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Abstract

In this paper we analyze a perturbation of a nontrivial positive measure supported on the
unit circle. This perturbation is the inverse of the Christoffel transformation and is called
the Geronimus transformation. We study the corresponding sequences of monic orthogonal
polynomials as well as the connection between the associated Hessenberg matrices. Finally,
we show an example of this kind of transformation.
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1 Introduction

The study of orthogonal polynomials with respect to a nontrivial positive Borel
measure supported on the unit circle T = {z ∈ C : |z| = 1} was started by G. Szegő
in several papers published from 1915 to 1925 (see [19]). Later on Y. Geronimus
[4] extended this theory to a more general situation.

If υ is a linear functional in the linear space Λ of the Laurent polynomials
(Λ = span {zn}n∈Z) such that υ is Hermitian, i. e. cn = 〈υ, zn〉 = 〈υ, z−n〉 = c̄−n,
n ∈ Z, then a bilinear functional associated with υ can be introduced in the linear
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space P of polynomials with complex coefficient as follows

(p(z), q(z))υ =
〈
υ, p(z)q̄(z−1)

〉
(1)

where p, q ∈ P.

The Gram matrix associated with this bilinear functional in terms of the canonical
basis {zn}n>0 of P is

T =



c0 c1 · · · cn · · ·
c−1 c0 · · · cn−1 · · ·
...

...
. . .

...

c−n c−n+1 · · · c0 · · ·
...

...
...

. . .



, (2)

a Toeplitz matrix [8].

The linear functional is said to be quasi-definite if the principal leading submatrices
of T are non-singular. If such matrices have positive determinant, then the linear
functional is said to be positive definite. Every positive definite linear functional
has an integral representation

〈υ, p(z)〉 =

∫

T

p(z)dµ(z), (3)

where µ is a nontrivial positive Borel measure supported on the unit circle (see [4],
[8], [11], [17]).

If υ is a quasi-definite linear functional then a unique sequence of monic polyno-
mials {Pn}n>0 such that

(Pn, Pm)υ = knδn,m, (4)
can be introduced, where kn , 0 for every n > 0. It is said to be the monic orthog-
onal polynomial sequence associated with υ.

This polynomial sequence satisfies two equivalent recurrence relations due to G.
Szegő (see [4], [8], [17], [19])

Pn+1(z) = zPn(z) + Pn+1(0)P∗n(z), (5)

Pn+1(z) =
(
1 − |Pn+1(0)|2

)
zPn(z) + Pn+1(0)P∗n+1(z), (6)

the forward and backward recurrences, respectively, where P∗n(z) = znP̄n(z−1) is the
so-called reversed polynomial. On the other hand, from (5) and (6) we deduce

zPn(z) =

n+1∑

j=0

λn, jP j(z), (7)
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with

λn, j =



1 if j = n + 1,
kn
k j

Pn+1(0)P j(0) if j 6 n,

0 otherwise,

(8)

(see [12], [17]). Thus, the matrix representation of the linear operator h : P 7→ P,
the multiplication by z in terms of the basis {Pn}n>0 is

zP(z) = HPP(z),

where P(z) = [P0(z), P1(z), . . . , Pn(z), . . .]t and HP is a lower Hessenberg matrix
with entries λ j,k defined in (8).

Finally, in terms of the moments {cn}n>0 an analytic function

C(z) = c0 + 2
∞∑

n=1

c−nzn (9)

can be introduced. If υ is a positive definite linear functional, then C is analytic
in the open unit disk and Re (C(z)) > 0 therein. In such a case C is said to be a
Carathéodory function and it can be represented as a Riesz-Herglotz transform of
the positive measure µ introduced in (3) (see [4], [11], [17])

C(z) =

∫

T

w + z
w − z

dµ(w).

Following some perturbations of the measure µ we have studied the behavior of the
corresponding Carathéodory functions (see [14]) as well as the Hessenberg matri-
ces associated with the corresponding sequence of orthogonal polynomials in three
cases

(i) If dµ̃ = |z−α|2dµ, |z| = 1, then the so-called canonical Christoffel transformation
appears. In [?] and [16] we have studied the connection between the associated
Hessenberg matrices using the QR factorization. The iteration of the canonical
Christoffel transformation has been analyzed in [5], [10], and [13].

