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Abstract

We study Hermite Padé approximation of the so called Nikishin systems of functions. In
particular, the set of multi indices for which normality is known to take place is considerably
enlarged as well as the sequences of multi indices for which convergence of the corresponding
simultaneous rational approximants takes place. These results are applied to the study of the
convergence properties of simultaneous quadrature rules of a given function with respect to
different weights.
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1. Introduction

Let S = (s1,...,8,) be a system of finite Borel measures with constant sign and
compact support supp(sy) =R, k =1, ..., m, contained in the real line consisting of
infinitely many points. In [1], it is claimed that some applications in computer
graphics illuminating bodies require the simultaneous evaluation of the integrals
Jf(x)dsi(x), k=1,...,m. For this purpose, the author proposes a numerical
scheme of m quadrature rules all of which have the same set of nodes.
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Let N distinct points xj, ...,xy be given which lie in Co(|J;_,(supp(sk))), the
smallest interval containing the union of the supports of the measures in the system
S. We say that we have an interpolatory type simultaneous scheme of quadrature
rules for S of order N if

/ ) dsi(x Zﬂk]p xj), k=1,...,m, (1)

for all pe 2y 1, the vector space of all polynomials of degree at most N — 1, with
coefficients /;; appropriately chosen.

Set Q(x) = H]NI (x —x;). For pe?y 1, from Lagrange’s interpolation formula
we have

SR
Z:Q/( x—x,)

Integrating with respect to s; one has

N N
dsC
/ ) dse(x) = 3 p(v) /Q’(xj = Z iegp(xi), k=1, ....m,

J=1

/ dSk
O (x;)(x — x]

Therefore, given any system of distinct points xy, ..., Xy, such a simultaneous scheme
of quadrature rules is always attainable.

The problem consists in the study of the convergence properties of such a scheme
of simultaneous quadrature rules for a large class of functions f; for example,
continuous on Co(|J;_, (supp(sx))) or analytic on a neighborhood of this set. That
1s, we would like to have

with

hm ZAN“/’ XNj) /f(x)dsk(x)7 k=1,...,m,

where {xy;}, j=1,...,N,NeN is a triangular scheme of nodes contained in
Co(Ui, (supp(sk))) and f is in a sufficiently general class of functions.

Another question of equal importance is connected with the stability of the
numerical  procedure. For  this, it is desirable to have that
SUPNen ZJIL |[Anijl<oo, k=1,...,m, or still more convenient that for each k
and N the coefficients Ay, j =1, ..., N, preserve the same sign. In this case, from
the quadrature rule, taking p = 1, we have

Isi| = ‘/ dsi(x)| = Z ANKj| = Z | 2w el

Nikyj Nikyj




As in Gauss—Jacobi quadrature rules one may ask if the nodes xi, ..., xy, may be
taken so that the quadrature formulas are exact in a class of polynomials as large as
possible hoping to get automatically coefficients of equal sign. Unlike the case when
m = 1, we shall see that in general this problem is not well posed in the sense that it
may not have a solution or it may have infinitely many. The existence of solution
may require nodes of multiplicity greater than 1 or that the nodes lie outside
Co(UiL; (supp(sk)))-

In this paper, we give several results of general nature concerning Gauss—Jacobi
type simultaneous quadrature rules, their connection with Hermite-Padé approx-
imation, their convergence properties, and rate of convergence. This is done in
Section 2. In Section 3, we emphasize on the case when the measures in S are
interlinked in a special way. More exactly, when they form what is called a Nikishin
system of measures (see Definition 3).

2. Some general results

As above, let S = (sq, ...,8,) be a system of finite Borel measures with constant
sign and compact support supp(si) =R, k =1, ...,m, consisting of infinitely many
points. Let S = (81, ..., 8n) be the corresponding system of Markov functions; that is,

. dsi(x
Sk(z) = /J, k=1,..,m.
z—x
We define the simultaneous Hermite—Padé approximant of S with respect to the
multi-index n = (ny, ..., n,) € Z" as a vector rational function R, = (2", e Pé‘”’) with

common denominator Q, that satisfies

(1) dean<|n|:nl+"'+nmv Qn$07
(ii) (Qns”k—Pn,k)(z)za(ﬂ%), o, k=1,...,m.

Integrating along a closed path with winding number 1 for all its interior points
which surrounds supp(sx) and using Fubini’s theorem, it is easy to verify that Q,
fulfills the following system of orthogonality relations:

Oz/x"Q,,(x)dsk(x), v=0,....m—1, k=1, ...,m (2)

It is said that Q, is a multi-orthogonal polynomial of S relative to the multi-index #.
In the sequel, we assume that @, is monic. In general, the polynomial Q, is not
uniquely determined.

Let E be a subset of the real line R. By Co(E) we denote the smallest interval
which contains E. The interior of an interval of the real line refers to its interior in
the Euclidean topology of R.

Definition 1. We say that a multi-index n is weakly normal for the system S if Q,, is
determined uniquely. A multi-index » is said to be normal if any non-trivial solution



0, of (2) satisfies deg O, = |n|. If Q, has exactly |n| simple zeros and they all lie in the
interior of Co(UJ, supp(s;)) the index is called strongly normal. When all
the indices are weakly normal, normal, or strongly normal the system S is said to
be weakly perfect, perfect, or strongly perfect respectively.

Normality of indices plays a crucial role in applications to number theory and
Hermite—Padé approximation. Obviously, strong normality implies normality, and it
is not hard to prove that normality implies weak normality (see Lemma 1 in [§]
where you can also find further discussions on the subject).

From (ii) it is obvious that P, is the polynomial part of Q,sy. Therefore, given
Oy, the polynomial P, is uniquely determined. For a moment, set

z):/w&k(x), k=1,....m

Using (2) it is straightforward that (ii) takes place; thus, this polynomial is in fact the
one defined above. Therefore, if n is weakly normal the polynomials P, (and
consequently R,) are also uniquely determined. If the index # is strongly normal then

Pi(z2) NS kj
- K k=1, ....m, 3
Qn(z) /:Zl zZ— xn.j " ( )
where Q,(z) H‘"‘ (z — xu,) and
— Xn Qn Qn On (X dsk )
i = i J 4
k= h_l’rg/ Qn / / Ql xn] xﬂj) ( )

Definition 2. The numbers defined by (4) will be called Nikishin—Christoffel
coefficients.

Lemma 1. Let n be strongly normal for the system S = (si, ...,sm). Then, for each
k=1,..

/ dsk Z )Ln ij an peg\n\—o—nk 15

where 2y denotes the vector space of all polynomials of degree at most N.

Proof. Fix ke {1, ...,m} and assume that pe 2}, 1. Let
|| )
/(x) — lQn(x)p(x”J)
—1 Qn (X"J)(x - x"J)

be the Lagrange polynomial of degree |n| — 1 that interpolates p at the zeros of Q,,.
By the definition of / it follows that

p(x) = £(x) = Qu(x)q(x),



where ge #,, . Therefore, from (2) and (4), we have

0= / (p — ¢)(x) dsi(x) = / p(x) dsi(x 'z': p(xny) / Q/Qn(x ) disk (x)

(Xnj) (% = %)
||
/P(x dSk Zinkjp xn]

which is what we needed to prove. [

Remark. In the case of normal indices, for which the zeros are not necessarily
distinct, one can obtain a similar quadrature formula exact for all pe 2, ,,, | but on
the right hand appear all the derivatives of the polynomial up to the multiplicity of
the corresponding zero of Q, minus one.

