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Abstract

The main goal of the present paper is to continue the study of the g-polynomials
on non-uniform lattices by using the approach introduced by Nikiforov and Uvarov
in 1983. We consider the ¢-polynomials on the non-uniform exponential lattice
z(s) = ¢1¢° + ¢3 and study some of their properties (differentiation formulas, struc-
ture relations, representation in terms of hypergeometric and basic hypergeometric
functions, etc). Special emphasis is given to a g-analogue of the Charlier orthogonal
polynomials. For these polynomials (Charlier) we compute the main data, i.e., the
coefficients of the three-term recurrence relation, structure relation, the square of

the norm, etc, in the exponential lattices z(s) = ¢° and z(s) = q;:11, respectively.
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1 Introduction.

In the last years the study of the discrete analogues of the classical special functions
and, in particular, the orthogonal polynomials, has received an increasing interest (for
a review see [20, 25, 26, 34]). Special emphasis was given to the g-analogues of the
orthogonal polynomials or g-polynomials, which are closely related with different top-
ics in other fields of actual science: Mathematics (e.g., continued fractions, eulerian
series, theta functions, elliptic functions,...; see for instance [5, 24]) and Physics (e.g.,
g-Schrodinger equation and ¢-harmonic oscillators [8, 9, 10, 15, 16, 18, 30]). Moreover,
the connection between the representation theory of quantum algebras (Clebsch-Gordan
coefficients, 3j and 6j symbols) and the g-orthogonal polynomials is well known, (see
[4, 27, 28, 31, 39, 41] among others.)

There exist several approaches to the study of these objects. The more standard
one is based on the fact that these ¢-polynomials are special cases of the basic hyper-
geometric series [25] (see also [11, 26, 28]). Other approaches are the group-theoretical
approach [23, 41], the algebraic approach [33], and the difference-equation in non-
uniform lattices approach [12, 13, 14, 17, 22, 34, 35, 36, 37, 40]. The distribution of
zeros of these polynomials has been considered in [2] and [21].

In most of the papers related to the last approach (Nikiforov et al.) the authors
didn’t study concrete families (up to the papers [19, 39]), although they are very useful
for applications. In the present paper we will study some g-polynomials on the ex-
ponential lattice z(s) = ¢°, connecting the results of different authors [19] (Meixner
and Kravchuk), [39] (Hahn), and the general method described in [34, 37]. In par-
ticular, we will derive from the general formulas, obtained in [37], the hypergeometric
representation of these polynomials which has not been considered in [19] and [39]. Par-
ticular emphasis will be given to a g-analogue of the Charlier polynomials, for which
we will find all the characteristic formulas, including norm, three-term recurrence rela-
tion, structure relations, differentiation formulas, representation in terms of the basic
hypergeometric series and so on.

It is important to remark that the above lattice z(s) = ¢° is a “bad” lattice in
the sense that we can not recover the linear lattice z(s) = s by taking limits in it.
qS

In fact, a more convenient lattice is the lattice x(s) = T The election of such a

lattice is determined by the fact that in the limit (when ¢ tends to one) we recover
the classical linear lattice, and then the new polynomials seem to be “good” analogues
of the classical ones. In particular all the characteristics of the resulting polynomials
will tend to the classical ones in the limit ¢ — 1. To show this we will study in details
=

the g—analogues of the Charlier polynomials in both lattices z(s) = ¢° and z(s) = T

—_

The structure of the paper is as follows. In Section 2 we summarize some of the
properties of the g-polynomials on the non-uniform lattices [34, 37] with special em-
phasis in the exponential lattice. In section 3 we derive some general relations for the
g-polynomials on the exponential lattice. In particular, we will obtain the so-called dif-
ferentiation formulas, the structure relations, and an expression involving the difference
derivatives of the ¢g-polynomials on the exponential lattice z(s) = ¢1¢® + ¢3 with the
polynomial itself. All these relations are very useful for applications (see e.g. [3, 29])
and their knowledge allows to extend the results of [6, 38] for the orthogonal polyno-
mials on the uniform lattice to the polynomials on the exponential one. In Section 4



we recover, from the general formulas by some limit processes, the g-polynomials con-
sidered in [19, 39] by using the approach by Nikiforov and Uvarov [34, 37]. Finally, in
Section 5 we study in detail a g-analogue of the Charlier polynomials in the two afore-
said exponential lattices and find explicit expressions for some of their characteristics.

2 General properties of the ¢—polynomials on the expo-
nential lattice.

2.1 The hypergeometric-type difference equation.

Let us start with the study of some general properties of orthogonal polynomials of
a discrete variable on non-uniform lattices. Let

. A wyls) | T(z(s)) [Dyls) | vy(s) _
U(x(s))Az(s —3) va(s) L Az(s) " vz(s) towle) =0, (2.1)

V(s) = [(s) = f(s = 1), Af(s) = f(s +1) = f(s),

be the second order difference equation of hypergeometric type for some lattice func-
tion z(s), where 7 f(s) and Af(s), denote the backward and forward finite difference
derivatives, respectively. Here 6(z) and 7(x) are polynomials in z(s) of degree at most
2 and 1, respectively, and X is a constant. The equation (2.1) can be obtained from the
classical differential hypergeometric equation

5(z)y" () + 7(x)y () + Ay(s) =0,

via the discretization of the first and second derivatives 3’ and y” in an appropriate
way [34, 36]. Following [34, 37] we will rewrite (2.1) in the equivalent form

) A wy(s)
Az(s — §) vz(s)

o(s) = o(x(s)) — 37(x(s)) Aw(s — 5), 7(s) = 7(x(s)).

