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1. Introduction

According to Shannon’s information theory [1], the only rigorous measure of the
uncertainty or lack of information associated to a continuous random variable X with
density function p(x), x € RP, is the entropy

H(X) = — / p()log p(x) d . 1)

In particular, when p(z) is the single-particle probability density for position of
a quantum system, H(X) is the only rigorous measure of the uncertainty in the
localization of the particle in position space. The momentum entropy H(P) can be
defined likewise from the single-particle density of momentum ~(p). In the simplest
case of a single-particle system described in position space by the wave function ¥ (z),
we have that p(z) = |¢(x)]? and y(p) = |¢(p)|?, where the wave function in momentum
space ¢(p) is the Fourier transform of ¢(x). The sharp inequality [2] 3]

H(X)+ H(P)> D(1+logm) (2)
places a nontrivial lower bound on the sum of the uncertainties in position and
momentum, so it provides a quantitative formulation of the position-momentum

uncertainty principle. Using the variational inequality that relates information entropy
and standard deviation for an arbitrary D-dimensional random variable [11 [3],

D 2m(AA)?
H(A) < —(1+log————

(=g (141025, )
the entropic uncertainty relation (2)) leads to the well-known Heisenberg uncertainty
relation

D
AXAP > o, (4)

which proves the former to be stronger than the latter.

For many important quantum systems, such as D-dimensional harmonic oscillator
and hydrogen atom, the calculation of position and momentum information entropies
involves the evaluation of integrals of the form

b
E(p) = — / (pa(2))? 0g (pu())? w(z) d, (5)

where {p,(x)} denotes a polynomial sequence (degp,(z) = n) orthogonal on [a,b] C R
with respect to the weight function w(x). During the last decade there has been an
intense activity in the study of these integrals, motivated not only by their relevance to
quantum physics but also by their close relationship to other interesting mathematical
objects, such as the LP-norms or the logarithmic potentials of the polynomials p,(x). A
survey on the state-of-the-art in this field up to year 2001 can be found in [4].

The calculation of the entropic integrals E(p,) is generally a very difficult task,
and in most cases only asymptotic results for large values of n are known [4]. In fact,
since all the zeros of p,, are simple and belong to (a,b), when n is not very small even a
numerical computation of F(p,) poses serious difficulties due to the strongly oscillatory
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behaviour of the integrand in (Bl). In this respect it is worth mentioning Ref. [5], which
presents an efficient algorithm for the numerical evaluation of E(p,) in the case when
the interval (a,b) is finite.

Closed analytical formulas for E(p,) are only known for a few particular cases of
the Gegenbauer or ultraspherical polynomials O™, We recall that these polynomials

are defined as (see, e.g., [0, Sec. 4.7])

W o
CWN () = (7” P,
where (a), = I'(a +n)/T'(a) denotes the Pochhammer symbol and pie? (x) are Jacobi
polynomials,

RS

(z) (6)

Dn
Plea) = L
n.

(7)

—n,n+a+pF+1 ’1—95)
a+1 2 /)
For A > —%, Gegenbauer polynomials form an orthogonal sequence on the interval
[—1, 1] with respect to the weight function wy(z) = (1 — 22) "2,
21" 1 T'(n + 2))
(n+ A)n![T'(N)]?

The information entropies of Gegenbauer polynomials, on which we focus in the present

1
/ CO (@)Y (z)(1 — 2?2 dz = O - (8)
-1

paper, are thus given by

1
B =~ [ (0P o (@)1~ 2% dr )
-1

The integrals £ (C’r([\)) are especially relevant in the case when A is a non-negative
integer or half-integer number, due to the relationship between the corresponding
Gegenbauer polynomials and (hyper)spherical harmonics. As a consequence, these
integrals appear in the calculation of the angular component of information entropies
in both position and momentum space for any D-dimensional (D > 2) quantum-
mechanical system with a central potential, such as the isotropic harmonic oscillator
or the hydrogen atom (radially symmetric Coulomb potential) [4, [7) 8, 0]. They also
control the radial component of the information entropy in momentum space for the
D-dimensional hydrogen atom [4] 7], §].

