1,n

)m

+
α

(2)
0,n

α
(2)
1,n

δm,n+2

]

, (75)and the result follows using the seond equation in (28). �

‖ Notie that attending to (69) k = 0 orresponds to m = 0, so we an start the sum in k from 1.
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I(λ)
m,n =

(2λ− 1)π

m
− π

α
(λ)
0,n

α
(λ)
λ−1,n

δm,n+λ

− π

(
α

(λ)
λ−3,n

α
(λ)
λ−2,n

)m m∑

k=1

[m/3]∑

k6=0

[m/4]∑

k8=0

· · ·
[m/(λ−1)]∑

k2(λ−1)=0

(

−
(α

(λ)
λ−2,n)2

α
(λ)
λ−1,nα

(λ)
λ−3,n

)k

× (k − 1)!

(2k −m+
∑λ−3

r=1 rk2r+4)! (m− k −
∑λ−3

s=1 (s+ 1)k2s+4)!

×
λ−1∏

j=3

1

(k2j)!

(
−
α

(λ)
λ−1−j,n(α

(λ)
λ−2,n)j−2

(α
(λ)
λ−3,n)j−1

)k2j

, (76)where in the upper limits of the summations over k6, k8, . . . , k2(λ−1) the square braketsdenote integer part of the expression within.In partiular, in the ase λ = 3, when 1 ≤ m ≤ n+ 3

I(3)
m,n =

π

m

[
5 − 2ℜ(f(n)m)

]
− π

(n+ 4)(n+ 5)

(n+ 1)(n+ 2)
δm,n+3 , (77)where

f(n) =
(n+ 1)(n+ 5) + i

√
3(n+ 1)(n+ 5)

(n+ 1)(n+ 2)
. (78)Proof In the general ase (λ ∈ N, λ ≥ 3), appliation of Faà di Bruno's formula (68)to the derivatives in (47) and use of (72) lead to

d2m

dz2m

(
log

λ−1∑

ν=0

α(λ)
ν,n(z2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

= −(2m)!

2m∑

k=1

(k − 1)!

(α
(λ)
λ−1,n)k

∑

k1,k2,...,k2m

2m∏

j=1

[
dj

dzj (
∑λ−1

ν=0 α
(λ)
ν,n z2n+2λ+2ν)

∣∣∣
z=0

]kj

(j!)kjkj!

−(2m)!

2m∑

k=1

(k − 1)!

(α
(λ)
λ−1,n)k

∑

k1,k2,...,k2m

2m∏

j=1

[
dj

dzj ( −
∑λ−1

ν=0 α
(λ)
ν,n z2λ−2ν−2)

∣∣∣
z=0

]kj

(j!)kjkj !
. (79)In the �rst term of the right-hand side all derivatives vanish at z = 0 exept when

j = 2n+ 2λ, so that kj = 0 whenever j 6= 2n+ 2λ and onditions (69) simplify to
k2n+2λ = k , (2n+ 2λ)k2n+2λ = 2m, (80)whih only admit the solution k2n+2λ = k = 1 when m = n+ λ. In the seond term thederivatives that do not vanish are those with j even, 2 ≤ j ≤ 2λ− 2, so that onditions(69) now read
λ−1∑

r=1

k2r = k ,
λ−1∑

s=1

sk2s = m. (81)
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d2m

dz2m

(
log

λ−1∑

ν=0

α(λ)
ν,n(z2n+2λ+2ν − z2λ−2ν−2)

)∣∣∣∣∣
z=0

= −(2n+ 2λ)!
α

(λ)
0,n

α
(λ)
λ−1,n

δm,n+λ

−(2m)!

2m∑

k=1

(k − 1)!