It is known [12, 34, 37] that the above difference equations have polynomial solutions
of hypergeometric type iff z(s) is a function of the form

o(s + Ay(s) =0,

(2.2)

z(s) = c1(q)q” + c2(q)q° + e3(q) = c1(@)lg® + ¢ *H] + e3(q), (2.3)

where ¢y, c9, c3 and ¢* = g—; are constants which, in general, depend on ¢. A simple

calculation shows that the exponential lattice belongs to this class. In fact we have

. _ . _ :ts
lim a(s) = T _a(s) = 1 + s (2.4)

where p takes the appropriate sign according to ¢ > 1 or ¢ < 1.

The k-order difference derivative of a solution y(s) of (2.1) , defined by

A A A
yk(s)g = Azp_1(8) Axp_o(s) ~ Axz(s) lv(s)]

= AW y(s)],

where
Tm(s) =x(s+2), (2.5)



also satisfy a difference equation of hypergeometric type

A VYk(8)q Ayi(s)g B
R =P Lonit | MO Byt =0 @0

Azp(s
where [34, page 62, Eq. (3.1.29)]

o(s)

o(s+k)—o(s)+7(s+k) Aa(s+k— 1)

= 2.
Tk(s) AfIf]gfl(S) ) ( 7)
and
AT (8)
= 2
= Aot Z Axm (s) (2.8)
Usually, the equations (2.2) and (2.6) are written in the compact form
A vy(s) _
Rt [ L |+ Metewts) =0 (2:9)
and . (s)
VYk(s }
—F  |o(s S + S s) =0, 2.10
Borte = [P T+ mepnohueto (2.10)
where p(s) and p(s) are the solution of the Pearson-type difference equations [34]
A A
Ar(s—1) [o(s)p(s)] = T(s)p(s), Ara(s—1) [o(s)pr(s)] = T(s)pr(s), (2.11)
respectively, and pi(s) is given by
k
pr(s) = p(s + k) H o(s+1). (2.12)
i=1

2.2 The Rodrigues-type formula.

It is well known [34, 37], that the polynomial solutions of equation (2.2), denoted by
P,(s)g = Pu(z(s))q, are determined, up to a normalizing factor B, by the difference
analog of the Rodrigues formula [34, page 66, Eq. (3.2.19)]

By
p(s)

vV __V v
Vai(s) Vaa(s) T VEn(s)

where the function p,(s) is given in (2.12). These polynomial solutions correspond
to some values of )\, —the eigenvalues of equation (2.2)- and can be computed by
substituting the polynomial P,(s), in (2.1) and equating the coefficients of the greatest
power z"(s) (see [34, page 104 ] and [37]). Then

P(s)y = v ™ [pn(s)], v™ = , (2.13)

A= —lnlg {3 (¢ 1+ q ) F 4 - 1,7 ) (2.14)
where (see Eq. (2.2))
5(s) = Gra(s)? + 5 (0)z(s) + 5(0), and 7(s) = 7'z(s) + 7(0).
Here and throughout the paper [n], denotes the so called g-numbers

- q

N
N

T g% sinh(hn
q; 1 (hn) 3 and kg =gq
2 2



Also for the difference derivatives yj, (s), of the polynomial solution P, (s), a Rodrigues-
type formula is valid

An BTL n
yin(s)g = APP, (5)g = ZH G [pu (9)) (2.15)
Pi(8)
where the operator v,(cn) is defined by
n Vv Vv \Y
Vi f(s) = (),

VZr+1(8) Vg42(s)  Vn(s)

B, = Ai‘":f = the eigenvalues )\, are given by (2.14) and

Ank =

[n]q! k-1 q%(n—l—m—l) _i_q—%(n—&-m—l) g B 6_”
=k i 1L 5 T+ n+m-—1] 5 (- (2.16)

The Rodriges-type formula (2.13) can be written also in the form [13, 34]

n times
By [ 6 1" . ot _" 8 8§56
Pa(s)e = p(s) Lﬁ(s)] lon(s = )}, Lﬁ(s)] ~ 0x(s) 0x(s) dz(s)’ (2.17)

where §f(s) = f(s+ 1) = f(s+ 1) — f(s—1). Analogously,

n—k
BWIP,(5)y = S [ e )] lonls — 3+ ). (2.18)

Sometimes, for the exponential lattice, it is better to rewrite the (2.13) in the
equivalent form [3]

n-times
_n(n+1) n n Ia - ~
Pu()g =B [ Y ) [ =Y Y )
p(s) v(s) v(s) v(s)  wv(s)

To obtain the above formula the linearity of the operator v(”) as well as the identity
VzE(s) = qg v z(s), have been used.
2.3 Integral representation and explicit formula.