Instead of using the standard definition of Gegenbauer polynomials, it is often more
convenient to work with the polynomials

1
- + A)nl\?
0y = (1 W 10
which are orthonormal on [—1, 1] with respect to the probability density
- 'x+1
wy(x) = g(l — x2)’\_% : (11)

VAT(A+3)
The corresponding entropies,
1

E(CY) =~ / (O ()] 1og [C ()] @ () d (12)

-1
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are related to E(C’T(L)‘)) by the formula

. A (20, LW (n+A)n!
E(CY) = log <(n—i— A) n!) VIT(A+3) (20

which readily follows from the previous definitions by taking into account the

E(CWY) | (13)

n

orthogonality relation ().
The simplest particular cases of Gegenbauer polynomials are the Chebyshev
polynomials of the first and second kind,

CHY(z), Un(z)=CW(z). (14)

For both of these families, information entropies can be computed in closed analytical
form, the results being [7, [§]

~ 0 ifn=20,
E(T,) = (15)
log2 —1 ifn#0,
~ n
E(U,) = — . 16
(G = - (16)
In the A = 2 case, it was first proved in [I0] that
~ 3(n+1 24+ 2n—1 2 T,
E( n2)) _ log < (n + )) _ n(n +2n ) _ r/L/+2(£) : (17)
n+3 (m+1)(n+2)(n+3) /(n+1)3(n+3)3T,12(8)
where
n+2
§= (18)

Vin+1Dn+3)
and this result was later simplified to [IT]

~ 3 5.2 . 42
E n2>):_10g<3(n+1)) n® — 5n? — 29n — 27 1 (n+3) |

— 1
n+3 n+1 (19)

S+ D)(n+2)(n+3) n+2

In the same work [11], it was also obtained the following generalization of (7)) to
arbitrary integer values of the parameter, A = € N:

; S - e H6) G )
E C(l) = =S, — Ty 1— 2 J /71 1 J
( n ) Snl — T l;( gj)Pl(é'j) Cr(zl)(é-j)

where s,; and r, are known constants depending only on n and [, the auxiliary
polynomials P and H are defined from the sequence {P;} (deg P, = k) generated by
the recurrence relation

, (20)

Ppyi(z) = (20 — 2k = 3)zPy(z) — (n+ k+ 1)(n+ 2l — k — 1)(1 — 2*) Py_q(2) (21)
from the initial values P_;(z) = 0, Py(z) = 1 through the formulas
212
P(z) = Pus(z) , H(z) =Y (~1)*Pes(x)Pu_ss(x) (22)

s=0



Information entropy of Gegenbauer polynomials of integer parameter 5t

and & (j = 1,2,...,20 — 2) denote the zeros of P. The explicit expression of the
polynomial P was later found to be [12]

P(SL’) _ (_1) - (n + 21 - 1)' i ( (1 — l)u(l)u(1/2>u (1 _ $2)l_1_‘u. (23)

(n+n! —~ (1-n-0,0+n+0),u

Regretfully, (20) is not easy to use in practice. Furthermore, it is not a completely
analytical formula save for small values of [ since, as we readily see from (23)), the zeros
§; of P have to be determined numerically when [ >

As first pointed out in [13], the entropy of Chebyshev polynomials of the first and
second kind can be easily computed by direct calculation of the corresponding integrals
by using the well-known trigonometric representations
sin(n + 1)6

sin
with x = cosf. Motivated by this observation, in the present paper we aim at evaluating

T, (cos@) =cosnb , U,(cos)= : (24)

the entropic integral £ (C’,(L)‘)) for general values of the parameter \ using representations
of the same kind for the Gegenbauer polynomials.

We begin by collecting, in Section [ the trigonometric representations of
Gegenbauer polynomials that will be used later on. Our approach is developed in
Section [B] where we show that it enables us to find completely analytical expressions
for £ (C’,(f‘)), in terms of finite sums, whenever A € N. The new results obtained for the
information entropy of Gegenbauer polynomials of integer parameter are summarized
in Section @ Finally, in Section [l some concluding remarks are given and several open
problems are pointed out.

2. Trigonometric representations for Gegenbauer polynomials

The most widely known trigonometric representation of the Gegenbauer polynomials is
(see e.g. [14], p. 302])

(cosf) Z d ei(n=2m)? Z d ) cos(n —2m)8, (25)

where
d(” - ()\)m()\)n—m (26)
™ ml(n —m)!
Another representation, due to Szego [6, [15], is
Cgl)\) 00
CW (cos ) = WZauf\nsin(njLQV%— )0, A>0,A¢N, (27)
(sin @) o
where
22721 2 1-— 1
o PP (At D, o)

T Tt A+D) T T A+ 1),

1 Likewise, the general expression of E(C( )) given in [9] is not completely analytical save for small
values of n, since it is expressed in terms of the zeros of O(’\)( ).
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At first sight, this representation seems to be less useful than the previous one, because
it contains infinitely many terms. Moreover, it is supposed not to hold when A € N.
However, it is not difficult to prove that the validity of (27) extends to the case when A
is a positive integer.