Notice that in Lemma 1 we have exactness with respect to each measure at least of
order |n|. Therefore, all such simultaneous quadrature rules are of interpolatory
type. In terms of the Nikishin—Christoffel coefficients, we distinguish several cases.

Let AcZ" be a sequence of distinct strongly normal multi-indices and
ke{l,...,m} fixed.

(A) For each neA all 4,4, j=1,...,|n|, have the same sign.
In|
(B) su il <KC< 0.
p 2 Vi
In|
(©) > Vil <Clal* <0, 0€(0,+x), ned.
=
D | < Cln|*™ i =0.
@) Y V| SCll™ <00, lim () log |nl/n] = 0

It is obvious that (A) = (B) = (C) = D). Depending on whether one has (A)-
(D) one can prove that

||
lim ; sl (en) = / 7(x) dse (x) (5)

for different classes of functions f.
We denote Lipy([a, b]),0< <1, the class of all complex valued functions f defined
on the interval [a, b] =R such that

f(0) —fW)I<Clx =y, x,yela,b]



We say that f'eLipy([a,b]), 1 <f< oo, if the [f]th derivative of f exists and is in
Lipg (g ([a, b]), where [$] denotes the integer part of 8. The next lemma summarizes
some known results which allow to deduce convergence of the quadrature rule. For
completeness we include some proofs. More on sufficient conditions for the
convergence of interpolatory quadrature rules may be found in [5] and the references
therein.

Lemma 2. Let S be a system of measures and A= 7"} a sequence of distinct strongly
normal multi-indices. Set A = Co(|J})—_, supp(sx')). Then:

(A) implies (5) for all Riemann integrable functions f on A.
(B) implies (5) for all continuous functions f on A.
(C) implies (5) for all f € Lipy(4), B>o. Moreover,

()

‘/f dYk Z /Ink,/f xn/

(D) implies that

P P 1/|n| _
tim sup |5 — 24 < gl KT, )
neA n K
where || - || denotes the sup norm on the compact set K and ¢ denotes the conformal

representation of C\A onto {w:|w| <1} such that ¢p(0) =0 and ¢'(0)>0. If f is
analytic on a neighborhood V of A (feH(V)), then (7) implies

1/|n|
<PV7 (8)

||

lim ‘ / f(x) dsi(x) — Z Infeif (Xnz)

where py = inf{p:y, =V} and y, = {z]o(z)| = p}, 0<p<I.

Proof. The first two statements are classical and contained, for example, in
Theorems 15.2.2 and 15.2.1, respectively, of [18]. The third is also fairly well known.
Notice that for each pe ), |, using the quadrature formula, we obtain

[ 15 = p ds )

||
Z ‘/Lnk]fon] p(xn.j)|~

‘/f dsk’ Z/Wzk]fxnj




Therefore,
||

/ S dse () = S st (o) | < (sl + ClafVEpy (1),
Jj=1

From Jackson’s Theorem (see [4, p. 147]), we have that if feLipg(4) then

Ey ()< C1/|n|” where C; does not depend on ne A. From this follows (5) for this
class of functions when >« with the given estimate for the error.

The last statement is familiar to specialists in Padé approximation. Let us prove
(7). Since n is strongly normal, from (ii) we have that

A Pn.k . 1
g (am) =

and
§k _ Pn,k
(pln‘fl’" eH(C\4).

Set y, = {z:]p(z)| = p}, 0<p<1. Using (D), it follows that
Pn‘k

n

Sk —

< Cp|n|a(n)7

ip

where C, is a constant which depends on the curve y, but not on n. Therefore,
¢ P,

Sk =39 @)| _ Cpln™
QI (z) | Td(y,)pht

with d(y,) = inf{|z — x| : zey,, xe 4}. By the maximum principle

) Pnk) ‘ ol <|<P(Z)|> e
S ———|(2)| < , zeExt(y,),
( * O ) d(Vp) P (/p)

where Ext(y,) denotes the unbounded connected component of the complement of

zey,

7,- Fix a compact set K = C\4 and take p sufficiently close to 1 so that K < Ext(y,). It
follows that

Sk —

Pus <cp|n|“("><|cp|,<>"'*‘
Qn K d(yp) P

Thus, using the assumption on the sequence of numbers {«(n)}, it follows that
Pn,k

1
P (II(/)HK)
On lx p

and letting p— 1, we find that

1/ln]
<llellx-

lim sup | —

neA

nk

lim sup |[$; —

neA

n

K



To conclude let us show that (7) implies (8). Using (3), Cauchy’s integral formula,
and Fubini’s Theorem, it follows that

/f( ) disic(x ﬁjnkjf(xw
27'[1// f_ dz dsy.(x) — Z “2%/ zji(ic)n,,-dz

2m/ fe ("(_ Qn>( ) .

/f (X dsk X) Z )Vn k]f xn,/)

Therefore,

P,
<clifll, &

)

where C denotes the length of y, divided by 2z. This inequality and (7) immediately
give (8). O

Remark. In the first three statements of Lemma 2 the assumption on f may have
been given on Co(supp(sx)) instead of all 4. This is so because any function
Riemann integrable, continuous, or Lip; on Co(supp(sx)) may be extended within
the same class, respectively, to 4. In this case, the quadrature formula applied to a
function defined on Co(supp(sx)) must be understood as its application to any of its
extensions to 4 pertaining to the same class. Since the integral depends only on the
values of the function on Co(supp(sy)) this means that the nodes lying in
A\Co(supp(sk)) give no contribution to the approximate evaluation of the integral.
From the practical point of view it is better to think that the function is extended
with value zero outside of Co(supp(si)) though this extension does not necessarily
preserve the class in the second and third cases. Concerning the statements following
assumption (D) one cannot say the same because analytic functions cannot be
extended at will. Nevertheless, we point out that in the proof we only use that V' is a
neighborhood of an interval [a, b] containing the zeros of the polynomials Q, and the
support of the measure s;. Therefore in relations (7) and (8) one can substitute 4 by
[a,b]. These remarks will be used in the statement and proof of Theorem 1 below
without special notice.

In general, it is difficult to guarantee strong normality of a multi-index and even
then it is more complicated to verify one of the conditions (A)—(D). For the moment,
we will restrict our attention to a sufficiently general system of measures and a
special selection of multi-indices for which strong normality and some of conditions
(A)—(D) are fulfilled.