For the polynomial solutions P,(s), of the difference equation (2.2) the following
integral representation holds [12]

_ [n]¢!By pn(2)75,(2)
Rdﬁq—p@)%jlw - $($]M4dz (2.20)
where -
[21(2) — 2k ()]™ = [[ low(2) — (s — §)], m=0,1,2..., (2.21)
§=0

are the so-called generalized powers. In this paper we suppose that the function p,(z) is
analytic on and inside the closed contour C' of the complex plane containing the points
z=8,8—1,..., s —n. From the above expression we can obtain an explicit formula
for the polynomials P,(s),. In fact, if we integrate (2.20) by calculating the residues



(the only singularities inside the contour C are simple poles located at z = s — 1, | =
0,1,---,n), we find the following expression for the polynomials in the exponential
lattice z(s) = c1¢° + c3,

Bpg 0D D (_yminn] g 500D b (s — i+ m)

P,(s), = , 2.22
"= T A ellin— il o) (222)
or, using the Pearson-type equation (2.11), rewritten in its equivalent form
pls+1) _oa(s)+7(s) Au(s — %)’ (2.23)
p(s) o(s+1)
—ns+2(n+1) n 1, —2Z(n=1)(_1\m+n
ct(g—1)" m—0 [m]g![n — m]g!
(2.24)
n—m-—1 m—1
X H [o(s —1)] H o(s+1)+7(s+1) Ax(s+1—-1)],
1=0 1=0

~1
where it is assumed that H f(I) = 1. This is an explicit formula for the polynomials
=0
P,(s)q in terms on the polynomials o and 7 of the difference equation (2.2).

2.4 Hypergeometric representation.

Let us consider the most general solution of (2.1) in the lattice z(s) = ¢1¢® + ¢3. In
[37] has been proved that the most general case in the exponential lattice is the one
when

o(s) = A(qs—sl —1)(g° %> — 1),
- (2.25)
o(s) +7(s) Aa(s —1) = A(¢* 5 —1)(¢* % —1).
In this case, the eigenvalues of the corresponding difference equation is given by

Ap = — q—%(51+32+§1+§2)[n]q[31 + 89 —81 —Sy+n— l]qa (2'26)

S| b

and the polynomial solutions of (2.1) can be represented as g-hypergeometric functions
[37]

A " Nl g, n—
Pr(s)g = <%> Bag~ 201527550 (51 — 51|q)(s1 — Balq)n
1

(2.27)

w5y ( —n,S81 + Sg — §1_— S92 +fL — 1,81 —s ;q’q%(s—m)) _

S1 — 81,81 — 82
—A " n ne
- ( ﬁq) Baq 50025 (51— 51]q) (52 — 51]q)m X

c1

(2.28)

w5F —n,s1+32—§1—§2+n—1,3—§1_qq%(s,@)
81— 81,82 — 81 Y ’



or, in terms of the basic hypergeometric series [37]

A " amey . L
Py(s)g= Bn (ﬁ) B (/A7) M (A ) PP
cl q2 — q 2
(2.29)
qfn qs1+527§17§2+n71 qslfs .
X3S02 ( ’ q51—§1 q81—§2 ’ 7 4, qs satl ) =
b)
= n

- <_ —1A 1) g ) (g5 ), x

clg® —q72) (2.30)

q
Here, the ¢-hypergeometric function is defined by

e qfn’ q81+827§17§2+n71’ qsfgl
X(q*27°5 q)n 309 £ g 1q,q] -
b

k

e . —r+1
F ai,az, ..., ar g, ): (a1lg)r (a2]q)k (ar|lg)e = —k tek-1)]" +7
( buobar by 1) = 2 Bl ala)s - Gyla)e Tk a0
(2.31)
where (a|q)i is a g-analogue of the Pochhammer symbol
k-1 =
Ly(a+k)

a = a+m], = "L—2, 2.32
alo)s = T fa+mly =~ 232

and T'y(z) is the g-analogue of the gamma function introduced in [34, 37]. Notice that

the above definition for the g-hypergeometric function is different from the one intro-
—r+1
duced in [37] by a factor (ﬁ;kq%k(kfl))p ' , which should be included in order to get

“go0od” limit transitions. Notice also that it coincides with the Nikiforov-Uvarov one
when r =p + 1.

The g¢-basic hypergeometric series is defined by [25]

a1, Az, ..., Gy o (a39)k - (ar;q) 2 I
r a2 )= —1)%q2 ., (2.33
<Pp< bi by, by ) ,;) (br; D -+ (bp; Q)i (a3 )k [( \'a ] (2.33)

where
k-1

(@) = [] (1 —ag™), (2.34)

m=0

These two functions are related to each other by formula [37]

qalaqaZ,..-,qap+1 1,02, ..., pt1
1 q, 2| =pF ;q,t
”“(p”( ¢ g, g D PP babasenby T
;( P+1a,_zp ,,,_1) . ~ . .
where t) = z¢2\4wi=1 “"Zi=1""") The Gamma function I';(s), is closed related with
the classical g—Gamma function I'y(s) [25] defined by

3

t=t,

. o0

H (1 _ qk+1)
1-gt e 0<g<1
Ty(s) = [T =g , (2.35)
k=0
\ q(s_l);s_m qfl(s)a qg>1



by the expression [34]
- (3711(572)

f‘q(s) =4q

Notice that T'y(s + 1) = [s],T4(s), whereas T'y(s + 1) =

Ly(s). (2.36)
qs -1 s—1
q-— 1 FQ(S) =q:?2

The above representations (2.27)-(2.30) also follow from the Eq. (2.24) substituting
(2.25) and doing some operations similar to those in [37].

