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1. Introduction 

May it be in my interest to support rivals who can end up helping my friends? Can it be rational 
to refrain from supporting friends who might end up helping some of my rivals in the future? 
Questions of this type may arise in many situations where supporting an agent is likely to have 
important future consequences which I can no longer control once I supported him; the agent I 
did help to build up strength can use it later on to support others, regardless of my views about 
such action. Our aim in this paper is to provide a simple model where delay in supporting 
friends, or deliberate support of opponents c'an arise as the result of strategic considerations. 

The transfer of influence, and the concern for its future consequences, are present in a wide 
variety of social, economic and political environments. Consider, for instance, a department at 
a university in which members have preferences over colleagues. The influence of each member 
depends on the support it gets from colleagues and everybody tries to organize his support in such 
a way as to help his friends as much as possible. This might lead to situations where members 
support less preferred colleagues because they anticipate on the fact that these colleagues will 
support some of their friends. Or, conversely, do not support friends in fear of their future 
support behavior. 

The same kind of reasoning applies to firms that consider transferring technology to other 
firms. Once the transfer has taken place, the receiving firm might use the technology to transmit 
it to others in the future. Kotter (1979) stresses the importance of the indirect effect of influence 
in management, by saying that "a manager can influence someone indirectly by directly influenc­
ing others who in turn have impact on that person". Similar phenomena occur when studying 
the support between political parties in a country, or any other political situation where the 
political influence depends on the support received from others. 

A recent paper by Barbera, Maschler and Shalev (1998) has analyzed a similar phenomenon. 
Specifically, they consider societies which admit new members by vote among those who are 
already in. Since newly elected members become future voters, agents in their model are also 
concerned with the future actions of potential entrants. There is, however, a fundamental 
difference between our model and that of Barbera et al. Once an agent is elected, he gets 
the full right to vote. If he is not elected, he has no right at all. Since it is assumed that 
one vote is enough to be elected, the fact whether my individual voting behavior makes a 
difference on the final outcome depends heavily on the votes deposited by others. There is thus 
a basic discontinuity in the transfer of influence from present voters to potential entrants. This 
discontinuity has a number of important consequences in reality, and it introduces a fundamental 
multiplicity of equilibia in the theoretical model. 

By contrast, our paper concentrates on those cases where the influence gained by agents 
depends continuously on the support they get from others. Even if support is still modelled 
as a binary variable, acquired influence grows as one gets supported by more, and more in­
fluential people. Influence is here a simple variable, which summarizes possibly quite different 
and complex abilities of agents. Support is also a summary variable, standing for those social 
mechanisms which can be used to transfer influence. Whenever our analysis can be used as 
an approximation, the reader will have to identify these elementary variables with some basic 
features of the phenomenon at hand. A priori, it is impossible to decide whether the impact of 

2 




support on influence is better modelled as a lump or continuous variable, and reality will always 
lie in between. We offer our model as a polar case, in which surprisingly simple characterizations 
of equilibrium behavior can be obtained, and the dynamics of support can be clearly understood. 

We propose a stylized dynamic model in which forward looking agents consider the possibility 
of supporting others, knowing that their support will indluce changes in the future distribution 
of influence, and that they may not control the impact of their initial actions once these have 
contributed to strengthen other agents. We assume that the decision to support another agent, 
or not to, is binary; hence, we do not allow for intensities in the support of others. 

The presence of every agent A induces (positive or negative) externalities for the other agents 
and it is assumed that the magnitude of the externality depends proportionally on Ns influence. 
If, for instance, agents A and B are 'friends', B derives a positive utility from A's presence and 
this utility grows if A becomes more influential. On the other hand, ~if the effect of A on B were 
negative, the effect becomes worse if A's influence grows .. 

The impact of support on the influence distribution among agents is modeled as follows: 
the influence of an agent increases proportionally to the tbtal influence of agents that support 
him. This reflects the idea that influential agents have more impact than others since their 
contribution, when supporting, is more significant. The above described relationship between 
influence and support allows us to capture two key phenomena. First of all, supporting another 
agent produces the direct effect of increasing his influence aind thereby affecting your own utility 
(in a positive or negative sense). A second effect is that the; receiving agent may use his increase 
of influence to support other agents in the future. As such, by supporting an agent, one implicitly 
transmits influence to other agents, too. 

The paper proceeds as follows. Section 2 introduces· our model. Section 3 shows that 
the dynamic game, in which the agents plan their support; behavior during a finite number of 
stages, has an essentially unique subgame perfect equilibrium. Moreover, the equilibrium has 
an appealingly simple structure: the agents' support behavior at each stage is independent of 
the history up to that stage and is characterized by value ftlnctions which can be computed via 
some recursive formula working backwards from the final stage. Roughly speaking, the value 
functions reflect at each stage the future increase of utility that results from supporting a given 
agent. Put formally, the value Vt(Ojx) measures the future impact for agent 0 of supporting 
agent x at stage t. The equilibrium states that agent 0 should always support exactly those 
agents x having positive value. 

In Section 4, we introduce a model with a continuum of agents and propose a concept of 
equilibrium for this setting. The equilibria of the continulJlm are proven formally to provide 
good approximations for the equilibria of models with a finiite but large enough set of agents. 
This allows us to generate exampes for the continuum case (which is computation ally much 
more manageable), and yet be sure that they have approximate counterparts for finite societies, 
which are indeed those for which our model and equilibrium concepts are more appropriate. 

Section 5 is devoted to the analysis of specific models exhibiting interesting dynamic features. 
We provide examples of societies where agents would systematically avoid to support enemies, 
and of other where they would transfer influence to some of their enemies. Moreover, we can be 
very explicit about the features of our model which account for these phenomena. 

In Section 6, we provide a sufficient condition on the agents' preferences over others which 
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guarantees that support behavior remains constant over time. Section 7 studies optimal support 
behavior in the presence of an infinite horizon. In contrast to the finite horizon case, mUltiple 
subgame perfect equilibria may exist and equilibria need no longer be history independent. We 
conclude in Section 8. 

2. The Model and an Example 

Before presenting the formal model, we first layout the intuition behind it. We consider a 
group of agents in which everybody produces externalities on the well-being of others. There 
are many different ways in which an agent 9 can affect the utility of others: agents can simply 
derive (positive or negative) utility from 9's presence or 9 could take certain decisions which 
affect the well-being of other agents. In this model, we abstract away from the underlying 
factors inducing these externalities and simply assume that an agent's utility depends on the 
presence of others. As such, these utilities should be viewed as the final result of some possibly 
complicated interaction process among agents. 

A key factor in the model is the fact that the externality produced by agent 9 on the 
utility of others is not exogenous but varies over time, depending on actions of other agents. 
More precisely, we assume that this externality (the intensity with which it affects others) is 
proportional to some factor which we call the "influence" of 9. The word "influence" should 
thus be read as the impact that 9 has on the utility of others. 

We realize that in reality an agent's influence depends on many different factors: too many 
to be captured within one model. Among these factors, we filter an important one, namely 
the support an agent gets from other agents. Here, support should be read in a broad sense 
since it could take many forms, varying from financial or technological support between firms 
to political support between parties. Important is that an agent's influence changes over time 
due to the support it gets from others. On the other hand, this agent can use his influence to 
support others in the future and thereby increase the influence of other agents. It is this strong 
mutual relationship between supporting others on one hand and the influence of agents on the 
other hand that is at the very heart of our model. Formally, the model is as follows. 

The group of agents is given by a countable space e = {9h 92, ... }. At stages t = 1, ... , T 
agents 9 E e simultaneously choose to support a set St(9) c e of agents. Support is therefore 
modeled as a binary variable: one can either support an agent or not support him. We do not 
allow for different levels of support. 

Before agents come into action there is an initial distribution of influence among the agents 
which is given by a strictly positive measure! 11'0 on e. The support behavior of agents induces 
changes in the influence distribution. We assume that the influence of an agent increases pro­
portionally to the total influence of agents that support him in this stage. This means that 
supporting an agent will always contribute to his strength, and this contribution will be more 
significant if the supporting agent is more influential. Formally, let 1I't be the function represent­
ing the influence distribution among agents at stage t. The evolution of influence over time is 

1 A measure on a countable space is strictly positive if it assigns strictly positive mass to every single point. 
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given by the recursive equation 

(2.1) 

where p is some strictly positive measure on e.2 Here, p(~} can be viewed as a measure for (Ps 
sensitivity to support. If, for instance, p(O) is high, supporiting 0 contributes considerably to his 
influence whereas a low p(O} allows only for a small incre~ent of his influence. 

The utility for () at stage t is given by 

Ut(O} = I: u(O;x) 7I"t(~). 
zE8 

So, O's utility depends linearly on the influence of each agedt x and the coefficient u(0; x} can be 
interpreted as some normalized utility for agent 0 induceJ by the presence of x. The function 
u: e x e -lR generating these utility coefficients is called a utility profile. If u(()jx) 2:: 0, then 
x's presence is good for 0 and we say that x is a friend of o. If U(OiX) ~ 0, agent x is called 
an enemy of O. By comparing the magni tudes of u(0; x), on~ can distinguish between big friends 
and small friends, big enemies and small enemies. i 

In particular, O's utility increases if his friends become Imore influential whereas his utility 
decreases if the influence of enemies becomes larger. The overall utility for () is equal to 

! 