Let ¢ be a finite positive Borel measure supported on a compact subset of R and
S = (s1,...,8u) be such that dsg(x) = wi(x)do(x),wreLi(a), ke{l,...,m}, where
each wy preserves sign on supp(s). Whenever it is convenient we use the differential



notation of a measure. Let A, =Z" be the sequence of multi-indices of the form

N=(0,...,0,N,0,...,0), NeZ,,and the number N is placed in the kth component
of the multi-index. We have

Theorem 1. Let S and Ay be as indicated above. All multi-indices in Ay are strongly

normal. For the component k, (A) takes place. Consequently, (5) holds for all bounded
Riemann integrable function f on Co(supp(sk)) and if f'€ Lips(Co(supp(sk))), B>0,

then
N
o( L
' / 1(x) dsi(x) — ; A ()| = € < Nﬁ). )

If for some k'e{1, ...,m}, we have that

() "
Wi (x
Cip = do(x < 0 10
ek ( e ()] ( )) (10)
then

N ~

> Vgur | < Cow/Iskl,  Nedy (11)

j=1

and for all f € Lipg(Co(supp(sk'))), B>0,

N
1
' / S(x) dsp (x Z f(xy,) @(ﬁ> (12)
We also have
_1/2N
lim sup s”k—i‘k <llollg, K<=C\Co(supp(sk)) (13)
N—ow N K
and
P“ ’ l/N
timsup |5 — 5% <llgllx, K<=C\Colsupp(si), (14)
— 00 N K

where ¢ denotes the conformal representation of C\Co(supp(sx)) onto {w:|w| <1} such
that ¢(o0) =0 and ¢'(0)>0. If f is analytic on a neighborhood V of

Co(supp(o)) (feH(V)), then

/f ) dsy(x Z ETRACTD)

12N
<Py (15)




and

1/N

111’1’1 ‘/f X) dsk’ Z /“Nk’ xNj) <pV7 (16)

where py, = inf{p:y, <V} and y, = {z:|p(2)| = p}, 0<p<I.

Proof. We only need to prove that for the index k, property (A) takes place and
that for an index k' for which (10) holds (11) takes place and then make use of
Lemma 2.

Fix NeAy. From (i) and (2) we have that Qy; is the Nth orthogonal polynomial

with respect to the measure si. Therefore, Q has exactly |N| = N simple zeros in the
interior of Co(supp(sx)) as needed to affirm that n is strongly normal.

Let je{l,...,N} be fixed. Taking p(x) = (Qg(x)/Q(xz,)(x — xy;))* in Lemma
1 one sees that

2
o Oy(x) sic(x
iN,k.j_/<Q;\7(xN‘j)(x_x]\71/)> dsy(x).

Therefore, all Ay, j=1,...,N, have the same sign as the measure s;. The

convergence of the corresponding quadrature for all Riemann integrable functions
follows from the first assertion of Lemma 2 and (9) is a consequence of the third
statement in Lemma 2.
That (10) implies (11) is a slight generalization of a result due to Sloan and Smith
[17], Theorem 1, (they only consider weights). For completeness we include a proof.
Take k' e{1, ...,m} such that (10) takes place. Using (4), it follows that

b= | o Oule) el () o),

() (v = x7,;) wie(x)

Write wy /wi = Sy 1 + Ry | where Sy | denotes the Nth partial sum of the Fourier
expansion of wy /wy in the orthogonal system given by {Qy}, NeZ,. From (10) we
have that the function wy /wy is square integrable with respect to the measure wydo;
therefore, its Fourier series converges to the function in L(wido). Using this and the
previous formula it follows that

bnss = [ e gy 10 do)

Since Sy 1 is a polynomial of degree at most N — 1, from the orthogonality
properties of O, we obtain

_SN 1 xN,, /Q’ XN] (x) .XNJ) wi(x) da(x):}vﬁ7kJ-SN I(XN,j)'




Using the Gauss—Jacobi formula satisfied by the kth component, and the Cauchy—
Schwartz and Bessel inequalities, we obtain

N N N 1/2
Z 145wl = Z A i ISn 1(xg )< (Z ;°1\7.,k,/‘) (
Jj=1 Jj=1 Jj=1 J

—\/|Sk|</ Sy 1(X)Wk(X)dG(X))1/2<Ck,k/\/|Sk

as we needed to prove.

Now, (12), (14), and (16) are direct consequences of (6)—(8) respectively, taking
into consideration that all the zeros of Qy lie on Co(supp(sx)) and that from (10)
supp(sx) =supp(sx). To prove (13) and (15) one follows the same scheme noticing
that for the index k one has

Py 1
- N,k
— = — O —
Sk }\;C(ZZN“)’ Z— 0.

With this we conclude the proof of this theorem. [J

N 1/2
'IN,kJSzzv 1 (M?.,‘))
=1

Given the way in which the nodes are chosen it is possible to prove that (10)
implies convergence of the quadrature rule corresponding to the component &’ for all
Riemann-integrable functions f on 4. For details see [17]. We wish to point out that
condition (10), used here to derive (11), was also employed in [12,13] in the study of
the convergence of interpolatory quadrature rules for complex weights and
quadrature rules exact for rational functions with prescribed poles.

3. Nikishin systems

In order to study more general classes of indices for which strong normality and
convergence of the simultaneous quadrature rules take place, we further restrict the
class of systems of measures under consideration.

Nikishin systems of measures were introduced in [16]. For them a large class of
indices are known to be strongly normal. Such systems are defined as follows. We
adopt the notation introduced in [11] which is clarifying.

Let 01 and 0, be two measures supported on R and let 4, 4, denote the smallest
intervals containing supp(s;) and supp(oz), respectively. We write 4; =

Co(supp(s;)). Assume that 4| "4, = () and define
{o1,02)(x) = /dL([)do’l(x) = 62(x) do(x).

xX—1

Therefore, {o1,0,) is a measure with constant sign and support equal to that of ;.

Definition 3. For a system of closed intervals 4y, ..., 4,, contained in R satisfying
A; 1n4; =0, j=2,...,m, and finite Borel measures oy, ..., 0, with constant sign
and Co(supp(o;)) = 4;, we define by induction

<61702:~--76j>:<617<627~-~7Uj>>7 ]:2,,7}’1



We say that S = (s1, ...,5n) = A (01, ..., 0m), Where
Sl:<o_l>:ala S2:<O'1,0'2>,...,Sm:<O'],...,O'm>

is the Nikishin system of measures generated by (o7, ..., 0m).

Remark. All the results that follow hold true if in the definition of a Nikishin system
we only require that the interior (in R) of 4; 1n4;, j =2, ...,m, be empty as long as
the corresponding measures s;, j =1, ...,m, are all finite. This allows consecutive
intervals 4; to have a common end point. We restrict generality in order to simplify
the arguments in the proofs.

Notice that all the measures in a Nikishin system have the same support, namely
supp(o1). For Nikishin systems of measures all multi-indices n satisfying
1<i<j<m = n;<n; + 1 are known to be strongly normal. This result was originally
proved in [6]. More recently, an extension for so called generalized Nikishin systems
was given in [11]. When m = 2, from the results in [3] it follows that the system is
strongly perfect (a detailed proof may be found in [6]). In [2], the authors were able
to include in the set of strongly normal indices all those for which there do not exist
I1<i<j<k<m such that n;<n;<n;. This special class of multi-indices will be
denoted Z'(x) in the sequel. For m = 3, in [8] the authors prove that the system is
strongly perfect.

In [16] the numbers A,;; were introduced for the study of the convergence
properties of the Hermite—Padé approximants of a Nikishin system of two functions.
Let us denote

Fﬂ~k(z):(Q11§k_Pn.k)(Z)7 k=1,..,m.

In [3] (see Lemmas 4-6), it was proved that the functions F); satisfy certain
orthogonality relations on the second interval 4, = Co(supp(a2)). The following
lemma summarizes these results and we refer to the original source for the proof. We
wish to stress that the range of degrees for which (20) and (21) below are indicated
here to hold is a bit larger than in the statement of the original Lemma 6 in [3].
Nevertheless, the proof is exactly the same. In that paper the authors were not
concerned with the signs of the Nikishin—Christoffel coefficients; therefore, they
slightly simplified the statement in favor of brevity. Before going on with the lemma
we need some additional notation.

