MACHINE LEARNING IN HYBRID
HIERARCHICAL AND PARTIAL-ORDER
PLANNERS FOR MANUFACTURING
DOMAINS

Susana Fernandez, Ricardo Aler, and Daniel Borrajo

Departamento de Informética, Universidad Carlos III of Madrid, 28911 Leganés
(Madrid), Spain
email: {susana.fernadez, ricardo.aler, daniel.borrajo}@uc3m.es

Abstract The application of AI planning techniques to manufacturing
systems is being widely deployed for all the tasks involved in the process,
from product design to production planning and control. One of these
problems is the automatic generation of control sequences for the entire
manufacturing system in such a way that final plans can be directly used
as the sequential control programs which drive the operation of manufac-
turing systems. HYBIS is a hierarchical and nonlinear planner whose goal
is to obtain partially ordered plans at such a level of detail that they can
be used as sequential control programs for manufacturing systems. Cu-
rrently, those sequential control programs are being generated by hand
using modelling tools. This document describes a work whose aim is to
improve the efficiency of solving problems with HYBIS by using machine
learning techniques. It implements a deductive learning method that is
able to automatically acquire control knowledge (heuristics) by genera-
ting bounded explanations of the problem solving episodes. The learning
approach builds on HAMLET, a system that learns control knowledge in
the form of control rules.

1 Introduction

A manufacturing system consists of a set of processes, machines and factories
where raw products are transformed into higher value manufactured products.
The design of the sequential control program for a manufacturing system, i.e
the ordered sequence of actions with all of the actions of devices needed to
transform the raw products into the manufactured ones, is a difficult task which
is traditionally carried out by engineers by hand using modelling tools. Arti-
ficial intelligence techniques are proving to be very useful in solving this task,
allowing for an error-free, fast and low cost building process of these control
programs [23,26,41,42,47,50,52]. In particular, it is becoming an area of growing
interest for researchers from the field of AI planning systems [4,15,37,63]. The
most commonly used planners in industry are based on hierarchical planning
techniques [21,27,55] which are useful to represent the hierarchical structure of

Cita bibliográfica
Published in: Revista Applied Artificial Intelligence 2005, vol. 19, n. 8, p. 783-809

devices and their operation in manufacturing systems and are closer to the way
control engineers represent a control program (modular and hierarchical). A hie-
rarchical planner has the effect of increasing the level of abstraction at which a
human user can operate since it can allow problems to be posed as high-level
goals and work out the detailed implications. This makes planning quicker and
also less prone to error as low-level interactions between actions are dealt with
automatically. A good example is HYBIS [16], a hybrid planner which solves real
world problems from manufacturing systems. It mixes Hierarchical Task Net-
work (HTN) approaches and Partial Order Planning (POP) techniques [65]. It
decomposes a problem in subproblems using either a default method or a user-
defined decomposition method. Then, at each level of abstraction, it generates
a plan at that level using a POP.

In this paper we propose to improve the efficiency of solving problems with
HyBIs, by automatically acquiring knowledge to guide the planning process.
This knowledge is based on the experience in solving previous real problems.
HyBIS has two main steps. The first one decomposes an action into another set
of actions in a lower level of the hierarchy (this is the HTN part). Although the
user can program specific decomposition methods, by default, HYBIS poses the
decomposition problem as a planning problem for a lower level in the hierarchy.
In any case, decomposition can be done in many different ways, and it is useful
to learn control knowledge at this point so that good methods are tried first. The
second step calls a partial order planner at every level in the HTN hierarchy. POP
planners include decision points such as whether to insert a new operator in the
plan, or to use an already existing one, which operator to insert/reuse, etc. Our
approach starts by obtaining a trace of HYBIS after solving a planning problem.
This trace is a search tree, whose nodes are tagged by the algorithm as successful,
failure, abandoned or unexplored. At successful nodes, our method learns control
rules by goal regression and generalisation. If the planner is executed again with
the learned control rules, only the successful nodes would be explored, with the
subsequent efficiency gain.

The paper is organised in six sections. Section 2 explains the manufacturing
systems, the planning problem and compares our approach with previous related
work. Section 3 overviews the planner. Section 4 discusses the learning process.
Section 5 shows empirical results for different domains from manufacturing sys-
tems. Finally section 6 draws conclusions and comments on future work.

2 Background on planning in manufacturing systems

The aim of this section is twofold. First, the manufacturing system domain is
explained by adopting a representation of the manufacturing resources based
on agents. Agent-based representation is an approach commonly used, although
there are others [2,6,9,28,36,53]. Second, it compares our approach with previous
related work, not only within the AI planning field, but also within the context
of the wider scientific literature, particularly in Operation Research and hyper-
heuristics.

2.1 Manufacturing systems domains

The definition of manufacturing systems and their main characteristics are widely
explained in [15]. In this section, we will point out to the main ideas. A ma-
nufacturing system is the set of processes, machines and factories where raw
products are transformed into higher value manufactured products. These trans-
formations are carried out by the devices of the manufacturing system. In an
agent approach, every device can be represented as an agent whose operation
is described by a finite state automata. Thus, every agent has a set of possible
states and a set of actions. Each action describes a transformation as well as a
change of state in the agent. Additionally, an agent has a name, which must be
unique, a set of variables which are used to represent the objects related to the
operation of the agent (like products, chemicals, interconnection points between
agents or constants) and a set of codesignation constraints defined on the set of
variables, which defines the set of valid values for every variable. Every action
of every agent is defined by a unique name, a set of effects, which is represented
by means of an addition list, and a deletion list of literals that represent the
transformation made by the action, and a set of requirements. These are divided
into a list of previous requirements, that must hold before the action, a list of
simultaneous requirements which must hold during the execution of the action
and a list of later requirements, that must hold after the action.

The description of the problems that appear in a manufacturing system con-
sists of a set of transformations which must be made on raw products in order
to obtain the manufactured ones. A problem is defined by the following compo-
nents:

— Domain: a knowledge-based model of the manufacturing system. It is com-
prised of: a set of agents, which represent the set of devices, their operations
and their interconnections described by the model of action; and a set of
axioms, which describe facts that are always true

— Initial state: a conjunction of literals which describe what is true at the
starting point of both the manufacturing system, and the raw products

— Goal: a conjunction of literals which describe the transformations needed
in order to obtain manufactured products from raw ones. This is known
in manufacturing as a recipe [3]. In Al planning a goal is a conjunction of
literals which describes a desired partial state instead of a partially ordered
set of subgoals which describes a desired behaviour, as it is in manufacturing

The solution of a problem is an ordered sequence of actions of the agents of the
domain which achieves the goal, starting from the specified initial state. This is
called a control sequence (or a plan in planning) and it is a difficult task which is
usually carried out by engineers. Traditionally control engineers have been using
different methodologies, standards, formal tools and computer utilities to carry
out this task. The ISA-SP88 [3] standard is one of such methodologies used to
hierarchically design control programs for manufacturing systems. This standard
allows for a hierarchical specification of physical, process and control models of
a manufacturing system.