T 

U(O) = I: AtUt(O)'i 
t=l 

I 
where At are non-negative constants reflecting the relative cpntributions of stage utilities to the 
total utility. Canonical time separable utilities such as averalpe utility and discounted utility can 
be modeled by choosing At = liT and At = f} respectively. i 

After each stage, all agents observe the groups of agent~ St(O) supported by the others. A 
strategy for agent 0 is to choose at every stage t a set St(el ht ) of agents to be supported by 
him after any possible history ht at stage t. Here, a history ht is a sequence (Sk(O))k5:t-l.6E8 
consisting of groups Sk«()) supported by agents at previous stages. 

I 

The quadruple ~ = (e, u, p, 71"0) consisting of the set of a~ents, the utility profile, the support 
sensitivity measure and the initial distribution of influencel is called a society. The dynamic 
game induced by this society is denoted by r(~). 

In order to illustrate the different ingredients of our mod~l, consider the following example. 
! 

Example 2.1. A department at a university has three r~search areas: A, Band C. During 
two consecutive years, the department will hire new scientis~s in these areas. At times t =1,2, 
the current members must decide about the number of peop'e to be hired in each area. To this 
purpose, the department has agreed upon the following rulr each member can vote for (one 

2Here, we implicitly assume that L:xe8:geS ,(x) 71't-l(X) < 00. 
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or more) areas and the number of new positions in a given area is proportional to the number 
of votes this area gets, with proportionality coefficient 0.5. For sake of symmetry, assume that 
members belonging to the same area have identical preferences and will therefore vote identically. 
Each area (J E {A, B, C} can therefore be regarded as an individual agent. Let 7rt«(J) be the 
number of members working in area (J at period t and St (0) C {A, B, C} the set of areas voted 
for by (J at the beginning of time t. According to the voting rule, 

7rt«(J) = 7rt-l«(J) + 0.5 L 7rt-l(X) 
xE{A,B,G} 

OESt(z) 

for t = 1,2.3 Here, 11"0 denotes the area configuration in the department before the voting 
procedure starts. Suppose, for instance, that the initial area configuration is given by 11"0 = 
(10,5,15), meaning that there are 10 area A people, 5 area B people and 15 area C people in 
the department before voting starts. 

In this context, the numerical representation 7rt«(J) of area (J at time t can be regarded as the 
"influence" of this area within the department. An area (J can transfer influence to another area 
x (or, support x) by voting for x. The increase of x's influence is proportional to the aggregate 
influence of areas that support it. 

Suppose that the utility for a member of area (J at time t is given by 

where u«(J;x) reflect agent (J's preferences over the different areas. The (positive or negative) 
effect of an area x on a member of area (J is thus proportional to the number of department 
members currently working in area x. Let the utilities u((J; x) be given by the following matrix: 

A B C 
A 2 1 -6 
B -4 3 1 I 
C 2 -1 6 

The aggregate utility for agent (J during the two periods is given by 

The two-stage game defined above yields a unique subgame perfect voting behavior, given by 
the following table: 

t=1 t::;:::2 

:A {A} {A,B} 
B {B,C} {B,C} 
C {A,B,C} {A,C} 

aIn case 7rt(O) is not integer, the department will hire part time workers. If, for instance, a scientist is hired 
on a 50% basis, his vote will only count for 50%. 
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This equilibrium behavior is independent of the initial distribution of areas ?ro. Moreover, the 
behavior specified at stage 2 is optimal for any combination of votes that ocurred at stage 1. 

At the last stage, every area simply votes for its preferred areas (areas x giving positive 
utility u(Bjx)), since there are no future consequences which have to be taken into account. At 
the first stage, each area faces a tradeoff between the immediate consequence of voting for an 
area (department hires new people in this area) and its future consequences (newly admitted 
members will have the right to vote at stage 2). For instance, area A will not vote for B (despiteI 
its positive direct effect) at stage 1 since it knows that B will vote for C at stage 2, inducing a 

.1 	 negative effect which outrules the positive effect at stage 1. On the other hand, C will vote for 
B at the first stage (despite the negative direct effect) since it knows that B will vote for C at 

\1 	 the next stage, compensating the negative effect at the first stage. 
iI 
il 	 3. Optimal Support Behavior 
'I 
I!! 

In the example above, we have seen that there is a unique subgame perfect equilibrium in the two­
ill 
"I stage game. In this section, we show that this is not a coincidence: every dynamic game induced 
1,\ 
'1 

by the model has an essentially unique subgame perfect equilibrium. By 'essentially unique', we 
mean that it is unique up to ties occurring when an agent B is indifferent between supporting 

11 

I: another agent x or not. Moreover, the subgame perfect equilibrium has a very simple structure. 
First of all, the support behavior at every stage is history independent, hence an agent need not 

I keep track of all the groups that have been supported at previous stages. Another property is 
that the equilibrium behavior does not depend on the initial influence distribution. Finally, the 
equilibrium is characterized by a sequence of value functions (one for every stage) which can be 
computed re cursively, starting at the final stage. Intuitively, a value function at a given stage 
assigns to every pair (Bjx) a measure for the future increase in B's utility which results from 
supporting x at this stage. The equilibrium states that at every stage agent B should exactly 
support those agents x that have positive value. 

In order to make our statement precise, we need some more definitions. A strategy profile 
S (prescribing a strategy for each agent) is called a subgame perfect equilibrium if at any stage 
t and after any history ht, the group of agents St(BI ht) supported by agent B maximizes O's 
continuation payoff, given the behavior of other agents at this stage and the behavior of all 
agents at future stages. 

In general, there may exist multiple subgame perfect equilibria. However, multiplicity is 
solely due to the fact that at some points in the game an agent Bis indifferent between supporting 
another agent x and not supporting him. In this case, both supporting x and not supporting x 
can be part of a subgame perfect equilibrium. Since this kind of indifferences leads to subgame 
perfect equilibria which are essentially identical, we introduce a tie braking rule which states 
that in case of indifference, the agent x should be supported.4 Hence, the agent should always 
support the largest group that maximizes his continuation payoff. Subgame perfect equilibria 
satisfying this tie breaking rule are called maximal subgame perfect equilibria. 

4The tie breaking rule is rather arbitrary. One could also require that in case of indifference, the agent x 
should not be supported. However, this would lead to essentially identical results throughout the paper. 
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For every stage t, let the value function lit : e x e - lR be given by the recursive formula 

VT(OjX) = ATU(OjX) and 

lit (0; x) = AtU(Oj x) + lit+! (0; x) + 

for all t < T. The recursive equation for the value functions can be seen as a multi-agent variant 
of the Hamilton-Jacobi-Bellman equation in dynamic programming. It states that the value 
lit ( OJ x) for 0 of supporting x at stage t can be decomposed into an immediate effect AtU(0; x) and 
a future effect, given by the last two terms. The future effect consists of the corresponding value 
lit+! (0; x) at the next stage and an interaction effect represented by the sum. The interaction 
effect describes the consequences for 0 of having x support other agents in the future: an effect 
which does not occur in 'standard' one-agent dynamic programming. 5 

Although the use of value functions in dynamic one-person decision problems is widely spread 
(see, for instance, Streufert, 1990, and Kreps and Porteus, 1979, among many, many others), 
its application to dynamic games is in general complicated. This is due to the fact that for a 
given player, the value of every decision depends crucially on the future behavior of the other 
players. Hence, one has to define a value function for each player and these value functions 
interact at every stage of the game. However, using value functions to solve a dynamic game 
by backward induction is by no means new. Gomes et al. (1999), for example, introduce 
a backward induction function to solve a non-cooperative bargaining game with finite horizon. 
This backward induction function can be viewed as a value function since at any stage it captures 
the future effect of proposing a certain payoff vector. 

Theorem 3.1. For every society:E, the game r(:E) contains a unique maximal subgame perfect 
equilibrium, which is the history independent strategy profile S given by 

for all t, ht and O. 

Proof. Let S be a strategy profile. We show by induction on t that the unique maximal 
subgame perfect behavior at stage t is given by St(OI ht) = {xl lIt(OiX) ;:::: a}. 

We start at the final stage T. Let hr be an arbitrary but fixed history up to stage T and let 
obe an agent. Independently of the other agents' behavior at this stage, it is optimal for 0 to 
support all those agents x with ATU(0; x) > 0 and not to support any agent x with ATU(0; x) < o. 
Maximality requires 0 to support all those agents with u(0; x) = 0 and therefore it follows that 
ST(OI hT) = {xl ATU(O;X) 2:: O} = {xl VT(O;X) 2:: a}. Since this holds for any history hr and 
any agent B the statement is true at the final stage. 

