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Abstract

We study Hermite Padé approximation of the so called Nikishin systems of functions. In

particular, the set of multi indices for which normality is known to take place is considerably

enlarged as well as the sequences of multi indices for which convergence of the corresponding

simultaneous rational approximants takes place. These results are applied to the study of the

convergence properties of simultaneous quadrature rules of a given function with respect to

different weights.
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1. Introduction

Let S ¼ ðs1;y; smÞ be a system of finite Borel measures with constant sign and
compact support suppðskÞCR; k ¼ 1;y;m; contained in the real line consisting of
infinitely many points. In [1], it is claimed that some applications in computer
graphics illuminating bodies require the simultaneous evaluation of the integralsR

f ðxÞ dskðxÞ; k ¼ 1;y;m: For this purpose, the author proposes a numerical

scheme of m quadrature rules all of which have the same set of nodes.
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Let N distinct points x1;y; xN be given which lie in Coð
Sm

k¼1ðsuppðskÞÞÞ; the
smallest interval containing the union of the supports of the measures in the system
S: We say that we have an interpolatory type simultaneous scheme of quadrature
rules for S of order N ifZ

pðxÞ dskðxÞ ¼
XN

j¼1

lk;jpðxjÞ; k ¼ 1;y;m; ð1Þ

for all pAPN 1; the vector space of all polynomials of degree at most N � 1; with
coefficients lk;j appropriately chosen.

Set QðxÞ ¼
QN

j¼1 ðx � xjÞ: For pAPN 1; from Lagrange’s interpolation formula

we have

pðxÞ ¼
XN

j¼1

QðxÞpðxjÞ
Q0ðxjÞðx � xjÞ

:

Integrating with respect to sk one has

Z
pðxÞ dskðxÞ ¼

XN

j¼1

pðxjÞ
Z

QðxÞ dskðxÞ
Q0ðxjÞðx � xjÞ

¼
XN

j¼1

lk;jpðxjÞ; k ¼ 1;y;m;

with

lk;j ¼
Z

QðxÞ dskðxÞ
Q0ðxjÞðx � xjÞ

:

Therefore, given any system of distinct points x1;y; xN ; such a simultaneous scheme
of quadrature rules is always attainable.

The problem consists in the study of the convergence properties of such a scheme
of simultaneous quadrature rules for a large class of functions f ; for example,

continuous on Coð
Sm

k¼1 ðsuppðskÞÞÞ or analytic on a neighborhood of this set. That

is, we would like to have

lim
N-N

XN

j¼1

lN;k;j f ðxN;jÞ ¼
Z

f ðxÞ dskðxÞ; k ¼ 1;y;m;

where fxN;jg; j ¼ 1;y;N;NAN is a triangular scheme of nodes contained in

Coð
Sm

k¼1 ðsuppðskÞÞÞ and f is in a sufficiently general class of functions.

Another question of equal importance is connected with the stability of the
numerical procedure. For this, it is desirable to have that

supNAN

PN
j¼1 jlN;k;jjoN; k ¼ 1;y;m; or still more convenient that for each k

and N the coefficients lN;k;j; j ¼ 1;y;N; preserve the same sign. In this case, from

the quadrature rule, taking p 
 1; we have

jskj ¼
Z

dskðxÞ
����

���� ¼ X
N;k;j

lN;k;j

�����
����� ¼

X
N;k;j

jlN;k;jj:
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As in Gauss–Jacobi quadrature rules one may ask if the nodes x1;y; xN ; may be
taken so that the quadrature formulas are exact in a class of polynomials as large as
possible hoping to get automatically coefficients of equal sign. Unlike the case when
m ¼ 1; we shall see that in general this problem is not well posed in the sense that it
may not have a solution or it may have infinitely many. The existence of solution
may require nodes of multiplicity greater than 1 or that the nodes lie outside

Coð
Sm

k¼1 ðsuppðskÞÞÞ:
In this paper, we give several results of general nature concerning Gauss–Jacobi

type simultaneous quadrature rules, their connection with Hermite–Padé approx-
imation, their convergence properties, and rate of convergence. This is done in
Section 2. In Section 3, we emphasize on the case when the measures in S are
interlinked in a special way. More exactly, when they form what is called a Nikishin
system of measures (see Definition 3).

2. Some general results

As above, let S ¼ ðs1;y; smÞ be a system of finite Borel measures with constant
sign and compact support suppðskÞCR; k ¼ 1;y;m; consisting of infinitely many

points. Let Ŝ ¼ ðŝ1;y; ŝmÞ be the corresponding system of Markov functions; that is,

ŝkðzÞ ¼
Z

dskðxÞ
z � x

; k ¼ 1;y;m:

We define the simultaneous Hermite–Padé approximant of Ŝ with respect to the

multi-index n ¼ ðn1;y; nmÞAZm
þ as a vector rational function Rn ¼ ðPn;1

Qn
;y;

Pn;m

Qn
Þ with

common denominator Qn that satisfies

(i) deg Qnpjnj ¼ n1 þ?þ nm; Qnc0;
(ii) ðQnŝk � Pn;kÞðzÞ ¼ O 1

znkþ1

� 	
; z-N; k ¼ 1;y;m:

Integrating along a closed path with winding number 1 for all its interior points
which surrounds suppðskÞ and using Fubini’s theorem, it is easy to verify that Qn

fulfills the following system of orthogonality relations:

0 ¼
Z

xnQnðxÞ dskðxÞ; n ¼ 0;y; nk � 1; k ¼ 1;y;m: ð2Þ

It is said that Qn is a multi-orthogonal polynomial of S relative to the multi-index n:
In the sequel, we assume that Qn is monic. In general, the polynomial Qn is not
uniquely determined.

Let E be a subset of the real line R: By CoðEÞ we denote the smallest interval
which contains E: The interior of an interval of the real line refers to its interior in
the Euclidean topology of R:

Definition 1. We say that a multi-index n is weakly normal for the system S if Qn is
determined uniquely. A multi-index n is said to be normal if any non-trivial solution
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Qn of (2) satisfies deg Qn ¼ jnj: If Qn has exactly jnj simple zeros and they all lie in the

interior of Coð
Sm

j¼1 suppðsjÞÞ the index is called strongly normal. When all

the indices are weakly normal, normal, or strongly normal the system S is said to
be weakly perfect, perfect, or strongly perfect respectively.

Normality of indices plays a crucial role in applications to number theory and
Hermite–Padé approximation. Obviously, strong normality implies normality, and it
is not hard to prove that normality implies weak normality (see Lemma 1 in [8]
where you can also find further discussions on the subject).

From (ii) it is obvious that Pn;k is the polynomial part of Qnŝk: Therefore, given
Qn; the polynomial Pn;k is uniquely determined. For a moment, set

Pn;kðzÞ ¼
Z

QnðzÞ � QnðxÞ
z � x

dskðxÞ; k ¼ 1;y;m:

Using (2) it is straightforward that (ii) takes place; thus, this polynomial is in fact the
one defined above. Therefore, if n is weakly normal the polynomials Pn;k (and

consequently Rn) are also uniquely determined. If the index n is strongly normal then

Pn;kðzÞ
QnðzÞ

¼
Xjnj
j¼1

ln;k;j

z � xn;j
; k ¼ 1;y;m; ð3Þ

where QnðzÞ ¼
Qjnj

j¼1 ðz � xn;jÞ and

ln;k;j ¼ lim
z-xn;j

z � xn;j

QnðzÞ

Z
QnðzÞ � QnðxÞ

z � x
dskðxÞ ¼

Z
QnðxÞ dskðxÞ

Q0
nðxn;jÞðx � xn;jÞ

: ð4Þ

Definition 2. The numbers defined by (4) will be called Nikishin–Christoffel
coefficients.

Lemma 1. Let n be strongly normal for the system S ¼ ðs1;y; smÞ: Then, for each

k ¼ 1;y;mZ
pðxÞ dskðxÞ ¼

Xjnj
j¼1

ln;k;jpðxn;jÞ; pAPjnjþnk 1;

where PN denotes the vector space of all polynomials of degree at most N:

Proof. Fix kAf1;y;mg and assume that pAPjnjþnk 1: Let

cðxÞ ¼
Xjnj
j¼1

QnðxÞpðxn;jÞ
Q0

nðxn;jÞðx � xn;jÞ

be the Lagrange polynomial of degree jnj � 1 that interpolates p at the zeros of Qn:
By the definition of c it follows that

pðxÞ � cðxÞ ¼ QnðxÞqðxÞ;
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where qAPnk 1: Therefore, from (2) and (4), we have

0 ¼
Z

ðp � cÞðxÞ dskðxÞ ¼
Z

pðxÞ dskðxÞ �
Xjnj
j¼1

pðxn;jÞ
Z

QnðxÞ dskðxÞ
Q0

nðxn;jÞðx � xn;jÞ

¼
Z

pðxÞ dskðxÞ �
Xjnj
j¼1

ln;k;jpðxn;jÞ;

which is what we needed to prove. &

Remark. In the case of normal indices, for which the zeros are not necessarily
distinct, one can obtain a similar quadrature formula exact for all pAPjnjþnk 1 but on

the right hand appear all the derivatives of the polynomial up to the multiplicity of
the corresponding zero of Qn minus one.