2.5 The orthogonality property and three-term recurrence relation.
2.5.1 The orthogonality relation

In [22, 34, 37] has been shown that the polynomial solutions P, (z(s))q = Pn(s)4 of
the difference equation (2.2) satisfy an orthogonality property of the form

b—1
S Pala(i))o P ((s))ap(s0) D a(si = 1) = bumad?, i1 =si+1,  (237)

si=a

where p(z) is a solution of the Pearson-type equation (2.11) or (2.23), and it is a
non-negative function (weight function), i.e.,

p(si) Az(si—1) >0 (a<s;<b-1),

2
supported on a countable subset of the real line [a, b] (a,b can be £00), providing that
the condition
o(s)p(s)z®(s — 1) =0, k=0,1,2,.., (2.38)
s=a,b
holds [37]. In fact, substituting in (2.23) the expressions (2.25), we obtain for the weight
function (formally) the expression

Fq(s — gl)Fq(S — 52)
Fq(s — 81+ 1)Fq(8 — 89 + 1)’

p(s) =

i.e., p(s) is a ratio of the Gamma functions I'y(s — s; + 1) and Ty(s + 5 +1) (i = 1,2),
so it is a function which has only simple poles, and then we can always find a contour
C in order to apply the Cauchy formula in (2.20).

In (2.37) d? denotes the square of the norm of the corresponding orthogonal poly-
nomials (with discrete orthogonality relations). In order to calculate it we can use the
expression deduced in [34, Chapter 3, Section 3.7.2, pag. 104] (see also [1, Theorem

5.4])
b—n—1

d2 = (=1)"ApnB2 > puls) Aap(s — 1). (2.39)
S=a
If there exists a contour I' such that, instead of (2.38), the condition

/FA[p(z)o(z)xk(z C]dz=0, VE=0,1,2,..,. (2.40)

holds, then, the polynomials satisfy a continuous orthogonality relation of the form
[14, 17, 34, 37]

/FPn(z)Pm(z)p(z) Az(z—1)dz=0, n # m.

8



In some cases it is possible to choose the contour I' in such a way that the above
relation becomes an orthogonality relation on the real line. Using the above method,
Atakishiyev and Suslov proved in a very easy way the orthogonality of the Askey-Wilson
polynomials [17]. In this work we will not consider such a kind of orthogonality. For
more details see [11, 13, 14, 17, 26, 37|, among others.

2.5.2 The three-term recurrence relation.

A simple consequence of (2.37) is the fact that the g-orthogonal polynomials satisfy
a three-term recurrence relations (TTRR) of the form

2(8)Pn(s)g = anPuy1(s)g + Bubu(s)g + bPu-1(5)q, (2.41)
with the initial conditions P_i(s), =0 and FPy(s), = 1.

In order to calculate the coefficients «y,, 8,, and ~,, we will substitute the poly-
nomial P (s)g = apz™(s) + bpz™ 1(s) + -+ in (2.41) (ay is usually called the leading
coeflicient of the polynomial P,(s),). Then, equating the coefficients for the powers
7"(s) and " !(s), we find expressions for o, and S,, respectively. To obtain 7,, we
are constrained to use the orthogonality property of the polynomials P, (s),,

b—1
> @(sk) Pulsk) Pa1(sk)p(sk) & z(sp — 1)
SEp=a

/‘)/ =

" dy
So we obtain the expressions
b b 1 d?

Qp — In ) Bn:_n_n——'_la Yn = Un-1 2” . (242)

Gn+1 Gn  Gp+1 an dy_,

Sometimes, the computation of b, and then the £, can be very cumbersome, so if we
know «, and v, and P,(a) # 0 for all n, we can use (2.41) which gives us

z(a) P (a) — anPoyi(a) — nPo-1(a)
Py (a) '

Bn:

3 Some consequences of the Rodrigues-type formula.

3.1 The connection between the leading coefficient a, and the Ro-
drigues coefficient B,.

First of all, we will obtain an expression for the leading coefficient a,, of the polyno-
mial P,(s),. Notice that

Azx™(s)
Ax(s)

— [l s+ )+, so AM (s)] = [l -

Then, we have in one hand, A(”)P,E”)(s) = [n]q!a,, and on the other, by using (2.15),
A(")Pn(s)q = B, Apn, so taking into account expression (2.16) we finally obtain (ag =
By)

n—1 1(n+k—1) —2(n+k—1) g
ananH{<q T4 )?'—F[n—i—k—l]qa—} . (3.1)
k=0 2 2



3.2 The differentiation formulas.

Let us now obtain the differentiation formulas for the g-polynomials. From formulas
(2.11) and (2.12), we find

Vowi(s) _ lpals + Dols + 0] _ Blo@pa(e] _
VTn41(8) VZn(s + %) Ay (s — %) " "
Then by using the Rodrigues-type formula (2.17), we obtain
) — Bl _(ni1) _ But1 () VPn41(8) _
Pn+1( )q ,0(8) \V4 [Pn( )] p(S) \V4 v$n+1(5) (3 2)
=Bt Co = 2ot [0 1 ayy (s w |
L G0 [ru(pn (9] = S | 0] s = $)pu(s = 2)

In order to obtain an expression for [%(S)]n [Tn(8)pn(s)], we can use the g-analogue
of the Leibnitz formula on the non-uniform lattices

n

[n]!
2 iiin =i

k=0

[Mis) } ")) =

(3.3)
Ao vor o [ans | -1
dx(s + 25%) 2 du(s — &) 2
which can be proved by induction. Next, since
k
0T (s — 5t %) ’ 0 k
— —n n—gr = >
5I(8 + TLT,I) ) (5:13(8 4 n_;k‘) [Tn(s 2 + 2 )] 07 Vk s 27
then, Eq. (3.2) transforms
Bn+1
P, =
+1(5)q ,0(8) x
5 o 5 . (3.4)
S (Tn(s) 5] e 0+ [ﬁ] onls =3 - %)1) .
Now we use the Rodrigues-type formula (2.18)
VPa(s)g _ APa(s—1)g = —MBn () 1) —
vz(s)  Az(s—1)  pi(s—1) Vi pals 1) =
~AnBy P
_ —n_1
)p(s) [595(5 - %)] o i)
This leads to the expression,
. By y170(s) (1] Bny17,0(5) 7 Pu(s)g
Pn+1(8)q - B, Pn(s)q \, B, VI(S) )
and then, the following differentiation formula holds
VEu(s)g _ _Hn By
o(s = Tn(8)Pn(s)q — P, S)q| - 3.5
( ) VI(S) [n]qT/z n( ) n( )l] Bn+1 n+1( )l] ( )