Manufacturing planning researchers typically want to solve a particular ma-
nufacturing problem, and present their research results within the context of
this problem, without discussing how the approach might generalise to other
planning domains. This can lead AI planning researchers to view manufactu-
ring planning as a domain full of ad-hoc, domain-specific programs rather than
general principles and approaches [50]. But manufacturing systems are evolving
into a new generation of systems driven by the demands of a constantly chang-
ing market and they must adapt to their changes in a timely fashion. There is
no other alternative, but to generalise to other similar planning domains. This
is specially certain nowadays where the tendency is to manufacture under de-
mand, flexibly and quickly, allowing to produce different products in the same
plant even if there are faults such as broken machines or any other type of failure.

2.2 Related work

There are close synergies of the research carried out here on planning and other
scientific areas. In particular, the field of Operations Research has an extensive
area in manufacturing scheduling [10,30,31,35,59]. AI planning and scheduling
complement each other, and overlap to some extent, but tackle different pro-
blems. Al planning is the application of artificial intelligence technologies to the
problem of generating a correct and efficient sequence of activities, chosen from
a knowledge base of generic actions, which, when executed, will move a system
from some initial state to some desirable end-state. This sequence is typically a
partial order one; only essential ordering relations between the actions are con-
sidered, so that actions allow a pseudo-parallelism and can be executed in any
order for achieving the desired goals. On the other hand, scheduling is applied
to the related problem of efficiently, or sometimes optimally, allocating time and
other resources to an already-known sequence of actions (plan). Scheduling can
therefore be seen as selecting among the various action sequences implicit in a
partial-order plan in order to find the one that meets efficiency or optimality
conditions with respect to time constrains, and filling in all the resources details
to the point at which each action can be executed.

In planning, several approaches have been successfully used in order to guide
the search process by adding control knowledge to the planning procedure, either
by learning this control knowledge [1,8,22,32,45,62], or by adding it directly by
a human [5]. Perhaps, the most basic scheme for learning control knowledge has
been deductive learning techniques that generate control rules from a single or
a set of problem solving episodes and a correct underlying domain theory. This
is the case of pure EBL techniques [34,45], and techniques built on top of it [1].
These rules can be used in future situations to prune the search space. Others
use case based reasoning for production scheduling [7,19,57], but they focus on
scheduling rather than on the planning aspect. As far as we know, our approach
is the only one which learns control knowledge for HTN-POP planners and it
can be applied to solve real world problems from manufacturing systems.

Machine learning has also been extended to hierarchical planners. The system
HicaP (Hierarchical Interactive Case-based Architecture for Planning) [46] inte-

grates the SHOP hierarchical planner [49] together with a case-based reasoning
(CBR) system named NACODAE [11]. HICAP has been used to assist with the
authoring of plans for noncombatant evacuation operations. KNoMic(Knowledge
Mimic) [60] is a machine learning system which extracts hierarchical performance
knowledge by observation to develop automated agents that intelligently perform
complex real world tasks. The knowledge representation learned by KNOMIC is
a specialised form of Soar’s production rule format [38]. The rules implement a
hierarchy of operators with higher level operators having multiple sub-operators
representing steps in the completion of the high level operator. These rules are
then used by an agent to perform the same task.

CAMEL [33] uses an incremental algorithm to learn expansions methods
in a HTN planner under supervision of an expert. In [24] a technique called
programming by demonstration is used to build a system in which a domain
expert performs a task by executing actions and then reviews and annotates
a log of the actions. This information is then used to learn hierarchical task
models.

GIPO-II is a GUI able to create and maintain hierarchical domain speci-
fications, and verify them using a structural property checker, and plan using
the forward hybrid task-reduction planner HYHTN [43]. It is based on the pre-
viously released GIPO [56], the GUI and tools environment for building classical
planning domain models, providing help for those involved in knowledge acqui-
sition and the subsequent task of domain modelling. It integrates the algorithm
opmaker to induce operator schema from example sequences [44]. Although all
these systems are applied to hierarchical planners that solve problems of the
real world, they differ from our approach in the learning method. While we used
deductive learning, they apply inductive learning. Also, they focus on learning
the domain model, not the heuristics as it is our case. One advantage of deduc-
tive learning approaches is that it is enough to provide a few solved problems,
opposed to inductive methods that require a big amount of examples.

A recent application of machine learning and rule-based techniques on plan-
ning has been done to build an adaptive planning system, called HAP that can
automatically fine-tune its parameters based on the values of specific measurable
characteristics of each problem [64]. Adaptation is guided by a rule-based sys-
tem, whose knowledge has been acquired through machine learning techniques.
It uses the DM-IT program [39] that performs classification based on associa-
tion rules [40] in order to discover useful and interpretable rules from the data.
Neither they learn heuristics nor they use deductive learning.

An extensive survey of research work related to machine learning applied to
automated planning can be found in [66].

Other works related to our learning approach are those that have been de-
voted to hyper-heuristics. The term hyper-heuristic was first used in early 2000 to
describe heuristics (or meta-heuristics) which choose heuristics [18]. The hyper-
heuristics manage the choices of which lower-level heuristic method should be
applied at any given time, depending on the characteristics of the region of
the solution space currently under exploration. Hyper-heuristics could be clas-

sified depending on the learning mechanism employed, such as genetic algo-
rithms [12,29], reinforcement learning [48], case-base learning [13], These
systems work with the idea that there are known heuristics, and they use induc-
tive learning methods that require many training examples. Our learning method
is able to acquire heuristics in the form of control rules without considering the
heuristics that might (or not) use the planner. It implements a deductive learning
algorithm that is able to generate the control rules from one sample problem.

3 The planner. HYBIS

HyBIs is a hierarchical and nonlinear planner with an automata-based represen-
tation of operators, which is able to obtain control sequences for manufacturing
processes [16]. The aim of HYBIS is to provide a tool for helping humans on
defining such programs. Also, it allows to easily adapt to changes in the manu-
facturing plant requirements.