Proposition 1 The Szego representation (27) holds true when X\ € N. In this case, it

reads
ey A—1
C™ (cos ) = m Z a,/”\,)l sin(n +2v + 1)6. (29)
v=0

Proof If A € N then aly = 0 when v > ), so that (27) reduces to ([29). We will prove
this equality by induction on A\. When A = 1 (29)) is obviously true since it reduces to the
second equation in (24]), the well-known trigonometric representation for the Chebyshev
polynomials of the second kind. Now, assume that the result holds for A = m — 1

(m € N). We take advantage of the following recurrence relation for the Gegenbauer
polynomials [6, Eq. (4.7.27)],

nCM(x) = 2\ +n — 1)aCY) () — 2X(1 — 2*) X (2), (30)

which in trigonometric form (x = cos @) can be restated as
1

S S— [(

2(A—1)sin“ 6

Using this formula for A\ = m and substituting (29) on the right-hand-side we arrive at

CWV(cos h) = 2\ +n—1)cos 90,([_\:11) (cosf) — (n+ 2)C£L+2 )(cos 6) .(31)

2™ m-2
C(m) COSQ — # COSQ a(m 1) Si]_’l n —I— 21/ _I_ 2 9
n ( ) (sin 9)2m—1 [ ; vn+1 ( )
m—2
n—+ 2 Z (m—1)
————— )y sin(n+2v + 3)6
n+m+1 —
C( m) m—2 m—2
— W [Z aunﬂ sm(n + 2v + 3 0+ Z O‘un+1 sm(n + 9+ 1)9
v=0 =0
m—2
2 m
n_‘_nn:l;_‘_ 1 Zaz(/n+12 sin n+ Qv + 3)‘9

(m) m—1
o (m—1) m-1) 20 +2) (o)
- (sin9)2m_1 ; (au 1,n+1 + o Qpnt1 — n+m+ 1au—1,n+2

X sin(n+2v +1)0, (32)

where in the last step we have used that ozﬁ,T 112L+1 =0 and ozl, n+1 = 0 whenever v < 0.

A straightforward calculation shows that

_ 2(n+2)
m—1 m—1 m—1 m
O‘z(/ 1n)+1 + I(/n—l-l) - mafj ln)+2 a(,n)

and (29) is thus proved to hold also for A\ =m. O

: (33)
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The fact that the sum in (27) terminates after a finite number of terms when A € N
suggests that Szegd’s representation may be useful to evaluate the entropy of Gegenbauer
polynomials of integer parameter. Accordingly, in what follows we shall assume that
A € N unless otherwise indicated.

3. Evaluation of the entropic integral

With the change of variable x = cos 6, the integral (@) takes the form
B(CW) = — / (CW (cos ) ) log (CD (cos 0) )2 sin® 6.d6 . (34)

n
0
Using Szegd’s representation (29) for one of the two Gegenbauer polynomials in
(C’y({\)(cos 0))*, B4) can be rewritten as
A1

1
M = _Z N A OV {0V
E(Cn ) - 2 Cp ;au,n <JI/,7L JV—}—l,n) ) (35)
where
Ji’)1 = / C N (cos 0) cos(n + 2v)0log (CY (cos #))*d0 . (36)
0

Now, using the standard representation (25) we have that

1 n
CWY(cos #) cos(n + 2v)6 Z d™ ) cos2(m+v)f + - 5 Z d%‘)n cos2(n —m +v)0 .(37)
m=0 m=0

Taking into account the symmetry property a) n = dg‘ m.n» Which readily follows from
the explicit expression of the coefficients dmn, the previous equation simplifies to

CWY(cos 0) cos(n + 2v)0 = Z d ) cos2(m+v)f (38)
so that "

IO = zn: dsy, /Oﬂ cos 2(m + )0 log (CM(cos 0))*d6 . (39)
Defining the integralsm i

I,S;\)n = /07r cos(2mb) log (C}L)‘)(COS 9))2d9 , (40)

from (35) and (39) we find that E(CY) is given by
A1 n
1
BCY) = =5l >, (1 = 1) - (41)
v=0 m=0

An alternative expression for the entropic integral £ (C’,(L)‘)) which turns out to be

more convenient in practice can be obtained by noticing that
n+1

A—1
E(CTSA)):_%CH ZO‘A {den v+m,n de 1n]19i\-mn}
v=0

A—1 n
1
= _5 CnA) OKV?\TL {Z <d di:: 1 n) ]lgi\-m nt dO nly;z dgz)\n]zgf\i-n—i-l n} : (42)

v=0 m=1
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According to (@6), dy = 0 when —A < m < 0 or n < m < n+ A. Let us restrict
initially to the case when A # 1, so that d(_)‘l)n = 0 and dgjﬂl,n = 0. This allows us to
write the previous formula in the more compact form