(ii) If dµ̃ = dµ + mδ(z − z0), |z0| = 1, m ∈ R+, then the so-called canonical Uvarov
transformation appears. In [?] and [14] we have studied the connection between
the corresponding sequences of monic orthogonal polynomials as well as the as-
sociated Hessenberg matrices using the LU and QR factorization. The iteration
of the canonical Uvarov transformation has been studied in [4] and [13].

(iii) If dµ̃ = 1
|z−α|2 dµ, |z| = 1, and |α| > 1, then a special case of the Geronimus

transform has been analyzed in [15]. In particular, the relation between the cor-
responding sequences of monic orthogonal polynomials and the associated Hes-
senberg matrices is stated. A more general framework is presented in [6].
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These three examples of canonical spectral transforms are the analogues on the unit
circle of the canonical spectral transforms on the real line considered by several
authors (see [1], [18], [20] and [21]) in connection with bispectral problems and
LU, UL, and QR factorization of Jacobi matrices, i. e. symmetric and tridiagonal
matrices with real entries. An extension of the canonical Christoffel transformation
for a general inner product is done in [2].

Notice that in these three cases, the corresponding Carathéodory functions are re-
lated by

C̃(z) = Q(z)C(z) + R(z),

with Q,R rational functions. This situation corresponds to the so-called linear ra-
tional spectral transformations. Other examples of pure rational spectral transfor-
mations have been summarized in [14].

Taking into account the linear functional υ̃ associated with a Christoffel transfor-
mation satisfies

(p, q)υ̃ = ((z − α)p, (z − α)q)υ , |α| , 1,

it seems to be natural to analyze the inverse transform υ̃ → υ. In such a case, in
[14] we have shown that there are many solutions to this inverse problem. They are
defined up to the addition of a trivial linear functional mδ(z−α) + mδ(z− ᾱ−1) with
m ∈ C � {0}.

The aim of this paper is the study of the bilinear functional

(p, q) =

∫

T

p(z)q(z)
dµ
|z − α|2 + mp(α)q(ᾱ−1) + mp(ᾱ−1)q(α), (10)

where |α| > 1 and m ∈ C � {0}.

In particular, in Section 3 we give necessary and sufficient conditions for the exis-
tence of a sequence of monic polynomials orthogonal with respect to (10). Further-
more, the relation between the sequences of monic orthogonal polynomials with
respect to µ and (10) is deduced. In Section 4, the connection between the corre-
sponding Hessenberg matrices is obtained. Finally, in Section 5 an example of this

Geronimus transformation when dµ =
dθ
2π

, i. e. the Lebesgue probability measure
on the unit circle, is analyzed.
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2 C-functions and linear spectral transforms

Let υ be a positive definite linear functional in Λ and consider the associated
Carathéodory function (C-function) C given by

C(z) = c0 + 2
∞∑

n=1

c−nzn, (11)

with cn = 〈υ, zn〉. The linear functional υ induces a bilinear functional defined by

(p, q)υ =
〈
υ, p(z)q̄(z−1)

〉
.

We consider a linear rational spectral transformation C̃ of C

C̃(z) = A(z)C(z) + B(z), (12)

where A, B are rational functions. The function C̃ is analytic at z = 0, i. e.

C̃(z) = c̃0 + 2
∞∑

n=0

c̃−nzn,

where c̃0 ∈ R, c̃−k ∈ C for k ∈ N, and lim sup |c̃k| 1k < ∞, and it can be associated
with the linear functional υ̃ in Λ defined by

〈υ̃, zn〉 = c̃n, n ∈ Z,

with the convention c̃−n = c̃n, n ∈ N.

If {Pn}n>0 is a sequence of monic orthogonal polynomials with respect to υ, a natural
problem is to analyze necessary and sufficient conditions for the existence of a
monic orthogonal polynomial sequence with respect to υ̃. This is an open problem,
although some particular situations have studied in [14].

Next, we will show some examples of linear rational transformations.

2.1 Christoffel transformation

Let υ̃ be a linear functional such that the associated bilinear functional satisfies

(p, q)υ̃ = ((z − α)p, (z − α)q)υ , α ∈ C. (13)

υ̃ = Cα (υ) is the canonical Christoffel transformation of υ.
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Thus, if C̃(z) = c̃0 + 2
∞∑

n=1

c̃−nzn, with c̃k =
〈
υ̃, zk

〉
is a linear spectral transformation

of C, then

c̃k =
〈
υ̃, zk

〉
=

(
zk, 1

)
υ̃

=
(
1 + |α|2

)
ck − αck−1 − ᾱck+1, k ∈ Z,

and

C̃(z) =
(
1 + |α|2

)
C(z) − ᾱ

c1 + 2
∞∑

k=0

c−nzn+1

 − α
c−1 + 2

∞∑

k=2

c−nzn−1

 .