A domain model in HYBIS represents an industrial plant as a device hierarchy
at different levels of granularity, which accepts ISA-SP88 descriptions. A plan-
ning domain is represented as a hierarchy of agents where the root (a dummy
agent) represents the whole plant, leaf nodes are primitive agents correspon-
ding to the field devices of the plant, and intermediate nodes are aggregate
agents. The structure and behaviour of the aggregate agents represent a com-
position of a set of agents at lower levels of abstraction. Properties and behaviour
of a given aggregate agent are related with those of its components by means
of the interface of the aggregate agent. The user can also program specific de-
composition methods defining the aggregate action. The expansion slot of
an aggregate activity is used to specify different ways to carry out that activity.
These alternative ways are described as a set of different methods where every
method is represented by a set of ordered literals representing a problem to be
solved by the agents of the next lower abstraction level. All the aggregate actions
have a default method which is obtained from the interface of the agent.

A planning problem consists of: an initial state, which represents a con-
junction of literals which describe both the manufacturing system and the raw
products; and a goal, which is a conjunction of literals that describe the trans-
formations to be carried out by the aggregate agents of the highest abstraction
level, to obtain the manufactured products from the raw ones.

3.1 Example of domain definition

The MIXTURE domain, which is inspired in a real factory, can be used as
an example of domain definition. Figure 1 shows a high level diagram of the
plant. It is composed of 26 varied interconnected agents (pumps, valves, mixers,
heaters, belts and a bottler), 46 different actions and 2 abstractions levels. The
goal in this domain consists of adding an ingredient (flour), initially contained
in ADDITIVE-1, to the milk, initially contained in MILK-TANK, and then proceed
to bottle the mixture. The milk and an enzyme are transformed into ferment in

ADDITIVE -1 ADDITIVE -2

BOILER
(G
|
MILK ! AS1 AS2
TANK ENZYME FXSV
D:E:I:I:I:I:I:I:I:E:I:ﬁ
TANK i R-TANK BELTH
1
|
1
|
MV }
EP !
1
AV
eV ﬁ ST
BOTTLER
HEAT
wp M2 | — 7 %/O
REACTOR BELT2
BOTTLES
STORAGE

Figurel. A real world manufacturing system, MIXTURE, that produces an elaborated
mixture from milk, enzyme and flour.

the REACTOR. The result is mixed with the flour to produce the final mixture.
The design of a low level control program for such a system is difficult, even for a
control engineer, due to the number of agents and the total number of available
actions.

3.2 The planning algorithm

The planning process is a generative and regressive planning algorithm at diffe-
rent levels of detail. Each plan at a given level of abstraction is refined into lower
level plans, until no aggregate activities exist on the lowest abstraction level of
a hierarchical plan. At each level, the plans are generated by a POP system,
MACHINE [17]. The input to the whole HyBIS planner is a domain description
(hierarchy of agents) and a problem to be solved (recipe at the highest abstrac-
tion level, or procedure level recipe in SP88). A hierarchical plan H-Plan, initially
only with the highest abstraction level, is partially builded, containing the set
of literals which represent the problem stated by that recipe. The inputs to the
hybrid algorithm are the hierarchical Domain, the initial abstraction Level (the
highest one is 1), an initialised task Agenda and the initial hierarchical H-Plan.
Then, it proceeds as follows:

— First, by means of a generative POP process, as in MACHINE, it obtains a
sequence of control activities to be carried out by the highest level agents

— Second, if the sequence obtained is only composed of primitive activities,
then the problem is solved. Otherwise, the sequence is hierarchically refined;
that is, the algorithm expands every aggregate activity, according to its agent

interface and its default method or any other method specifically defined,
obtaining a new lower level problem

— Third, the algorithm recursively proceeds to solve the new problem by the
agents at the next level

Therefore, the final plan obtained by this algorithm is a hierarchy of control
sequences at different granularity levels. In a POP approach, planning is con-
ceived as a search through plan space where nodes denote plans [65]. A plan is
represented as a tuple < A, 0, L > in which A is a set of actions, O is a set of
ordering constraints over A, and L is a set of causal links. A causal link [58] is a
data structure with three fields: two contain pointers to plan actions (the link’s
producer, A,, and its consumer, A.); the third field is a proposition, @), which
is both an effect of A, and a precondition of A.. Such a causal link is written
as A, —9 A. and store a plan’s links in the set L. Causal links are used to
detect when a newly introduced action interferes with past decision. It is called
a threat. There are some ways to protect against threats but the most common
are demotion and promotion. POP also requires another data structure called
Agenda. This is composed of a set of tasks, each of which describes a pending
problem in the plan, a flaw. The different pending problems which may be found
in Agenda are: pending subgoals that represent unmet preconditions; threats
from actions to causal links; interferences between actions; and order inconsis-
tencies caused by a loop in the order structure, which must be a strict order.
Flaws in the Agenda are ordered following a LIFO strategy. Unsolved subgoals
are solved by an existing action in the partial plan or by the addition of a new
action. Threats are solved by promotion or demotion of operators. Order incon-
sistencies can not be solved. The search process to solve the tasks in the Agenda
is the depth first engine over the set of choices to solve every task and the well
known heuristic evaluation function which accounts for the number of steps and
the number of open conditions [25,54].

The start point is a null Plan with two dummy actions Start and End which
encode the planning problem P =< D,I,G > in a domain D. The initial state
I is encoded as the addition list of the action Start, the goal G is encoded as
an unsatisfied preconditions of action End. The Agenda initially contains only
these pending subgoals specified in the goal G and the causal links set is initially
empty. Some changes were necessary to integrate the HTN part with the POP
approach in order to inherit all the data structures through the different levels
of abstraction. When an action must be refined in a lower abstraction level, this
is considered as a new flaw to be inserted in the Agenda and it will be solved by
any of its decomposition methods. The heuristic function that guides the search
also needs to be adapted for integration with the HTN part.

The reader is referred to [16] for more details on the planning algorithm and
to [65] for partial order planning.