A—=1 n4+1

1
BIOY) = —2 ) S0 3 o) (4, — i) 180,
v=0 m=0
1 A—1 n+14v
_ ™ o (0 ™ B
- 2 Cp Z Z au,n <dm—u,n dm—u—l,n) [m,n . (43)

v=0 m=v

Using again that ds,;\)n = 0 when —\A < m < 0 as well as when n < m < n+ A\, we
can extend the lower and upper limits in the inner summation to 1 and n + A — 1,
respectively, provided that the terms m = 0 and m = n+ A are treated separately. Thus
we find that

1 n+A—1
BIot) = 3 (a2 ot S ) m
m=1
where
A—1
67(73,)71 = Oél(/?\n <d£r)L\)—u,n - dir?—u—l,n) : (45)
v=0

It can be seen that (44) also holds when A = 1 by noting that in this case its right-hand
side coincides with that of (42).

In order to apply (@), we need to evaluate the integrals LS{\% with 0 <m < n+ A\
This goal can be achieved by means of complex integration techniques, which enable us
to obtain the following result.

Theorem 1 For \ € N,
An
I = 27 log <(n)' ) (46)

and, when m > 1,

A—1

22 —1 dm
IV = ( )T + T (logZa,ﬂfQL(z%HH% _ ZzA—2V—2)> (47)
v=0

i m (2m)! dz2m

z=0

Proof Taking into account that C’,(l)‘)(—x) = (—1)"07(1)‘) (x), ([@Q) can be written as

m,

1 2m
N = 5/ cos(2mb) log |CM (cos 0) > dd
0
2m
:/ cos(2mé) log |CV (cos 0) | df
0

2
:/ cos(2mh) log [e™CM (cos §)| d (48)
0
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where in the last step the factor ™ has been introduced for later convenience. Using
the Szegd representation (29) for the Gegenbauer polynomial C’,({\)(cos 6), the previous
equation reads

(A) jing A1

o © Z afj‘% sin(n +2v + 1)6

—_ do . 49
sin?~1 g gt (49)

2
I,S;\’)nz/ cos(2md) log
0

We will compute the integral

27 N ing A1
A Cn "€ Z A) o
',Z.T(n,)n = /0 cos(?m@) log (m Oéy’n Sln(’rl, + 2u + 1)9) de s (50)

v=0

whose real part equals Ir(,f: )n Introducing the change of variable z = exp(if) we arrive at

1 Z4m 41
G 2 -
Iy = af, ., logq(2)dz (51)
where
" z+ Z_l B ZV al/n( 2n+22+2v 22)\—211—2)
q(z) =z Cr(z)\) ( 9 ) = C;A)QQ)\ 2( )/\ ° (1= 221 : (52)

The singularities of the integrand are z = 0, which is a pole of order 2m + 1, and all
the zeros of q(z), which are branch points. If {z,;}}_, denote the zeros of e (x),
which are known to be simple, real and located in (—1,1), then the zeros {z,;}", of
the function ¢(z) are

Znjengn = exp(iarccos @, ;) = v, +iy/1 -2, j=1,2,...,n. (53)

This means that the {zn]} , are all located on the unit circle, which can also be seen
from the fact that z = exp(iarccosx) maps (—1,1) onto the unit circle. Therefore, the
integrand of (5I]) has 2n branch points located on the contour of integration. To avoid
this difficulty we consider the same integral along the slightly different contour I' (see
Figure [I), which is also closed. Notice that the logarithmic branches can be chosen to
go from the branch points to the exterior of the unit disk, so that I' does not cross them.
Since the only singularity inside I' is z = 0 we now have

Z4m 41 : ZAm 4]
ﬁ‘Tﬂ IOgQ( )dZ = 2miRes (W IOgQ(Z),Z = 0) . (54)

The integral along I' can be decomposed as

Zm 41 2n Zm 41 Zm 41
é poT log q(2)dz = Z /e e logq(z)dz + / e logq(z)dz |, (55)

7j=1 J i

where €; denotes the arc of circumference of radius € that surrounds the branch point
zp,; and «y; denotes the arc on the unit circle that connects €; and €;41 (72, connects €,
and €;). Parameterizing z = z,, ; + €l we find that

Z4m+1 (an+€eie)4m_l_1 0 0
/E s o8 a(z)dz = / (ons + i)t log (zn,; + e€”)iee”dd — 0 (56)

J J
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Zr_\,_i__lﬂ Im

Figure 1. Integration contour used to avoid the branch points on the unit circle.