Now, let 7' < T and let St(O) = {xl lIt(Ojx) 2:: O} be the unique maximal subgame perfect 
support behavior at stage t for all t 2:: 7' and all histories ht . Let hr be an arbitrary but fixed 
history at the beginning of stage 7'. First, we need some definitions and technical observations. 

SIn one-person dynamic programming with time separable utility functions, the value function at stage t is 
simply the sum of the immediate effect and the value at the next stage. 
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For all t 2: T, let the functions 8t : e x e -;0 {O, I} be befined by 

8 (0' x) = if x E S1(O){I,
t , 0, otherwise. 

i 

Let 1l't, t 2: T, be the unique influence distribution at s~age t, given that we start with history 
hr at stage T and given that agents act according to S I1t future stages. The evolution of 1l't is 
given by i 

1l't(x) = 1l't-l(X) + p(x) . 1l't-l(O)t 
BES:1ESt(B) 

- 1l't-l(X) + I:>t(O;x~ 1l't-l(O) p(x) 
BEe I 

for all x E e. II _ 
For a measure J1. on e and a function f : e x e -;0 Rlet the measure f J1. on e be given by 

! 

! J1.(x) = 'L f(O; x) J1.(O~ p(x) 
B ; 

; 

for all x. Hence, by definition, 

where I is the identity operator on measures. 
Let f,g: e x e -;oR We define the function jg: ere -;oR by 

I 

jg(O; x) = 'Lg(O; y) f(x;ly) p(y). 
I 

y 

Lemma 3.2. Let f,g : e x e -;oR and J1. a measure onle. Then, it holds that 
I 

'Lg(OjX) JJ1.(x) ='L jg(8;x) J1.(x). 
x x I 

The proof of this lemma can be found in the appendix. 
I 

Let Ut(O) = Lxu(O;X)1l't(x) be the utility for agen~ 0 at stage t generated by hr and the 
strategy profile S. I 

I 

Lemma 3.3. For every t 2: T it holds that 

t I 
Ut(O) = 'L[II(I +sl)u](Oj1)1l'r_l(X). 

IX l=r 
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t 
Here, by IT (1 + BI)U we mean the function obtained from u by succesively applying the 

I=T 
operators (1 + BT ), (I + 8r +1) , ... , (1 + Bt). 

The proof of this lemma can be found in the appendix. 

Lemma 3.3 implies that 

T t 

= IJ2::::At 11(1 + SI)U](OjX)7fr_l(X) 

T t 

- 2')(1 + Sr)(ATU + L At 11 (1 + sl)u](Ojx) 7fr -I(X). 

Let the function W T : e x e -+ R be given by 

T t 

Wr(Oi X) = [ArU + L At 11 (1 + BI)U](OiX). 
t=r+l I=T+l 

Hence, 

T 

LAtUt(O) - L(1 + sr)Wr(Oi X)7fr -l(X) 

(3.1) 

By definition of STWT we have 

x x y 

y 

+LLWr(OjY)Sr(X;Y)P(Y)7fr-l(X). (3.2) 
x#(J y 

Since, by the induction assumption, 8 is history independent at stages t ~ T, it follows that 

L WT(O;X) 7fT-l (x) 
x 

and 

LLwr(Oj y) ST(Xj y) p(y) 7fT-l (x) 
x#(J y 

do no depend on 8r (0). Combining equations (3.1) and (3.2) leads therefore to the following 
conclusion. 
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Lemma 3.4. At stage T it holds that 

T 

L >'tUt{lt) =C + 1I"T-l(0) L wT(Oy) ST(Oi y) p(y) 
t=T y I 

where C is an expression that does not depend on ST(O). I 
I 

It can be checked immediately that the functions Wt :le x e -+ R (for t ~ T) are given by 
the following recursive formula: WT(OjX) = >'TU(OjX) and I 

(3.3) 

By definition, 

St+1Wt+l(OjX) = LWt+l(OjY)St+l(XjY)p(y)= L Wt+l(OjY)P(Y) 
Y I yESt+l(a;) 

= L Wt+l(OiY)P(Y), i 
y:Vt+1{a;;y)~O I 

using the induction assumption that St+l(X) = {yl vt+l(X+) ~ a}. Hence, 

WT(OjX) = >'TU(OjX) = VT(OjX) and * 
Wt(Oj x) = >'tu(O;x) +Wt+l(OjX) + Wt+l(O; y) p(y) 

y:Vt+l a;;y)~O 

for all t ~ T. This means that the functions Wt, t ~ T, are $iven by the same recursive formula 
as the value functions vt,t ~ T. However, this implies that Wt(Ojx) = vt(Ojx) for all t ~ 
T. I 

Combining this result with Lemma 3.4 leads to the observation that the continuation payoff 
is equal to . 

C + 1I"T-l(O) L VT(O;~) ST(Oj y) p(y) 
y I 

I 

= C + 1I"T-l(O) L VT OjY) p(y) (3.4) 
yES-r(6) 

where C is an expression which does not depend on ST(O). 
Since 11"0 ( 0) > 0 and 1I"t is non-decreasing over time, we ha e 11"T-l (0) > O. As such, maximizing 

the continuation payoff at stage T is a matter of choosing S (0) such that 

L VT(OjY) p(y) 
yES-r(6) 

is maximal. Since S is assumed to be a maximal subgam perfect equilibrium, ST(O) = {xl 
VT(Ojx) ~ O}. This holds for any history hr, hence ST(OI hT) {xl VT(OjX) ~ o} for all hT' This 
completes the proof of the theorem. 
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4. Limit Behavior in Continuum Societies 

One of the aims of this paper is to illustrate the phenomenon of postponement or advancement 
of support for specific classes of problems, as a means to understand what features in the 
preferences of agents are crucial in generating different types of behavior. Yet, finding numerical 
examples, or interesting classes of parametrized problems, is not an easy task. This task could 
be facilitated if we could work with continuous variables; that is, if we had a model with a 
continuum of agents over which other agents could then have preferences, representable by 
continuous utility functions. The use of models with a continuum of agents has a long tradition 
in economics and political science (see, for instance, Schmeidler (1973) and Aumann (1964) 
among many others) and we would not elaborate much on it, were it not that, in our case, a 
simple extrapolation of concepts without some further interpretation could be misleading. We 
shall work, indeed, with a continuum of agents, each of which will have mass zero. Hence, as in 
standard models, changes in the support behavior of a single agent will have no influence at all 
on the overall outcome. Moreover, and this is a crucial difference with, say, Aumann's (1964) 
model of a competitive economy, any individual in the continuum society will be indifferent 
among all types of support behavior that are available to him. This follows from the fact that 
support is the agent's only choice variable, and yet it does affect his utility. (This in contrast 
with a consumer's behavior in the continuum; he cannot affect prices, but still derives different 
utilities from different consumption plans.) 

Because of that, our model of a continuum society is no longer a game in any proper sense, 
and equilibria for this model can hardly be justified per se. Instead, we use a continuum society 
as an approximation of large discrete societies, and equilibrium behavior is defined in terms of 
the discrete societies approximating the continuum. As we shall see, both the model and the 
equilibrium notion proposed will prove to be useful and to provide a well grounded method to 
construct examples which have direct bearing for the understanding of discrete societies. To 
do that, we now discuss the model, the equilibrium concept, and their relationships with large 
discrete societies. 

4.1. Limit Equilibria 

Before stating the formal definition our equilibrium concept, let us briefly sketch the idea. Our 
starting point is a society ~ with a continuum set of agents e. For every n E N we select a 
discrete set en of representatives from e such that en becomes dense in e. To every en, there 
corresponds a discrete society ~n obtained by taking the 'projection' of ~ on en. A strategy 
profile S in the continuum society ~ is called a limit equilibrium if the sequence sn of (unique) 
maximal subgame perfect equilibria in the discrete games r(~n) converges to S. 

In order to formalize the idea of approximating a continuum society by a sequence of discrete 
societies, we need the following definitions. Let ~ = (e, u,p, KO) be a continuum society where 
(a) e is a non-atomic separable metric space, (b) u : e x e -R is continuous and (c) p and KO 

are strictly positive measures on e6 • 

6 A measure on a metric space is called strictly positive jf it assigns strictly positive mass to each non-empty, 
open subset. 
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A discrete grid on e is a pair (8,P) where 8 = {O ,02,"'} is a discrete subset of e and 
P = {Ph P2, ... } is a partition of e such that Ok E Pk and Pk contains a non-empty open subset 
for all k. The grid induces a discrete society :E = (8, u, A, 7rO) where (a) the set of agents is 8, 
(b) the utility profile u :8 x 8 - lR is the restriction 0 u on 8 x 8, (c) Pis the measure on 
8 given by p(Ok) = p(Pk) for all Ok E 8 and (d) 7ro is th measure on 8 with 7rO(Ok) = 7f"O(Pk) 
for all Ok E 8.7 The discrete society :E is called the discre e projection of E induced by the grid 
(8,P). We write:E = E(8,P). 