4 The learning mechanism

The planner defined in the previous section is complete, but not necessarily
efficient even with the domain-independent heuristics it uses. In some situa-
tions, the heuristics do not guide the planner towards the best search path.
Learning from experience can help to identify the particular situations for which
the domain-independent heuristics need to be overridden. In this section, we
propose a machine learning mechanism to improve HYBIS efficiency based on
previous experience. It generates explanations for the local decisions made du-
ring the search process. These explanations become control rules that are used in
future situations to prune the search space. In order to learn control knowledge
for this HTN-POP planner, we follow a three step approach:

1. The planner runs on a planning problem. Then, the planning search tree is
labelled so that the successful decision nodes are identified

2. At successful decision points, control rules are created in such a way that
were the planner to be run again on this problem, only the right decision
would be tried

3. Constants in the control rules are generalised, so that they can be applied
to other problems involving other objects with different names

Now, we will present each step in more detail.

4.1 Labelling the search tree

As many other planners, HYBIS generates a search tree for every planning pro-
blem. There are four kinds of nodes in the search tree:

— success, if the node belongs to a solution path. It represents one of the actions
of the control sequence that constitutes the solution of the problem

— failure, if it is a failed node or all its successor nodes have failed. The failure
takes place when a flaw cannot be solved, i.e there is no action to solve a
pending subgoal, there is no way of solving a threat, or the order relation is
violated

— abandoned, the planner started to expand this node but the heuristics of
HvBIS preferred other nodes and it was abandoned before it failed

— unknown, if the planner did not expand the node. When a task is removed
from the Agenda, it generates as many nodes as ways to solve it are. De-
pending on the values of the heuristic function, only one node every time is
chosen to be expanded. It can happen that there are nodes whose heuristic
value is worse than the values of the rest of the nodes, so they never get
expanded.

All nodes are initially labelled as unknown. If a node fails during the planning
process, its label changes to failure. Once the planner finds a solution, all the
nodes that belong to the solution path are labelled as success and a bottom-
up recursive algorithm assigns the failure or abandoned label to the rest of the
nodes.

Once the search tree has been labelled, two kinds of decisions points (i.e.
nodes) are considered as candidates for learning control rules:

— Failure-Success: these are nodes which have at least two children; one a
success node and another a failure node

— Abandoned-Success: the same as above, but, instead of a failure node, they
have an abandoned node

Figure 2 shows an example of a labelled search tree and the decision points
where the rules are generated. For example, N6 represents a flaw with three
possible ways to solve it, which generate three nodes N7, N8 and N9. N8 and
N9 fail during the planning process and N7 belongs to the solution path. So, it
is a decision point in which one children is a successful node (N7) and another
is a failure one (N8), so a control rule is generated (Rule-1). Another example is
N21; there are three possible ways to solve the corresponding task: N22 was never
chosen to expanded (the value of the heuristic function for this node is worse
than the value of other nodes) and it remains with the initially unknown label;
N23 is expanded but none of its children fail nor become part of the solution
path, so the labelled algorithm assigns it the abandoned label; and finally, N24 is
a successful node. Therefore, this is the other type of decision points from which
we learn, one children is an abandoned node (N23), and another is a success one
(N24), so Rule-3 is generated.

4.2 Generating control rules

At the learnable decision nodes, control rules are generated so that the planner
will select the successful node on later problem solving episodes. More gene-
rally, control knowledge can either select a node, reject it, or prefer one over
another [61]. We have focused on the most direct sort, namely select rules.!

In hybrid HTN-POP planners, there are also different types of nodes where
rules can be learned from:

1. HTN points: how to downward refine (i.e which expansion method should
be used)
2. POP points:
(a) Whether to use an already existing operator or a new one to achieve a
goal
(b) In both cases, the operator to be selected
(c) Whether to promote or demote an operator to solve a threat

In this work we have studied the operator selection and the downward refine
problems. Particularly, we learn the following kinds of control rules:

— SELECT OPERATOR-PLAN, to select an operator already present in the plan to
achieve an unsolved goal

! Selecting a node means also rejecting any other alternative, according to the seman-
tics of our control rules.

10

‘ X X O Success node
X Failure during planning proccess

@ X Failure during labelling algorithm

N17 @ A Abandoned node

Rule-2

Rule-3

@ Rule-4

X N20

N22 N23 A

AN
P S

X
N34 N35 x N57 N43 A

X N4o
N44 N45

N64 N36 x
X
N37 N38

X X

Figure2. An example of a search tree and some of its decision points. The learning
algorithm would learn from nodes N6, N19, N21, N24 and N27.

— SELECT OPERATOR-NEW, to select a hitherto unused operator to achieve a
goal, and

— SELECT EXPANSION, to select the expansion method to refine an aggregate
action

The kind of rule to be learned depends on what the planner did. All control
rules have a typical rule format (for instance, IF conditions THEN consequent)
but the condition part and the consequent are different in each type of rule.?
One of the most important decisions to be made in learning systems refer to the
language to be used to represent target concepts. In our case, the condition part
is made of a conjunction of meta-predicates which check for local features of the
search process:

— HTN-LEVEL to know the HTN-LEVEL in which the planner is currently
working

— CURRENT-GOAL to identify which goal the planner is currently trying to
achieve

— SOME-CANDIDATE-GOALS to identify what other goals need to be achieved

% This is based on the meta-predicates defined by the PRODIGY planner [14].

11

— OPERATOR-NOT-IN-PLAN so that a SELECT OPERATOR-NEW rule is activated
only if the operator to insert was not already present. Similarly, SELECT
OPERATOR-PLAN rules include the OPERATOR-IN-PLAN meta-predicate to make
sure the action to be reused is already in the plan. These meta-predicates
also check that the arguments of the operator verify the constraints of the
agent (this information is in the domain description). All the operators have
at least one argument which represents an agent. The rest of arguments, if
they exist, must be included in the constraints of that agent

— TRUE-IN-STATE to test that a literal is true in the planning initial state.
Actually, in order to make the control rules more general and reduce the
number of TRUE-IN-STATE meta-predicates, a goal regression is carried out as
in most EBL techniques [20]. Only those literals in the initial state which are
required, directly or indirectly, by the preconditions of the operator involved
in the rule are included. The regression of the preconditions is done by using
the causal-link structure of the partial ordered component of the HYBIS
planner. As we said before, a causal link is represented as A, —®@ A, where
Ap is a plan action that produces a literal (), which is a precondition of
another plan action A.. The algorithm to obtain the regressed state R of an
action A; from the causal link structure L is:

@ = preconditions (A;)
R=o
while Q # @
q = 1%t element of Q
if ¢ € Initial State
then R=RUgq
else
A, = action which adds ¢ according with L ((44 —? 4;) € L)
@, = preconditions (A,)
RQ=QUQ,

remove ¢ from @

For example, if
L= {AO —@ Ay, Ag —Q2 Ay, Ag —Ws Az, Ay —Qa Az, Ay —@s AQ} is the
set of causal links and As the action that was selected in the success node we
are learning from, the goal regression would proceed as follows: Q3 and Q4
are the preconditions of As as the causal links Ay —%3 A3, A; —@4 Az show.
Ay and A; are different from Ag so their preconditions would be computed,
Q. from causal link A9 —%* A; and Q5 from causal link 4, —® Ay, Q1
belong to the initial state but Q5 don’t, so the precondition of A4 would
be computed from causal link Ay —%2 A, . Therefore, the initial literals
required would be (Q2, Q1)

— OPERATOR-TO-EXPAND to identify which action the planner is trying to ex-
pand in order to do a downward refine. This is only for the rules of SELECT

12

EXPANSION. This meta-predicate also checks that the arguments of the opera-
tor verify the constraints of the agent, in the same way as OPERATOR-IN-PLAN
does

— COMPONENTS-OF to identify the agents of a lower level that compound an
aggregate agent

An expansion method is a set of literals representing subgoals to be achieved
for the agents of the next level of abstraction. Sometimes, these subgoals are
nothing but states to be reached for the component agents of the aggregate agent
whose action is trying to refine. In that case, a COMPONENTS-0F meta-predicate
is necessary. This led us to have two kinds of expansion rules; one when the
expansion method is a set of literal of the type (STATE <AGENT> state) and
another kind for the rest of situations.

Summarising, there are four different types of control rules, two related to the
POP points and two concerned with the HTN decision points, with an specific
template:

1. POP nodes (o decisions) to use a new operator to achieve a goal:

(control-rule namel
(IF (AND (HTN-LEVEL (level))
(CURRENT-GOAL (goal))
(SOME-CANDIDATE-GOALS (list-of-subgoals))
(OPERATOR-NOT-IN-PLAN (operator arguments))
(TRUE-IN-STATE (literall))

(TRUE-IN-STATE (literaln))))
(THEN SELECT OPERATOR-NEW (operator arguments)))

Figure 3 shows an example of a rule which selects to use a new action not
in the partial plan, (ONLINE ADDITIVE-TRANSPORT1), when the planner is at
level 1, it is working on goal (CONTAINS FLOUR RTANK), there is at least one
of the pending subgoals which appears as argument of the meta-predicate
SOME-CANDIDATE-GOALS, and in the initial state the literals (CONTAINS FLOUR
ADDITIVE1) and (STATE ADDITIVE-TRANSPORT1 OFF) are true.

2. POP nodes to use an operator already existing in the partial plan to achieve
a goal:

(control-rule name2
(IF (AND (HTN-LEVEL (level))
(CURRENT-GOAL (goal))
(SOME-CANDIDATE-GOALS (list-of-sugoals))
(OPERATOR-IN-PLAN (operator arguments))
(TRUE-IN-STATE (literall))

(TRUE-IN-STATE (literaln))))
(THEN SELECT OPERATOR-PLAN (operator arguments)))

Figure 4 shows an example of a rule which selects to reuse the action sTART
already in the partial plan when the planner is at level 1, it is working on

13

(control-rule rule-1
(IF (AND (HTN-LEVEL (1))
(CURRENT-GOAL (CONTAINS FLOUR RTANK))
(SOME-CANDIDATE-GOALS ((STATE ADDITIVE-UNIT OFF)
(CONTAINS FERMENT REACTOR)
(STATE ADDITIVE-UNIT OPEN)
(STATE REACTOR READY)
(BOTTLED MIXTURE)))
(OPERATOR-NOT-IN-PLAN (ONLINE ADDITIVE-TRANSPORT1))
(TRUE-IN-STATE (CONTAINS FLOUR ADDITIVE1))
(TRUE-IN-STATE (STATE ADDITIVE-TRANSPORT1 OFF))))
(THEN SELECT OPERATOR-NEW
(ONLINE ADDITIVE-TRANSPORT1)))

Figure3. Control rule. Example 1

goal (STATE REACTOR READY), there is at least one of the pending subgoals
which appears as argument of the meta-predicate SOME-CANDIDATE-GOALS,
and in the initial state the literal (STATE REACTOR READY) is true.

(control-rule rule-2
(IF (AND (HTN-LEVEL (1))
(CURRENT-GOAL (STATE REACTOR READY))
(SOME-CANDIDATE-GOALS ((ADDED MILK ENZYME)
(CONTAINS MIXTURE REACTOR)
(BOTTLED MIXTURE)))
(OPERATOR-NOT-IN-PLAN (START))
(TRUE-IN-STATE (STATE REACTOR READY))))
(THEN SELECT OPERATOR-PLAN (START)))

Figure4. Control rule. Example 2

3. HTN nodes to select an expansion method which is a set of literal represen-
ting the state of several lower level agents:

(control-rule name3
(IF (AND (HTN-LEVEL (level))
(OPERATOR-TO-EXPAND (operator arguments))
(TRUE-IN-STATE (literall))

(TRUE-IN-STATE (literaln))
(COMPONENTS-0F (agent-agg (agentl ... agentr)))))
(THEN SELECT EXPANSION ((STATE agentl ESTADO1)

(STATE agentm ESTADOm))))

Figure 5 shows an example of rule which selects to use the expansion method
((STATE HEAT1 OFF) (STATE ST1 OFF) (STATE SV OFF)), when the planner decides
to work on the downward refinement of the action (OFF REACTOR ?RESULT171),

14

the compounded agents of REACTOR are (HEAT1 ST1 SV) and in the initial
state the literals that appear as arguments of the meta-predicate TRUE-IN-
STATE are true. This rule would force the HTN component of the planner
to refine the (OFF REACTOR ?RESULT171) into ((STATE HEAT1 OFF) (STATE ST1
OFF) (STATE SV OFF)) at the next level of abstraction.