Notice that in Lemma 1 we have exactness with respect to each measure at least of
order jnj: Therefore, all such simultaneous quadrature rules are of interpolatory
type. In terms of the Nikishin–Christoffel coefficients, we distinguish several cases.

Let LCZm
þ be a sequence of distinct strongly normal multi-indices and

kAf1;y;mg fixed.

(A) For each nAL all ln;k;j; j ¼ 1;y; jnj; have the same sign.

(B) sup
nAL

Xjnj
j¼1

jln;k;jjpCoN:

(C)
Xjnj
j¼1

jln;k;jjpCjnjaoN; aAð0;þNÞ; nAL:

(D)
Xjnj
j¼1

jln;k;jjpCjnjaðnÞoN; lim
nAL

aðnÞ log jnj=jnj ¼ 0:

It is obvious that ðAÞ ) ðBÞ ) ðCÞ ) DÞ: Depending on whether one has (A)–
(D) one can prove that

lim
nAL

Xjnj
j¼1

ln;k;j f ðxn;jÞ ¼
Z

f ðxÞ dskðxÞ ð5Þ

for different classes of functions f :
We denote Lipbð½a; b�Þ; 0pbp1; the class of all complex valued functions f defined

on the interval ½a; b�CR such that

j f ðxÞ � f ðyÞjpCjx � yjb; x; yA½a; b�:
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We say that fALipbð½a; b�Þ; 1oboN; if the ½b�th derivative of f exists and is in

Lipb ½b�ð½a; b�Þ; where ½b� denotes the integer part of b: The next lemma summarizes

some known results which allow to deduce convergence of the quadrature rule. For
completeness we include some proofs. More on sufficient conditions for the
convergence of interpolatory quadrature rules may be found in [5] and the references
therein.

Lemma 2. Let S be a system of measures and LCZm
þ a sequence of distinct strongly

normal multi-indices. Set D ¼ Coð
Sm

k0¼1 suppðsk0 ÞÞ: Then:

* (A) implies (5) for all Riemann integrable functions f on D:
* (B) implies (5) for all continuous functions f on D:
* (C) implies (5) for all fALipbðDÞ; b4a: Moreover,

Z
f ðxÞ dskðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

����� ¼ O
1

jnjb a

 !
: ð6Þ

* (D) implies that

lim sup
nAL

ŝk �
Pn;k

Qn

����
����
1=jnj

K

pjjjjjK ; KC %C\D; ð7Þ

where jj � jjK denotes the sup norm on the compact set K and j denotes the conformal

representation of %C\D onto fw:jwjo1g such that jðNÞ ¼ 0 and j0ðNÞ40: If f is

analytic on a neighborhood V of D ð fAHðVÞÞ; then (7) implies

lim
nAL

Z
f ðxÞ dskðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

�����
1=jnj

prV ; ð8Þ

where rV ¼ inffr:grCVg and gr ¼ fz:jjðzÞj ¼ rg; 0oro1:

Proof. The first two statements are classical and contained, for example, in
Theorems 15.2.2 and 15.2.1, respectively, of [18]. The third is also fairly well known.
Notice that for each pAPjnj 1; using the quadrature formula, we obtain

Z
f ðxÞ dsk0 ðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

�����p
Z

j f ðxÞ � pðxÞj j dskðxÞj

þ
Xjnj
j¼1

jln;k;j j jf ðxn;jÞ � pðxn;jÞj:

U. Fidalgo Prieto et al. / Journal of Approximation Theory 126 (2004) 171 197176



Therefore,Z
f ðxÞ dsk0 ðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

�����pðjskj þ CjnjaÞEjnj 1ð f Þ:

From Jackson’s Theorem (see [4, p. 147]), we have that if fALipbðDÞ then

Ejnj 1ð f ÞpC1=jnjb where C1 does not depend on nAL: From this follows (5) for this

class of functions when b4a with the given estimate for the error.
The last statement is familiar to specialists in Padé approximation. Let us prove

(7). Since n is strongly normal, from (ii) we have that

ŝk �
Pn;k

Qn

¼ O
1

zjnjþ1

� 

; z-N

and

ŝk � Pn;k

Qn

jjnjþ1
AHð %C\DÞ:

Set gr ¼ fz:jjðzÞj ¼ rg; 0oro1: Using (D), it follows that

ŝk �
Pn;k

Qn

����
����
gr

pCrjnjaðnÞ;

where Cr is a constant which depends on the curve gr but not on n: Therefore,

ðŝk � Pn;k

Qn
ÞðzÞ

jjnjþ1ðzÞ

�����
�����p CrjnjaðnÞ

dðgrÞrjnjþ1
; zAgr

with dðgrÞ ¼ inffjz � xj : zAgr; xADg: By the maximum principle

ŝk �
Pn;k

Qn

� 

ðzÞ

����
����pCrjnjaðnÞ

dðgrÞ
jjðzÞj
r

� 
jnjþ1

; zAExtðgrÞ;

where ExtðgrÞ denotes the unbounded connected component of the complement of

gr: Fix a compact set KC %C\D and take r sufficiently close to 1 so that KCExtðgrÞ: It
follows that

ŝk �
Pn;k

Qn

����
����
K

p
CrjnjaðnÞ

dðgrÞ
jjjjjK
r

� 
jnjþ1

:

Thus, using the assumption on the sequence of numbers faðnÞg; it follows that

lim sup
nAL

ŝk �
Pn;k

Qn

����
����
1=jnj

K

p
jjjjjK
r

� 


and letting r-1; we find that

lim sup
nAL

ŝk �
Pn;k

Qn

����
����
1=jnj

K

pjjjjjK :
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To conclude let us show that (7) implies (8). Using (3), Cauchy’s integral formula,
and Fubini’s Theorem, it follows thatZ

f ðxÞ dskðxÞ �
Xjnj
j¼1

ln;k;j f ðxn;jÞ

¼ 1

2pi

Z Z
gr

f ðzÞ
z � x

dz dskðxÞ �
Xjnj
j¼1

ln;k;j
1

2pi

Z
gr

f ðzÞ
z � xn;j

dz

¼ 1

2pi

Z
gr

f ðzÞ ŝk �
Pn;k

Qn

� 

ðzÞ dz:

Therefore,Z
f ðxÞ dskðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

�����pCjj f jjgr ŝk �
Pn;k

Qn

����
����
gr

;

where C denotes the length of gr divided by 2p: This inequality and (7) immediately

give (8). &

Remark. In the first three statements of Lemma 2 the assumption on f may have
been given on CoðsuppðskÞÞ instead of all D: This is so because any function
Riemann integrable, continuous, or Lipb on CoðsuppðskÞÞ may be extended within

the same class, respectively, to D: In this case, the quadrature formula applied to a
function defined on CoðsuppðskÞÞ must be understood as its application to any of its
extensions to D pertaining to the same class. Since the integral depends only on the
values of the function on CoðsuppðskÞÞ this means that the nodes lying in
D\CoðsuppðskÞÞ give no contribution to the approximate evaluation of the integral.
From the practical point of view it is better to think that the function is extended
with value zero outside of CoðsuppðskÞÞ though this extension does not necessarily
preserve the class in the second and third cases. Concerning the statements following
assumption (D) one cannot say the same because analytic functions cannot be
extended at will. Nevertheless, we point out that in the proof we only use that V is a
neighborhood of an interval ½a; b� containing the zeros of the polynomials Qn and the
support of the measure sk: Therefore in relations (7) and (8) one can substitute D by
½a; b�: These remarks will be used in the statement and proof of Theorem 1 below
without special notice.

In general, it is difficult to guarantee strong normality of a multi-index and even
then it is more complicated to verify one of the conditions (A)–(D). For the moment,
we will restrict our attention to a sufficiently general system of measures and a
special selection of multi-indices for which strong normality and some of conditions
(A)–(D) are fulfilled.