For a given discrete grid (8, P), let u : ex e -lR b the step function induced by u and 
(8, P), given by 

if 0 E Pk and x E Pt. Hence, u is the unique function on e x e which coincides with u on 8 x 8 
and is constant on the induced partition elements of e x 

Let E be a continuum society and En = E(en, pn) a sequence of dicrete projections with 
corresponding step functions un. We say that En converge to E if (a) en c en+! for all n, (b) 
Unen is dense in e and (c) un converges uniformly to u.8 

Let En be a sequence of discrete projections converg' g to the continuum society E and 
let sn be the unique maximal subgame perfect equilibriu in r(En). It remains to define the 
limit behavior in E induced by the sequence sn. A history independent9 strategy profile in the 
continuum society E is a profile S = (St(O))t~T,(}Ee where St(O) c e for all t and O. The limit 
behavior induced by sn is defined as the history independ nt strategy profile lim sn in E given 
by 

lim,9f(O) = {x Eel 'Vn 3 (on,xn) E en x en s.t. xn E neon) and Hm (on,xn) = (O,x)}.
n->oo 

Intuitively, it means that 0 supports x in Hm sn if we can nd representatives on and xn arbi­
trarily close to 0 and x such that xn is supported by on in s me of the approximating equilibria. 

Now, we have all the ingredients to define limit equilib ia. A history independent strategy 
profile S in the continuum society E is called a limit equi 'brium if there is a sequence En of 
discrete projections converging to E and a sequence sn ofaximal subgame perfect equilibria 
in r(En) such that S is almost equal to limsn. 

Here, two strategies profiles S and S in E are said to be Imost equal if for every t and 0 the 
difference between the sets St(O) and St(O) has p-measure z ro. 

7The measures pand *0 are strictly positive since p and 'lro are assu ed to be strictly positive measures on e 
and all partition elements in P contain non-empty open subsets, 

8 A sequence of functions In : A -+ R is said to converge uniformly t I: A -+ R if for every e > 0 there exists 
an N E N such that I/(x) - In(x)1 < e for all n ~ N and all x E A. 

9We know, by Theorem 3.1, that the maximal subgame perfect equili ria sn are all history independent. Since 
we want to define the limit behavior induced by sn in ~, it suffices t restrict attention to history independent 
strategy profiles in ~. 



4.2. Almost Uniqueness and Characterization 

In our theorem below, we prove the existence of a special limit equilibrium S and show that 
every limit equilibrium is almost equal to S. The special limit equilibrium S is characterized by 
value functions lit : 8 x 8 -+ R. given by the recursive formula 

and 

lit(0; x) = AtU(O;X) + lIt+l(Ojx) + lIt+l(Ojy)dp(y)J 
y:Vt+l (Xjy)~O 

for all t < T. Hence, the value functions lit are the continuum analogues of the value functions 
in discrete societies. 

In order to obtain our result, we impose two weak regularity conditions on the continuum 
society E which are called the boundedness condition and the indifference condition. The society 
E is said to satisfy the boundedness condition if there is a number a < 0 and a number M > 0 
such that 

p({x E 81 lIt(e;x) 2: a}) ~ M 

for all t and e. We say that the game satisfies the indifference condition if 

p({x E 8Il1t(e;x) =o}) = 0 

is satisfied for all t and e. 10 In words, this means that the group of agents x for which 0 is 
indifferent always is neglect ably small. 

Theorem 4.1. Let E be a continuum society satisfying the boundedness condition and the 
indifference condition. Let S be the history independent strategy profile in E given by 

St(e) = {xl lIt(ejx) 2: O} 

for ail t and e. Then, S is a limit equilibrium and every limit equilibrium is almost equal to S. 

Proof. Let En be a sequence of discrete projections converging to E, induced by the discrete 
grids (8n, pn). Let sn be the corresponding sequence of maximal subgame perfect equilibria. 
We define the history independent strategy profile S in E by S = lim sn. We proceed in three 
steps. First, we prove that the corresponding sequence of value functions ytn of the discrete 
approximating societies converges to the value function lit in E. Secondly, it is shown that 
S is almost equal to the strategy profile S defined in the theorem, implying that S is a limit 
equilibrium. Finally, we prove that every limit equilibrium is almost equal to S. 

lOThis condition is typically satisfied if e is an Euclidean space, p is measurable with respect to the Lebesgue 
measure and u is such that {xl u(8j x) = O} is a countable set for all 8. Since this is the standard framework we 
are thinking of, the indifference condition does hardly impose any restrictions. 
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Step 1. Converyence of discrete value functions to cbntinuum value functions. 
Let En be the discrete projection generated by the d~screte grid (en, pn). For every nand 

every t let ytn : en x en .-..+ 1R be the value function at) stag~ t in the discrete society En, as 
defined in the previous section. We define the step functions ytn : e x e .-..+ 1R by 

1 

vt(O;x) = ytn(Ok;Xlj) 

where Ok,Xl E en are in the same pn-partition element a\3 
I 

0 and x respectively. 

Lemma 4.2. For every t, the sequence of functions vtn Jonverges uniformly to vt. 
1 

Proof. We proceed by induction on t. For every in let .un : e x e .-..+ 1R be the step 
function generated by u and (en,pn), as defined above. Since En converges to E, the sequence 
un converges uniformly to u. 1 

If t = T, then VT = ATUn and hence VT = AT,!!n. USin* the fact that un converges uniformly 
to u and VT = ATU leads to the conclusion that if! conv$'ges uniformly to VT' 

Now, let t < T. Let n be fixed, (Ojx) an arbitrary poin~ in ex e and (OkiXl) E en xen such 
that 0 and x are in the same pn-partition set as Ok and Fl respectively. Let un be the utility 
profile and pn the support sensitivity measure in En. Then, by definition 

1 

vtn(o; x) = ytnCOkj Xl) ~ 

= AtUn(OkiXl) + yt~l(OkiXl) + ~ yt~l(Ok;Yn)' pn(Yn). 
ynEen:Vt~l (xl;y,,)~O

I _ 
Since pn is the 'contraction' of p on en induced by pn anjd yt~l is the step function on e x e 
which is constant on pn-partition elements and coincides irith yt~l on en x en, it follows that 

vtn(O;X) = AtUn(Ok;Xl) + yt~l(Ok;Xl) + . J vt~l(O;y) dp(y) 
.J 

YES:~+l (XiY)~O 

= Atun (0; x) + ~l(OiX) + Jvt~lkoiY) S~+l(X;Y) dp(y) , (4.1) 
yES 

where s?+l : ex e .-..+ {a, I} is the function defined by 

sn (x' ) _ {I, if vt~l (x;yO ;:;::: 0 
t+1 ,y - 0, otherwise. I 

In the last equation, we used the definitions of un and vt~J Using the recursive formula for vt 
we have I 

vt(O;x) = AtU(O;X) + vt+1(O;x) + Jvt+l(J;y) St+l (x; y) dp(y) , 
yEe I 

I 
I 

I
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where 

S (x' )={ 1, if Vt+I(X;Y) 2:0 (4.2)t+I ,Y 0, otherwise. 

By combining equations (4.1) and (4.2) we obtain that 

I~n(o;x) - Vt(O;x)1 $ Atlun(O;x) - u(O;x)1 + 1~~I(O;X) - Vt+I(O;x)1 (4.3) 

+ J1~~I(O;y) sf+I(x;y) - Vt+I(O;y) St+I(xjy)1 dp(y). 

1/ 

Let e > 0 be given. We show that there is an N such that I~n(OJ x) - VtCOJ x) \ < e for all n 2: N 
and all (Ojx) in e x e. . , 

Let the three terms on the right hand side of (4.3) be denoted by An(o;x), Bn(Ojx) and 
cn(O;x). Since un converges uniformly to u we can find NI EN such that An(o;x) < i for all 
n 2: NI and all (O;x). Using the induction assumption that ~+l converges uniformly to Vt+l it 
follows that there is an N2 such that Bn(o;x) < i for all n 2: N2 and all (O;x). It remains to 
show that we can find Na such that cn(O;x) < i for all n 2: Na and all (O;x). 

By the boundedness condition, there is a < 0 and an M > 0 such that p({xl Vt+I COJ x) 2: 
a}) $ M for all O. Choose b > 0 such that b < min{27~' -a}. Then the term cn(Ojx) can be 
written as the sum 

cn(Ojx) = J 1~1(0; y) sf+ICxjY) - Vt+ICO;y) st+ICx;y)1 dp(y) 
1/:Vt+l(xjy)5:-b 

+ J 1~+1 (Ojy) St+I(x; y) - Vt+I(O; y) St+ICXj y)\ dp(y) 
y:-b<Vt+l (xiy)<b 

+ J I~l (0; y) sf+I (Xjy) - Vt+I(OjY) St+I(Xj y)1 dp(y). 

y:Vt+l(Xiy);::::b 

Let the three terms on the right hand side be denoted by crCO;x),O~(O;x) and O~CO;x) respec­
tively. We show that for i = 1,2, 3,_the term CiCO;x) < ~ for all (O;x) if n is large enough. 