(control-rule rule-3

(IF (AND (HTN-LEVEL (2))
(OPERATOR-TO-EXPAND (OFF REACTOR ?RESULT171))
(TRUE-IN-STATE (STATE SV OFF))
(TRUE-IN-STATE (STATE ST1 OFF))
(TRUE-IN-STATE (STATE HEAT1 OFF))
(COMPONENTS-0F (REACTOR

(HEAT1 ST1 S¥)))))

(THEN SELECT EXPANSION

((STATE HEAT1 OFF) (STATE ST1 OFF) (STATE SV OFF))))

Figure5. Control rule. Example 3

4. HTN nodes to select an expansion method different from previous case:

(control-rule name4d
(IF (AND (HTN-LEVEL (level))
(OPERATOR-TO-EXPAND (operator arguments))
(TRUE-IN-STATE (literall))

(TRUE-IN-STATE (literaln))))
(THEN SELECT EXPANSION (expansion)))

Figure 6 shows an example of a rule which selects to use the expansion
method (CONTAINS FERMENT REACTOR), when the planner decides to work
on the downward refinement of the action (REACT REACTOR FERMENT) and
in the initial state the literal (STATE REACTOR READY) is true.

(control-rule rule-4

(IF (AND (HTN-LEVEL (2))
(OPERATOR-TO-EXPAND (REACT REACTOR FERMENT))
(TRUE-IN-STATE (STATE REACTOR READY))))

(THEN SELECT EXPANSION
((CONTAINS FERMENT REACTOR))))

Figure6. Control rule. Example 4

15

4.3 Generalising

To avoid that rules depend on the names of objects or agents of the particu-
lar planning problem used for learning, constants are generalised into varia-
bles that belong to the same type as the constants. Every variable can only
match with a certain kind of objects, a type, which is coded as a prefix in
the variable name (what appears before the mark %%). For example, if during
the planning process a constant REACTOR appears it would be generalised into
<REACTOR-MIXTURE %%REACTOR> because REACTOR is defined in the domain as an
agent of type REACTOR-MIXTURE. In fact, only constants which represent agents
of the domain are typed. The rest of planning constants (like products, chemicals
or interconnection points between agents) are generalised without the type part.
Typing preserves semantics and makes the matching process more efficient.

Actually, not all constants are parameterised as explained. In some cases, it
makes no sense to generalise them. For instance, let us consider the literal (STATE
REACTOR READY). REACTOR is a good candidate for parameterisation, but READY
is not, because, in that case, the meaning that a reactor object is ready would be
lost. Currently, we do not generalise the second argument of STATE predicates,
because they usually have this meaning.

The SELECT EXPANSION rules cannot be completely generalised either. In the
meta-predicate OPERATOR-TO-EXPAND only the first argument of the operator, i.e
the agent, is generalised because the rest of the arguments influence the selection
of the correct expansion method. For example, there are two possible ways to
expand the operator REACT depending on if it is (REACT REACTOR FERMENT) or
(REACT REACTOR MIXTURE), so we only generalise REACTOR. In other words, the
control rule might be generalised for any REACTOR but not for every product to
be generated.

This generalisation scheme is very planner dependent, but it is domain inde-
pendent. The example 1 rule of figure 3 would be generalised as:

(control-rule rule-1
(IF (AND (HTN-LEVEL (1))
(CURRENT-GOAL (CONTAINS <FLOUR> <RTANK>))
(SOME-CANDIDATE-GOALS ((STATE <NOZZLELINE-SIMPLE},%ADDITIVE-UNIT> OFF)
(CONTAINS <FERMENT> <REACTOR-MIXTUREY%REACTOR>)
(STATE <NOZZLELINE-SIMPLE}%ADDITIVE-UNIT> OPEN)
(STATE <REACTOR-MIXTUREY%REACTOR> READY)
(BOTTLED <MIXTURE>)))
(OPERATOR-NOT-IN-PLAN (ONLINE <TRANSPORTLINE},%ADDITIVE-TRANSPORT1>))
(TRUE-IN-STATE (CONTAINS <FLOUR> <ADDITIVE1>))
(TRUE-IN-STATE (STATE <TRANSPORTLINEY/%ADDITIVE-TRANSPORT1> OFF))))
(THEN SELECT OPERATOR-NEW
(ONLINE <TRANSPORTLINE%ADDITIVE-TRANSPORT1>)))

4.4 Use of learned control knowledge

The learned control rules are used in future planning episodes in the following
way. The planning algorithm cycle starts by removing a task from the Agenda
and then finds the possible ways to solve it, generating a list of choices which

16

will become new nodes of the search tree. Depending on the type of task, the
choices can be: existing actions in the partial plan or new actions (if the task
is to achieve a subgoal); demotion o promotion actions (if the task is to solve a
threat); or expansion methods (if the task is an action downward refine). Then all
the control rules are matched against the current meta state of the search, gene-
rating another list of choices by means of the consequents (RHS) of the matched
rules. The intersection of both lists will constitute the possible ways to solve the
task and the new nodes to add to the search tree. In case that the intersection is
empty, the first list is used (no control rule matched or they selected an incorrect
choice). A rule matches when all its preconditions (LHS) are fulfilled. Actually,
a control rule can be fulfilled in many different ways. The matching algorithm
generates all of them. Each possible matching is represented by a list of bindings
(i.e lists of pairs variable/value). The list of bindings are incrementally generated.
This is a straightforward implementation of an unification procedure. For exam-
ple, the meta-predicate (TRUE-IN-STATE (STATE <VALVE-FWD%%SV> OFF)), solving
a problem whose initial state are the literals:
((STATE SV OFF), (STATE SV1 OFF), (STATE HEAT1 OFF)),
would generate two pairs of bindings:
(KVALVE-FWD%%SV>.SV) and (VALVE-FWD%%SV>.SV1), assuming that SV and Sv1i are
of type VALVE-FWD. If the precondition has another meta-predicate, for example
(TRUE-IN-STATE (STATE <HEATER-3PRODYJHEAT1> OFF)), a new binding
(<HEATER-3PRODY%HEAT1>.HEAT1) would be added (if HEAT1 is of type HEATER-3PROD)
and the list of bindings would become:
(((<VALVE-FWD%%SV>.SV) , (KHEATER-3PROD>.HEAT1))

((VALVE-FWD%%SV>.SV1), (<HEATER-3PROD>.HEAT1))),
which represented two possible ways of satisfying the rule.

5 Experiments and results

The experimentation has been divided in two phases. In the first one, we have
used our approach in several domains to test its validity. Basically, we wanted to
check whether the rules were correct and saves resources in the planning process.
If the preconditions of a rule are too general, the rule can be triggered at a wrong
point and the planner may choose the wrong decision. Because the rule discards
the alternatives not selected, the correct one might be pruned from the search
tree, and the planner will never find the solution. This is specially relevant in
manufacturing domains where there are several agents belonging to the same
type with the same named actions. Thus, it is very important to determine
whether the learning process is producing correct rules. If the preconditions are
too specific they might work for just a very small set of problems.