As a consequence,

Proposition 1
C̃(z) = A(z)C(z) + B(z),

where

A(z) =
(1 − ᾱz)(z − α)

z
, B(z) =

−ᾱc0z2 + (αc−1 − ᾱc1) z + αc0

z
.

2.2 Uvarov transformation

Now, we consider υ̃ such that the associated bilinear functional satisfies

(p, q)υ̃ = (p, q)υ + mp(α)q(ᾱ−1) + mp(ā−1)q(a), (14)

with |α| > 1 and m ∈ C � {0}. υ̃ = Uα,m (υ) is the Uvarov canonical transform of υ.

We will see that C̃(z) = c̃0 + 2
∞∑

k=1

c̃−kzk, with c̃k =
〈
υ̃, zk

〉
, is a linear spectral

transformation of C.

c̃k =
(
zk, 1

)
υ̃

=
(
zk, 1

)
υ

+ mαk + mᾱ−k.

Then,

Proposition 2
C̃(z) = A(z)C(z) + B(z),

where

A(z) = 1, B(z) = m
α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

.
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2.3 Geronimus transformation

Consider the linear functional υ̃ such that the associated bilinear functional satisfies

((z − α)p, (z − α)q)υ̃ = (p, q)υ , |α| > 1. (15)

The linear functional υ̃ = Gα (υ) is said to be a Geronimus canonical transform of
υ. Then

ck =
(
zk, 1

)
υ

=
(
zk(z − α), z − α

)
υ̃

= c̃k

(
1 + |α|2

)
− ᾱc̃k+1 − αc̃k−1, k > 0.

(16)

If sk = ck
αk and qk = c̃k

αk − c̃k−1
αk−1 , then from the above expression we obtain

sk = qk − |α|2qk+1, k > 0,

and, as a consequence,

qk =
q0 − c0 − ᾱc1 − · · · − ᾱk−1ck−1

|α|2k , k > 1, (17)

as well as,

q0 = c̃0 − α ¯̃c1

q1 =
q0 − c0

|α|2 =
c̃1

α
− c̃0.

Thus, q0 is a free parameter. Therefore

c̃0 − ᾱc̃1 = q̄0

c̃0 − c̃−1

α
=

c0 − q0

|α|2
(18)

and (
1 − |α|2

)
c̃0 = 2Re (q0) − c0,

If we assume that |α| > 1, from (18) we get c̃1. Furthermore

c̃k

αk = c̃0 +

k∑

j=1

q j, k > 2.

Therefore, we have a degree of freedom that is the choice of q0. As a consequence,
from (16) we get

Proposition 3
C̃(z) = A(z)C(z) + B(z), (19)
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where

A(z) =
z

(1 − ᾱz)(z − α)
, B(z) =

ᾱc̃0z2 + 2iIm (q0) z − αc̃0

(1 − ᾱz)(z − α)
.

From the above result, we deduce

C̃(z) = A(z)C(z) + m
α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

,

where m =
1
2

2q0 − c0

1 − |α|2 .

In the positive definite case, an example of Geronimus transformation with m = 0
has been analyzed in [6].

Proposition 4

(i) Gα ◦ Cα = Uα,m̃.
(ii) Cα ◦ Gα = Id.

Proof.

(i) Let G be analytic function associated with Cα. Then, from Proposition 1, we get

G(z) =
Ã(z)

z
C(z) −

(
ᾱc0z − (αc̄1 − ᾱc1) − αc0

1
z

)

where Ã(z) = (1 − ᾱz)(z − α).
If H is the analytic function associated with (Gα◦Cα)(υ), then from Proposition

19,

H(z) =
z

Ã(z)
G(z) + m

α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

= C(z) + m̃
α + z
α − z

+ m̃
1 + ᾱz
1 − ᾱz

with

m̃ = m− 1
2

(
c0 +

αc̄1 − ᾱc1

1 − |α|2
)
.

(ii) Let C̃ be the analytic function associated with (υ̃ = Gα)(υ). Then, taking into
account the Proposition 19

C̃(z) =
z

Ã(z)
C(z) + m

α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

.