where we have used that xlogz — 0 as  — 0. Thus, taking the limit ¢ — 0 in (B3] we
conclude that

2™ 1 2™ 1
f‘l_l W lOg q(z)dz = fé‘ W log q(z)dz . (57)

Taking into account that the residue of a meromorphic function h(z) in a pole zy of
order 2m + 1 is given by

1 d2m 2m+1
Res(h(z),z = 2) = @m)l dz2m ((z = 20)*" " h(z)) L (58)
use of (B4)) and (7)) into (BI)) leads to
d2m
7o = T m oy 59
m,n (2m)‘d2’2m [(Z + ) OgQ(Z)] o ( )
In the case m = 0, the previous equation reduces to
IO(’/:Z = 2rmlogq(0) = 27 log (cg;\)QZ)‘_z(—l))‘“aE\’\_)Ln) , (60)
so that
A — A ()\)n
) = 2rlog | (M2 204;21,”) = 2 log <7) : (61)

which proves the first part of the theorem@. On the other hand, if m > 1 then we
readily see from (B9) that If(ﬁ\)n e R, so [,(3)” = I,(,;\)n Furthermore, in this case the factor
(2*™ + 1) in the right-hand side of (59) can be omitted, since at z = 0 its value equals
unity while all its derivatives do vanish. We thus find that

O — T d*m [10g (Zj;(l] Oé,(,?‘,)L(z2"+2>\+2V _ 22>‘_2V_2)>]

mn (2m)! dz>m (1 —22)2A-1

, (62)

2=0

§ This part can also be proved using the mean value theorem for harmonic functions (cf. [7, Sec. VI]).
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d2nL © z2k
- dz2nz <__j£:-7g_)

and (47) follows on noting that

2m
Toom (log(l — 22))

when m #0. O

o (63)

z=0 —

z=0

The fact that the Szegd representation (29) has a finite number of terms plays
an essential role in the proof of Theorem [Il Although we are mainly interested in
evaluating the integrals [,(,i ). when \ € N, it is worth pointing out that these integrals
can be calculated in a similar way for all possible values of A\, provided that we use the
standard trigonometric representation (23] instead of the Szego representation for the
Gegenbauer polynomial inside the logarithm. This generalization is contained in the

next theorem.

Theorem 2 For A € R, A > —%,

Iéj\rz = 2w log <(i\z)'n) (64)

and, when m > 1,

- T Z dW ,2n—2j
mn = (am)l gz |18 2 hin®
z=0

Proof We proceed as in the proof of Theorem [, but now we use the complex form of the

(65)

standard trigonometric representation (25) for the Gegenbauer polynomial o (cosf)

in (48). Thus we arrive at
]’A):: T d2m

™ (2m)! dz?m

from which (64)) and (63]) readily follow. O

In order to carry out the sums in ([44), the next step is to obtain closed formulas

for the derivatives L(,{\, ) with 1 < m < n -+ A Despite its greater generality, Theorem

: (66)

(2" + 1) log (Z dg-:\gz%_zj)]

J=0

z=0

turns out to be less useful than Theorem [Il because (A7) expresses the integrals in
terms of the logarithm of a polynomial that has 2\ terms, while in (65) they are given in
terms of the logarithm of a polynomial with n + 1 terms. As we shall see, the difficulty
in obtaining a closed formula for the derivatives of such functions increases with the
number of terms in the polynomial. Therefore, if we want an expression of L(,{\, 21 for a
fixed value of A and any n € N Theorem [Ilis more helpful, particularly for small values
of \.
In the case A = 1 we readily notice from (A7) that, if 1 <m <n+ 1, then
s

2m
4+ log(l 2n+2)
(2m)! dz?m ( ) 0

T

m

T T d2m < ,@nt2)k
:E+@ﬁ@M<" k)

k=1 z=0

o <% _ 5m,n+1) | (67)

J SO
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When A > 2, the polynomial inside the logarithm has more terms and the above trick
does not work. However, we can obtain closed formulas for the derivatives in (A7) by
means of Faa di Bruno’s formula for the derivatives of the composition of two functions,
which states that (see e.g. [16])

TI9E) _ 'zf DML k (68)

k17k27 wkm j=1

where the inner summation is extended over all partitions satisfying
k1+k2+—|—]€m:]€, k1+2k2++mkm:m (69)

This formula enables us to find explicit expressions for 1,5321 with A > 2, as stated in the
following two propositions.