(α
(λ)
λ−1,n)k

∑

k2,k4,...,k2(λ−1)

2m∏

j=1

(−α(λ)
λ−1−j,n)

k2j

(k2j)!
. (82)Finally, we an further simplify the previous expression to obtain (76) by usingonditions (81) to write k2 and k4 in terms of the remaining indies, i.e.

k2 = k6 + 2k8 + · · ·+ (λ− 3)k2(λ−1) + 2k −m,

k4 = −2k6 − 3k8 − · · · − (λ− 2)k2(λ−1) +m− k . (83)Notie that in (76) onditions (81) are guaranteed to hold beause for the values of theindies that do not ful�ll them we get the inverse of the fatorial of a negative integer,whih an be onsidered to be zero. We have hanged the upper limit in the sum over
k from 2m to m beause when m+ 1 ≤ k ≤ 2m onditions (81) are not ful�lled.In the ase λ = 3, (76) redues to
I(3)
m,n =

5π

m
− π

(
α

(3)
0,n

α
(3)
1,n

)m m∑

k=1

(k − 1)!

(2k −m)!(m− k)!

(

−
(α

(3)
1,n)2

α
(3)
2,nα

(3)
0,n

)k

− π
α

(3)
0,n

α
(3)
2,n

δm,n+3 , (84)so we need to evaluate a sum of the form
m∑

k=1

(k − 1)!

(2k −m)!(m− k)!
xk =

m−1∑

j=0

(m− j − 1)!

j!(m− 2j)!
xm−j = xm

m−1∑

j=0

(
m− j

j

)
(x−1)j

m− j
. (85)Using the summation formula [17, Eq. (5.75)℄

m−1∑

j=0

(
m− j

j

)
m

m− j
zj =

(
1 +

√
1 + 4z

2

)m

+

(
1 −

√
1 + 4z

2

)m (86)and the seond equation in (28), we �nd that
I(3)
m,n =

5π

m
− π

m
[f(n)m + f ∗(n)m] − π

(n+ 4)(n+ 5)

(n+ 1)(n+ 2)
δm,n+3 , (87)whih is equivalent to (77). �4. Results for the information entropyEquations (46), (67), (70) and (77) enable us to derive losed analytial formulas for

E(C
(λ)
n ) when λ = 1, 2, 3. For λ = 1, after substitution of the orresponding values ofthe onstants d(λ)

m,n, c(λ)
n and α(λ)

ν,n (see (26) and (28)), (44) redues to
E(C(1)

n ) = −1

2

(
I

(1)
0,n − I

(1)
n+1,n

)
, (88)whih using (46) and (67) immediately leads to

E(C(1)
n ) = E(Un) =

π

2

(
1

n + 1
− 1

)
. (89)
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E(C(2)

n ) = −1

8

(

(n+ 1)(n+ 3)I
(2)
0,n − (n+ 1)2I

(2)
n+2,n − 4

n+1∑

m=1

mI(2)
m,n

)

, (90)so using (46) and (70) together with the well-known formula for the sum of a geometriseries,
n∑

m=1

xm =
x(1 − xn)

1 − x
, (91)we �nd that

E(C(2)
n ) = −π

8

(
2(n+ 1)(n+ 3) log(n+ 1) +

n3 − 5n2 − 29n− 27

n+ 2

+
(n+ 3)n+3

(n+ 2)(n+ 1)n+1

)
. (92)Realling (13), (89) and (92) are readily shown to be equivalent to (16) and (19),respetively.In the ase λ = 3, (44) an be rewritten as

E(C(3)
n ) = − 1

128

[
(n+ 1)(n+ 2)(n+ 4)(n+ 5)I

(3)
0,n

−(n + 1)2(n+ 2)2I
(3)
n+3,n − 12

n+2∑

m=1

m(n2 + 6n+ 7 − 2m2)I(3)
m,n

]

. (93)Substituting (46) and (77) into the above expression, we enounter again the geometrisum, as well as a sum of the form ∑
mm