Now, if K is the analytic function associated with (Cα ◦ Gα)(υ) then, from
Proposition 1 we get
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K(z) =
Ã(z)

z
C̃(z) −

(
ᾱc̃0z + (αc̃1 − ᾱv̄1) − αc̃0

z

)

= C(z) +
Ã(z)

z

(
m
α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

)
− Ã(z)

z

(
m
α + z
α − z

+ m
1 + ᾱz
1 − ᾱz

)
= C(z).

�

3 Orthogonal polynomials and Geronimus transforms

Let µ be a nontrivial positive Borel measure supported on the unit circle T =

{z ∈ C : |z| = 1}. An inner product defined in the linear space P of polynomials
with complex coefficients is associated with µ as follows

(p, q)µ =

∫

T

p(z)q(z)dµ, p, q ∈ P.

The entries of the Gram matrix T associated with (·, ·)µ are given by

ck−l =
(
zk, zl

)
µ
, k, l ∈ N.

The matrix T is Hermitian with constant entries along the diagonals, i. e. T is a
Toeplitz matrix. We will denote Tn the (n + 1)× (n + 1) leading principal submatrix
of T.

To the measure µ we can associate a sequence {ϕn}n>0 of orthonormal polynomials
given by

ϕn(z) =
1√

Tn−1Tn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c0 c1 c2 · · · cn

c−1 c0 c1 · · · cn−1
...

...
...

...

c−n c−n+1 c−n+2 · · · c−1

1 z z2 · · · zn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (20)

where Tn = det Tn, n > 0, with the convention T−1 = 1. The leading coefficients are

κn(µ) =

√
Tn−1

Tn
. (21)

We will denote the monic orthogonal polynomials with respect to µ by Pn(z) =
1

κn(µ)ϕn(z). Then,

kn := (Pn, Pn)µ =
1

κn(µ)2 =
Tn

Tn−1
. (22)
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The n-th reproducing kernel polynomial associated with {ϕn}n>0 is defined by

Kn(z, y) =

n∑

j=0

ϕ j(y; µ)ϕ j(z; µ) =

n∑

j=0

P j(y)P j(z)
k j

.

The functions

q j(t) =

∫

T

ϕ j(z; µ)
t − z

dµ(z), t < T, j > 0, (23)

are called functions of second kind associated with µ. We also denote

Q j(t) =

∫

T

P j(z; µ)
t − z

dµ(z) = (κ j(µ))−1q j(t).

Now, we consider the Geronimus perturbation µ̃ of µ as follows

dµ̃ =
dµ
|z − α|2 + mδα + mδᾱ−1 , m ∈ C, (24)

where |α| > 1, as well as the associated bilinear functional

(p, q)µ̃ :=
∫

T

p(z)q(z)
dµ
|z − α|2 + mp(α)q(ᾱ−1) + mp(ᾱ−1)q(α).

µ̃ is said to be the canonical Geronimus transform of µ.

Proposition 5 The bilinear functional (p, q)µ̃ =

∫
p(z)q(z)

dµ
|z − α|2 +mp(α)q(ᾱ−1)+

mp(ᾱ−1)q(α) is quasi-definite if and only if

εn(α) := ‖µ̃‖ −
n∑

j=0

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2
, 0, for every n > 0,

where ‖µ̃‖ =

∫

T

dµ
|z − α|2 + m + m.

Proof. Let consider the basis {1, (z − α), z(z − α), . . . , zn(z − α), . . .} of P. Then the
moments c̃k, j associated with µ̃ in this basis are

c̃k, j =
(
zk−1(z − α), z j−1(z − α)

)
µ̃

=
(
zk−1, z j−1

)
µ

= ck− j, k, j = 1, 2, . . . .

Thus, the Gram matrix T̃ associated with µ̃ has as the (n + 1) × (n + 1) leading
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principal submatrix

T̃n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c̃0,0 c̃0,1 · · · c̃0,n−1 c̃0,n

c̃1,0 c−n+1
... Tn−2

...

c̃n−1,0 c−1

c̃n,0 cn−1 · · · c1 c0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (25)

with

c̃0, j =
(
1, z j−1(z − α)

)
µ̃

=

(
1

z − α, z
j−1

)

µ

+ m(ᾱ−1 − α)α− j+1, j = 1, 2, . . .

c̃0,0 = (1, 1)µ̃ =

(
1

z − α,
1

z − α
)

µ

+ m + m.