We start with Or (0; x). Since vt+l converges uniformly to Vt+b there exists Na such that 
I~+l(x;y) - Vt+I(x;y)1 < ~ for all n 2: Na and all (x;y). Since we integrate only over y's with 
Vt+I(XjY) $ -b, it follows that ~+lCx;y) < 0 for all y's over which we integrate. This implies 
that St+I (x; y) = St+I (Xj y) = 0 for all y in the integral and hence Or(0; x) = 0 for all n 2: Na 
and all (O;x). 

The term C2(Ojx) is bounded by 

Cn(O'X) < J l~l(OjY)S~l(XjY)1 dp(y)2' ­

y:-b<Vt+l (Xiy)<b 

+ J IVt+I(O; y) St+ICx;y)1 dp(y). 
y:-b<Vt+l(Xiy)<b 
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Since vt+I converges uniformly to vt+1 we can find N4 such that Ivt+I(OiY) - vt+1(O;y)1 < b for 
all n ~ N4 and all (OjY). Then, Ivt+I(Oiy)1 < 2b for all Y pver which we integrate and hence, for 
all n ~ N4 and all (Ojx), . 

C2(O;x) :::; J 2b dp(y) + . J b dp(y) 
y:-b<Vt+l(Xiy)<b:-b<Vt+l(Xiy)<b 

Since, by assumption, b < -a (we refer to the constant a < 0 of the boundedness condition), 
we have that -b > a and therefore 

{YI -b< vt+1(XiY) < b} c {YI t'+1(XiY) ~ a} 

and hence, for all n ~ N4 and all (0; x), 

C!}(O;x) :::; 3b· p({YI vt+1(x; y) 4 a}) :::; 3b· M 

by the boundedness condition. Since, by assumption, b 2;M it follows that C!}(O;x) < § for 
all n ~ N4 and all (O;x). 

The term Cl(0; x) is given by 

Cl (0; x) = J Ivt+I(O; y) 8ft-I (x; y) -Ivt+1 (0; y) 8t+I (x; y)1 dp(y). 

y:¥t+l(xjy)c:b 	 t· 
Let c > 0 be s~ch that c < minH, 9M}' Since vt+I co verges uniformly to vt+b we can find 
N5 such that Ivt+I(x;y) - vt+1(x;y)1 < c for all n ~ 5 and all (x;y). Then, since c :::; ~, 
V~+1(x;y) > 0 for all y over which we integrate if n ~ 15 . Hence, for all n ~ N5, 8~+1(x;y) = 
8t+I(XiY) = 1 for all y over which we integra:e. Therefo e, for all n ~ N5 and all (O;x), 

Cj(O;x) = J Ivt+I(O;y) - vt+1(O; y) Idp(y) 
y:¥t+l (XiY) c:b 	 . 

!:::; J c dp(y) = c· p({yl vt+1(x;y) 2:: b} 

y:Vt+l(xjy)c:b 	 i 

! e 
:::; c· p({yl vt+1(XiY) ~ a})!:::; c· M < 9' 

. < e:SInce c 9M' 

Now, let N = max{Nl, ... ,Ns}. Then, for all n ~ N i nd all (O;x) we have that 

Ivtn(o;x) - vt(Oix)1 :::; An(o;x) +Bn(o;x) + C1(0; ) +C2(O;x) + Cj(OiX) < e. 

This completes the proof of the lemma.<3 

This lemma implies that the value functions vtn : en x en -t lR converge pointwise to 
vt : e x e -t R Stated formally, we obtain the followin result. 
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Lemma 4.3. If the sequence (on;xn) E en x en is such that limn-+oo(on;xn) (Ojx), then 
limn....oo V;n(on; xn) = Vt(O; x). 

Proof. For all n we have that 

Ivt(on;xn) - Vt(Oix)1 	 = liit(on;xn) - Vt(Oix)1 
< r~n(on; xn) - Vt(on; xn)1 + IVt(on;xn) - Vt(O;x)l. 

Let e > 0 be given. Since vtn converges uniformly to Vt and Vt is continuous, there is N 
such that r~n(oniXn) - Vt(onixn)1 < ~ and IVt(onjxn) - Vt(O;x)1 < ~ for all n 2: N. Hence, 
Ivtn(oniXn) Vt(Oix)1 < e for all n 2: N which implies that limn ....oo vtn(onjXn) = Vt(OiX). <I 

Step 2. S is a limit equilibrium. 
By Theorem 3.1, we know that r(:En ) has a unique maximal subgame perfect equilibrium 

sn characterized by the value functions vtn. Hence, by definition, S = lim sn, where sn is given 
by 

for all t and all on E en. Now, we show that S is almost equal to the strategy profile S in :E 
given by 

St(O) = {x E el Vt(O;x) 2: O} 

for all t and all 0 E e. 
Let t and 0 E e be given. First, we prove that St(O) C St(O). Let x E St(O). Since S = limSn, 

there is a sequence (on;xn) E en x en converging to (OiX) such that xn E Sr(on) for all n. 
Hence, vtn(on;xn) 2: 0 for all n. Since vtn converges pointwise to Vt it follows that Vt(O;x) 2: 0 
and hence x E St(O). 

Now, we show that St(O)\St(O) has p-measure zero. Let x E St(O), hence Vt(O; x) 2: O. 
Suppose that Vt (0; x) > O. Then, since vtn converges pointwise to Vt, there is a sequence 

(oniXn) E en x en converging to (0; x) such that vtn(on; xn) > 0 for all n. Hence, xn E sr(on) 
for all n which implies that x E limsn = S. Therefore, St(O)\St(O) C {x E el Vt(O;x) = o}. 
But, by the indifference condition, p({x E 81 Vt(O;x) = O}) = 0, which implies that St(O)\St(O) 
has p-measure zero. Given this fact, we may conclude that St(O) is almost equal to St(O) for all 
t and all O. This completes the proof of the fact that S is a limit equilibrium. 

Step 3. Every limit equilibrium is almost equal to S. 
Let S be an arbitrary limit equilibrium. Then, by definition, there is a sequence :En ·of 

discrete projections converging to :E and a sequence sn of corresponding maximal subgame 
perfect equilibria such that S is almost equal to lim sn. In part (a) of the proof, we have shown 
that the special limit equilibrium S is almost equal to lim sn, irrespective of the approximating 
sequence :En we choose. As a consequence, S is almost equal to S, which completes the proof of 
the theorem. 0 
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5. Single Peaked Preferences on the Real Line 

In this section, we apply the characterization of optimal support behavior in continuum societies, 
as presented in the previous section. Although we provide examples of continuum models, the 
reader should bear in mind that the qualitative features stressed in the examples will be shared 
by models of finite but large enough societies along the sequences converging to the limiting 
examples. 

We focus on a group of agents which is represented by the real line. 11 A possible interpreta­
tion is that agents are ordered according to some parameter which can be viewed as the agent's 
type. Agents which are close to each other on the line are similar whereas agents separated 
by a large distance are very different. In many situations, agents prefer types similar to their 
own. This can be modeled by single peaked preferences: for each agent 0, the individual utility 
function u(O;·) : R. ~ R. has a maximum at 0 and utility decreases if the agent's type is further 
away from O. 

As will become clear in the sections to come, the agents' support behavior depends crucially 
on the shape of the individual utility curves. It is important to know how utility changes if we 
move further away from the most preferred type. One possibility is that utility decreases faster 
if we are further away from the peak, meaning that individual utility functions are concave. This 
reflects situations where agents have strong preferences for similar types and strong 'objections' 
against very different types. This section is devoted to this particular class of preferences. We 
show that, under some symmetry conditions defined below, concave preferences induce support 
behavior in which agents always support subsets of their friends. Recall that an agent x is called 
(J's friend if u«(Jj x) 2 O. Agents with concave preferences have therefore no incentives to support 
members with negative utility since this would lead to a decrease of their future utility. Before 
deriving the result, we specify the setting and introduce the symmetry assumptions. 

Consider the continuum society e = R.. We assume that p is the Lebesgue-measure on R.. 
Instead of dp(y) we write dy. We say that the utility profile u : e x e ~ R. is strictly concave if 
the individual utility functions u(Oj') : R. ~ R. are strictly concave for all (J. The utility profile 
u is called anonymous if u(0; x) =u((J +aj x + a) for all 0, x, a. In words, this means that every 
agent has the same utility function, up to translation. We say that u is diagonally symmetric 
if u(O;(J + a) = u«(Jj(J - a) for all (J,a. Note that strict concavity and diagonal symmetry imply 
that u«(J;·) has a single peak at (J. 

Theorem 5.1. Let u be strictly concave, anonymous and diagonally symmetric and let AT > O. 
Then, the limit equilibrium S of Theorem 4.1 is the almost unique limit equilibrium and S is 
such that agents will always support a subset of their friends. If, moreover, At = 0 for all t < T, 
then the group St«(J) of agents supported by (J increases monotonically over time for every (J. 

Our conjecture is that monotonicity of support also holds if At > 0 for t < T. However, we 
did not manage to find a proof yet. 