10



This proof generalizes the one presented in [3] to any lattice z(s) = ¢1¢® + caq™ * + c3.
Notice that for proving (3.5) we have used only the Rodriges-type formula (2.13). For-
mula (3.5) has been also obtained in [13] by using the integral representation for the
g-polynomials as well as some boundary conditions.

In order to obtain the second differentiation formula, we can make use of the identity

Aan(s)q _ APy(s)q B VP (s)g

= . 3.6
Vo) Aals) | vals) (36)
Then, by using the difference equation (2.2), the equation (3.5) gives
APn(s)q
_ =22\
o(5)+ 7(0) A s = 1) 1
(3.7)
= 2 [(ra(s) = Bals = Dnlymh) Pals)g = 22— Pasa(s)
=L Tn(s z(s — 1) [nlg7)) Pu(s)q Bt nt1(8)q] -

3.3 The structure relations in the exponential lattice.

Let us obtain the structure relations for the polynomial solutions of (2.2) in the
lattice z(s) = c¢1¢® + ¢3. In order to do this we substitute the power expansion of 7, (s)

Tn(s) = Téwn(s) + Tn(o) = ,’Lq%x(s) + Tn(O) — 771103((]% — 1)7

in (3.5). Then, using the TTRR (2.41) we obtain the first structure relation

VP (s)q & 7 >
— 2 =G,P, T.P, nPn— ) :
o)y = St (s)a + TaPuls)y & RaPuca () (3:8)
where
~ n B ~ n T (0) n
Sn:—n 20, — L ) Tn:—n 2n+n—_c 2 —1 3
rl 12" B g L7+ T estar )
(3.9)
Rn _ Anq%')’n
[n]q

To obtain the second structure relation we transform (3.8) with the help of (3.6). Then,
using the fact that Az(s — 3) = kqz(s) — c3kq, as well as the difference equation (2.2)
and the TTRR (2.41) one gets

AP,
75) + 7(6) Bn(s = 15 20 = SuPaia(S)a + TuPaly + BuPua (g, (310
where
S, =8, — apinkq, Tp = T, — BnAnkq + c3Ankq, Ry = R, — YnAnkqs (3.11)

or, using (3.9),

An —n By, ] An [_2 Tn(O) _n
Sn_— n — ) Tn:— n - -1 )
o =y o K
) (3.12)
R — An T2,
[n]q



3.4 A difference-recurrence relation in the exponential lattice.

In the present section we will prove that the g—polynomials on the exponential lattice
satisfy a relation of the form

A.Pn,1 (S)q
Az(s)

_; APyy(s)q
Pn(s)q - Ln#(ls) + Mn AI(S)

(3.13)

where L,,, M,, and N,, are some constants.
To prove (3.13) we apply the operator ﬁ(s) on both sides of (3.8), and then use the

second order difference equation (2.2) in which we will change the operator ﬁ by
2
A

the equivalent one (only in the exponential lattice) q% () This is possible because

for the exponential lattice the following identity holds qfé A z(s) = Az(s — 1). Thus,

. 2‘;8 —7(s) %((j))q = AnPu(s)g =
N N, . (3.14)
=S S g e

Next, we use the fact that o(s) and 7(s) are polynomials of second and first degree,
respectively. Let
1

o(s) = 73(}2(8) +0'(0)z(s) +o(0), and 7(s) = 7'z(s) + 7(0). (3.15)

Since, z(s + 1) = qx(s) — c3(¢ — 1), and using (3.15) we conclude that 228 is a

polynomial of first degree in z(s). Then

1 Ao (s)
: — =A B
Ry~ (s)] = A(s) + B
where
o' i . L " f
A:7(1+q)q2 -7, and B:qZU(O)—703q2(q—1)—7(0), (3.16)
and (3.14) becomes
AP (s)q
Az(s) Ao(s) AP (s)g =
(3.17)
L& APni1(8)g 15 AP (s)g 15 APy 1(s)g AP, (s)q
= T, - B .
4> 5n Ax(s) t ¢ Ax(s) a2 B Ax(s) Ax(s)
Now we use the TTRR (2.41) to eliminate the term z(s) AAP;((SS))Q. In fact, if we apply

the operator ﬁ(s) to both sides of (2.41) and use again the identity z(s+1) = qz(s) —

cs(q — 1), we get

AP, (s)q APy11(8)g

qw(s)m = anT(s) + [Bn + c3(q — 1)]

AP, (8)q AP,_1(s)q

Az (s) +n Az (s) ~ Pu(s)g

12



If we now multiply (3.17) by ¢ and make use of the above equation, we finally obtain

st -]
(3.18)
n [ﬁnA +e3A(g—1) 4+ ¢B — qgfn] Aj;((j;q + ['ynA - qun] A]le(ls()s)q

which is of the form (3.13) if A+ g\, # 0.

To conclude this section notice that the expression (3.13) can also be obtained by
using, with some modifications, the method given in [32].