Using the Sylvester identity (see [9], page 22) we get, for n > 2,

T̃nTn−2 = T̃n−1Tn−1 − Dn−1Dn−1,

where

Dn−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c̃0,1 c̃0,2 · · · c̃0,n

c0 c−1 · · · c−n+1
...

...
. . .

...

cn−2 cn−3 · · · c−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

Dn−1 = (−1)nTn−2Qn−1(α) + (−1)n−1Tn−2Pn−1(ᾱ−1)m(α−1 − ᾱ)

= (−1)nTn−2

(
Qn−1(α) + m(ᾱ − α−1)Pn−1(ᾱ−1)

)
.

Then,

T̃nTn−2 = T̃n−1Tn−1 − Tn−2Tn−1

∣∣∣∣qn−1(α) + m(ᾱ − α−1)ϕn−1(ᾱ−1)
∣∣∣∣
2
,

so we have

T̃n

Tn−1
=

T̃n−1

Tn−2
−

∣∣∣∣qn−1(α) + m(ᾱ − α−1)ϕn−1(ᾱ−1)
∣∣∣∣
2
, n > 2.

Furthermore, for n = 1 we have
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T̃1

T0
= c̃0,0 −

∣∣∣c̃0,1

∣∣∣2

c0
= ‖µ̃‖ −

∣∣∣∣q0(α) + m(ᾱ − α−1)ϕ0(ᾱ−1)
∣∣∣∣
2
.

Thus, we can recursively deduce

T̃n

Tn−1
= ‖µ̃‖ −

n−1∑

j=0

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2

= εn−1(α). (26)

�
As a consequence, assuming the bilinear functional associated with µ̃ is quasi-
definite, we get

Corollary 6 For n > 0
k̃n+1

kn
=

εn(α)
εn−1(α)

,

with the convention ε−1(α) = ‖µ̃‖ .

Proof. We have
k̃n+1

kn
=

T̃n+1

T̃n

Tn−1

Tn
,

and the result follows. �

Notice that {εn}n>0 is a decreasing sequence. According to cosine’s theorem, we
have

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2
< 2

(∣∣∣q j(α)
∣∣∣2 +

∣∣∣m(ᾱ − α−1)
∣∣∣2 ∣∣∣ϕ j(ᾱ−1)

∣∣∣2
)
.

Then,

εn(α) > ‖µ̃‖ − 2
n∑

j=0

∣∣∣q j(α)
∣∣∣2 − 2

∣∣∣m(ᾱ − α−1)
∣∣∣2 Kn(ᾱ−1, ᾱ−1),

but taking into account that the funcions q j(α) are the Fourier coefficients of 1
z−α

with respect to the orthonormal sequence {ϕ j}n>0, we have

εn(α)>
∥∥∥∥∥

1
z − α

∥∥∥∥∥
2

µ

+ m + m− 2
n∑

j=0

∣∣∣q j(α)
∣∣∣2 − 2

∣∣∣m(ᾱ − α−1)
∣∣∣2 Kn(ᾱ−1, ᾱ−1)

>− 1
‖z − α‖2 + m + m− 2

∣∣∣m(ᾱ − α−1)
∣∣∣2 Kn(ᾱ−1, ᾱ−1).

Thus, if we define ε∞(α) = lim
n→∞

εn(α), in order to have ε∞(α) > −∞, we need
∞∑

j=0

∣∣∣ϕ j(ᾱ−1)
∣∣∣2 < ∞, or equivalently, that the Szegő condition holds for µ (see [17],

page 170).
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Now, we assume that (·, ·)µ̃ is quasi-definite or, equivalently, εn(α) , 0, n > 0. Then
there exists a monic orthogonal polynomial sequence

{
P̃n

}
n>0

with respect to (·, ·)µ̃.

We will give an explicit expression for the orthogonal polynomial sequence
{
P̃n

}
n>0

.
Since {(z−α)Pn(z)}n>0 is a basis in (z−α)P, which is orthogonal with respect to the
bilinear functional (·, ·)µ̃, then we can express P̃n+1(z) − P̃n+1(α) ∈ (z − α)P, n > 1,
in terms of the above basis, i.e.:

P̃n+1(z) − P̃n+1(α) = (z − α)Pn(z) + (z − α)
n−1∑

j=0

λn+1, jP j(z),

where

λn+1, j =

(
P̃n+1(z) − P̃n+1(α), (z − α)P j(z)

)
µ̃

k j

=− P̃n+1(α)
k j

(
1, (z − α)P j(z)

)
µ̃

=− P̃n+1(α)
k j


∫

T

P j(z)
z − αdµ(z) + m

(
ᾱ−1 − α)P j(ᾱ−1)



=
P̃n+1(α)

k j

(
Q j(α) + m(ᾱ − α−1)P j(ᾱ−1)

)
, j = 0, 1, . . . , n − 1.