In the second phase, we have checked that the control rules generalise and
improve efficiency to unseen planning problems in a similar domain, i.e. industrial
plants that have a different number of agents of the same type as in the original
plant. We have also studied the utility of the generated rules.

17

5.1 Correctness of rules

The firsts experiments have been carried out in different domains with a par-
ticular problem each one. The domains are composed of interconnected devices
(agents), tanks, pumps, valves, mixers, heaters, belts, bottler ..., similar to the
ones explained in section 3 (MIXTURE problem). There is one defined pro-
blem for each domain consisting of a high level goal that specifies a process to
be performed. For example, the ITOPS problem [63] consists of five raw pro-
ducts, 71, r2, r3, 74 and 75, initially in five different tanks. The goal is to obtain
a final product, i4, by allowing a reaction to occur among them, according to
the following scheme: mix ry, 9, r3 to obtain 1; filter i; to obtain i3 and heat
r4, 5 and i3 to obtain i4. The other problems are of the same type. A complete
description can be found in section 2.8 at [51].3 From the viewpoint of planning,
it is enough to consider that the domains have different characteristics as num-
ber of hierarchical levels, number of agents, and number of total actions. And
the problems differ in the number of literals in the initial state and goals. The
characteristics of the domains and the problems are shown in Table 1. It displays
the number of agents (Agents), the number of levels (Levels), the total number
of actions (Actions), the number of literals in the initial states (Inits) and the
number of goals (Goals).

Tablel. Domains characteristics.

Domain AGENTS LEVELS AcTIONS INITS GOALS
ITOPS 42 3 92 63 1
BC-2 19 2 44 27 5
MIXTURE 26 2 61 46 3
HANDLER 15 3 46 26 1
PLANT-3 10 2 20 16 2

Table 2 shows the results of running the planner with and without rules in a
problem per domain. We obtained all the control rules, HTN and POP, for all
the levels by running the planner with one problem and one domain. Then we
ran the planning process again with the same problem twice, one using the rules
learned before and the other without the rules, and we compared the results.
It displays the number of nodes generated for the planner process, the time (in
seconds) until it finds the solution, the savings (%) in time to solve due to the
use of rules, the total matching time of the rules (in seconds) and the number
of used rules.

It can be observed that the control rules are correct, because they do not
restrain the planner from finding the solution. Also, nodes and time decrease

3 The problems and domains are available under request for the purpose of scientific
comparison.

18

Table2. Results of the execution of HyBIS with and without rules.

No rules With rules
Domain Nobpes TIME|NODES TIME SAVINGS MATCHING RULES
ITOPS 995 418 751 410 2% 51 72
BC-2 637 57| 304 41 28% 9 40
MIXTURE 583 701 329 56 20% 8 43
HANDLER| 235 21| 184 20 5% 2 33
PLANT-3 198 7 185 8 0% 1 14

when the rules are used. Finally, the planner found the same solutions with and
without rules in all the domains, so there was no variation in plan quality.

5.2 Generalisation of rules to unseen problems

In order to test the generalisation power of the algorithm we have performed
experiments in the MIXTURE domain shown in Figure 1. It represents a real
manufacturing plant of a dairy product industry which has collaborated in the
accomplishment of this project.* We considered that this domain is sufficiently
complex and significant to verify the total validity of our approach. The goal is to
test whether the control rules are also useful if the industrial plant changes (by
adding new agents, for instance). We generated all the control rules by running
the planner with the problem described in section 3, obtaining 43 rules. After-
wards, we modified the domain by adding more agents to check the generality
of the rules. The new domains and problems tested are:

— MIXTURE_2B: a second bottler is added to solve the same problem but the
first bottler is not ready to work (in the initial state, one of the preconditions
of the operator who activates the bottler is missing). The planner does not
detect its no operation until much later in the search tree, so it expands a
non-useful part of the search tree, therefore needing more time to find the
solution. If the second bottler would be ready to work the planner would
find the same solution and we wouldn’t test the generalisation.

— MIXTURE_3B: two more bottlers are added to solve the same problem but
bottlerl and bottler2 are not ready

— MIXTURE_4B: three more bottlers are added to solve the same problem but
only bottler4 is ready

— MIXTURE_2B2R: a second bottler and a second reactor are added. The
problem consists of bottling mixtures obtained in each reactor

— MIXTURE_3B2R: same as above but with one more bottler

We also generated all the control rules by running the planner with the
MIXTURE_2B problem obtaining another 43 rules. We run the planning process

4 The company is PULEVA and the project TIC2001-4936-E from the Ministerio de
Ciencia y Tecnologia in Spain.

19

with each problem three times; first using the rules learned from the original
problem (rules_1), second using the MIXTURE_2B rules (rules_2) and the third
one without rules.

No control knowledge was extracted from the other problems due to memory
space limitations. The learning algorithm explores the search tree, generated
during problem resolution, after solving the problem. It then finds the right
decision points in the solution path of the tree to generate the control rules.
Therefore, the training problems must be of small size to guarantee that the
planner will find a solution and that it will be able to keep in memory the search
tree. The planner HYBIS offers the posibility of solving a problem either keeping
the history of the resolution process (the search tree) or without keeping it.
In order to solve the last and more complex problems, the history option was
disabled to avoid failures of allocating memory because of a maximum address
space limitation. Also, according to our previous experience on learning for other
planners and domains, rules learned from complex problems will be less general.
A control rule is generated by extracting the meta-state, and performing a goal
regression for finding which literals from the initial state were needed. So, the
simpler the training problem is, the simpler the meta-state will be (fewer literals
in the regressed state, and, therefore, fewer conditions in the control rule). Then,
the control rules obtained will be simpler and more general. We plan to use
inductive techniques to correct the control-rules, as it has been done for other
planners [1,8].

Table 3 shows these results with the two sets of rules. It displays the number
of nodes generated for the planning process, the time (in seconds) until it finds
the solution and the savings (%) in time to solve due to the use of the rules.

Table3. Results of the execution of rules to unseen problems.