Let s be a finite positive Borel measure supported on a compact subset of R and
S ¼ ðs1;y; smÞ be such that dskðxÞ ¼ wkðxÞdsðxÞ;wkAL1ðsÞ; kAf1;y;mg; where
each wk preserves sign on suppðsÞ: Whenever it is convenient we use the differential
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notation of a measure. Let LkCZm
þ be the sequence of multi-indices of the form

Ñ ¼ ð0;y; 0;N; 0;y; 0Þ; NAZþ; and the number N is placed in the kth component
of the multi-index. We have

Theorem 1. Let S and Lk be as indicated above. All multi-indices in Lk are strongly

normal. For the component k; (A) takes place. Consequently, (5) holds for all bounded

Riemann integrable function f on CoðsuppðskÞÞ and if fALipbðCoðsuppðskÞÞÞ; b40;

then

Z
f ðxÞ dskðxÞ �

XN

j¼1

lÑ;k;j f ðxÑ;jÞ
�����

����� ¼ O
1

Nb

� 

: ð9Þ

If for some k0Af1;y;mg; we have that

Ck;k0 :¼
Z jwk0 ðxÞj2

jwkðxÞj
dsðxÞ

 !1=2

oN ð10Þ

then

XN

j¼1

jlÑ;k0;jjpCk;k0 jskj
p

; ÑALk ð11Þ

and for all fALipbðCoðsuppðsk0 ÞÞÞ; b40;

Z
f ðxÞ dsk0 ðxÞ �

XN

j¼1

lÑ;k0;j f ðxÑ;jÞ
�����

����� ¼ O
1

Nb

� 

: ð12Þ

We also have

lim sup
N-N

ŝk �
PÑ;k

QÑ

����
����
1=2N

K

pjjjjjK ; KC %C\CoðsuppðskÞÞ ð13Þ

and

lim sup
N-N

ŝk0 �
PÑ;k0

QÑ

����
����
1=N

K

pjjjjjK ; KC %C\CoðsuppðskÞÞ; ð14Þ

where j denotes the conformal representation of %C\CoðsuppðskÞÞ onto fw:jwjo1g such

that jðNÞ ¼ 0 and j0ðNÞ40: If f is analytic on a neighborhood V of

CoðsuppðsÞÞ ð fAHðVÞÞ; then

lim
N-N

Z
f ðxÞ dskðxÞ �

XN

j¼1

lÑ;k;j f ðxÑ;jÞ
�����

�����
1=2N

prV ð15Þ
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and

lim
N-N

Z
f ðxÞ dsk0 ðxÞ �

XN

j¼1

lÑ;k0;j f ðxÑ;jÞ
�����

�����
1=N

prV ; ð16Þ

where rV ¼ inffr:grCVg and gr ¼ fz:jjðzÞj ¼ rg; 0oro1:

Proof. We only need to prove that for the index k; property (A) takes place and
that for an index k0 for which (10) holds (11) takes place and then make use of
Lemma 2.

Fix ÑALk: From (i) and (2) we have that QÑ is the Nth orthogonal polynomial

with respect to the measure sk: Therefore, QÑ has exactly jÑj ¼ N simple zeros in the

interior of CoðsuppðskÞÞ as needed to affirm that n is strongly normal.

Let jAf1;y;Ng be fixed. Taking pðxÞ ¼ ðQÑðxÞ=Q0
Ñ
ðxÑ;jÞðx � xÑ;jÞÞ

2 in Lemma

1 one sees that

lÑ;k;j ¼
Z

QÑðxÞ
Q0

Ñ
ðxÑ;jÞðx � xÑ;jÞ

 !2

dskðxÞ:

Therefore, all lÑ;k;j; j ¼ 1;y;N; have the same sign as the measure sk: The

convergence of the corresponding quadrature for all Riemann integrable functions
follows from the first assertion of Lemma 2 and (9) is a consequence of the third
statement in Lemma 2.

That (10) implies (11) is a slight generalization of a result due to Sloan and Smith
[17], Theorem 1, (they only consider weights). For completeness we include a proof.

Take k0Af1;y;mg such that (10) takes place. Using (4), it follows that

lÑ;k0;j ¼
Z

QÑðxÞ
Q0

Ñ
ðxÑ;jÞðx � xÑ;jÞ

wk0 ðxÞ
wkðxÞ

wkðxÞ dsðxÞ:

Write wk0=wk ¼ SN 1 þ RN 1 where SN 1 denotes the Nth partial sum of the Fourier
expansion of wk0=wk in the orthogonal system given by fQÑg; NAZþ: From (10) we

have that the function wk0=wk is square integrable with respect to the measure wkds;
therefore, its Fourier series converges to the function in L2ðwkdsÞ:Using this and the
previous formula it follows that

lÑ;k0;j ¼
Z

QÑðxÞ
Q0

Ñ
ðxÑ;jÞðx � xÑ;jÞ

SN 1ðxÞwkðxÞ dsðxÞ:

Since SN 1 is a polynomial of degree at most N � 1; from the orthogonality
properties of QÑ; we obtain

lÑ;k0;j ¼ SN 1ðxÑ;jÞ
Z

QÑðxÞ
Q0

Ñ
ðxÑ;jÞðx � xÑ;jÞ

wkðxÞ dsðxÞ ¼ lÑ;k;jSN 1ðxÑ;jÞ:
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Using the Gauss–Jacobi formula satisfied by the kth component, and the Cauchy–
Schwartz and Bessel inequalities, we obtainXN

j¼1

jlÑ;k0;jj ¼
XN

j¼1

lÑ;k;jjSN 1ðxÑ;jÞjp
XN

j¼1

lÑ;k;j

 !1=2 XN

j¼1

lÑ;k;jS
2
N 1ðxÑ;jÞ

 !1=2

¼ jskj
p Z

S2
N 1ðxÞwkðxÞdsðxÞ

� 
1=2

pCk;k0 jskj
p

as we needed to prove.
Now, (12), (14), and (16) are direct consequences of (6)–(8) respectively, taking

into consideration that all the zeros of QÑ lie on CoðsuppðskÞÞ and that from (10)

suppðsk0 ÞCsuppðskÞ: To prove (13) and (15) one follows the same scheme noticing
that for the index k one has

ŝk �
PÑ;k

QÑ

¼ O
1

z2Nþ1

� 

; z-N:

With this we conclude the proof of this theorem. &

Given the way in which the nodes are chosen it is possible to prove that (10)
implies convergence of the quadrature rule corresponding to the component k0 for all
Riemann-integrable functions f on D: For details see [17]. We wish to point out that
condition (10), used here to derive (11), was also employed in [12,13] in the study of
the convergence of interpolatory quadrature rules for complex weights and
quadrature rules exact for rational functions with prescribed poles.

3. Nikishin systems

In order to study more general classes of indices for which strong normality and
convergence of the simultaneous quadrature rules take place, we further restrict the
class of systems of measures under consideration.

Nikishin systems of measures were introduced in [16]. For them a large class of
indices are known to be strongly normal. Such systems are defined as follows. We
adopt the notation introduced in [11] which is clarifying.

Let s1 and s2 be two measures supported on R and let D1;D2 denote the smallest
intervals containing suppðs1Þ and suppðs2Þ; respectively. We write Di ¼
CoðsuppðsiÞÞ: Assume that D1-D2 ¼ | and define

/s1; s2SðxÞ ¼
Z

ds2ðtÞ
x � t

ds1ðxÞ ¼ #s2ðxÞ ds1ðxÞ:

Therefore, /s1; s2S is a measure with constant sign and support equal to that of s1:

Definition 3. For a system of closed intervals D1;y;Dm contained in R satisfying

Dj 1-Dj ¼ |; j ¼ 2;y;m; and finite Borel measures s1;y; sm with constant sign

and CoðsuppðsjÞÞ ¼ Dj; we define by induction

/s1; s2;y; sjS ¼ /s1;/s2;y; sjSS; j ¼ 2;y;m:
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We say that S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ; where
s1 ¼ /s1S ¼ s1; s2 ¼ /s1; s2S;y; sm ¼ /s1;y; smS

is the Nikishin system of measures generated by ðs1;y; smÞ:

Remark. All the results that follow hold true if in the definition of a Nikishin system
we only require that the interior (in R) of Dj 1-Dj; j ¼ 2;y;m; be empty as long as

the corresponding measures sj; j ¼ 1;y;m; are all finite. This allows consecutive

intervals Dj to have a common end point. We restrict generality in order to simplify

the arguments in the proofs.