2xm. Using (91) and the summation formula[18, Eq. (5.14.9)℄
n∑

m=1

m2xm =
x(1 + x) − xn+1[(n+ 1)2 − (2n2 + 2n− 1)x+ n2x2]

(1 − x)3
, (94)after a tedious but straightforward alulation we arrive at the following losed analytialformula for E(C

(3)
n ), whih is a new result:

E(C(3)
n ) = − π

128

{
2(n+ 1)(n+ 2)(n+ 4)(n+ 5) log

(
(n+ 1)(n+ 2)

2

)

+
n5 − 16n4 − 269n3 − 1200n2 − 2102n− 1250

n + 3

+
2(n+ 5)2

(n+ 2)(n+ 3)
ℜ




(

(n+ 1)(n+ 5) + i
√

3(n+ 1)(n+ 5)

(n+ 1)(n+ 2)

)n+1

×
(

2n2 + 13n+ 14 − i(n+ 1)(n+ 6)

√
(n+ 1)(n+ 5)

3

)]}
. (95)When λ ≥ 4, ombination of (44) and (76) provide an expression for the entropy

E(C
(λ)
n ) in terms of �nite sums. For the sake of brevity, in (44) it is onvenient to absorbthe term orresponding to I(λ)

n+λ,n into the sum over m by setting
β

(λ)
n+λ,n := −α(λ)

λ−1,nd
(λ)
n,n (96)



Information entropy of Gegenbauer polynomials of integer parameter 16instead of using (45) with m = n + λ, whih would give for β
(λ)
n+λ,n the value

−α(λ)
λ−1,nd

(λ)
n,n + α

(λ)
0,nd

(λ)
n+λ,n. We thus have that

E(C(λ)
n ) = − π

2
c(λ)
n

{

2α
(λ)
0,nd

(λ)
0,n log

(
(λ)n

n!

)
+ α

(λ)
0,nd

(λ)
n,n + (2λ− 1)

n+λ∑

m=1

β
(λ)
m,n

m

−
n+λ∑

m=1

m∑

k=1

[m/3]∑

k6=0

[m/4]∑

k8=0

· · ·
[m/(λ−1)]∑

k2(λ−1)=0

β(λ)
m,n

(
α

(λ)
λ−3,n

α
(λ)
λ−2,n

)m(
−

(α
(λ)
λ−2,n)

2

α
(λ)
λ−1,nα

(λ)
λ−3,n

)k

× (k − 1)!

(2k −m+
∑λ−3

r=1 rk2r+4)! (m− k −
∑λ−3

s=1 (s+ 1)k2s+4)!

×
λ−1∏

j=3

1

(k2j)!

(
−
α

(λ)
λ−1−j,n(α

(λ)
λ−2,n)

j−2

(α
(λ)
λ−3,n)j−1

)k2j




 . (97)Unlike (20), (97) is ompletely analytial for all λ ∈ N, whih makes it suitable forsymboli omputation. For instane, a Maple implementation of the formula enabled usto obtain the losed analytial expressions for E(C
(4)
n ) and E(C

(5)
n ), with 1 ≤ n ≤ 15,that are displayed in Tables 1 and 2, respetively. In these tables we also providenumerial values of the entropies obtained from the exat ones, in order that theinterested reader an ompare them with those given by numerial algorithms suhas that in [5℄.5. Summary and onlusionsThe problem of obtaining losed analytial formulas for the entropy of orthogonalpolynomials is known to be very di�ult, as displayed by the fat that in previous workon the subjet formulas of this kind were only found for the Gegenbauer polynomials ofparameter λ = 0, 1, 2. Here we have presented a new approah to the alulation of theentropy of Gegenbauer polynomials, based on the use of trigonometri representationsfor these polynomials, whih has allowed us to expliitly evaluate the entropi integralsby means of omplex analysis tehniques. Using this method we have been able toderive in a uni�ed way losed formulas of E(C