Let 1<i<j<m. Set

SjJ:<0i,...7Uj> (SjJZGj).
It is well known (see [15, Appendix]) that there exists a first degree polynomial .&;;
and a finite positive Borel measure 7;;, Co(supp(t;;)) = Co(supp(s;;)) such that
1
- — .. £ ().
§i,j(Z) Ly (Z) + Tij (Z)

We associate to each function F,;, k=1,...,m, a Nikishin system of m —1

measures S¥ = (s, ...,s5) = 47(d5,...,6) whose generating measures satisfy

9y -5 0y



supp(a]’.‘) cCo(supp(s;)) and do not depend on n. We preserve the notation
introduced above meaning that sjl-" = <a§, e aj/-‘ >, j=2,...,m. In particular, all the
measures of these m Nikishin systems have their support contained in 4,. The
expression of the generating measures will be given in the lemma.

Lemma 3. Let n = (ny, ..., ny,) be a multi-index. With the function F,; we associate
the Nikishin system
| 1 1 1 |
St = (83, ...,8,) = (doy,wydor, ..., w,dor) = N (02, ...,0m)

with respect to which the following orthogonality relations hold:

/(h_,Fn,l)(x) ds} (x) =0, deghj<min(n;,n,—1), j=2,...,m. (17)
With F, > we associate
S2 = (S%, ...,Si) = (d‘fzﬁg,wgd‘fz_z, ...,Wiqd‘lfz,z) = ,/V(‘ng,ézd(f}, g4, ...,O'm)

with respect to which we have
/(thnﬁz)(x) dS%(X) =0, deg h2<min(l’11 —1,m— 2) (18)

and
/(thn‘z)(x) ds?(x) =0, deghj<min(m, —1,m;—1), j=3,...,m. (19)

Finally, for each k,3<k<m, the function F, is associated with the Nikishin system
SE=(sh, ..., s8) = (tan, Whdrag, ..., wh dray)
=N (T2 $24dT3 4 s Sk 1 kATh ko, Sk A Oh415 Oht2y vy Tin)
which satisfies
k .
/(h,-F,,_k)(x) dsi(x) =0, deghj<min(n; —1,....n; 1 — L —2),

j=2,...,k (20)
and
/(th,,‘k)(x) ds_;‘(x) =0, degh<min(n,—1,m,—1), j=k+1,...,m
(21)

The next lemma is Theorem 3.1.3 in [7], where the proof may be followed. There, it
is used to obtain a result similar to Lemma 3 stated above.

Lemma 4. Let S' = (s}, ...,s)) = N (02, ...,00) and ke{2,...,m} be fixed. Then,

the following formulas take place.
1

ﬁ: Li(z) + $(2), (22)
&



gi(z)24f+‘§f+l(z)+cj‘§f(z)v J=2,... k-1 (23)
and
§l(z)
e .
Sf}c(z):aj—b—sj(z), j=k+1,...,m, (24)

where a; and c; denote certain constants, Ly is a first degree polynomial, and the

measures sjlf are as defined in Lemma 3.

Definition 4. Let w;, j =1, ...,m, be continuous functions with constant sign on an
interval [a, b] of the real line. It is said that (wy, ..., wy,,) forms an AT system for the
index n = (ny, ..., ny) on [a,b] if no matter what polynomials 4y, ..., i, one chooses
with degh;<n; — 1, j=1,...,m, not all identically equal to zero, the function

Hn(X) = AHp(hyy oo By X) = hy (X)W1 (x) + =+ + By (X)W (x)

has at most |n|—1 zeros on [a,b] (degh;< —1 forces h; =0). The system

(wi, ...,wn,) forms an AT system on [a, b] if it is an AT system on that interval for
all ne7?.

Theorem 2. Let S' = (s}, ....s)) = A (02, ..., 0m) be an arbitrary Nikishin system of
m — 1 measures and let n = (ny, ..., n,) € Z"/(x) (the class of all multi-indices such that
there do not exist 1 <i<j<k<m such that n;<n;<ny). Then, the system of functions
(1,8, ...,8) forms an AT system for the index n on any interval [a,b] disjoint from

Co(supp(a2)).

Proof. We will proceed by induction on meN which represents the number of
functions in (1,5}, ...,s)). For m =1 the system of functions reduces to 1 and
neZ,(x) = Z, may be any non-negative integer. This case is trivial because any
polynomial of degree <n — 1 can have at most n — 1 zeros in the whole complex
plane unless it is identically equal to zero. Let us assume that the statement is true for
m—1, m>=2, and let us show that it also holds for m.

Suppose that (1,8}, ...,8}) is not an AT system for an index neZ”(x) on an
interval [a,b] disjoint from Co(supp(sz)). Then there exist polynomials
hy,,degh,, <m; — 1, i=1,...,m, not all identically equal to zero, such that J#, =
D, + hyySY + -+ + hy, S!, has at least |n| zeros on [a,b] counting multiplicities. Let
W,,deg W, >|n|, be a monic polynomial whose zeros are zeros of J#, lying on [a, b].
Therefore,

Hn(2)
Wa(z)

=0 (an M) e H(C\Co(supp(02))), z— o0, (25)

where M = max{n; — 1,ny — 2, ...,n, — 2}.



Assume that M = n; — 1. From (25) we have that

%ZS):@(Z_Z)’ zoow, v=0,...,|n —n — L
Let I" be a closed integration path with winding number 1 for all its interior points
such that Co(supp(oz))<Int(I') and [a,b]<Ext(I'). Here, and in the following,
Int(I') and Ext(I') denote, the bounded and unbounded connected components,
respectively, in which I' divides the complex plane. From Cauchy’s Theorem, it
follows that

1 Z‘v"%n(z) . 1 Zv(hnz‘{‘% + o + hnm‘s"‘)l‘rl)(z)

T oni )y W) C T 2mi )y Wa(2)

VIO,...,‘H|—I’11—1.

dz,

Substituting §1, ..., s by their integral expressions, using Fubini’s Theorem, and

Cauchy’s integral formula, we obtain (w} =8, j=3,....,m, if m=3)

doy(x), v=0,...,|n|—n — L

0 /x”(hn2 + by wh + o+ + By, wh ) (x)
W(x)

Since doy(x)/W,(x) is a measure with constant sign on supp g, it follows that
hay + hyywh + -+ +hy, wl must have at least |n| —n; changes of sign on
Co(supp(a2)). According to our induction hypothesis the system (1,w},...,wl)
forms an AT system on Co(supp(ss)) for the index (ma, ...,m,)eZ" '(x) since
(wl,...,wl ) is a Nikishin system supported on Co(supp(a3)) which is disjoint from
Co(supp(a2)) (if m = 2 the system of functions reduces again to 1 and the conclusion
is trivial). Therefore, hy, + hy,w} + -++ + hy, w} cannot change signs more than |n| —
n; — 1 times on Co(supp(g,)) and we arrive to a contradiction.