Notice that all the measures in a Nikishin system have the same support, namely
suppðs1Þ: For Nikishin systems of measures all multi-indices n satisfying
1piojpm ) njpni þ 1 are known to be strongly normal. This result was originally

proved in [6]. More recently, an extension for so called generalized Nikishin systems
was given in [11]. When m ¼ 2; from the results in [3] it follows that the system is
strongly perfect (a detailed proof may be found in [6]). In [2], the authors were able
to include in the set of strongly normal indices all those for which there do not exist
1piojokpm such that nionjonk: This special class of multi-indices will be

denoted Zm
þð�Þ in the sequel. For m ¼ 3; in [8] the authors prove that the system is

strongly perfect.
In [16] the numbers ln;k;j were introduced for the study of the convergence

properties of the Hermite–Padé approximants of a Nikishin system of two functions.
Let us denote

Fn;kðzÞ ¼ ðQnŝk � Pn;kÞðzÞ; k ¼ 1;y;m:

In [3] (see Lemmas 4–6), it was proved that the functions Fn;k satisfy certain

orthogonality relations on the second interval D2 ¼ Coðsuppðs2ÞÞ: The following
lemma summarizes these results and we refer to the original source for the proof. We
wish to stress that the range of degrees for which (20) and (21) below are indicated
here to hold is a bit larger than in the statement of the original Lemma 6 in [3].
Nevertheless, the proof is exactly the same. In that paper the authors were not
concerned with the signs of the Nikishin–Christoffel coefficients; therefore, they
slightly simplified the statement in favor of brevity. Before going on with the lemma
we need some additional notation.

Let 1pipjpm: Set

si;j ¼ /si;y; sjS ðsj;j ¼ sjÞ:

It is well known (see [15, Appendix]) that there exists a first degree polynomial Li;j

and a finite positive Borel measure ti;j ;Coðsuppðti;jÞÞCCoðsuppðsi;jÞÞ such that

1

ŝi;jðzÞ
¼ Li;jðzÞ þ #ti;jðzÞ:

We associate to each function Fn;k; k ¼ 1;y;m; a Nikishin system of m � 1

measures Sk ¼ ðsk
2 ;y; sk

mÞ ¼ Nðsk
2 ;y; sk

mÞ whose generating measures satisfy
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suppðsk
j ÞCCoðsuppðsjÞÞ and do not depend on n: We preserve the notation

introduced above meaning that sk
j ¼ /sk

2 ;y; sk
j S; j ¼ 2;y;m: In particular, all the

measures of these m Nikishin systems have their support contained in D2: The
expression of the generating measures will be given in the lemma.

Lemma 3. Let n ¼ ðn1;y; nmÞ be a multi-index. With the function Fn;1 we associate

the Nikishin system

S1 ¼ ðs12;y; s1mÞ ¼ ðds2;w1
3ds2;y;w1

mds2Þ ¼ Nðs2;y; smÞ
with respect to which the following orthogonality relations hold:Z

ðhjFn;1ÞðxÞ ds1j ðxÞ ¼ 0; deg hjpminðn1; nj � 1Þ; j ¼ 2;y;m: ð17Þ

With Fn;2 we associate

S2 ¼ ðs22;y; s2mÞ ¼ ðdt2;2;w2
3dt2;2;y;w2

mdt2;2Þ ¼ Nðt2;2; #s2ds3; s4;y; smÞ
with respect to which we haveZ

ðh2Fn;2ÞðxÞ ds22ðxÞ ¼ 0; deg h2pminðn1 � 1; n2 � 2Þ ð18Þ

and Z
ðhjFn;2ÞðxÞ ds2j ðxÞ ¼ 0; deg hjpminðn2 � 1; nj � 1Þ; j ¼ 3;y;m: ð19Þ

Finally, for each k; 3pkpm; the function Fn;k is associated with the Nikishin system

Sk ¼ðsk
2 ;y; sk

mÞ ¼ ðt2;k;wk
3dt2;k;y;wk

mdt2;kÞ

¼Nðt2;k; ŝ2;kdt3;k;y; ŝk 1;kdtk;k; ŝk;kdskþ1; skþ2;y; smÞ
which satisfiesZ

ðhjFn;kÞðxÞ dsk
j ðxÞ ¼ 0; deg hjpminðn1 � 1;y; nj 1 � 1; nk � 2Þ;

j ¼ 2;y; k ð20Þ
and Z

ðhjFn;kÞðxÞ dsk
j ðxÞ ¼ 0; deg hjpminðnk � 1; nj � 1Þ; j ¼ k þ 1;y;m:

ð21Þ

The next lemma is Theorem 3.1.3 in [7], where the proof may be followed. There, it
is used to obtain a result similar to Lemma 3 stated above.

Lemma 4. Let S1 ¼ ðs12;y; s1mÞ ¼ Nðs2;y; smÞ and kAf2;y;mg be fixed. Then,

the following formulas take place.

1

ŝ1kðzÞ
¼ LkðzÞ þ ŝk

2ðzÞ; ð22Þ
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ŝ1j ðzÞ
ŝ1kðzÞ

¼ aj þ ŝk
jþ1ðzÞ þ cj ŝ

k
j ðzÞ; j ¼ 2;y; k � 1 ð23Þ

and

ŝ1j ðzÞ
ŝ1kðzÞ

¼ aj þ ŝk
j ðzÞ; j ¼ k þ 1;y;m; ð24Þ

where aj and cj denote certain constants, Lk is a first degree polynomial, and the

measures sk
j are as defined in Lemma 3.

Definition 4. Let wj; j ¼ 1;y;m; be continuous functions with constant sign on an

interval ½a; b� of the real line. It is said that ðw1;y;wmÞ forms an AT system for the
index n ¼ ðn1;y; nmÞ on ½a; b� if no matter what polynomials h1;y; hm one chooses
with deg hjpnj � 1; j ¼ 1;y;m; not all identically equal to zero, the function

HnðxÞ ¼ Hnðh1;y; hm; xÞ ¼ h1ðxÞw1ðxÞ þ?þ hmðxÞwmðxÞ

has at most jnj � 1 zeros on ½a; b� (deg hjp� 1 forces hj 
 0). The system

ðw1;y;wmÞ forms an AT system on ½a; b� if it is an AT system on that interval for
all nAZm

þ:

Theorem 2. Let S1 ¼ ðs12;y; s1mÞ ¼ Nðs2;y; smÞ be an arbitrary Nikishin system of

m � 1 measures and let n ¼ ðn1;y; nmÞAZm
þð�Þ (the class of all multi-indices such that

there do not exist 1piojokpm such that nionjonkÞ: Then, the system of functions

ð1; ŝ12;y; ŝ1mÞ forms an AT system for the index n on any interval ½a; b� disjoint from

Coðsuppðs2ÞÞ:

Proof. We will proceed by induction on mAN which represents the number of

functions in ð1; ŝ12;y; ŝ1mÞ: For m ¼ 1 the system of functions reduces to 1 and

nAZþð�Þ ¼ Zþ may be any non-negative integer. This case is trivial because any
polynomial of degree pn � 1 can have at most n � 1 zeros in the whole complex
plane unless it is identically equal to zero. Let us assume that the statement is true for
m � 1; mX2; and let us show that it also holds for m:

Suppose that ð1; ŝ12;y; ŝ1mÞ is not an AT system for an index nAZm
þð�Þ on an

interval ½a; b� disjoint from Coðsuppðs2ÞÞ: Then there exist polynomials

hni
; deg hni

pni � 1; i ¼ 1;y;m; not all identically equal to zero, such that Hn ¼
hn1 þ hn2 ŝ

1
2 þ?þ hnm

ŝ1m has at least jnj zeros on ½a; b� counting multiplicities. Let

Wn; deg WnXjnj; be a monic polynomial whose zeros are zeros of Hn lying on ½a; b�:
Therefore,

HnðzÞ
WnðzÞ

¼ O
1

zjnj M

� 

AHðC\Coðsuppðs2ÞÞÞ; z-N; ð25Þ

where M ¼ maxfn1 � 1; n2 � 2;y; nm � 2g:
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Assume that M ¼ n1 � 1: From (25) we have that

znHnðzÞ
WnðzÞ

¼ O
1

z2

� 

; z-N; n ¼ 0;y; jnj � n1 � 1:

Let G be a closed integration path with winding number 1 for all its interior points
such that Coðsuppðs2ÞÞCIntðGÞ and ½a; b�CExtðGÞ: Here, and in the following,
IntðGÞ and ExtðGÞ denote, the bounded and unbounded connected components,
respectively, in which G divides the complex plane. From Cauchy’s Theorem, it
follows that

0 ¼ 1

2pi

Z
G

znHnðzÞ
WnðzÞ

dz ¼ 1

2pi

Z
G

znðhn2 ŝ
1
2 þ?þ hnm

ŝ1mÞðzÞ
WnðzÞ

dz;

n ¼ 0;y; jnj � n1 � 1:

Substituting ŝ12;y; ŝ1m by their integral expressions, using Fubini’s Theorem, and

Cauchy’s integral formula, we obtain (w1
j ¼ ŝ3;j; j ¼ 3;y;m; if mX3)

0 ¼
Z

xnðhn2 þ hn3w
1
3 þ?þ hnm

w1
mÞðxÞ

WnðxÞ
ds2ðxÞ; n ¼ 0;y; jnj � n1 � 1:

Since ds2ðxÞ=WnðxÞ is a measure with constant sign on supp s2; it follows that

hn2 þ hn3w
1
3 þ?þ hnm

w1
m must have at least jnj � n1 changes of sign on

Coðsuppðs2ÞÞ: According to our induction hypothesis the system ð1;w1
3;y;w1

mÞ
forms an AT system on Coðsuppðs2ÞÞ for the index ðn2;y; nmÞAZm 1

þ ð�Þ since

ðw1
3;y;w1

mÞ is a Nikishin system supported on Coðsuppðs3ÞÞ which is disjoint from

Coðsuppðs2ÞÞ (if m ¼ 2 the system of functions reduces again to 1 and the conclusion

is trivial). Therefore, hn2 þ hn3w
1
3 þ?þ hnm

w1
m cannot change signs more than jnj �

n1 � 1 times on Coðsuppðs2ÞÞ and we arrive to a contradiction.
Let us consider the case when M ¼ nk � 2; kAf2;y;mg: In case that this is true

for several k; we choose the smallest one. Notice that with this selection and using
that nAZm

þð�Þ; it follows that

n1Xn2X?Xnk 1 ð26Þ

(this is the only place in the proof where we use that nAZm
þð�Þ). From (25) we have

znHnðzÞ
ðŝ1kWnÞðzÞ

¼ O
1

z2

� 

; z-N; n ¼ 0;y; jnj � nk � 1:

Let G be as before. From Cauchy’s Theorem

0 ¼ 1

2pi

Z
G

znðhn1 þ hn2 ŝ
1
2 þ?þ hnm

ŝ1mÞðzÞ
ðŝ1kWnÞðzÞ

dz; n ¼ 0;y; jnj � nk � 1:
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Using Lemma 4 in the previous relation and Cauchy’s Theorem, it follows that

0 ¼ 1

2pi

Z
G

znðhn1ðLk þ ŝk
2ÞÞðzÞ

WnðzÞ
dz þ

Xk 1

j¼2

1

2pi

Z
G

znðhnj
ðaj þ ŝk

jþ1 þ cj ŝ
k
j ÞÞðzÞ

WnðzÞ
dz

þ
Xm

j¼kþ1

1

2pi

Z
G

znðhnj
ðaj þ ŝk

j ÞÞðzÞ
WnðzÞ

dz

¼
Xk 1

j¼2

1

2pi

Z
G

znððhnj 1
þ cjhnj

Þŝk
j ÞðzÞ

WnðzÞ
dz þ 1

2pi

Z
G

znðhnk 1
ŝk

kÞðzÞ
WnðzÞ

dz

þ
Xm

j¼kþ1

1

2pi

Z
G

znðhnj
ŝk

j ÞðzÞ
WnðzÞ

dz; n ¼ 0;y; jnj � nk � 1:

Substituting ŝk
2 ;y; ŝk

m by their integral expressions, using Fubini’s Theorem, and

Cauchy’s integral formula, we obtain (for the definition of the functions wk
j ; j ¼

3;y;m; look back to Lemma 3 and set wk
2 
 1)

0 ¼
Z xnð

Pk 1
j¼2 ðhnj 1

þ cjhnj
Þwk

j þ hnk 1
wk

k þ
Pm

j¼kþ1

hnj
wk

j ÞðxÞ

WnðxÞ
dt2;kðxÞ

for each n ¼ 0;y; jnj � nk � 1: Since dt2;kðxÞ=WnðxÞ is a measure with constant sign

on supp s2; it follows that

*Hn ¼
Xk 1

j¼2

ðhnj 1
þ cjhnj

Þwk
j þ hnk 1

wk
k þ

Xm

j¼kþ1

hnj
wk

j ð27Þ

must have at least jnj � nk changes of sign on Coðsuppðs2ÞÞ:
For k ¼ 2;

Pk 1
j¼2 is an empty sum and *Hn reduces to hn1 þ

Pm
j¼3 hnj

w2
j : Since

ð1;w2
3;y;w2

mÞ forms an AT system on Coðsuppðs2ÞÞ for the index

ðn1; n3;y; nmÞAZm 1
þ ð�Þ we readily arrive to a contradiction (if m ¼ 2 the system

of functions reduces to 1 and the conclusion is trivial).
For nAZm

þð�Þ and kX3; on account of (26), deg hnj 1
þ cjhnj

pnj 1 � 1; j ¼
2;y; k � 1: According to our induction hypothesis the system ð1;wk

3 ;y;wk
mÞ forms

an AT system on Coðsuppðs2ÞÞ for the index ðn1;y; nj 1; njþ1;y; nmÞAZm 1
þ ð�Þ

since ðwk
3 ;y;wk

mÞ is a Nikishin system supported on Coðsuppðs3ÞÞ which is disjoint

from Coðsuppðs2ÞÞ: Therefore, *Hn can change signs on Coðsuppðs2ÞÞ at most jnj �
nk � 1 times. With this contradiction we conclude the proof. &

Previously, it was known that ð1; ŝ12;y; ŝ1mÞ forms an AT system for all multi-

indices nAZþ such that ioj implies that njpni þ 1: It is easy to check that this class

of multi-indices is strictly contained in Zm
þð�Þ: In fact, the existence of iojok such

that nionjonk implies that nk4ni þ 1: On the other hand, it is easy to find multi-

indices in Zm
þð�Þ for which nj4ni þ 1 with ioj: In [8] it was proved that ð1; ŝ12; ŝ13Þ is
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an AT system on any interval disjoint from Coðsuppðs2ÞÞ (for all multi-indices

nAZ3
þ). It is not known whether or not this property extends for m43:

We are ready for the proof of the following result.

Theorem 3. Let S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ be an arbitrary Nikishin system of

m measures and let n ¼ ðn1;y; nmÞAZm
þð�Þ: We set k ¼ 1 if n1 � 1 ¼ M ¼ maxfn1 �

1; n2 � 2;y; nm � 2g or k is the first index in f2;y;mg such that nk � 2 ¼ M: There

exists a monic polynomial Wn;k of degree jnj � nk whose zeros are simple and lie in the

interior of Coðsuppðs2ÞÞ such that

0 ¼
Z

xnQnðxÞ
dskðxÞ

Wn;kðxÞ
; n ¼ 0; 1;y; jnj � 1: ð28Þ

Therefore, Qn has exactly jnj simple zeros in the interior of Coðsuppðs1ÞÞ: All indices in

Zm
þð�Þ are strongly normal. We have the remainder formula

ŝk �
Pn;k

Qn

� 

ðzÞ ¼ Wn;kðzÞ

ðQQnÞðzÞ

Z ðQQnÞðxÞ
Wn;kðxÞ

dskðxÞ
z � x

; ð29Þ

where Q denotes an arbitrary polynomial of degree pjnj: Taking Q ¼ Qn in (29), it

follows that Fn;k=Wn;k has no zeros in C\Coðsuppðs1ÞÞ: In particular, this function has

constant sign on Coðsuppðs2ÞÞ: Finally,

Z
pðxÞ

Wn;kðxÞ
dskðxÞ ¼

Xjnj
j¼1

ln;k;j
pðxn;jÞ

Wn;kðxn;jÞ
; pAP2jnj 1 ð30Þ

and

ln;k;j ¼ Wn;kðxn;jÞ
Z

QnðxÞ
Q0

nðxn;jÞðx � xn;jÞ

� 
2
dskðxÞ

Wn;kðxÞ
; j ¼ 1;y; jnj: ð31Þ

Therefore, all the Nikishin Christoffel coefficients associated with Pn;k=Qn have the

same sign as the measure sk and

Xjnj
j¼1

jln;k;jj ¼ jskj: ð32Þ

Proof. If k ¼ 1; from (17) and the assumption on the multi-index n; it follows that

0 ¼
Z

ðhjFn;1ÞðxÞ ds1j ðxÞ; deg hjpnj � 1; j ¼ 2;y;m:

For k ¼ 2; using (18)–(19), and the assumption on the multi-index n; it follows that

0 ¼
Z

ðh2Fn;2ÞðxÞ ds22ðxÞ; deg h2pn1 � 1
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and

0 ¼
Z

ðhjFn;2ÞðxÞ ds2j ðxÞ; deg hjpnj � 1; j ¼ 3;y;m:

Finally, if kAf3;y;mg from (20)–(21) and the assumption on the multi-index n; it
follows that

0 ¼
Z

ðhjFn;kÞðxÞ dsk
j ðxÞ; deg hjpnj 1 � 1; j ¼ 2;y; k

and

0 ¼
Z

ðhjFn;kÞðxÞ dsk
j ðxÞ; deg hjpnj � 1; j ¼ k þ 1;y;m:

In any case, we have that

0 ¼
Z

Fn;kðxÞðh2 þ h3wk
3 þ?þ hmwk

mðxÞdt2;kðxÞ; ð33Þ

where deg hjpnj 1 � 1; 2pjpk; and deg hjpnj � 1; kojpm:

Denote by nðkÞ the multi-index in Zm 1
þ ð�Þ obtained from n deleting its kth

component. By Lemma 4, the assumption on n; and the selection of k we know that

the system ð1;wk
3 ;y;wk

mÞ forms an AT system on Coðsuppðs2ÞÞ for the multi-index

nðkÞ ¼ ðn1;y; nk 1; nk;y; nmÞ: Using (33), it follows that Fn;k has at least jnj � nk

sign changes on Coðsuppðs2ÞÞ (later, when we obtain (29), we see that in fact it has
exactly that many sign changes). This means that Pn;k=Qn is the jnjth Padé

approximant that interpolates ŝk; jnj þ nk þ 1 times at z ¼ N and (at least) jnj � nk

times at the points where Fn;k equals zero on Coðsuppðs2ÞÞ: All the assertions of the

theorem are direct consequences of this fact (see [10]). For convenience of the reader
we proceed with the proof.