Proposition 2 In the case A =2, when 1 <m <n+2

1,53),1:% {3— <Zi’) }+w2—i’5mm+2. (70)
Proof In this case, application of Faa di Bruno’s formula (68]) to the derivatives in (47)
give
dzm L 2m k
e <log;a§%(zzn+4+2u _ Zz—zu)> 0 = (2m)! 2 ﬂ(log 2) o

i Zi—o al(/?%(z2n+4+2u _ Z2—21/))

& I
R o T

ki,ka,....k2m j=1
On the one hand, for k£ > 1,

d* —1)FH(E —1)!
ﬁ(log z) = =Y z’(f ) ) (72)
so that
d* (k—1)!
dzk (10g Z) Z:_agz) = —m . (73)

On the other hand, all the derivatives of the polynomial in ([7T]) vanish at z = 0 except
when j =2 and j = 2n + 4, so we must set k; = 0 if j # 2 and j # 2n + 4. Conditions
(69) then read

]{52 + k2n+4 =k s Qk‘g + (271 + 4)/{52n+4 =2m. (74)

Since ko and ko,.4 are non-negative integers, these equations only admit the solution
kopia = 0,ko = k = m when m < n + 1, while in the case m = n + 2 we have to add
the solution ks, 14 = k = 1, ko = 0 to the previous one. Therefore, ({T1]) simplifies to

J2m Lo 1 a@\" o
2 2n+4+2v _ _2—-2v o 1| = n n
T | log Z% a? (2 227 @2m)! | — 0 + 5 Sz |+ (75)

1n
and the result follows using the second equation in (28). O

z=0

|| Notice that attending to (69) & = 0 corresponds to m = 0, so we can start the sum in & from 1.
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Proposition 3 Forany A€ N, A >3, when 1 <m <n+ X
;@ -Dr _ afy

IV = -7 1)
m, B\ m,n+A
m Oég\ )ln
A mo o [m/3] [m/4 m/(A—1 A k
aﬁ)gn Z[ /3] [m/4]  [m/(A-1)] B (ag\)zn)Q
) ey
a)\ 2,0/ k=1ke=0 ks=0  ka(r_1)=0 A—1n¥N—3n
k—1)!

X
(2 —m 4 300 rhaea)! (m — k= 0070 (s + 1kasra)!
- A A o\ k2
y H 1 adaa,,) (76)
i (h2g)! (a3, )7 ’

where in the upper limits of the summations over ke, ks, ..., kaon—1) the square brackets
denote integer part of the expression within.

In particular, in the case A =3, when 1 < m <n+3
(n+4)(n+5)

19, = 2[5 2R(7(n)™) | - T D) (77)
where
Fn) = (n+1)(n+5)+iy/3(n+1)(n+5) ' (78)

(n+1)(n+2)

Proof In the general case (A € N, A > 3), application of Faa di Bruno’s formula (68))
to the derivatives in (A7) and use of (72)) lead to

2m A—1
e <logzal(j;)z(z2n+2,\+2u _ Z2)\—2V—2)>
v=0

z2=0
[d (Z ( ) 2n+2)\+2u)
i Qyn 2

I (k= 1) » j
—(277%)!2% > H GOk 2_}

k
1 () ln) E1ka,....kam j=1
I
z2=0

In the first term of the right-hand side all derivatives vanish at z = 0 except when
J = 2n+ 2), so that k; = 0 whenever j # 2n + 2\ and conditions (69) simplify to

k2n+2)\ =k s (2n + 2)\>k2n+2)\ = 2m, (80)

2m (]{3—1)' 2m |:c?l_ _Zi‘ (1]0“(/7)1 2A—2v— 2)

Cmiy Y 10 T

Nk
k=1 (aA—l,n> K1,ka,... kom j=1

(79)

which only admit the solution kg, 10y = k =1 when m = n + A. In the second term the
derivatives that do not vanish are those with j even, 2 < j < 2\ — 2, so that conditions
(69) now read

A—1

A—1
Y ko =k, Y sky=m. (81)
r=1

s=1
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(>\)

Equation (IEI) thus reduces to
ag
(277, + 2)\) 5m7n+)\
2=0 O./)\ 1n

Cf:n (lOg E O{ 2n+2)\+2l/ _ 22)\—21/—2))
2m k.
(k—1)! —a n) &
—em)Y S > H * - J . (82)

k
1 () 1n) ka,ka,....kar—1) 5=1

Finally, we can further simplify the previous expression to obtain (76) by using
conditions (8I]) to write ko and k4 in terms of the remaining indices, i.e.