(λ)
n ) for λ = 1, 2, 3, the last one being new.Furthermore, when λ ≥ 4, λ ∈ N, we have obtained ompletely analytial expressionsof the entropy in terms of �nite sums, whih easily provide exat values for the entropyusing symboli omputation. The growing omplexity in the formulas of E(C

(λ)
n ) as λinreases serves as a lear illustration of the di�ulties posed by the alulation of theentropy of orthogonal polynomials.When the parameter λ is not a positive integer, the Szegö representation (27) ofthe Gegenbauer polynomial C(λ)

n has in�nitely many terms, so the same happens for theexpressions (35) and (41) of the entropi integral E(C
(λ)
n ). It remains open the problemof studying the onvergene behaviour of these series, as well as that of summing up themanalytially. It would be of partiular interest to obtain exat analytial expressionsfor the entropy of Gegenbauer polynomials of half-integer parameter sine, as already
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(4)
n ) for 1 ≤ n ≤ 15.n Exat value Numerial value1 −7π log(2) +

119

240
π −13.6852 −105

8
π log(10) +

580771

300000
π −88.8623 −75

2
π log(20) +

95

21
π −338.7144 −5775

64
π log(35) +

4883222845

632481024
π −983.6135 −385

2
π log(56) +

17355685

1806336
π −2404.1736 −3003

8
π log (84) +

6449434961

1058158080
π −5206.0057 −1365

2
π log (120)− 1396715852287

139218750000
π −10296.5568 −75075

64
π log (165) − 24757176334716125

493018566815808
π −18974.3689 −1925 π log (220)− 1200329915

9135984
π −33031.07510 −12155

4
π log (286) − 325291539600149215255

1172732412725203616
π −54866.42111 −4641 π log (364) − 31458443588344487293819

60436675052957701680
π −87616.53812 −440895

64
π log (455)− 25537984326378849719971131

28270687046875000000000
π −135295.73913 −9975 π log (560) − 1779685691911133495

1202109806542848
π −202952.03114 −56525

4
π log (680)− 36234350694889865223938313068785

15613637127259094259005915136
π −296836.55515 −19635 π log (816) − 130243656594168370141034405

37115886521993021558784
π −424587.139mentioned in Se. 1, they are needed together with those of the integer ase in order toevaluate the information entropy of spherial and hyperspherial harmonis. Finally, itwould also be desirable to extend the method introdued in this paper to other familiesof orthogonal polynomials having trigonometri representations, a line of researh thatis urrently being developed.
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(5)
n ) for 1 ≤ n ≤ 15.n Exat value Numerial value1 −525

128
π log (5) +

945

1024
π −17.8392 −2475

128
π log (15) +

27685925

5225472
π −147.8573 −17325

256
π log (35) +

61634724075

3373232128
π −698.4994 −25025

128
π log (70) +

5573831525

115605504
π −2457.9815 −63063

128
π log (126) +

338107973281463

3173748645888
π −7150.9096 −143325

128
π log (210) +

20887195

101376
π −18162.3697 −75075

32
π log (330) +

1408430247274269205

3944148534526464
π −41620.2018 −294525

64
π log (495) +

806559968327725

1438588584576
π −87940.7929 −546975

64
π log (715) +

29915266041851863399425

37527437207206515712
π −173958.63410 −969969

64
π log (1001) +

97664804776687286561309

96698680084732322688
π −325775.23211 −6613425

256
π log (1365) +

230209361727271224010045

212679240849405517824
π −582478.48612 −2723175

64
π log (1820) +

10188450005911283085

12635587626401792
π −1000899.53913 −4352425

64
π log (2380)− 39663465263970548089202600252605

249818194036145508144094642176
π −1661590.21214 −6774075

64
π log (3060)− 717231543067734581588054629334401175

306761704661739640893688309874688
π −2676220.46415 −5148297

32
π log (3876)− 535111116210266542852402527915814650511

82233794352493419438828330115762176
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