4  The g-analogues of the classical discrete polynomials
on the exponential lattice z(s) = ¢°.

In this section we will consider some g-analogues of the Hahn, Meixner and Kravchuk
polynomials in the exponential lattice z(s) = ¢°. These polynomials were considered
by other authors [19, 39] using the Nikiforov et al. approach. In this section we will
introduce them in an unify way from Egs. (2.27)-(2.30) and their limits (see below
for more details), i.e., we will identify these ¢g-Hahn, ¢-Meixner and ¢-Kravchuk with
certain ¢-hypergeometric series which have not been done in [19, 39]. The case of a
g-analogue of the Charlier polynomials will be considered with more details in the next
section.

4.1 The ¢-Hahn polynomials h%*(s, N),.

The ¢g-Hahn polynomials, from the point of view of [34], have been studied in [39]. If
we choose in (2.27) and (2.29) the parameters

] (_l)n
x(s):q_)CIZ]-a 63:07 Bn:niv
(ﬁ’ﬁg[”]q'
51:07 82:N+Oé, 51:_6_]—7 EZZN_]-a _:_qN+o¢’

we recover the ¢-Hahn polynomials [26, 39]

a,f o (5+1|Q)R(I_N|q)n —n,—s,n—l—a—l—ﬁ—l—l . .l(s—N—oz) _
hn (S,N)q— n(2a+[3+N+nT+l)[ F ,B-|—1,1_N 14,92 =

q 2 nly!

_ B Un(N +at B+l p ( —n,s+B+1ln+a+f+1 %(s—l—l—N))

Q(N-I-a-}-w)[ B+1,N+a+B8+1 14,9

q? ”]q!

or,

BB (s, N), = (=1)"g" TN (P g N )n " q‘”,q‘s,qw’]‘;ﬂ+1 gVt =
n ) q HZ(Q; Q)n 2 qﬂ‘Fl,qlf » 4,

(qﬂ+1; q)n(qN+a+B+1; Q)n q—n, qs—l—ﬁ—l—l’ qn+a+,3+1 .
3Py 4,4

q%(Zﬁ—l—n—H)HZL(q; Q)n qﬁ‘Fl’ qN+a+ﬁ+1

13



In this case, using (2.26), we find for \,, the expression
Ap = q7@TPI 0] [n+ a + B + 1],
and (2.37) holds in the interval [0, N — 1] where

& (a+2N+25-3)+5 (8+25-1) Ly(a+ N = s)Ty(B+5+1)

p(s) =g ETESRER , a,f>-1,n<N-1,

and

N (NNCat i N) o B (a4 + DB+ n+ DDy (a+ B+ N+n+1)

d2 = = .
" e N8B+ 5n(at8=2) [n] I[N — n — 1]!Ty(a+ B +n+ D)Ty(a+ B+ 2n +2)

4.2 The ¢-Meixner, ¢-Kravchuk polynomials.

From (2.27) or (2.29), and taking the limits ¢*% — 0 or ¢&% — 0, 7 = 1,2, it is
possible to find different families of g-polynomials. In [37], 9 different possibilities have
been considered. Here we will study only 2 of them, i.e., the cases corresponding to the
g-Meixner, ¢-Kravchuk, respectively. The ¢-analogue of the Charlier polynomial will
be introduced in the next section.

Taking the limit ¢*2 — 0, ¢°2 — 0, and choosing A = A;¢°2, so — 59 = § + 1, the
expression (2.25) becomes

o(s) = Ag* (@ = 1), o(s)+7(s) Dals — §) = AP (@™ = 1), (4)

Then, (2.27) and (2.29) lead us to

A\" n(n+1) _
Py(s)g = <E> Bng 2 T(s) — 31]q)n X
(4.2)
S1 — 81
and
(n—1) n -
—A1q 7 To+1 . —n, 51—31+6+n, §1—S$ o
Pn(s)q:Bn - 1  _1_ (qs1 sl;Q)n 3% e e 51—51 e 1q, 7 b )
(g —q2) g
respectively. In this case, taking limits on the expression (2.26) we find
Al 71(51+§17571) =
An = 291 [nlg[s1 — 51+ 6 + nlq- (4.3)
1

4.2.1 The ¢-Meixner polynomials m]*(s,q).

Let Ay =1, B, =p™, 81 =0, 5 = —, ¢ = p. Then Eqs.(4.2) and (4.2) define a
g-analogue of the Meixner polynomials

n(nt1) —-n,y+0+mn,—s Lig 5
mit(s,q) =q 2 (vlq)n3F1< v " rq, g2 70 1)>,

14



(n+3) n
q 1 q " pg g0 -
my(s,q) = (=D)" | —7—— | (@ ;D3 - sa, g
(g2 —q 2) 4

In this case (4.1) and (4.3) become

o(s)=¢°(¢° = 1),  o(s)+7(s) Ax(s — 1) = pg*H(g"T7 = 1), (4.4)
and (n—1) (n+1)
_ n; _ n2 Ty
A = [y & , (4.5)
Kq

respectively. Finally, the Pearson-type equation leads us to the weight function

pTg(y +5)
(8)=—F—77—=, 7>0,0<pu<l1,
Lg(7)Ly(s +1)
so that, (2.37) holds in the interval [0, 00) and

Q2 = q%n(g_n) HZ+1(7|‘])71FQ(7 +0+ 2”)Fq(n + 1)(_Wl2n+7+1; 7)o
" plg(y + 6 +n)(—pg" 5 q)0o