Thus

P̃n+1(z) = (z − α)Pn(z) + P̃n+1(α)

1 + (z − α)
n−1∑

j=0

Q j(α)+m(ᾱ−α−1)P j(ᾱ−1)
k j

P j(z)



= (z − α)Pn(z) + P̃n+1(α)
(
1 + (z − α)

[∫

T

Kn−1(z, t)
α − t

dµ(t)+

+m
(
ᾱ − α−1

)
Kn−1(z, ᾱ−1)

])
.

On the other hand,

k̃n+1 =
(
P̃n+1(z), zn(z − α)

)
µ̃

= (Pn(z), zn)µ + P̃n+1(α)
(
(1, zn(z − α))µ̃ +

+

∫

T

(Kn−1(z, t), zn)µ
α − t

dµ(t) + m
(
ᾱ − α−1

) (
Kn−1(z, ᾱ−1), zn

)
µ

)

= kn − P̃n+1(α)
(
Qn(α) + m(ᾱ − α−1)Pn(ᾱ−1)

)
.
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From Corollary 6, we get

κn(µ)
(
qn(α) + m(ᾱ − α−1)ϕn(ᾱ−1)

)
P̃n+1(α) =

∣∣∣∣qn(α) + m(ᾱ − α−1)ϕn(ᾱ−1)
∣∣∣∣
2

εn−1(α)
.

Hence, for n > 1,

P̃n+1(z) = (z − α)Pn(z) +
An

εn−1(α)

1 + (z − α)
n−1∑

j=0

A j

k j
P j(z)

 , (27)

where A j = Q j(α) + m(ᾱ − α−1)P j(ᾱ−1), j = 0, 1, . . . , n.

Notice that P̃1(z)− P̃1(α) = z−α and (27) also holds for n = 0, with the convention∑−1
j=0

A j

k j
P j(z) = 0.

4 Hessenberg matrices and Geronimus transforms

Proposition 7 The sequences {P̃n}n>0 and {Pn}n>0 satisfy

(z − α)P(z) = MP̃(z), (28)

where P(z) = [P0(z), P1(z), . . .]t, P̃(z) = [P̃0(z), P̃1(z), . . .]t, and M is a lower Hes-
senberg matrix with entries

mk, j =



1 if j = k + 1,

−κ j−1(µ)2AkA j−1

ε j−1(α)
if 1 6 j 6 k,

− Ak

‖µ̃‖ if j = 0,

0 otherwise.

Proof. We take

P̃n+1(z) = (z − α)Pn(z) + Bn

1 + (z − α)
n−1∑

j=0

A j

k j
P j(z)

 ,

where Bn =
Ān

εn−1(α)
, for n > 0. Therefore, for n = 0, we have
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P̃1(z) = (z − α)P0(z) + B0

P̃1(z) − B0P̃0(z) = (z − α)P0(z).

For n > 1, we substract BnP̃n(z) from Bn−1P̃n+1(z) and get

Bn−1P̃n+1(z) − BnP̃n(z) = (z − α)
[
Bn−1Pn(z) +

(
BnBn−1

An−1

kn−1
− Bn

)
Pn−1(z)

]
.

Dividing by Bn−1, we finally obtain

P̃n+1(z) − Bn

Bn−1
P̃n(z) = (z − α)

Pn(z) − An

An−1

Pn−1(z)
 .

In matrix form
(z − α)M̂P(z) = M̃P̃(z), (29)

where M̃ and M̂ are upper and lower bidiagonal matrices , respectively, with the
following entries

m̃k, j =



1 if j = k + 1,

−B0 if j = k = 0,

− Bk
Bk−1

if j = k,

0 otherwise,

m̂k, j =



1 if j = k,

− Ak

Ak−1
if j = k − 1,

0 otherwise.

Taking into account that M̂ is nonsingular, we can write

(z − α)P(z) = M̂−1M̃P̃(z),

and, therefore,
M = M̂−1M̃.