Let us consider the case when M = n;, — 2, ke{2,...,m}. In case that this is true
for several k, we choose the smallest one. Notice that with this selection and using
that ne Z"(x), it follows that

nZny - Zhg | (26)
(this is the only place in the proof where we use that ne Z'(x)). From (25) we have
V%n 1
—ZAl (z) =0(=), zow, v=0,..., |0 —m —1.
(8 W) (2) z*

Let I' be as before. From Cauchy’s Theorem

U [ 2Oy s+ o S
/ z ( | + 252"{‘ + msm)(z) dZ? V= 07 7|I/l| — N — l.
r

" 2mi SW)(E)



Using Lemma 4 in the previous relation and Cauchy’s Theorem, it follows that

[ 2 (L) (= hoy (@ + $5y + ¢57))(2)
_ﬁ/r W,(z) : Z 2m/ : W, (z) . d
m L z (h,,/_(aj —|—Sj))(z)
+ j;rl 27ri/r W,(z) dz
B K1 Zv((hn,- 1 Jrc‘hn,-)f]‘c)(z) ‘(h”k 1§k)( )
- ]Z:; ;/r Wn(jz) ; dz+ 277:1/ Wn(zk) dz

m oo 2" (hy, sj‘) (2)
2m / W,(2)

s by their integral expressions, using Fubini’s Theorem, and

dz, v=0,.., |n—n—1.

Substituting s”’z‘,. S
Cauchy’s integral formula, we obtain (for the definition of the functions w , J=

3, ...,m, look back to Lemma 3 and set w’2‘ =1)
N k m
X (ijzl (hnj , + thn,) + hy, lwk + > hn, i )( )
0— / J=k+1 dr (X)
W) 2k
foreachv =0, ..., |n| — nx — 1. Since d1, x(x)/ W,(x) is a measure with constant sign
on supp a», it follows that
k1
H, = Z(h”z + c]hn])w + hy, lwk + Z hnlw (27)
j=2 Jj=k+1

must have at least |n| — nx changes of sign on Co(supp(s)).

For k =2, Z;(:zl is an empty sum and #, reduces to h, + Z hnlw Since
(1w}, ...,w2) forms an AT system on Co(supp(sz)) for the index
(n1,n3, ...,ny)eZ" (%) we readily arrive to a contradiction (if m = 2 the system
of functions reduces to 1 and the conclusion is trivial).

For neZ%(x) and k>3, on account of (26), degh,, , + cjh,<n 1 —1, j=
2, ...,k — 1. According to our induction hypothesis the system (1,4, ..., wk) forms
an AT system on Co(supp(cs)) for the index (ny,...,n; 1,m41, ..., nm) €27 (%)
since (W%, ..., wk) is a Nikishin system supported on Co(supp(a3)) which is disjoint
from Co(supp(c,)). Therefore, #, can change signs on Co(supp(s,)) at most |n| —
n; — 1 times. With this contradiction we conclude the proof. [

Previously, it was known that (1,5}, ...,5!) forms an AT system for all multi-
indices ne Z such that i<j implies that n; <nm; 4+ 1. It is easy to check that this class
of multi-indices is strictly contained in Z'7(x). In fact, the existence of i<j<k such
that n; <n;<n; implies that ny>n; + 1. On the other hand, it is easy to find multi-

indices in 277 (x) for which n;>n; + 1 with i<j. In [8] it was proved that (1,5}, 1) is



an AT system on any interval disjoint from Co(supp(g,)) (for all multi-indices
neZ? ). It is not known whether or not this property extends for m> 3.
We are ready for the proof of the following result.

Theorem 3. Let S = (s1,...,5,) = A (01, ...,0m) be an arbitrary Nikishin system of
m measures and let n = (ny, ..., ny,) €2 (x). We setk =1ifn; — 1 = M = max{n; —
Lny —2,...,my — 2} or k is the first index in {2, ...,m} such that n, —2 = M. There
exists a monic polynomial W, . of degree |n| — ny whose zeros are simple and lie in the
interior of Co(supp(az)) such that

Oz/x"Qn(x);l;jf:g), v=0,1,....|n — 1. (28)

Therefore, Q,, has exactly |n| simple zeros in the interior of Co(supp(a1)). All indices in
7% (%) are strongly normal. We have the remainder formula

o Pk Wik(z) [ (Q0On)(x) ds(x)
L _ 29

(-8 =om )/ T v >
where Q denotes an arbitrary polynomial of degree <|n|. Taking Q = Q, in (29), it

Sollows that F, ./ W,k has no zeros in C\Co(supp(o1)). In particular, this function has
constant sign on Co(supp(az)). Finally,

P(X (%)
Wnk Z )nkjW K )Cn/)7 p€=@2|n| : (30)
and
o _ Q. (x) Pdse(x) .
;Ln.kJ - Wn,k(x”J) / <Q;l(x”J)(x — xn‘j) I/I/mk(x), J = 1, ceny \n| (31)

Therefore, all the Nikishin Christoffel coefficients associated with P, /Q, have the
same sign as the measure s and

||

D gl = Isel- (32)
J=1

Proof. If k£ = 1, from (17) and the assumption on the multi-index #, it follows that
— [ ), deghy<oy — 1, j=2, o
For k = 2, using (18)—(19), and the assumption on the multi-index #, it follows that

= /(/’len"z)(X) dS%(X), deg h<n —1



and
0:/(thn72)(x)dsf(x), deghi<m—1, j=3,...,m

Finally, if ke {3, ...,m} from (20)—(21) and the assumption on the multi-index n, it
follows that

:/(h,»Fn,k)(x)ds]’f(x), deghj<m 1 — 1, j=2,...,k
and
:/(h,Fn,k)(x)dsjf(x), deghj<m — 1, j=k+1,...,m
In any case, we have that
0:/ Fouie(X)(hy + hawh + - 4 By (x)d T4 (), (33)

where deg hj<n; | — 1,2<j<k, and degh;<n; — 1,k <j<m.

Denote by n(k) the multi-index in Z7 '(x) obtained from 7 deleting its kth
component. By Lemma 4, the assumption on 7, and the selection of k we know that
the system (1,w4, ..., wk) forms an AT system on Co(supp(c2)) for the multi-index
n(k) = (ny, ..., nk 1,nk, ..., hp). Using (33), it follows that F,; has at least |n| — ny
sign changes on Co(supp(o,)) (later, when we obtain (29), we see that in fact it has
exactly that many sign changes). This means that P,;/Q, is the |n|th Padé
approximant that interpolates i, |n| + n; + 1 times at z = oo and (at least) |n| — ny
times at the points where F),; equals zero on Co(supp(oz)). All the assertions of the
theorem are direct consequences of this fact (see [10]). For convenience of the reader
we proceed with the proof.

Select |n| — ni simple zeros of F,; in the interior of Co(supp(o)) and take these
points as the zeros of the polynomial W, . Since deg W, x> |n| — ny, from (ii)

Zan,k
I/Vn,k

1 _
= @(;) e H(C\Co(supp(a1))), z— o0, v=0,...,|n| — 1.

Let I' be a closed integration path with winding number 1 for all its interior points
such that Co(supp(a;)) =Int(I') and Co(supp(o2)) = Ext(I'). By Cauchy’s Theorem,
Fubini’s Theorem and, Cauchy’s Integral Formula, we obtain

L[ 2Fg(z) [ 2(0uS)(2)
o ;- nk()dzfzm T Wok(2) d

/ Qn dO’k(X)) V= 07 ey |n| —1

as claimed in (28). Hence, O, has exactly |n| simple zeros in the interior of
Co(supp(a1)). Since each ne 7"/ (x) has a component k as indicated in the statement
of the theorem, all such indices are strongly normal.




Take Qe ?),. From (ii)

QFnk

W (O(é) e H(C\Co(supp(a1))).