These Meixner ¢—polynomials coincide with those studied in [19]. Notice also that these
g—analogues of the Meixner polynomials m)*(s,q) are the g¢-little Jacobi p,(z;a,b|q)
polynomials (25, 26], i.e., m}* (s, q) = pn(q”; 11, ]a)-

4.2.2 The ¢-Kravchuk polynomials k,(lp)(s,q).

Analogously, from (4.2) and (4.2), but now choosing

1_ n
Alz—]_, Bn:(—l)n%’ 81:0, 3 :N, q(;:_LqN,
q

[y

we find a ¢g-analogue of the Kravchuk polynomials

KD (5,q) = (1) 5o D

w3 A \" (Vg " gt p—1
kP (s,q) = (=1)" <pq 1 *N) (,7’)"3%01 P19 g, ——qV ).
Notice that

(—1)" <pq("f’)+N>" @0 _ (pqw)” LN +1)
[

In this case we have

o(s)=q°’(L—¢°),  o(s)+7(s)Da(s— %) =2 NAL-¢Y),  (46)
Lq(ngl) ¢ (ngl)
A = —=[n),—L , (4.7)
Kq

15



and (2.37) holds in the interval [0, N] where

s Ls(s+1) 1
B p q?2 [N]q-
pls) = <l—p> T, N+1-s,+1) C<P<l

and

Rp"(L=p)"[n + 0 = ll4n + 20 - 20N D,

2 q%n(n+9+2) ¢ = ‘
[n]g![2n + 6 — 1]4![2n + 20 — 2] !'T((N — n + 1) ’ L=p

n:

These polynomials where studied in detail in [19].

5 ¢-Charlier polynomials.

In the previous section we have obtained some g—analogues of the Hahn, Meixner and
Kravchuk classical polynomials on the general exponential lattice with special emphasis
in the lattice z(s) = ¢®*. Here we will consider the fourth family, i.e., a ¢g—analogue of
the Charlier polynomials.

Firstly, we take the limits ¢*2 — 0, ¢°* — 0, ¢7%2 — 0, and choose the others

parameters as A = A1¢*2, so— 5 =0+ 1+ légq. Then, (2.25) becomes

o(s) = A1¢®(¢* % — 1), o(s)+7(s)Ax(s—1) = Ao tt, (5.1)

and (2.27) and (2.29) transforms into

A \" . nees) - -
Py(s)y = <H ;) Bug™ 5t ,F, ( BT, —q%(ssl"l)‘S) , (52)
q
Al " M+n5 qinaqﬁis s—51—0
Pu(s)g= | - - Bng 1 20 N 4, —q : (5.3)
q
Finally, from (2.26) one gets
Al _gy—n=1
=gt Tk (5.4)

5.1 The ¢-Charlier polynomials in the lattice z(s) = ¢°.

S

Let us now introduce the ¢g-Charlier polynomials in the lattice z(s) = ¢°. In order to

do that we choose

z(s)=¢°, A1=1, B,=p" s1=0, ¢ =(¢g—1p.

Then, formulas (5.2) and (5.3) give us

1
s(s—n—1)
n(n+5) —n.—S8 q2
(s, q) =q = 2F0< ’ ;q,—7>,

(w) . n(n+5) q ", q°? . B q°

c $,q9)= q 4 2 3 4, )

w (5:4) 0 - (g—Dp
respectively. Moreover, (4.1) and (4.3) lead us to the expressions
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and

[n]q- (5.6)

Finally, for the weight function p(s), the Pearson-type difference equation (2.23) gives

p(s) = 0<(1-qp<1, (5.7)

eg[(1—@)ulTe(s +1)

where e,[z] denotes the ¢- exponential function [25] defined by

= 3 Zk = 1 an zZ; = I -z k

These polynomials were partially studied in [1].

Main characteristics of the ¢—Charlier polynomials in the lattice z(s) = ¢°.
Using the formulas obtained in the above Sections we can find the main properties

of the ¢g-Charlier polynomials. They are given in Table 1.

S

Table 1: Main data for the ¢-Charlier polynomials in the lattice z(s) = ¢°.

Pn(s)q cgl“)(s,q) a(s) = ¢°
(.b) (0,00)
o(s) " , w>0, 0<(l—qpu<1
eq[(1 — Q)ullq(s +1)
O’(s) q.S(qs _ 1)
T(S) nglﬂq(l]*l)+171§;1q5
—n uqn+%/‘5q + 1
Tn($) L _on(s)+ -
Kq q?2 Kq
(n—1)
An O
By u "
2| (1= s et _ ol =" u]_ gln!
n H q%(nfg)‘u‘n eq[(l — q)/,g] q%(n—Q)ﬂn
( ) uernngq%(n-ﬁ-?s-s-?)
Pn (S
eq[(1 = Q)ullq(s +1)
an G q—%"(n—l)
ngu"

Explicit Formula.

05 gy = (CDnlat g (2B E Dy (s 4 1)
Cn 8, —
(s,9) o >

[mlg!ln —m]g'Tq(s +1=n+m)

m=0
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Table 1: Main data for the ¢-Charlier polynomials in the lattice z(s) = ¢° (cont.)