On the other hand, the entries of M̂−1are

m̂k, j =



1 if j = k,
Ak

A j
if j 6 k − 1,

0 otherwise.

Multiplying M̂−1M̃ the result follows. �

Proposition 8 The matrix M satisfies

(i) MD̃M∗= D.
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(ii) M∗D−1M =D̃−1 − ε∞(α)bb∗.

with D =
(
P, PT

)
µ

, D̃=
(
P̃, P̃T

)
µ̃
, ε∞(α) = lim

n→∞
εn(α), b =

[
1
‖µ̃‖ ,

κ0(µ)a0
ε0(α) ,

κ1(µ)a1
ε1(α) , . . .

]t
,

a j = κ j(µ)A j, and the convention k−1(µ) = A−1 = 1.

Proof.

(i) We have

MD̃M∗ = M
(
P̃, P̃T

)
µ̃

M∗ =
(
MP̃, (MP̃)T

)
µ̃

=
(
(z − α)P, (z − α)PT

)
µ̃

=
(
P, PT

)
µ

= D.

(ii) Direct multiplication of M∗D−1M yields

(
M∗D−1M

)
0,0

=
‖B0‖2

k0
+

1
‖µ̃‖2

∞∑

l=1

|Al|2
kl

=
|a0|2
‖µ̃‖2 +

1
‖µ̃‖2

∞∑

l=1

|al|2 .

=
1
k̃0
− ε∞(α)

1
(ε−1(α))2 .

For the remaining diagonal entries,

(
M∗D−1M

)
j, j

=
1

k j−1
+
κ j−1(µ)4

∣∣∣A j−1

∣∣∣2

ε2
j−1(α)

∞∑

l= j

|Al|2
kl

=
1

k j−1

1 +

∣∣∣a j−1

∣∣∣2

ε j−1(α)

 − ε∞(α)
κ j−1(µ)2

∣∣∣a j−1

∣∣∣2

ε2
j−1(α)

=
1
k̃ j
− ε∞(α)

κ j−1(µ)2
∣∣∣a j−1

∣∣∣2

ε2
j−1(α)

.

Finally, for the non-diagonal entries, we have

(
M∗D−1M

)
k, j

=−κk−1(µ)2Ak−1A j−1

k j−1εk−1(α)
+
κk−1(µ)2κ j−1(µ)2Ak−1A j−1

εk−1(α)ε j−1(α)

∞∑

l= j

|Al|2
kl

= κk−1(µ)κ j−1(µ)ak−1a j−1

(
− 1
εk−1(α)

+
ε j−1(α) − ε∞(α)
εk−1(α)ε j−1(α)

)

=−ε∞(α)
κk−1(µ)κ j−1(µ)ak−1a j−1

εk−1(α)ε j−1(α)
.

�

Proposition 9 Let Mn, M∗
n, Dn, and D̃n be the (n+1)×(n+1) leading principal sub-

matrices of M, M∗, D, and D̃, respectively, and consider bn =
[

1
‖µ̃‖ ,

κ0(µ)a0
ε0(α) , . . . ,

κn−1(µ)an−1
εn−1(α)

]t
.
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Then

(i) MnD̃nM∗
n= Dn − εn(α)

εn−1(α)knen+1et
n+1, where en+1 = [0, . . . , 0, 1] ∈ Rn+1.

(ii) M∗
nD−1

n Mn=D̃−1
n − εn(α)bnb∗n.

Proof.

(i) For k = 0, j > 1, we have

(
MnD̃nM∗

n

)
0, j

=
B0A jk̃0

‖µ̃‖ − κ0(µ)2A jA0k̃1

ε0(α)
.

Taking into account Corollary 6, we get

(
MnD̃nM∗

n

)
0, j

= A jA0

(
1
‖µ̃‖ −

κ0(µ)2ε0(α)k0

ε0(α)ε−1(α)

)
= 0.

For the remaining non diagonal entries, k , j,

(
MnD̃nM∗

n

)
k, j

=
AkA jk̃0

‖µ̃‖2 +

k−1∑

l=0

κl(µ)4AkA j |Al|2 k̃l+1

εl(α)2 − κk(µ)2AkA j

εk(α)

= AkA j


1
‖µ̃‖ +

k−1∑

l=0

(
1

εl(α)
− 1
εl−1(α)

)
− 1
εk−1(α)

 = 0.