By Cauchy’s Integral Formula, Cauchy’s Theorem, and Fubini’s Theorem, we
obtain that

QFnk /(QFnk )(©) dl 1 /(Qank)(C) d{
Wi (z i Wai(0) z—¢ " 2mi Jr Wai(l) z—¢
(00))(x) )dYk(X)
ka( ) z—x

which is equivalent to (29).
Notice that for any pe %), 1, using (ii)

(s”k PQH>—6’<1>6H(C\Co(supp(al))), Z— 0.

Using the integral expression of §i, the partial fraction decomposition (3) of P, /Oy,
Cauchy’s Theorem, Fubini’s Theorem, and Cauchy’s Integral Formula, we have

L p@) (fdsnx) N
=20 ), ank(z)</z_x ;Z_xw' dz

1

I/Vn K

|n|

P(X) (xnj)
d Ak
e sy (x) — ; iy e

which is (30). Taking p = (Q,(x)/Q,,(xn;)(x — )cw-))2 in (30), we obtain (31) and this
obviously implies that the coefficients 4,4 ; have the same sign as s;. Using this and
Lemma 1 with p = 1 we obtain (32). The proof is complete. [

From Theorems 2 and 3 we can deduce some interlacing properties of zeros. For
this we need one more property relative to orthogonal polynomials with respect to a

Markov system of functions. A system of N real continuous functions {uy, ..., u,} is
said to form a Markov system on an interval (a,b) if there do not exist constants
¢y, ..., cn, not all identically equal to zero, such that

N
E :Cj“j
J=1

has more than N — 1 zeros on (a, b) (for more details on Markov systems see [15]).
The next lemma is a reformulation of the Theorem appearing in [14]. There, it is
stated for polynomials orthogonal to a Markov system with respect to the Lebesgue
measure. Here, we state it for an arbitrary Borel measure supported on an interval of
the real line. For this more general case, the proof is basically the same except for
some minor details.



Lemma 5. Let o be a finite Borel measure with constant sign supported on an interval
of the real line. Let {u,, ...,uy} be a Markov system of functions on Co(supp(c)). Let
pn be a polynomial of degree <N not identically equal to zero such that

Oz/uj(x)pN(x)do(x), j=1,...,N.

Then deg py = N and the zeros of py are simple and lie in the interior of Co(supp(a)).
Assume that py 11 is a polynomial of degree N + 1 with real distinct zeros which satisfies

Oz/uj(x)pNH(x) do(x), j=1,...,N.

Then between any two consecutive zeros of pyy1 lies a zero of pn.

Proof. Set
U1(l1) uz(tl) MN(ll)
uy(tr u(tr un(t
Mn(lla"'le): ( ) ( ) . ( )
ui(ty) w(ty) - un(ty)
and
NN
AR A 1
VN+1(t7t17 a[N) = ! : e
A SR

Let [a,b] = Co(supp(o)), T ={(t1,t2,...,tn):a<ti<br<--<ty<b}, and C=
[a,b]".

That py has exactly N simple zeros in the interior of Co(supp(o)) is a direct
consequence of {uy, ...,uy} being a Markov system on that set. From this property
it is also easy to see that py is uniquely determined by the orthogonality relations.
Take py with leading coefficient equal to 1. Then, there exists 2#0 such that

N V1 1
pN(t) - fljlvul(ﬁ)dO'(l‘]) fljlv lul(tl)dtf(ﬁ) fm(l‘l)d(f(l])
ff%“N(li;f) da(ty) [#) 1“N('f/v) da(ty) f”N(fN.) da(ty)

since the polynomial defined by the determinant satisfies the same system of
orthogonality relations and is not identically equal to zero. Hence,

pN(t) = )/C ul(ll)uz(tz)'”u}v(t]v) VN+1(t, 1, ...,tN) dO'(tl)-'~dO'([N).

Taking into consideration that V(¢ ¢, ...,ty) = 0 whenever ¢; = t;, 1<i,j<N,
from the integral above we obtain that

pa(t) = }./T Zul(til)uz(tiz)-~-uN(t,»_,v)VN+|(t, tiys ooy tiy) da(ty)---do(ty),



where the sum extends over all N! permutations of (1,2, ..., N). Rearranging the
rows in the determinant defining V4 (2, ¢, ..., %) S0 as to get the common factor
Vaii(t,ty, ..., ty) in the sum above and using the definition of a determinant, it
follows that

pN(I) :;L/T MN(ll, ...,IN)VN+1(I,11, ...,ZN) dO’(l])"'dG(lN)
:;L/ ]‘1]\1(?17 ...,lN)VN(tl, ...,ZN)PN(Z) dO'(l])"'dO’(lN),

where PN(t) = Hjl\il ([ - lj), since VN_H(Z, t, ...,ZN) = VN(ll, ...,ZN)PN(Z). This
integral representation is the main ingredient in the proof.
Let us write py.(x) = Hjﬁll (x — x;). The rest of the proof reduces to showing

that
pﬁvﬂ(xj)/ MN(II,...,ZN)VN(H,...,ZN)PN(Xj>dO’(ll)"'dO'(lN)
T

:/ M(trs oo i) V(s oo i) P () do(t))---do(tn), =1, o, N4+ 1.
T

To this end you can follow the same arguments used in [14, p. 88-90]. Once this is
proved, on account of the integral representation for py and the fact that
My(t, ..., tx) VN (21, ..., ty) has constant sign on 7' we deduce that py(x;) and
pn(x;) either have the same sign for j =1, ..., N + 1 or have opposite signs at all
these points. From Bolzano’s Theorem we conclude that the interlacing property
indeed holds. [

Now, we can state the following.

Corollary 1. Let S = (s1, ...,8m) = A (01, ...,0m) be an arbitrary Nikishin system of
m measures. Let ne 7'} (x), and k be as indicated in Theorem 3 then between any two
consecutive zeros of Q, lies a zero of P,j. Let us denote by n. the vector which is
obtained adding 1 to one component of n and let Q,, be the multiple orthogonal
polynomials corresponding to n.. Assume that n,€Z"!(x), then between any two
consecutive zeros of Qn. lies a zero of Q.

Proof. From Theorem 3, we know that the coefficients 4,4, j =1, ...,|n|, all have
the same sign. Let x,; <X, ;41 be two consecutive zeros of Q,. Using (3), taking limit
from the right at x,; and from the left at x, ;1 one obtains infinities with different
sign. Therefore, P, must have an intermediate zero.

From the definition of Q, and Q,., we have that both of these polynomials are
orthogonal to the system of functions

moAg s g

o mo m

n 1 2
L., X" 085, ..., x

relative to the measure ¢;. According to Theorem 2, S! forms an AT system for the
index neZ'!(x) on any interval [a, b] disjoint from Co(supp(s3)). In particular, this



implies that the functions with respect to which Q, and Q,, are orthogonal form a
Markov system on the interval Co(supp(o;)). On the other hand, Theorem 3 asserts
that Q, and Q,, have exactly |n| and |n, | simple zeros, respectively, contained in the
interior of Co(supp(o;)). From Lemma 5 it follows that between any two
consecutive zeros of Q,, lies a zero of Q,. O

From Theorem 3 we obtain the following consequence which generalizes
Corollary 2 in [3].