11 We choose the real line instead of a bounded interval for the sake of symmetry. Bounded intervals have the 
technical disadvantage that boundary effects have to be taken into aCC(i)unt. Our results would (approximately) 
hold for agents in a bounded interval located far from the boundaries ~nd can therefore be interpreted as local 
results. 
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The proof of this theorem can be found in the appendix. 

The theorem above states that agents with concave, anonymous and diagonally symmetric 
preferences have no incentives to support enemies. The recursive formula for the value functions 
Vi has been applied to derive this qualitative result. In the remainder of this section, we exploit 
this recursive formula to explicitly compute the support behavior for two special classes of 
concave preferences, namely quadratic and exponential preferences. It turns out that in both 
cases the group supported by a particular agent increases monotonically over time: a result which 
strengthens our conjecture stated directly after the theorem. Moreover, the group supported by 
B increases faster as time evolves. 

Next, we turn to normal preferences as an example of non-concave preferences. In contrast 
to the previous results, now agents will support enemies at all but the last stage and the group 
supported by an agent decreases monotonically over time. 

Throughout the remainder of this section, we assume that e is the real line, At = 1 for all t 
and p is the Lebesgue measure. 

5.1. Quadratic Preferences 

Assume that the utility profile u is given by 

u(B;x) = -(x - (B 1))(x - (B + 1)). 

Hence, u(B; .) has a maximum at Band roots at B-1 and B+ 1. Obviously, u is strictly concave, 
anonymous and diagonally symmetric and Theorem 5.1 assures that there is an almost unique 
limit equilibrium S in which agents will never support enemies. Using the recursive formula for 
the value functions, we are able to prove that all value functions are quadratic functions of the 
form 

where the coefficients at, bt are given by the recursive equation 

aT = l,br=l, 
at = 2at+1bt+1 + 1 + at+I, (5.1) 

4at+l(bt+1)3 + 3 + 3at+l(bt+1)2
bt = 

6at+1bt +1 + 3 + 3at+l 

Here, the coefficients at and bt do not depend on B. 
In the limit equilibrium S agent B supports the interval [B - bt , B+ btl at stage t. Hence, 

determining the limit equilibrium S is simply a matter of computing the parameters bt given by 
the recursive formula (5.1). Exploiting the formula, it can be shown that bt is strictly increasing 
over time and hence the group of agents supported by B monotonically increases over time for 
all B. If the number of stages T is large and t is small, 

4bt+l + 3 
6bt+l +3' 
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The last property follows from formula (5.1) and the observation that at tends to infinity if 
T - t is very large. It implies that bt tends to zero if T - t is very large. Intuitively, this means 
that if many stages are involved, agents support only very small groups at the beginning. The 
following picture shows the evolution of bt in a game with 15 stages. 
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x 

Figure 1 
Evolution of support with quadratic preferences 

5.2. Exponential Preferences 

Assume that the utility profile u has the form 

o ­u(O;x) = e +! - eX 
- eO-x. 

e 

The function u(0; .) has a maximum at 0 and roots at 0 - 1 and 0 + 1. Again, u is concave, 
anonymous and diagonally symmetric and hence Theorem 5.1 applies. Using the recursive 
formula for the value functions, it can be shown that all value functions are exponential functions 
of the form 

Vt(O;x) = at - bt(eX
-

o + eO-x), 

where at and bt are parameters which do not depend on O. The limit equilibrium S is such that 
at every stage t agent 0 supports St(O) = [0 - ct., 0 + ct.] with ct. being independent of O. The 
numbers at, bt and ct. are given by the recursive equation 

1 
aT = e+-,~=l,CT=l, 

e 
1 

at = e + - + at+! + 2at+!ct.+1,
e 

bt = 1 + bt +! + bt+!(ect+l - e-Ct+l), (5.2) 
at 

ct. = arccosh ( 2bt ). 

Computing the limit equilibrium S is therefore equivalent to calculating the parameters et given 
by the recursive formula above. The following picture shows the evolution of ct. over time in a 
game with 15 stages. 
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Figure 2 
Evolution of support with exponential preferences 

Similar to the case with quadratic preferences, the group supported by agent () strictly 
increases over time and the rate of increase grows as time evolves. 

5.3. Normal Preferences 

Assume that the utility profile u is given by 

u((};x) = e-(x-B)2 _!. 
e 

The function u((}j .) has a maximum at () and roots at () - 1 and () + 1. Hence, u is diagonally 
symmetric and anonymous but not concave. Unfortunately, the value functions vt can not be 
written in the form 

vt((};x) = ae-(x-B)2 - b 

and can therefore not be parametrized as has been the case with quadratic and exponential 
preferences. This complicates our attempt to undertake simulations with many stages, since 
the computer package has to calculate the complete value function at each stage. A simulation 
with four stages shows that the curves of the individual value functions vt((};·) are very close to 
normal. The pictures below show the curves of vt(Oj .) at stages 2,3 and 4 respectively. Since u is 
diagonally symmetric and anonymous, the proof of Theorem 5.1 assures that the value function 
vt is anonymous and therefore every individual value function vt((}j') is equal to vt(Oj') after 
translation. 
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Figure 3 

Evolution of value function with normal preferences 


Since the boundedness condition and the indifference condition are clearly satisfied, the value 
functions characterize an almost unique limit equilibrium S. As can be seen in the picture, the 
group supported by agent 0 in S contains enemies at all but the last stage and decreases over 
time. More exactly, the limit equilibrium is such that agent 0 at stage t supports the set St(O) = 
[0 at,O + at] where at does not depend on 0 and is given by the following table: 

6. Stationary Support 

In Section 5 we have seen that quadratic and exponential preferences lead to increasing support 
over time, whereas normal preferences induce decreasing support as time evolves. These results 
raise the question whether we can find circumstances under which support remains constant 
over time. In this section we provide a sufficient condition for stationary support behavior and 
illustrate the result with an example. 

A utility profile U in a continuum society is said to induce stationary support if the limit 
equilibrium S (by which we mean the limit equilibrium in Theorem 4.1) is such that for every 0 
the set St(O) remains constant over time. In the theorem we present a sufficient condition on U 

to induce stationary support. To this purpose, we define the operator A transforming a function 
f : e x e -jo R into the function Af : e x e -jo R given by 

Af(Ojx) = J f(Ojy)dp(y). 

Y:/(3:;y)'2:0 

Theorem 6.1. Let At > 0 for all t and let the utility profile u be such that Au = au for some 
constant a > O. Then, u induces stationary support. 

Proof. Let u be such that Au = au for some constant a > O. Let S be the limit equilibrium 
and Vi the corresponding value functions. By definition, we have VT ATU and Vi = AtU + 
Vi+! + AVi+! for all t < T. In particular, 

VT-l 	 = AT-IU + VT + AVT = AT-IU + ATU + AATU 

= AT-IU + ATU + ATAu = (AT-l + AT + ATa)u. 

By induction, it follows that Vi is always a strictly positive multiple of u. Consequently, St(O) = 
{x IVi(Ojx) ;::: O} = {x Iu(Ojx) ;::: O} for all t which means that u induces stationary support. 0 
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Example 6.1. Let e be the circle with unit length. For the sake of convenience, we 
represent e by the interval [0, 1J. Let At > 0 for all t and p be the Lebesgue-measure on [0,1]. 
Let the utility profile u be given by 

u(OjX) = COS(21T(X - 0)) 

for all O,x E e. Hence, u(Oj') has a maximum at 0 and decreases as we go further away from 0 
on the circle. We show that u induces stationary support. 

For every x E lR let [x] be the unique number in [0,1) such that x- [xJ E Z. Then {y Iu(Xj y) c 
O} = {[y]1 yE [x - ~,x +!J} and 

:c+! :c+! :c+~ 

Au(Ojx) = Ju(Oj [y])dy = JCOS(21T([Y]- O))dy = JCOS(21T(Y ~ O))dy 

:c-! x-! x-! 

= ~ sin(21T(x + ! - 0)) - ~ sin(21T(x - ! - 0))
21T 4 21r 4 
1 1 

= - cos(21r(x - 0)) = -u(Ojx).
1T 1r 

Hence, Au = ~u and Theorem 6.1 assures that u induces statonary support. 

In the case where e is the real line, we did not yet manage to find an interesting utility 
profile u which induces stationary support. Trivial but unappealing utility profiles that induce 
stationary support are, for instance, those in which each agent 0 dislikes all other agents (Le. 
u(0; x) < 0 for all x). In this case, 0 will always support nobody. An open question is still 
whether there exists a utility profile u : lR x lR --+ lR inducing stationary support and satisfying 
the following properties: (a) u is anonymous and diagonally symmetric, (b) u(O;·) is positive at 
[0 - a, 0 + aJ and negative outside for some a > O. 

7. Infinite Horizon 

Up to this point, we assumed that agents face a finite horizon, which is commonly known to 
all. In some cases, however, this assumption may not be appropriate. It is therefore worthwhile 
analyzing the case of an infinite (or uncertain) horizon. As will be shown in this section, the 
introduction of an infinite horizon induces a remarkable change in optimal support behavior: 
a phenomenon which is not surprising, given the important difference between a finite and an 
infinite horizon in the literature on repeated games. In general, uniqueness of subgame perfect 
equilibrium is lost when facing an infinite horizon and history dependent equilibria may arise. 
Before turning to history dependent equilibria, we first .analyze the class of history independent 

equilibria. 