For the diagonal entries, 0 6 j 6 n − 1,

(
MnD̃nM∗

n

)
j, j

=

∣∣∣A j

∣∣∣2 k̃0

‖µ̃‖2 +

j−1∑

l=0

κl(µ)4
∣∣∣A j

∣∣∣2 |Al|2 k̃l+1

εl(α)2 + k̃ j+1 (30)

=
∣∣∣A j

∣∣∣2


1
‖µ̃‖ +

k−1∑

l=0

(
1

εl(α)
− 1
εl−1(α)

) +
k jε j(α)
ε j−1(α)

=
∣∣∣A j

∣∣∣2 1
ε j−1(α)

+
k jε j(α)
ε j−1(α)

= k j.

(31)

Finally, for the last diagonal entry, j = n, notice that we get the same result as
(30), up to the term k̃n+1, which is no longer than entry of Mn. Therefore

(
MnD̃nM∗

n

)
n,n

= kn − k̃n+1 = kn − εn(α)
εn−1(α)

kn.

(ii) In this case, we need the same calculations as in the proof of Proposition 8(ii),
up to the fact that the sum is finite. Thus, we replace ε∞(α) by εn(α) in those
calculations to get the result.
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�

We will denote by HP the lower Hessenberg matrix such that zP(z) = HPP(z), i. e.
HP is the matrix associated with {Pn}n>0 for the multiplication operator
(hp)(z) = zp(z), p ∈ P. We now establish the relation between the matrices HP

and HP̃.

Proposition 10 Let L be the lower triangular matrix with 1 as diagonal entries
such that P̃(z) = LP(z). Then

HP − αI = ML (32)

and
HP̃ − αI = LM. (33)

Proof. From (28), we have

(HP − αI) P(z) = (z − α)P(z) = MP̃(z) = MLP(z).

In a similar way, we get

(HP̃ − αI) P̃(z) = (z − α)P̃(z) = (z − α)LP(z) = LMP̃(z).

�

From (29),
M̂ (HP − αI) = M̃L. (34)

As a consequence, the entries lk, j, 0 6 j 6 k, k = 1, 2, . . . of L are given by

lk+1, j = Bk

k∑

r= j−1

ĥr, j

B j
, (35)

where ĥr, j are the entries of the matrix Ĥ = M̂ (HP − αI). See also [7] where the
QR algorithm for unitary Hessenberg matrices is studied.

5 Example

Next we will analyze the Geronimus transform µ̃ of the Lebesgue measure, i. e.,
the bilinear functional

(p, q)µ̃ =
1

2π

∫ 2π

0

p(eiθ)q(eiθ)

|eiθ − α|2
dθ + mp(α)q(ᾱ−1) + mp(ᾱ−1)q(α), |α| > 1, m ∈ C,
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and we will determine the condition for (·, ·)µ̃ to be quasi-definite (respectively,
positive definite).

In the positive definite case, we need ‖µ̃‖ −
n−1∑

n=0

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2
> 0,

i.e., ‖µ̃‖ >
n−1∑

n=0

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2
.

But

‖µ̃‖= 1
2π

∫ 2π

0

dθ
|z − α|2 + m + m =

1
|α|2 − 1

+ m + m.

Thus, the bilinear functional is positive definite if and only if 1
|α|2−1

+ m + m >
∑n−1

j=0

∣∣∣a j

∣∣∣2 for all n > 0 or, equivalently, ε∞(α) > 0. This means

0 > |m|2 (|α|2 − 1),

and we get a positive definite case only if m = 0. Now, we consider the quasi-
definite case.

We need εn−1(α) , 0 or, equivalently, ‖µ̃‖ ,
n−1∑

n=0

∣∣∣∣q j(α) + m(ᾱ − α−1)ϕ j(ᾱ−1)
∣∣∣∣
2

for

every n > 1.

Indeed, if

1
|α|2 − 1

+ m + m=
∣∣∣1 + m(|α|2 − 1)

∣∣∣2 1
|α|2

n−1∑

n=0

1
|α|2n

=

(
1

|α|2 − 1
m + m + |m|2 (|α|2 − 1)2

) |α|2n − 1
|α|2n ,

then

∣∣∣1 + m(|α|2 − 1)
∣∣∣ = |m| (|α|2 − 1) |α|n , for every n > 1.

Thus, for a fixed α with |α| > 1 we get a quasi-definite case if m satisfies

ln |1+m(|α|2−1)|
|m|(|α|2−1)

ln |α| < N.
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