Select jnj � nk simple zeros of Fn;k in the interior of Coðsuppðs2ÞÞ and take these

points as the zeros of the polynomial Wn;k: Since deg Wn;kXjnj � nk; from (ii)

znFn;k

Wn;k
¼ O

1

z2

� 

AHð %C\Coðsuppðs1ÞÞÞ; z-N; n ¼ 0;y; jnj � 1:

Let G be a closed integration path with winding number 1 for all its interior points
such that Coðsuppðs1ÞÞCIntðGÞ and Coðsuppðs2ÞÞCExtðGÞ: By Cauchy’s Theorem,
Fubini’s Theorem and, Cauchy’s Integral Formula, we obtain

0 ¼ 1

2pi

Z
G

znFn;kðzÞ
Wn;kðzÞ

dz ¼ 1

2pi

Z
G

znðQnŝkÞðzÞ
Wn;kðzÞ

dz

¼
Z

xnQnðxÞ
dskðxÞ
Wn;kðxÞ

; n ¼ 0;y; jnj � 1

as claimed in (28). Hence, Qn has exactly jnj simple zeros in the interior of
Coðsuppðs1ÞÞ: Since each nAZm

þð�Þ has a component k as indicated in the statement

of the theorem, all such indices are strongly normal.
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Take QAPjnj: From (ii)

QFn;k

Wn;k
¼ O

1

z

� 

AHð %C\Coðsuppðs1ÞÞÞ:

By Cauchy’s Integral Formula, Cauchy’s Theorem, and Fubini’s Theorem, we
obtain that

QFn;kðzÞ
Wn;kðzÞ

¼ 1

2pi

Z
G

ðQFn;kÞðzÞ
Wn;kðzÞ

dz
z � z

¼ 1

2pi

Z
G

ðQQnŝkÞðzÞ
Wn;kðzÞ

dz
z � z

¼
Z ðQQnÞðxÞ

Wn;kðxÞ
dskðxÞ
z � x

;

which is equivalent to (29).
Notice that for any pAP2jnj 1; using (ii)

p

Wn;k
ŝk �

Pn;k

Qn

� 

¼ O

1

z2

� 

AHð %C\Coðsuppðs1ÞÞÞ; z-N:

Using the integral expression of ŝk; the partial fraction decomposition (3) of Pn;k=Qn;
Cauchy’s Theorem, Fubini’s Theorem, and Cauchy’s Integral Formula, we have

0 ¼ 1

2pi

Z
G

pðzÞ
Wn;kðzÞ

Z
dskðxÞ
z � x

�
Xjnj
j¼1

ln;k;j

z � xn;j

 !
dz

¼
Z

pðxÞ
Wn;kðxÞ

dskðxÞ �
Xjnj
j¼1

ln;k;j
pðxn;jÞ

Wn;kðxn;jÞ

which is (30). Taking p ¼ ðQnðxÞ=Q0
nðxn;jÞðx � xn;jÞÞ2 in (30), we obtain (31) and this

obviously implies that the coefficients ln;k;j have the same sign as sk: Using this and

Lemma 1 with p 
 1 we obtain (32). The proof is complete. &

From Theorems 2 and 3 we can deduce some interlacing properties of zeros. For
this we need one more property relative to orthogonal polynomials with respect to a
Markov system of functions. A system of N real continuous functions fu1;y; ung is
said to form a Markov system on an interval ða; bÞ if there do not exist constants
c1;y; cN ; not all identically equal to zero, such that

XN

j¼1

cjuj

has more than N � 1 zeros on ða; bÞ (for more details on Markov systems see [15]).
The next lemma is a reformulation of the Theorem appearing in [14]. There, it is
stated for polynomials orthogonal to a Markov system with respect to the Lebesgue
measure. Here, we state it for an arbitrary Borel measure supported on an interval of
the real line. For this more general case, the proof is basically the same except for
some minor details.
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Lemma 5. Let s be a finite Borel measure with constant sign supported on an interval

of the real line. Let fu1;y; uNg be a Markov system of functions on CoðsuppðsÞÞ: Let

pN be a polynomial of degree pN not identically equal to zero such that

0 ¼
Z

ujðxÞpNðxÞ dsðxÞ; j ¼ 1;y;N:

Then deg pN ¼ N and the zeros of pN are simple and lie in the interior of CoðsuppðsÞÞ:
Assume that pNþ1 is a polynomial of degree N þ 1 with real distinct zeros which satisfies

0 ¼
Z

ujðxÞpNþ1ðxÞ dsðxÞ; j ¼ 1;y;N:

Then between any two consecutive zeros of pNþ1 lies a zero of pN :

Proof. Set

Mnðt1;y; tNÞ ¼

u1ðt1Þ u2ðt1Þ ? uNðt1Þ
u1ðt2Þ u2ðt2Þ ? uNðt2Þ
^ ^ & ^

u1ðtNÞ u2ðtNÞ ? uNðtNÞ

���������

���������
and

VNþ1ðt; t1;y; tNÞ ¼

tN tN 1 ? 1

tN
1 tN 1

1 ? 1

^ ^ & ^

tN
N tN 1

N ? 1

���������

���������
:

Let ½a; b� ¼ CoðsuppðsÞÞ; T ¼ fðt1; t2;y; tNÞ:apt1ot2o?otNpbg; and C ¼
½a; b�N :

That pN has exactly N simple zeros in the interior of CoðsuppðsÞÞ is a direct
consequence of fu1;y; uNg being a Markov system on that set. From this property
it is also easy to see that pN is uniquely determined by the orthogonality relations.
Take pN with leading coefficient equal to 1: Then, there exists la0 such that

pNðtÞ ¼ l

tN tN 1 ? 1R
tN
1 u1ðt1Þ dsðt1Þ

R
tN 1
1 u1ðt1Þ dsðt1Þ ?

R
u1ðt1Þdsðt1Þ

^ ^ & ^R
tN
NuNðtNÞ dsðtNÞ

R
tN 1
1 uNðtNÞ dsðtNÞ ?

R
uNðtNÞ dsðtNÞ

���������

���������
since the polynomial defined by the determinant satisfies the same system of
orthogonality relations and is not identically equal to zero. Hence,

pNðtÞ ¼ l
Z

C

u1ðt1Þu2ðt2Þ?uNðtNÞVNþ1ðt; t1;y; tNÞ dsðt1Þ?dsðtNÞ:

Taking into consideration that VNþ1ðt; t1;y; tNÞ ¼ 0 whenever ti ¼ tj; 1pi; jpN;

from the integral above we obtain that

pNðtÞ ¼ l
Z

T

X
u1ðti1Þu2ðti2Þ?uNðtiN ÞVNþ1ðt; ti1 ;y; tiN Þ dsðt1Þ?dsðtNÞ;
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where the sum extends over all N! permutations of ð1; 2;y;NÞ: Rearranging the
rows in the determinant defining VNþ1ðt; ti1 ;y; tiN Þ so as to get the common factor
VNþ1ðt; t1;y; tNÞ in the sum above and using the definition of a determinant, it
follows that

pNðtÞ ¼ l
Z

T

MNðt1;y; tNÞVNþ1ðt; t1;y; tNÞ dsðt1Þ?dsðtNÞ

¼ l
Z

T

MNðt1;y; tNÞVNðt1;y; tNÞPNðtÞ dsðt1Þ?dsðtNÞ;

where PNðtÞ ¼
QN

j¼1 ðt � tjÞ; since VNþ1ðt; t1;y; tNÞ ¼ VNðt1;y; tNÞPNðtÞ: This

integral representation is the main ingredient in the proof.