7.1. History Independent Equilibria 

It turns out that, even when concentrating on history independent equilibria, the situation 
drastically changes when switching to an infinite horizon. As we will see, multiple history 
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independent equilibria, and even mUltiple stationary equilibria may exist. Similar to the finite 
horizon case, they can be characterized by value functions. 

In the sequel, we solely concentrate on discrete societies but similar arguments would hold 
when considering continuum societies. First, we try to characterize maximal subgame perfect 
equilibria with infinite horizon by using value functions. Consider a history independent maximal 
subgame perfect equilibrium S for the finite horizon case, so S = (St(0»t:fT,9E8. In the proof of 
Theorem 3.1, we have seen that the value functions Vt are given by 

T T 

Vt(O; x) = [>'tU+ I: >'T IT (l + SZ)U](Oi X) 
T=t+l l=t+l 

where the operator SI transforms a function f : e x e -+ lR into a function sd : e x e -+ lR 
given by 

sd(O;x) = I: f(O;y)p(y). 
yESj(x) 

Now, let S be a history independent strategy profile for the infinite horizon case, so S = 
(St(0»tEN,9E9. In the same way as above, we may define the value functions Vt,t E N, induced 
by S by 

00 T 

Vt(O; x) = [>'tU+ I: >'T IT (l + SI)U](O;X), 

T=t+l Z=t+l 


given that this expression exists. By essentially copying the proof of Theorem 3.1 we obtain the 
following characterization of history independent equilibria with infinite horizon. 

Theorem 7.1. Let S be a history independent strategy prof1le for the infinite horizon case. 
Suppose that S is such that the value functions (Vt)tEN induced by S exist. Then, S is a maximal 
subgame perfect equilibrium if and only if St(O) = {xl Vt(O; x) 2:: O} for all t. 

A disadvantage, in comparison with the finite horizon case, is that the value functions can 
no longer be computed recursively by backward induction, since there is no longer a final stage. 
Determining the value functions and verifying the condition of the theorem above can therefore 
become a complicated matter. 

The theorem can be used, however, to provide a sufficient condition for stationary equilib­
ria, similar to the one presented in Theorem 6.1 for a finite horizon. Let A be the operator 
transforming a utility profile U : e x e -+ lR into a new function Au : e x e -+ lR given by 

Au(O;x) = I: u(O;y)p(y). 
Y:U(xiY);::O 

Theorem 7.2. Let Au = o:u for some number 0: > O. Then, the stationary strategy prof1le S in 
which at every stage, after any history, agent 0 supports S(O) = {xl u(O;x) 2:: O} is a maximal 
subgame perfect equilibrium. 
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Proof. Suppose that Au = au for some a > O. Let the stationary strategy profile S be 
given by St(B) = {xl u(Bjx) 2: O} for all t,B. Then, by construction, s/u = Au = au for alll E N 
and the value functions induced by the stationary strategy profile S are given by 

00 TOOT 
Vt(BjX) = [AtU + :L AT IT (1 +s/)u)(B;x) = [AtU + :L AT IT (1 +A)u)(Bjx) 

T=t+l /=t+l T=t+l l=t+l 
00 T 00 

- [AtU + :L AT IT (l+a)u)(B;x) = [At + :L AT(l+a)T-tju(Bjx), 
T=t+l l=t+l T=t+l 

so Vt is a strictly positive mUltiple of u for all t. Hence, S(B) = {xl u(Bjx) ~ O} = {xl Vt(Bjx) ~ 
O} for all t and B. Theorem 7.1 assures that S is a maximal subgame perfect equilibrium. 0 

The condition of the theorem above, however, is not necessary for stationary equilibria. In 
the following example, we are able to find two stationary equilibria: one which satisfies the 
sufficient condition and one which does not. As a byproduct, the example shows that there may 
exist multiple history independent equilibria (even mUltiple stationary equilibria) if the horizon 
is infinite. 

Example 7.1. Consider a group e = {1,2} of agents for which the utilities u(Bjx) are 
given by the matrix 

ITEIJ

c:=:ITTI' 

We assume that p(B) = 1 for both B and At = f} with 8 = 0.3. Here, the discount factor 8 is 
small enough as to ensure the existence of the value functions for any strategy profile. Let S 
be the stationary strategy profile in which 1 always supports {1} and 2 always supports {2} at 
any stage and after any history. Let S' be the stationary strategy profile in which both 1 and 2 
always support {1, 2}. We show that both Sand S' are maximal subgame perfect equilibria. 

It can be checked immediately that Au = u, so Theorem 7.2 implies that S is a maximal 
subgame perfect equilibrium. 

Now, let s~ == s' be the operator at stage 1 induced by S', as used in the definition of the 
value functions above. Then, the value functiop lit is given by 

00 T 00 

lIt(Bjx) = [AtU + :L AT IT (1 +s')u](Bjx) = [AtU + :L AT(I +S'r-tu](Bjx). 

T=t+ 1 l=t+1 T=t+ 1 


By straightforward calculations, it can be shown that Vi: (Bj X) > 0 for all (Bj X), and hence 
S' (B) = {1,2} = {xl Vi:(Bj x) ~ O} for all t and B. Theorem 7.1 guarantees therefore that S' is a 
maximal subgame perfect equilibrium. 

The intuition behind the equilibrium S' is the following: it is in agent B's interest to support 
the other agent x, since x will support B in all remaining stages. So, by supporting x, agent B 
is implictly supporting himself. 
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This equilibrium would break down if the horizon would be finite, since agents would only 
support themselves at the last stage, which makes it unattractive to support the other agent 
at the penultimate stage, which makes it unattractive to support the other agent at the stage 
before the penultimate stage and so on. 

7.2. History Dependent Equilibria 

If the agents face a finite horizon, the unique maximal subgame perfect equilibrium is history 
independent. By means of an example, we show that an infinite horizon may lead to history 
dependent equilibria. 

Example 7.2. As in Example 7.1, consider a group e = {1,2} of agents in. which the 
utilities u(0; x) are given by 

crr=Il 
~. 

Again, p(0) = 1 for both agents and At = 6t with 6 = 0.3. Let S be the history dependent 
strategy profile defined as follows: 

Stage 1. Both agents support {1,2}. 
Stage t > 1. If at all previous stages, both agents supported {1, 2}, then both agents continue 

to support {1,2}. 
If at some previous stage, an agent did not support {1,2}, agent 1 supports {1} and agent 

2 supports {2}. 

We prove that S is a maximal subgame perfect equilibrium. 
By symmetry of the game, it is sufficient to concentrate on agent Ps deviations. Suppose 

the game is at stage t and both agents supported {1,2} at all previous stages. Let the influence 
distribution at the beginning of stage t be given by 1l"t-l = (1l"t-l(1),1l"t-l(2»), where 1l"t-l(O) 
denotes agent O's influence. 

If agent 1 deviates at stage t, then agent 2 will support {2} ever after. In Example 7.1 we 
have seen that both agents supporting only themselves is a maximal subgame perfect equilibrium 
(irrespective of the initial influence distribution). In particular, this means that if agent 2 
supports {2} ever after, the best for agent 1 to do is to support {l} ever after. Using the 
recursive formula for the evolution of the influence distribution, as given in Section 2, it can be 
shown that the overall continuation utility for agent 1 by deviating at stage t, is less or equal to 

Assume on the other hand that agent 1 sticks to the strategy prescribed by S. Then, his 
overall continuation utility, starting at stage t, is equal to 
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It can be checked that Ui < Ul for 6 = 0.3 and for all t, so deviation is not beneficiaL 

Now, suppose that the game is at stage t and some agent did not support {1,2} at some of 
the previous stages. Then, S prescribes that both agents should support only themselves in all 
remaining stages. In Example 7.1, we have seen that both agents supporting only themselves is 
a maximal subgame perfect equilibrium, which implies that deviation is not beneficial for agent 
1 at this stage of the game. Hence, we may conclude that S is a maximal subgame perfect 
equilibrium. 

8. Concluding Remarks 

Our main contributions in this paper are threefold. First, we propose a general game theoretical 
model to study situations in which agents pertaining to a society can transfer influence to 
other members by supporting them. We continue by showing that for discrete and continuum 
societies there is an essentially unique optimal support behavior if there is a finite horizon. Here, 
continuum societies should be seen as approximations of large discrete societies. Moreover, we 
present an easy to handle recursive formula which characterizes the equilibrium. This formula 
is used to make qualitative statements on the support behavior of agents and to compute the 
equilibrium for specific utility classes. 

The model presented can be extended in many different directions. One could, for instance, 
consider the situation in which agents can not support arbitrary groups of agents but face 
physical or financial restrictions. The model could also be extended to societies where the 
utilities u(9;x), reflecting the preferences for other society members, are not fixed but change 
over time. Or one could look at situations with continuous instead of discrete time. The 
techniques used to derive our results can probably be adapted to continuous time in the same 
way as related techniques in discrete dynamic programming have been adapted to continuous 
programming. 