k‘g :k6+2k‘8+---+()\—3)k2(,\_1)+2k:—m,

k‘4 = —2]{36—3]{58—"'— ()\—2)/{52()\_1) +m—k (83)
Notice that in (76 conditions (8II) are guaranteed to hold because for the values of the
indices that do not fulfill them we get the inverse of the factorial of a negative integer,
which can be considered to be zero. We have changed the upper limit in the sum over

k from 2m to m because when m + 1 < k < 2m conditions (8Tl are not fulfilled.
In the case \ = 3, (IEI) reduces to

(3) m (3)y2 \¥ (3)
5 Qg g, k—1)! aq Qo.n

LY, = = (()3) Z ( | ) - ((3)1’ 23) B W% Omonts (84)
m A p ) k=1 (2k —m)l(m — k)! Qg gy Qg

so we need to evaluate a sum of the form

S (k—1)! k_m_l(#m]_ mml i\ (@)
Z(%—m)!(m—k)!x _Zj( —2j)! = ( )T—j’ (85)

k=1 j=0 7=0

Using the summation formula |17, Eq. (5.75)]
’”Z‘l m—j\ m _ (1+VIFEN" (1= VITEY (56)
— ) = - -
. j m—3 2 2
7=0
and the second equation in (28]), we find that
D 4 D
19 = T T (gt () - DS

m m (n+1)(n+2

; Omn+3 (87)

which is equivalent to (7). O

4. Results for the information entropy

Equations (6), (67), (70) and (T7) enable us to derive closed analytical formulas for
E(C}({\)) when A\ = 1,2,3. For A = 1, after substitution of the corresponding values of
the constants dih, i and aly (see (26) and (28)), (@4) reduces to
L /a 1
BCY) = =5 (1 = 1) (38)
which using (46) and (67) immediately leads to

E(CY) = B(U,) = g ( L 1) . (89)

n+1
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When A\ = 2, (44) takes the form

1 n+1
E(C®) = -3 <<n + 1)+ 350 — (n+ 1210, — 4 mfg}n> , (90)
m=1
so using (40) and (70) together with the well-known formula for the sum of a geometric
series,
z(l—a")
91
Z 2™ = —o—, (91)
we find that

n® — 5n? — 29n — 27
n+2
(n+ 3)"+3 ) ' (92)
(n+2)(n + 1)+t
Recalling (I3), (89) and (@2) are readily shown to be equivalent to (I6) and (I9),
respectively.
In the case A = 3, ([@4) can be rewritten as

E(CY) = —g <2(n + 1)(n + 3)log(n+ 1) +

1
E(CY) = ~ 155 |+ D0+ 2)(n+4)(n + 5)15),
n+2
—(n+ 12 (n+ 2210, =123 mn® + 6n+7 - 2m*) 1P, | . (93)
m=1

Substituting (46) and (7)) into the above expression, we encounter again the geometric
sum, as well as a sum of the form Y m?s™. Using (@I) and the summation formula
18, Eq. (5.14. 9)]
r(l1+x) — 2" (n+ 1) — (2n® + 2n — 1)z + n?2?]
Z m’a" ,
(1—x)?

after a tedious but straightforward calculation we arrive at the following closed analytical

(94)

formula for (C,(f’)), which is a new result:

+1)(n+2
B(GY) = _£8{2(n+1)(n+2)(n+4)(n—|—5)log((n )in >)
+ n® — 16n* — 269n® — 1200n? — 2102n — 1250
n+3

2(n +5)? (n+1)(n+5)+iy/3(n+1)(n+5) i
(n+2)(n+3) (n+1)(n+2)

x <2n2—|—13n—|—14—i(n+1)(n+6)\/(n+1)3(n+5) )” (95)

When A > 4, combination of (44) and (76) provide an expression for the entropy
E(CY) in terms of finite sums. For the sake of brevity, in (@) it is convenient to absorb

the term corresponding to I™. into the sum over m by setting

n+\,n
ﬁfj—?A,n = _ag\)\—)l,ndggz (96)
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instead of using ([@3) with m = n + A, which would give for 8% i, the value
ag\)‘ 1ndg‘n + é,zdflﬂn We thus have that

n+A

E(CW) = _gcy{z%nd log (%”) alNd) + (2 Zﬂ

n+X m [m/3] [m/4] m/(A—1)] m A k
A m /3 m/1) %)3” (Oég)zn)z
D IPID D DR DR ——
EPNEY
m=1 k=1 kﬁ Oks 0 k2(A 1)=0 )\ 2n )\—1,TL )\—3,11

y (k—1)!
(2 —m + Y0 rhop ) (m = k= Y070 (s + 1)kaara)!
- A A o\ k2
. H 1ol a(a,) -
j=3 (kz;)! (ag\’\)?) 2!