Let us write pNþ1ðxÞ ¼
QNþ1

j¼1 ðx � xjÞ: The rest of the proof reduces to showing

that

p0
Nþ1ðxjÞ

Z
T

MNðt1;y; tNÞVNðt1;y; tNÞPNðxjÞ dsðt1Þ?dsðtNÞ

¼
Z

T

MNðt1;y; tNÞVNðt1;y; tNÞP2
NðxjÞ dsðt1Þ?dsðtNÞ; j ¼ 1;y;N þ 1:

To this end you can follow the same arguments used in [14, p. 88–90]. Once this is
proved, on account of the integral representation for pN and the fact that
MNðt1;y; tNÞVNðt1;y; tNÞ has constant sign on T we deduce that p0

Nþ1ðxjÞ and

pNðxjÞ either have the same sign for j ¼ 1;y;N þ 1 or have opposite signs at all

these points. From Bolzano’s Theorem we conclude that the interlacing property
indeed holds. &

Now, we can state the following.

Corollary 1. Let S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ be an arbitrary Nikishin system of

m measures. Let nAZm
þð�Þ; and k be as indicated in Theorem 3 then between any two

consecutive zeros of Qn lies a zero of Pn;k: Let us denote by nþ the vector which is

obtained adding 1 to one component of n and let Qnþ be the multiple orthogonal

polynomials corresponding to nþ: Assume that nþAZm
þð�Þ; then between any two

consecutive zeros of Qnþ lies a zero of Qn:

Proof. From Theorem 3, we know that the coefficients ln;k;j; j ¼ 1;y; jnj; all have
the same sign. Let xn;joxn;jþ1 be two consecutive zeros of Qn: Using (3), taking limit

from the right at xn;j and from the left at xn;jþ1 one obtains infinities with different

sign. Therefore, Pn;k must have an intermediate zero.

From the definition of Qn and Qnþ ; we have that both of these polynomials are

orthogonal to the system of functions

1;y; xn1 1; ŝ12;y; xn2 1ŝ12;y; ŝ1m;y; xnm 1ŝ1m

relative to the measure s1: According to Theorem 2, S1 forms an AT system for the
index nAZm

þð�Þ on any interval ½a; b� disjoint from Coðsuppðs2ÞÞ: In particular, this

U. Fidalgo Prieto et al. / Journal of Approximation Theory 126 (2004) 171 197 191



implies that the functions with respect to which Qn and Qnþ are orthogonal form a

Markov system on the interval Coðsuppðs1ÞÞ: On the other hand, Theorem 3 asserts
that Qn and Qnþ have exactly jnj and jnþj simple zeros, respectively, contained in the

interior of Coðsuppðs1ÞÞ: From Lemma 5 it follows that between any two
consecutive zeros of Qnþ lies a zero of Qn: &

From Theorem 3 we obtain the following consequence which generalizes
Corollary 2 in [3].

Corollary 2. Let S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ be an arbitrary Nikishin system of

m measures. Let LCZm
þð�Þ be an infinite sequence of distinct multi-indices such that for

all nAL the kth component is as it was chosen in Theorem 3. Then, for each nAL the

coefficients ln;k;j ; j ¼ 1;y; jnj; preserve the same sign. For each compact set

KC %C\Coðsuppðs1ÞÞ; there exists kðKÞo1 such that

lim sup
nAL

ŝk �
Pn;k

Qn

����
����
1=2jnj

K

pkðKÞ; ð34Þ

where jj � jjK denotes the sup-norm on K ;

kðKÞ ¼ supfjjjtjjK :tACoðsuppðs2ÞÞ,fNgg

and jt denotes the conformal representation of %C\Coðsuppðs1ÞÞ onto the open unit disk

such that jtðtÞ ¼ 0 and j0
tðtÞ40: For each bounded Riemann integrable function f on

Coðsuppðs1ÞÞ

lim
nAL

Xjnj
j¼1

ln;k;j f ðxn;jÞ ¼
Z

f ðxÞ dskðxÞ ð35Þ

and if fALipbðDÞ; b40; thenZ
f ðxÞ dskðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

����� ¼ O
1

jnjb

 !
: ð36Þ

Finally, if fAHðVÞ; where V is a neighborhood of Coðsuppðs1ÞÞ; then

lim
nAL

Z
f ðxÞ dskðxÞ �

Xjnj
j¼1

ln;k;j f ðxn;jÞ
�����

�����
1=2jnj

pkV ; ð37Þ

where kV ¼ inffkðgrÞ:grCVg and gr ¼ fz:jj
N
ðzÞj ¼ rg; 0oro1: If kAf2;y;mg

and n1 þ 1 ¼ nk for all nAL then (34)–(37) also hold for the first component.

Proof. That for each nAL and k as stated above the Nikishin–Christoffel coefficients
preserve the same sign is a consequence of the last statement in Theorem 3. Using (3)

and (32), we have that for each compact set KC %C\Coðsuppðs1ÞÞ
Pn;kðzÞ
QnðzÞ

����
����
K

p
jskj

dðKÞ;
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where jskj ¼ j
R

dskðxÞj and dðKÞ ¼ inffjz � xj:zAK ; xACoðsuppðs1ÞÞg40: There-

fore the family of functions fŝk � Pn;k

Qn
g; nAL; is uniformly bounded on each compact

subset K of %C\Coðsuppðs1ÞÞ by 2jskj=dðKÞ:
Take gr; 0oro1; so that Coðsuppðs2ÞÞCExtðgrÞ: Set Wn;kðzÞ ¼

Qjnj nk

j¼1 ðz � yn;jÞ;
where Wn;k is the polynomial given in Theorem 3. Then

ŝk � Pn;k

Qn

jjnjþnkþ1
N

Qjnj nk

j¼1 jyn;j

�����
�����
gr

p
2jskj

dðgrÞdðgrÞ2jnjþ1
;

where

dðgrÞ ¼ inffjjtðzÞj:zAgr; tACoðsuppðs2ÞÞ,fNgg:

Considered as a function of the two variables z and t; it is easy to verify that jjtðzÞj is
continuous in %C2: Hence dðgrÞ40 since gr-Coðsuppðs2ÞÞ ¼ |: Fix a compact set

KA %C\Coðsuppðs1ÞÞ and take r sufficiently close to 1 so that KCExtðgrÞ: Since the

function under the norm sign is analytic in %C\Coðsuppðs1ÞÞ; from the Maximum
Principle it follows that the same bound holds for all zAK : Consequently,

ŝk �
Pn;k

Qn

����
����
K

p
2jskj

dðgrÞdðgrÞ
2jnjþ1

jjnjþnkþ1
N

Yjnj nk

j¼1

jyn;j

�����
�����
K

p
2jskj
dðgrÞ

kðKÞ
dðgrÞ

 !2jnjþ1

:

Therefore,

lim sup
nAL

ŝk �
Pn;k

Qn

����
����
1=2jnj

K

p
kðKÞ
dðgrÞ

:

Because of the continuity of jjtðzÞj in %C2; limr-1 dðgrÞ ¼ 1 and (34) follows. That

kðKÞo1 is also a consequence of the continuity of jjtðzÞj in %C2:
Formulas (35) and (36) are consequences of the first and third statements of

Lemma 2. Formula (37) is derived following the same scheme as for proving (8)
taking into consideration that here we have the more precise estimate given by (34).

Concerning the last statement, we only comment that in that case both indices 1
and k satisfy the conditions of Theorem 3 for all indices in L: The existence of such
sequences of multi-indices is guaranteed by the sequence fðN;y;N;N þ 1;y;N þ
1Þg;NAZþ; where the jump in value is produced in the kth component. Other less
trivial examples of such sequences are easy to construct from elements in Zm

þð�Þ: &

Unfortunately, it is not possible to have more than two components kAf1;y;mg
satisfying the conditions of Theorem 3, and if there are two, one of them must be the
first one. But there are other means of obtaining (34) for more than two components.