Corollary 2. Let S = (s, ...,8m) = A (01, ...,0m) be an arbitrary Nikishin system of
m measures. Let Ac 7" (x) be an infinite sequence of distinct multi-indices such that for
all ne A the kth component is as it was chosen in Theorem 3. Then, for each ne A the

coefficients Jnrj, j=1,...,|n|, preserve the same sign. For each compact set
K =C\Co(supp(ay)), there exists k(K)<1 such that
P 1/2|n|
lim sup |$} — <k(K), (34)
neA Qn K
where || - ||x denotes the sup-norm on K,

Kk(K) = sup{||¢,||x:te Co(supp(a2)) U {0 }}

and ¢, denotes the conformal representation of C\Co(supp(ay)) onto the open unit disk
such that ¢,(t) = 0 and ¢|(t)>0. For each bounded Riemann integrable function f on

Co(supp(a1))

A
lim Y Af () = / 1(x) dsi(x) (35)
j=1
and if f' € Lipy(4), >0, then

neA
1
‘/j ) dsye(x Z Dngesf (Xng) (| |ﬁ> (36)
Finally, if fe H(V), where V is a neighborhood of Co(supp(a1)), then
|n] 1/2|n|
llm ‘/f dsk Z )-nkjf an

where ky = inf{x(y,):y, =V} and y, ={z|p. (z)| = p}, 0<p<l. If ke{2,...,m}
and ny + 1 = ny, for all ne A then (34)—(37) also hold for the first component.

gKV7 (37)

Proof. That for each ne A and k as stated above the Nikishin—Christoffel coefficients
preserve the same sign is a consequence of the last statement in Theorem 3. Using (3)
and (32), we have that for each compact set K = C\Co(supp(s))

P,,yk (Z)
On (Z)

Ik
x dK)




where [si| = | [ dsi(x)| and d(K) = inf{|z — x|:ze K, xe Co(supp(ay))} >0. There-

fore the family of functions {5} — 2:}, ne A, is uniformly bounded on each compact

subset K of C\Co(supp(ay)) by 2|sk|/d(K).
Take y,,0<p <1, so that Co(supp(a2)) = Ext(y,). Set W, (z) = H"ﬂ " (2= Yuj)s
where W, is the polynomial given in Theorem 3. Then

& Puk
k0,
[n]+ni+1 yyln| ne
P H

25|
\d N 5 N 2‘/’1‘+17
(7500 (v,)

7,

Py,

where

5("/‘,) = inf{|qot(z)\:zeyp, teCo(supp(az))u{c}}.
Considered as a function of the two variables z and ¢, it is easy to verify that |¢,(z)] is
continuous in C2. Hence 6(y,)>0 since y,nCo(supp(c2)) = 0. Fix a compact set
K eC\Co(supp(a1)) and take p sufficiently close to 1 so that K =Ext(y,). Since the

function under the norm sign is analytic in C\Co(supp(ay)), from the Maximum
Principle it follows that the same bound holds for all ze K. Consequently,

 Pu 2| e ‘h <2 ( K(K >>2'”'“
O Ik ﬂyﬁWQMHl d(v,)\6(7,)
Therefore,
lim sup | — Pog| " \M.
neA O |k 5(Vp)

Because of the continuity of |¢,(z)| in C2, lim,_, (y,) = 1 and (34) follows. That
k(K)<1 is also a consequence of the continuity of |¢,(z)| in C2.

Formulas (35) and (36) are consequences of the first and third statements of
Lemma 2. Formula (37) is derived following the same scheme as for proving (8)
taking into consideration that here we have the more precise estimate given by (34).

Concerning the last statement, we only comment that in that case both indices 1
and k satisfy the conditions of Theorem 3 for all indices in A. The existence of such
sequences of multi-indices is guaranteed by the sequence {(N,...,N,N+1,...,N +
1)}, NeZ,, where the jump in value is produced in the kth component. Other less
trivial examples of such sequences are easy to construct from elements in 27/ (x). [

Unfortunately, it is not possible to have more than two components ke {1, ...,m}
satisfying the conditions of Theorem 3, and if there are two, one of them must be the
first one. But there are other means of obtaining (34) for more than two components.

Let neZ? and ke{l,2,...,m}. We denote by n* = (n}, ....n%)eZ" the vector
whose components are defined as follows. For k = 1

N LT j=1
7 Umin{n + Ln}, 2<j<m.



If ke{2,...,m}

" {min{m7 ey — 1}, 1<j<k,

n; = . .
J min{n,n;}, k<j<m.

Obviously, n —n* €7’} and neZ”(x) implies that n*eZ’(x). As before [n —nk| =

ij:l (nj — njk) = |n| — |n*|. Notice that if ne Z"!(x) and k is as defined in Theorem 3,
then n = n* and |n — n*| = 0.

Theorem 4. Let S = (s1,...,5%) = A (01, ...,0m) be an arbitrary Nikishin system of
m measures and let n = (ny, ..., ny,) € Z. Assume that n*(k)eZ7 '(x),ke{l,...,m},
where n*(k) is the vector obtained deleting from n* its kth component. Then, there
exists a monic polynomial W,y of degree |n*| — ny = |n (k)| whose zeros are simple
and lie in the interior of Co(supp(o3)) such that

[ dsic(x) _
0—/x Qn(x)Wnﬁk(x), v=0,1,..., " - 1. (38)

Therefore, Q, has at least |n*| simple zeros in the interior of Co(supp(ci)). We have
the remainder formula

P Ly W) [(00)() dsi(x)
<Sk On >( ) (00)(2) Wn,k(X) z—x’ (39)

where Q denotes an arbitrary polynomial of degree <|n*|. Additionally, let us assume
that the multi-index n is strongly normal (for example, ne 2" (x)). Then

||

/ V;jf;()x) dsy(x) = ; Ak 11(;—(";3])7 PEPusint| 1 (40)

and at least (|n|+ |n¥|)/2 Nikishin Christoffel coefficients associated with Py /Qy
have the same sign as the measure sj.

Proof. The proof is similar to that of Theorem 3 so we only outline the main
ingredients. From the definition of #* and using Lemma 3, instead of (33) we get

0= /Fn,k(x)(hZ + h3W§ + -+ hmwﬁ(x) d‘L’z‘k(X), (41)

where deg hj<nf | — 1,2<j<k, and deghy<nf — 1, k<j<m.

By Theorem 2 and the assumption on nf(k), we know that the system
(1,wk, ...,wk) forms an AT system on Co(supp(s)) for the multi-index n*(k).
Using (41), it follows that F,; has at least [nX| — ny sign changes on Co(supp(c2)).
On the other hand, the number of such sign changes must be finite since F, ; #0.
Select |[n¥| — ny distinct zeros of F,x on Co(supp(cs)) and take W, as the monic
polynomial with a zero at each one of those points. Since deg W, = |n| — ny,



from (ii)

Z‘,Euk , 1 = k
Wk @<?) e H(C\Co(supp(a1))), z—o0, v=0,...,[n"| - 1.
Now, (38) is obtained as in the proof of (28).
Take Qe%nk‘. From (ii)
F, 1 ~
QFui _ a(—) e H(C\Colsupp(a1))), o0
Wn,k z

and (39) is obtained using the same arguments as for (29).
If the multi-index n is strongly normal, from (39) one sees that for any
pe'?|n|+\n"\ 1

(fk — PQ””‘) = @<21—2> e H(€\Co(supp(a1))), z— 0.

n

Wn,k
Using the integral expression of s, and the partial fraction decomposition (3) of
P, /Oy, (40) is obtained as in proving (30).