Unlike (20)), ([@7) is completely analytical for all A € N, which makes it suitable for
symbolic computation. For instance, a Maple implementation of the formula enabled us
to obtain the closed analytical expressions for E(C’ ) and E(C’ )), with 1 < n <15,
that are displayed in Tables [I] and 2 respectively. In these tables we also provide

numerical values of the entropies obtained from the exact ones, in order that the
interested reader can compare them with those given by numerical algorithms such
as that in [5].

5. Summary and conclusions

The problem of obtaining closed analytical formulas for the entropy of orthogonal
polynomials is known to be very difficult, as displayed by the fact that in previous work
on the subject formulas of this kind were only found for the Gegenbauer polynomials of
parameter A = 0, 1, 2. Here we have presented a new approach to the calculation of the
entropy of Gegenbauer polynomials, based on the use of trigonometric representations
for these polynomials, which has allowed us to explicitly evaluate the entropic integrals
by means of complex analysis techniques. Using this method we have been able to
derive in a unified way closed formulas of E(C’ ) for A = 1,2, 3, the last one being new.
Furthermore, when A > 4, A € N, we have obtained completely analytical expressions
of the entropy in terms of finite sums, which easily provide exact values for the entropy
using symbolic computation. The growing complexity in the formulas of E(C’,(f‘)) as A
increases serves as a clear illustration of the difficulties posed by the calculation of the
entropy of orthogonal polynomials.

When the parameter A is not a positive integer, the Szegd representation (27) of
the Gegenbauer polynomial CY has infinitely many terms, so the same happens for the
expressions (B0 and ([4I) of the entropic integral £ (CtM). Tt remains open the problem
of studying the convergence behaviour of these series, as well as that of summing up them
analytically. It would be of particular interest to obtain exact analytical expressions
for the entropy of Gegenbauer polynomials of half-integer parameter since, as already



Information

entropy of Gegenbauer polynomials of integer parameter

Table 1. Exact and numerical values of the entropy E(Cr(;l)) for 1 <n <15.

Exact value

Numerical value

10

11

12

13

15

14 | —

119
7 log( )+24O7T

105 580771

_ 2 oe(1 20U
g 7 loa(10) + 3500507

75 95
—?wlog(20) t 57
4883222845

632481024 "

17355685

08(56) + T206336 "

3003

6449434961
s log (84) +

1058158080

1365

1396715852287
T log (120) —

139218750000 "

24757176334716125

75075
193018566815808

64

7 log (165) —

1200329915

—19257 log (220) — —rorr

12155

325291539600149215255
— 7 log (286) —

1172732412725203616

31458443588344487293819
60436675052957701680

—4641 7 log (364) —

440895 25537984326378849719971131

28270687046875000000000

7 log (455) —

1779685691911133495

—9975 7 log (560) —
m log (560) — — 500 100806542848

56525

36234350694889865223938313068785
T log (680) —

15613637127259094259005915136

130243656594168370141034405

19635 7 log (816) —
™ log (816) — - R 6591093021558781

—13.685

—88.862

—338.714

—983.613

—2404.173

—5206.005

—10296.556

—18974.368

—33031.075

—54866.421

—87616.538

—135295.739

—202952.031

—296836.555

—424587.139

17

mentioned in Sec. [Il they are needed together with those of the integer case in order to

evaluate the information entropy of spherical and hyperspherical harmonics. Finally, it

would also be desirable to extend the method introduced in this paper to other families

of orthogonal polynomials having trigonometric representations, a line of research that

is currently being developed.
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Table 2. Exact and numerical values of the entropy E(Cr(f)) for 1 <n <15.

18

n Exact value | Numerical value
1 —%w log (5) + %ﬁ ~17.839
2 —% 7 log (15) + 7257262855497225 ™ —147.857
3 — 1;?25 m log (35) + 763136;34273224102785 T —698.499
4 - 2?225 7 log (70) + 75151753680351550245 ™ —2457.981
; B PO i L R e
6 - 141323825 7 log (210) + 72_?32;;25 ™ —18162.369
. ~ %  log (330) + 14309844431042845732475422664962405 41620901
; R oy OO
0 - 542275  log (715) + 29397155227(1630742 108752108665313597914225 173058.634
10 N 962269 ™ log (1001) + 9796666498806487070686487732283625266183809 320T1.252
11 N %3225  log (1365) + 23201220697396214702874297410252; 10718020445 —o82478.486
12 - % 7 log (1820) + 101128683455508070652961 4102187390285 —~1000899.539
N
H - %  log (3060) - 71370263716514730046676713;13598614508889035648682390393;;1406181875 2076220464
R
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