Let nAZm
þ and kAf1; 2;y;mg: We denote by nk ¼ ðnk

1 ;y; nk
mÞAZm

þ the vector

whose components are defined as follows. For k ¼ 1

n1
j ¼

n1; j ¼ 1;

minfn1 þ 1; njg; 2pjpm:

�
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If kAf2;y;mg

nk
j ¼

minfn1;y; nj ; nk � 1g; 1pjok;

minfnk; njg; kpjpm:

�

Obviously, n � nkAZm
þ and nAZm

þð�Þ implies that nkAZm
þð�Þ: As before jn � nkj ¼Pm

j¼1 ðnj � nk
j Þ ¼ jnj � jnkj: Notice that if nAZm

þð�Þ and k is as defined in Theorem 3,

then n ¼ nk and jn � nkj ¼ 0:

Theorem 4. Let S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ be an arbitrary Nikishin system of

m measures and let n ¼ ðn1;y; nmÞAZm
þ: Assume that nkðkÞAZm 1

þ ð�Þ; kAf1;y;mg;
where nkðkÞ is the vector obtained deleting from nk its kth component. Then, there

exists a monic polynomial Wn;k of degree jnkj � nk ¼ jnkðkÞj whose zeros are simple

and lie in the interior of Coðsuppðs2ÞÞ such that

0 ¼
Z

xnQnðxÞ
dskðxÞ

Wn;kðxÞ
; n ¼ 0; 1;y; jnkj � 1: ð38Þ

Therefore, Qn has at least jnkj simple zeros in the interior of Coðsuppðs1ÞÞ: We have

the remainder formula

ŝk �
Pn;k

Qn

� 

ðzÞ ¼ Wn;kðzÞ

ðQQnÞðzÞ

Z ðQQnÞðxÞ
Wn;kðxÞ

dskðxÞ
z � x

; ð39Þ

where Q denotes an arbitrary polynomial of degree pjnkj: Additionally, let us assume

that the multi-index n is strongly normal (for example, nAZm
þð�ÞÞ: Then

Z
pðxÞ

Wn;kðxÞ
dskðxÞ ¼

Xjnj
j¼1

ln;k;j
pðxn;jÞ

Wn;kðxn;jÞ
; pAPjnjþjnk j 1 ð40Þ

and at least ðjnj þ jnkjÞ=2 Nikishin Christoffel coefficients associated with Pn;k=Qn

have the same sign as the measure sk:

Proof. The proof is similar to that of Theorem 3 so we only outline the main

ingredients. From the definition of nk and using Lemma 3, instead of (33) we get

0 ¼
Z

Fn;kðxÞðh2 þ h3wk
3 þ?þ hmwk

mðxÞ dt2;kðxÞ; ð41Þ

where deg hjpnk
j 1 � 1; 2pjpk; and deg hjpnk

j � 1; kojpm:

By Theorem 2 and the assumption on nkðkÞ; we know that the system

ð1;wk
3 ;y;wk

mÞ forms an AT system on Coðsuppðs2ÞÞ for the multi-index nkðkÞ:
Using (41), it follows that Fn;k has at least jnkj � nk sign changes on Coðsuppðs2ÞÞ:
On the other hand, the number of such sign changes must be finite since Fn;kc0:

Select jnkj � nk distinct zeros of Fn;k on Coðsuppðs2ÞÞ and take Wn;k as the monic

polynomial with a zero at each one of those points. Since deg Wn;k ¼ jnj � nk;
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from (ii)

znFn;k

Wn;k
¼ O

1

z2

� 

AHð %C\Coðsuppðs1ÞÞÞ; z-N; n ¼ 0;y; jnkj � 1:

Now, (38) is obtained as in the proof of (28).
Take QAPjnk j: From (ii)

QFn;k

Wn;k
¼ O

1

z

� 

AHð %C\Coðsuppðs1ÞÞÞ; z-N

and (39) is obtained using the same arguments as for (29).
If the multi-index n is strongly normal, from (39) one sees that for any

pAPjnjþjnk j 1

p

Wn;k
ŝk �

Pn;k

Qn

� 

¼ O

1

z2

� 

AHð %C\Coðsuppðs1ÞÞÞ; z-N:

Using the integral expression of ŝk and the partial fraction decomposition (3) of
Pn;k=Qn; (40) is obtained as in proving (30).

Let kn be the total number of indices j such that the sign of ln;k;j coincides with the

sign of the measure sk: Take p ¼
Q0ðx � xn;jÞ2 where

Q0 denotes the product over all
indices j such that the sign of ln;k;j coincides with the sign of the measure sk: Let us

suppose that deg p ¼ 2knpjnj þ jnkj � 1: We can substitute this p in (40). On the
other hand, it is easy to see that

sg

Z
pðxÞ

Wn;kðxÞ
dskðxÞ

� 

asg

Xjnj
j¼1

ln;k;j
pðxn;jÞ

Wn;kðxn;jÞ

 !
;

where sgð�Þ denotes the sign of ð�Þ; because in the sum all terms cancel out except
those which have different sign with respect to the sign of the integral. This

contradiction means that 2knXjnj þ jnkj which is equivalent to the last assertion of
the theorem. &

Now we can state the following.

Corollary 3. Let S ¼ ðs1;y; smÞ ¼ Nðs1;y; smÞ be an arbitrary Nikishin system of

m measures. Let LCZm
þð�Þ be an infinite sequence of distinct multi-indices such that for

all nAL and k0 fixed, 2pk0om; we have that n1 ¼ n2 ¼ ? ¼ nk0 1 and nk0 ¼ nk0þ1 ¼
n1 þ 1: Then, for k ¼ 1; k0; k0 þ 1 and each nAL the coefficients ln;k;j; j ¼ 1;y; jnj;
preserve the same sign. Consequently, for k ¼ 1; k0; k0 þ 1; (34)–(37) hold true.

Proof. It is easy to verify that the components k ¼ 1; k0 satisfy the assumptions of

Theorem 3 and for them Corollary 2 is applicable. For k ¼ k0 þ 1 notice that jnkj ¼
jnj � 1: Using the last statement of Theorem 4, we obtain that for each nAL at least

ðjnj þ jnkjÞ=2 ¼ jnj � 1
2
coefficients ln;k;j; j ¼ 1;y; jnj must have the same sign; that

is, all of them have the same sign since this number is an integer. From this point on
we can follow the scheme of the proof of Corollary 2. &
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Remark. The type of indices used in Corollary 3 are the only ones for which we can
prove the sign preserving property for three components. For example, when m ¼ 4
according to Theorem 4 the indices of the form ðn1; n1 þ 1; n1 þ 1; n1 þ 1Þ may have
one negative Christoffel–Nikishin coefficient for k ¼ 4 and those of the form
ðn1; n1; n1 þ 1; n1 þ 1Þ may have a negative coefficient for k ¼ 2 and it is not hard to
see that these are the best possible choices. Of course, Theorem 4 only gives a
sufficient condition for the sign preserving property. It would be interesting to see if
it is possible or not to have this property for more than three components with
appropriately chosen multi-indices.

Despite of what was said above, we can prove convergence of the
simultaneous quadrature rule for all the components in the class of analytic
functions on a neighborhood of Coðsuppðs1ÞÞ when the indices are such that
the orthogonality conditions are nearly equally distributed between all the
measures.

Theorem 5. Let S ¼ ðs1;y; smÞ be a Nikishin system of measures. Let L be an infinite

sequence of distinct multi-indices such that there exists a constant c40 for which for all

nAL and all k ¼ 1;y;m; we have nkX
jnj
m
� c and all indices in L are strongly normal

(for example, LCZm
þð�ÞÞ: Then, for each f analytic on a neighborhood V of

Coðsuppðs1ÞÞ and each kAf1;y;mg; (34) and (37) take place.

Proof. Under the assumption that nkX
jnj
m
� c; k ¼ 1;y;m; nAL; it follows from

Theorem 1 in [3] that for each k ¼ 1;y;m

lim
nAL

Pn;k

Qn

¼ ŝk; KC %C\Coðsuppðs1ÞÞ

in (logarithmic) capacity on each compact subset K contained in the indicated
region. Since all the indices in L are strongly normal, the zeros of Qn lie in
Coðsuppðs1ÞÞ and using Lemma 1 in [9] it follows that in fact convergence takes place
uniformly on each such compact subset. In particular, we have that the sequence

Pn;k

Qn

n o
nAL

is uniformly bounded on each compact subset of %C\Coðsuppðs1ÞÞ: From
this point on we can use the arguments employed in proving (34) and (37) in
Corollary 2. &

Remark. For multi-indices satisfying the conditions of Theorem 5 it is not difficult
to show using Theorem 4 that for all k ¼ 1;y;m the sign preserving property of the
Nikishin–Christoffel coefficients is nearly satisfied. By this we mean that for all such
multi-indices and all k ¼ 1;y;m; either jnj � C of the Nikishin–Christoffel
coefficients are positive or jnj � C of them are negative, where C is a constant
independent of n: For details see [3]. It would be interesting to prove that for such
multi-indices condition (B) is satisfied for all k ¼ 1;y;m:

U. Fidalgo Prieto et al. / Journal of Approximation Theory 126 (2004) 171 197196



Acknowledgments

The work of U.F.P. and G.L.L. was partially supported by Dirección General de
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[13] P. González Vera, M. Jiménez Paiz, G. López Lagomasino, R. Orive, On the convergence of

quadrature formulas connected with multipoint Padé type approximants, J. Math. Anal. Appl. 202
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