9. Appendix 

Proof of Lemma 3.2. By definition of ffL we have 

f fL(X) ='2:. fey; x) fL(Y) p(x) 
y 

and hence 

'2:. g(9; x) ffL(X) - '2:. '2:.g(9; x) f(y;x) fL(Y) p(x) 
x x y 

- ~ [~9(B;Y)f(X;Y)P(y)] /"lx) 

- '2:. jg(9; x) fL(X) , 
x 
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where the second equality is obtained by exchanging x and y. <l 

Proof of Lemma 3.3. By induction on t - T. 

If t = T, then we have 

= L(I+ ST )u(Ojx) 1fT-1(X), 
a; 

where the fourth equality follows from Lemma 3.2. 

Now, let t > T and let the statement be true for all T' < t' with t' - T' < t - T. Then, in 
particular, the statement is true for t and T + 1 which means that 

t 


Ut (0) = L[ IT (1 + SI)U](O;X) 1fT (X) 

a; I=T+1 


t 

- L[ IT (1 + SI)U](O;X) (1fT-1 + 8T1fT-d(x) 

a; I=T+1 


t t 

= L[ IT (I + 81)U](Oi X)1fT-1(X) + L[ IT (1 + SI)Uj(O;X) 8T1fT-1(X) 
a; I=T+1 a; I=T+1 

t t 

= L[ IT (1 + SI)U](O;x) 1fT-1(X) + L[ST IT (1 + 8Z)U](0;x) 1fT-1(X) 

t 

- L[(l+ 8T) IT (1 + 81)u](OjX) 1fT-1(X) 

t 

= LlIT(I +81)U](0;X) 1fT-1(X), 

x I=T 


where the fourth equality follows from Lemma 3.2. <l 

Proof of Theorem 5.1. (a) First of all, we show that the value functions lit are strictly 
concave, anonymous and diagonally symmetric for all t. We prove the statement by induction 
on t. 

If t = T the statement is true since VT = ATU and AT > O. Now let t < T and let the 
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statement be true for all T > t. First we show anonimity of vt. Since 

vtC6jX) = Atu(6;x) + vt+lC6;x) + J vt+1C6jy)dy 

y: Vt+l(XiY)?:O 

and u, vt+1 are anonymous by assumption, it suffices to show that the function F : e x e -t R 
given by 

FC6jx) = J vt+1C6jy)dy 

y: vt+l (XiY)?:O 

is anonymous. By anonimity of vt+1 it holds that 

FC6+ajx+a) = J vt+l(6+ajy)dy= J vt+1C6jy-a)dy 

Y: vt+1(x+aiY)?:O y:vt+l (Xiy-a)?:O 

= J vt+1(6;z)dz = FC6jx) 
Z:vt+l(XiZ)?:O 

where the third equation follows by substituting z = y ­ a. Hence, F is anonymous. 
Next, we show diagonal symmetry of vt. Since by assumption u and vt+1 are diagonally 

symmetric it suffices to show that F is diagonally symmetric. By definition, we have that 

F(6j6+a) = J vt+1C6;y)dy. 

Y:vt+l(9+aiY)?:O 

Since vt+1 is diagonally symmetric we have 

for all y. By anonimity and diagonal symmetry of vt+1 we have 

vt+1C6 +aiY) =vt+1C6 ­ ajy ­ 2a) = vt+l(6 ­ ai 2(6 ­ a) - (y ­ 2a)) = vt+1(6 ­ aj 26 ­ y), 
(9.2) 

where the second equation follows from applying property (9.1) to vt+l(6 ­
two equations above, we obtain 

aj Y - 2a). Using the 

F(6j6+a) = 

= vt+1(6j z) dz = F(6; 6 - a), 

where the last equation follows from the change of variable z = 
symmetric. 

26 ­ y. Hence, F is diagonally 

I 
I 

I 
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Finally, we show that vt is strictly concave. Since 

vt(O;x) = AtU(O;X) + vt+l(O;X) + F(OiX) 

and u(0; .), vt+l (0; .) are strictly concave by induction assumption it suffices to show that the 
function F(O;.) is concave for all O. 

Using diagonal symmetry and anonymity of F, we obtain 

F(O;x) = F(a,x - 0) = F(a,O - x) = F(x, 0) 

for all O,x. Similarly, vt+1(OiX) = vt+1(x;O). Consequently, 

F(0; x) = F(x; 0) = J vt+1 (x; y) dy = J' (9.3) 

y:Vt+1(BiY)~O y:Vt+1(BjY)~O 

In order to prove concavity of F(O; .), we show that 

F(O;ax + (1 a)z) 2: aF(O;x) + (1- a)F(O;z) 

for all 0, x, z E 8 and all a E [a, 1J. By equation (9.3), we have 

F(O;ax+(l-a)z) = J vt+1(Yi ax +(l-a)z)dy 
y:Vt+l(Bjy)~O 

2: (avt+l (y; x) + (1 - a)vt+1 (Yi z))dyJ 
y:Vt+l(ejy)~o

J J= a vt+l(Yi X)dy+(l a) vt+l(y;z)dy 
y:Vt+1(e;y)~o y:Vt+l(e;y)~o 

= aF(O;x) + (1 - a)F(O; z). 

Here, the inequality follows from the induction assumption that vt+1(Y;') is concave. This 
completes the proof of our statement. 

(b) In order to prove that the special limit equilibrium S is the almost unique limit equilib­
rium, we show that the game satisfies the indifference condition and the boundedness condition. 
Since vt is diagonally symmetric, anonymous and strictly concave for all t we have that 

{xl vt(O;x) = O} is either empty or equal to {O - at, 0 + at} 

for all t and O,where at does not depend on O. Hence, {xl vt(O;x) = a} always has Lebesgue 
measure zero, implying that the game satisfies the indifference condition. 
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In order to prove the boundedness condition, let a < 0 be given. Since vt is diagonally 
symmetric, anonymous and strictly concave, we have that 

{xl vt(Oi X) 2:: a} is either empty or equal to [0 - bt, 0 + bt] 

for all t and 0 where bt does not depend on O. So, p({xl vt(OiX) 2:: a}) = 0 or 2bt for all t and 
O. Let M = max.{2bl, ... ,2br}. Then, p({xl vt(OiX) 2:: a} ~ M for all t and 0 and hence the 
boundedness condition is satisfied. 

(c) Next, we show that the limit equilibrium S is such that St(O) c {xl U(OiX) 2:: O} for all t 
and O. We use induction on t. 

For t = T the statement is true since ST(O) = {x IVT(OjX) 2:: O} = {x IATu(O;.x) ~ O} = 
{x IU(OiX) 2:: O} since At> O. 

Now let t < T. Suppose that u(Ojx) < O. We show that vt(Ojx) < O. 
Since by assumption St+l = {x Ivt+l(O;x) ~ O} c {x Iu(O;x) ~ O} it follows that vt+l(Ojx) < 

O. By definition, 

vt(OjX) = Atu(O;x) + vt+l(OJ x) + J vt+l(Ojy)dy. 

Y: 'lltH(:t'iy)2;:O 

As before, let 

F(Ojx) = vt+l(Ojy)dy.J 

Y: '11tH (:t'iY) 2;:0 

Therefore it suffices to show that F(OJ x) ~ O. Since vt+l is strictly concave, anonymous and 
diagonally symmetric it follows that {y Ivt+l (Xi y) 2:: O} is either empty or equal to [x - a, x +a] 
for some a ~ O. 

If it is empty, then F(Ojx) = 0 by definition. If a = 0 then, also, F(x) = O. Now, suppose 
that a > O. Then, 

F(OiX) = vt+l (OiY) dy = 2a J vt+l(O;y) 2~dyJ 
yE [:t'-a,:t'+a] yE[:t'-a,:t'+a] 

= 2aE/l[vt+l(Oi')] 

where I" is the uniform distribution on [x - a,x + a] and EIL[vt+l (Oi .)] is the expected value of 
vt+l(Oj') with respect to 1". Since vt+l(Oj') is concave we know by Jensen's inequality that 

which implies that F(a;} < O. This completes the proof of the statement. 

(d) Finally, we turn to the special case where only the utility at the final stage is relevant, 
Le. At = 0 for all t < T. We show that St(O) C St+l(O) for all t and O. 
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In this special case, the value functions Vt are given by the recursive formula VT(B;x) = 
ATU(B;x) and 

Vt(B;x) =Vt+l(B;x) + J Vt+l(B;y) dy =Vt+l(B;x) + F(B;x) 

Y:Vt+l(XiY);::O 

if t < T. Suppose that x if; St+l(B). Then, by definition, Vt+l(61;x) < O. In the proof of the 
previous statement, we have seen that Vt+l(61;x) < 0 implies F(x) < O. Hence, Vt(61;x) 
Vt+l(61;x) +F(x) < 0 which means that x if; St(61). This completes the proof. 0 
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