Pn(s)q c%ﬂ)(s, Q) 5 CL‘(S) = qs
3
an —pkqq2"
- _3(n+1) N
o || 1+ w2 ot a T s (- - ™) )
T —q¢" M ign]{1 — n(1 — q)q"}
- n+1
Sn pg 2 (1-q")
7 ntl n n+2 n
T [nlqq > {1 —pg™(1 —q)} — pg" ™2 (1 —¢™)
1 n+.§ n
Rn —q" " 2[n]q (1 — p(l —q)q")
Sn 0
ntl
Tn —p(1 = q)[n]qq2
3
Rn —q2[n]q (1 —p(l - q)qg")
Hq" Kq
L e
" [n+1]q
g% (¢" ! — D
M, 4
[n+1lq
N, 0

Special Values

at)(0.q) =gt

Differentiation formulas.

n—1
(f—ﬂ)véﬁ@ﬂ)Zu@—lmﬁ7ﬁh@ﬂ%—ﬁ+u@—1MM4—qﬂdﬁ@ﬂ)

(g —1) A e (s,q) = pa"T ) (5,0) = [+ pla = g™ + "] (s, 0).

Notice that if we take the limit ¢ — 1, we will not recover the main data for the
classical Charlier polynomials. For this reason we will introduce a different ¢g—analogue

of the Charlier polynomials, but in the lattice z(s) = %.

. . . . s_1
5.2 The ¢—Charlier polynomials in the lattice z(s) = qq71
To avoid the problem commented below, we choose now
-1 1 1
z(s) = g , Ail=——, a=-c=—— B,=p"", s =0, q6:(q—1)ﬂ-

q—1 q—1
Then, formulas (5.2) and (5.3) give us

18



Table 2: Main data for the ¢g-Charlier polynomials in the lattice z(s) = L=t

qg—1

Pr(s)q c&“)(s)q . a(s) = qq:ll

(a,b) [0, 00)

ls) 9 ;o k>0, 0<(Q—-qpu<l1

eq[(1 —q)pllq(s +1)
o(s) q*z(s)
31
7(s) pg2 —q2a(s)
n+ ﬂ+§ 3nin
Tn(s) q 2xy(s) +pug2 "2 + ¢ 172,
_(n—2)
An [nlqq
By, u "
nlq! eql(1 — n+1 !
di ({1 = a}us @1 — g = al( 1q)q 1] _ [n]q 1
qE=t n eq[(L — q)u] gH=9+3 yn
us+nq%(n+2s+1)
pn(s)
eq[(1 — @)pllq(s +1)
an (=" q—ST"(n—l)J,-%
ur

1
s(s—n—1)
n(n+5) —n, —s qz
M (s)g=q 1 2F0< ;q,—7>,
and

n(n+5) g’ q
C%H)(S)qz qg * 2<Po< _ ;Q7_m )

respectively. The functions o(s) and 7(s) and )\, are defined now by relations
o(s) =¢° (1), ols)+7(s) Dals — ) =pg**!, A=q Tl (59)

Finally, for the weight function p(s), the Pearson-type difference equation (2.11) gives

S

pls) = ——— :
eq(1 = @)uTy(s +1)

where e,[z] was given in (5.8).

0<(1l—gu<l. (5.10)

Notice that with the present choice of parameters the hypergeometric representation
remains the same but the coefficients of the second order difference equation o(s), 7(s)
and A\, tend, when ¢ — 1, to the corresponding coefficients of the classical Charlier
polynomials, and the the lattice function z(s) = % becomes the linear one.

Main characteristics of the g—Charlier polynomials in the lattice z(s) = £ —

Again, using the formulas obtained in the above Sections we obtain the properties of
the g-Charlier polynomials (see table 2).
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Table 2: Main data for the ¢g-Charlier polynomials in the lattice z(s) = q;:ll (cont).

Pu(s)q (s)g, als) = L=
3.1
o —nq2""2
. n—1
Bn ug” 4+ [nlg {1 —p(l —q)q"} ¢ T
n+l
Yn —q""2[n]g{l — (1 - q)¢"}
o ntl
Sn pg 2z (1—q")
B ntl n n+2 n
Tn [nlgg 2 {1 — p(l —q)g"} — ug"**(1 - q")
%, n+.§ n
R, —q¢" " 2[n]g {1 — (1l —q)g"}
Sn 0
ntl
Th —p(1 = q)[n]qq 2
3
R, —q2 [n]g {1 —p(1 —q)g"}
L, kg
[n+1lg
T (gt —
M, pgZ (g 1)
[n+1]q
Ny, 0

Explicit Formula.

0 oy = (CD
n ( ,Q) 'un Z

m=0

(1B 009 o 4 1)
[m]glln —m]g!Te(s+1—n+m)

Special Values

Differentiation formulas.

S 1 E s _ 1
! v (s, q) = pg“ T el (s,q) - [MQ”“ -2 ] (s, q)
qg—1 q—1
o1 s—n _ 1
psdls,0) = g T G (s, + | T uq”“] ) (s,9).

As we already pointed out, all characteristics of these g—Charlier polynomials tend
to the corresponding characteristics of the classical ones when ¢ tends to 1, which
doesn’t happens in the previous case (lattice z(s) = ¢, see Table 1). So, these polyno-
mials are more natural g—analogues of the classical ones, and the exponential lattice
z(s) = ‘{:_—11 is a more natural lattice than the previous one z(s) = ¢°. Moreover,
the hypergeometric representation for the g-Charlier polynomias in both lattices is the
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same, so, in this sense they are the same functions in s (obviously this happens if we use

the approach based on the hypergeometric series [26]). But if we consider them as func-

tions of z(s) (i.e., as polynomials in 2(s)), we obtain two complete different families and
=1

one of them (the one on z(s) = T=) seem to be a more natural g—analogue than the

other one. For this reason it is convenient to complete the study of the g—analogues
of classical discrete polynomials in the lattice z(s) = £=-. This will be done in a

=
forthcoming paper (see [7]).
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