Let x, be the total number of indices j such that the sign of 4,x; coincides with the
sign of the measure s;. Take p = [ (x — x,, J)Z where [] denotes the product over all
indices j such that the sign of 4,4, coincides with the sign of the measure si. Let us
suppose that degp = 2k, <|n| + |n*| — 1. We can substitute this p in (40). On the
other hand, it is easy to see that

p(x) . P(xn))
s [ i) 2 (Z s Wn,k<xn.j>> |

where sg(-) denotes the sign of (), because in the sum all terms cancel out except
those which have different sign with respect to the sign of the integral. This
contradiction means that 2, >|n| + |#*| which is equivalent to the last assertion of
the theorem. [

Now we can state the following.

Corollary 3. Let S = (51, ...,8u) = A (01, ...,0m) be an arbitrary Nikishin system of
m measures. Let A< 7" (x) be an infinite sequence of distinct multi-indices such that for
all ne A and k' fixed, 2<k' <m, we have that ny =ny = -~ = np | and ngp = N, =
ni + 1. Then, for k = 1,k'.k' + 1 and each ne A the coefficients Ayxj, j=1,...,|n|,
preserve the same sign. Consequently, for k = 1,k', k' + 1, (34)—~(37) hold true.

Proof. It is easy to verify that the components k = 1,k’ satisfy the assumptions of
Theorem 3 and for them Corollary 2 is applicable. For k = k' + 1 notice that |[n*| =
|n| — 1. Using the last statement of Theorem 4, we obtain that for each ne A at least
(In| + [n*])/2 = |n| — § coefficients Ak, j =1, ..., |n| must have the same sign; that
is, all of them have the same sign since this number is an integer. From this point on
we can follow the scheme of the proof of Corollary 2. [



Remark. The type of indices used in Corollary 3 are the only ones for which we can
prove the sign preserving property for three components. For example, when m = 4
according to Theorem 4 the indices of the form (ny,n; + 1,n; 4+ 1,n; + 1) may have
one negative Christoffel-Nikishin coefficient for k =4 and those of the form
(ny,n1,n; + 1,n; + 1) may have a negative coefficient for £ = 2 and it is not hard to
see that these are the best possible choices. Of course, Theorem 4 only gives a
sufficient condition for the sign preserving property. It would be interesting to see if
it is possible or not to have this property for more than three components with
appropriately chosen multi-indices.

Despite of what was said above, we can prove convergence of the
simultaneous quadrature rule for all the components in the class of analytic
functions on a neighborhood of Co(supp(o;)) when the indices are such that
the orthogonality conditions are nearly equally distributed between all the
measures.

Theorem 5. Let S = (sy, ..., Sm) be a Nikishin system of measures. Let A be an infinite
sequence of distinct multi-indices such that there exists a constant ¢ >0 for which for all
nedandall k =1, ...,m, we have ny 2‘:1—‘ — ¢ and all indices in A are strongly normal
(for example, AcZ'!(x)). Then, for each f analytic on a neighborhood V of
Co(supp(s1)) and each ke {1, ...,m}, (34) and (37) take place.

Proof. Under the assumption that nkz‘mﬂ— ¢, k=1,...,mneA, it follows from
Theorem 1 in [3] that foreach k=1,....,m

li Pn,k o
m =

neA n

Sk, K <=C\Co(supp(s))

in (logarithmic) capacity on each compact subset K contained in the indicated
region. Since all the indices in A are strongly normal, the zeros of Q, lie in
Co(supp(s1)) and using Lemma 1 in [9] it follows that in fact convergence takes place
uniformly on each such compact subset. In particular, we have that the sequence

{PQ’} | is uniformly bounded on each compact subset of C\Co(supp(ai)). From
" Jne

this point on we can use the arguments employed in proving (34) and (37) in
Corollary 2. O

Remark. For multi-indices satisfying the conditions of Theorem 5 it is not difficult
to show using Theorem 4 that for all k = 1, ..., m the sign preserving property of the
Nikishin—Christoffel coefficients is nearly satisfied. By this we mean that for all such
multi-indices and all k=1,...,m, either |[n|— C of the Nikishin—Christoffel
coefficients are positive or |n| — C of them are negative, where C is a constant
independent of n. For details see [3]. It would be interesting to prove that for such
multi-indices condition (B) is satisfied for all k =1, ..., m.



Acknowledgments

The work of U.F.P. and G.L.L. was partially supported by Direccion General de
Ensefianza Superior under Grant BFM2003-06335-C03-02 and of G.L.L. by INTAS
under Grant INTAS 03-51-6637.

References

[1] C.F. Borges, On a class of Gauss like quadrature rules, Numer. Math. 67 (1994) 271 288.

[2] A. Branquinho, J. Bustamante, A. Folqui¢, G. Lopez, Normal indices in Nikishin systems, J. Approx.
Theory 124 (2003) 254 262.

[3] Z.H. Bustamante, G. Lopez Lagomasino, Hermite Padé Approximation for Nikishin systems of
analytic functions, Russian Acad. Sci. Sb. Math. 77 (1994) 367 384.

[4] E.W. Cheney, Introduction to Approximation Theory, McGraw Hill, New York, 1966.

[5] P.J. Davis, P. Rabinowitz, Methods of Numerical Integration, Academic Press, New York, 1975.

[6] K. Driver, H. Stahl, Normality in Nikishin systems, Indag. Math. N.S. 5 (2) (1994) 161 187.

[7] K. Driver, H. Stahl, Simultaneous rational approximants to Nikishin systems II, Acta Sci. Math. 61
(1995) 261 284.

[8] U. Fidalgo, G. Lopez lagomasino, On perfect Nikishin systems, Comp. Methods in Function Theory
2 (2002) 415 426.

[9] A.A. Gonchar, On the convergence of generalized Padé approximants for meromorphic functions,
Math. USSR Sb. 27 (1975) 503 514.

[10] A.A. Gonchar, G. Lopez Lagomasino, On the convergence of multipoint Padé approximants to
Markov functions, Math. USSR Sb. (1978) 449 459.

[11] A.A. Gonchar, E.A. Rakhmanov, V.N. Sorokin, Hermite Padé Approximants for systems of
Markov type functions, Sbornik Math. 188 (1997) 33 58.

[12] P. Gonzalez Vera, G. Lopez Lagomasino, R. Orive, J.C. Santos, On the convergence of quadrature
formulas for complex weight functions, J. Math. Anal. Appl. 189 (1995) 514 532.

[13] P. Gonzalez Vera, M. Jiménez Paiz, G. Lopez Lagomasino, R. Orive, On the convergence of
quadrature formulas connected with multipoint Padé type approximants, J. Math. Anal. Appl. 202
(1996) 747 775.

[14] D. Kershaw, A note on orthogonal polynomials, Proc. Edimburgh Math. Soc. 17 (1970) 83 93.

[15] M.G. Krein, A.A. NudeI'man, The Markov moment problem and extremal problems, in:
Transactions of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence,
RI, 1977.

[16] E.M. Nikishin, On simultaneous Padé approximants, Math. USSR Sb. 41 (1982) 409 425.

[17] LH. Sloan, W.E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal.
19 (1982) 427 442.

[18] G. Szegd, Orthogonal polynomials, Colloquim Publications, Vol. 23, American Mathematical
Society, Providence, RI, 1975.