No rules With rules_1 With rules_2
Domain Nopes TIME|NODES TIME SAVINGS|NODES TIME SAVINGS
MIXTURE_2B 2506 630 1463 393 38%| 1539 429 32%
MIXTURE_3B 4458 1350 2604 750 44%| 2753 862 36%
MIXTURE_4B 6410 1952| 3745 1082 45%| 3967 1090 44%
MIXTURE_2B2R| 4057 1094 808 770 30% 842 911 17%
MIXTURE_3B2R| 6821 1455/ 1091 842 42%| 1125 966 34%

It can be observed that nodes and time decrease when the rules are used.
The average saved time due to the rules is 36%. We have also measured the total
matching time of the rules and it appears not to be too high as Table 4 shows.
Column TIME represents the matching time in seconds and column %TOTAL
represents the % with respect the total search time. So, it seems there is no big
utility problem in this case.

20

Table4. Total matching time of rules in the different domains

With rules_1 | With rules_2
Domain TIME %ToTAL|TIME %TOTAL
MIXTURE_2B 50 13%| 43 10%
MIXTURE_3B 63 8%| 80 9%
MIXTURE_4B 85 8%| 84 8%
MIXTURE_2B2R| 44 6%| 68 %
MIXTURE_3B2R| 55 6%| 37 4%

The results using the first rules are better than the results using the other
ones in all the domains. This shows the convenience of training with simple
problems and then applying the learned knowledge to more complex problems.

6 Conclusions and future work

Manufacturing systems are evolving into a new generation of systems driven
by the demands of a constantly changing market and they must adapt to their
changes in a timely fashion. Al planning techniques have been very useful to
satisfy these needs, and specially HTN planners where the hierarchical semantics
of this kind of planning gives us the ability to model planning problems in
domains that are naturally hierarchical, such as industry environments. HYBIS
is a hybrid hierarchical planner which provides a default method to step from one
level to another. This plan refinement requires to solve a new planning problem,
which is performed by a partial order planner (POP). However, although using
a hierarchy limits the computational complexity, the process is still inefficient.
Moreover, in a hybrid planner like HYBIS, efficiency can be gained both at HTN
and POP decision points. Given that machine learning techniques have been
successfully used in older planners to improve the search process by means of
previous experience, we have extended them for learning planning heuristics for
HTN-POP planners.

The concept of domain in HYBIS differs from other planners. For HYBIS |,
a domain is an industrial plant, designed specifically to solve a single problem,
that is to say, to generate a manufactured product from initial raw materials.
However, at some times the plant might undergo a decision modification so that
new (but similar) problems can be solved. An example of modification is adding
a new bottler, having a broken machine, etc. In that case a new plan for the
plant would have to be found and time would be wasted due to inefficiencies of
the planner. Although the modification might be minimal, the planning process
must begin again from scratch. If learned control rules in the first execution are
obtained and these are correct, this second planning episode will be solved much
more efficiently.

In this paper, we discuss some of the issues on machine learning applied to
this kind of planners. We have extended some machine learning ideas, to deal

21

with hybrid HTN-POP planners. In particular, we have focused in a decision
point where the planner has to decide whether to apply an operator already in
the plan or not, and in any case, which operator to apply. We have also studied
hierarchical refinement. Each task can be decomposed into several subtasks using
predefined methods. Each possible decomposition represents a new branch in
the search space of the problem and control rules can be learned to prune the
unsuccessful branches. We have measured the effectiveness of the rules in terms of
time and nodes expanded. It has been found that the rules generated are correct
and useful. They improve the efficiency of the planner by saving resources (time
and memory) during the search process. We have verified the convenience of
acquiring the control knowledge from small problems to use it for solving more
complex ones afterwards. In case of having an unsolved problem (for the planner)
a strategy for solving it could consist on defining a relaxed problem to train the
system with. For instance, one in which we define fewer agents or machines in
the plant. Then, we allow the learning system to acquire some control rules.
Finally, we try to solve the original problem using the learned control rules in
the simpler problem.

In the future, we plan to extend the learning scheme so that control rules
can be inductively corrected by specializing, generalizing, or modifying them.
Here, we want to follow previous approaches that have been successful for other
planners (in particular, HAMLET [8] and EvoCK [1]). Also, HyBIs has been
extended to be able to generate conditional plans, which offers new learning
opportunities.

Acknowledgements

This work was partially supported by a grant from the Ministerio de Cien-
cia y Tecnologia through projects TAP1999-0535-C02-02, TIC2001-4936-E, and
TIC2002-04146-C05-05. The authors would also like to thank Luis Castillo and
Juan Fernandez-Olivares for their help on using HyBIS.

References

1. R. Aler, D. Borrajo, and P. Isasi. Using genetic programming to learn and improve
control knowledge. Artificial Intelligence, 141(1-2):29-56, October 2002.

2. J. Algeo, M.E.A.and Fowler and K. Jurrens. Computerized representations of

manufacturing resources: validation and standardization efforts. In K. Stelson and

F. Oba, editors, Proceedings of the Japan-USA Symposium on Flexible Automation,

volume 1, pages 699-702. ASME, New York, NY, USA, 1996.

ANSI/ISA. Batch Control Part I, Models & Terminology (S88.01), 1995.

4. R. Aylett, G. Petley, P. Chung, J. Soutter, and A. Rushton. Planning and chemical
plan operation procedure synthesis: a case study. In Proceedings in Fourth european
conference on planning, pages 41-53, 1997.

5. F. Bacchus and F. Kabanza. Using temporal logics to express search control know-
ledge for planning. Artificial Intelligence, 116:123-191, 2000.

o

22

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

L. Becker and C. Pereira. SIMOO-RT an object-oriented framework for the devel-
opment of real-time industrial automation systems. IEEE Transactions on Robotics
and Automation, 18(4):421-30, 2002.

A. Bezirgan. An application of case-based expert system technology to dynamic
job-shop scheduling. In R. M.A.Bramer, editor, Proceedings of Ezxpert Systems 92,
The Twelfth Annual Technical Conference of the British Computer Society, pages
225-235, 1992.

D. Borrajo and M. Veloso. Lazy incremental learning of control knowledge for effi-
ciently obtaining quality plans. AI Review Journal. Special Issue on Lazy Learning,
11(1-5):371-405, February 1997.

A. Braatz. Development of a UML-based function block-model for object-oriented
control-design. Automatisierungstechnische Prazis, 45(6):38-44, 2003.

L. Braccesi, M. Monsignori, and P. Nesi. Monitoring and optimizing industrial
production processes. In Proceedings of the Ninth IEEE International Conference
on Engineering of Complex Computer Systems, pages 213—22, Florence, Italy, 2004.
L. Breslow and D. W. Aha. NaCoDAE: Navy conversational decision aids environ-
ment. Technical Report AIC-97-018, Washington, DC: Naval Research Laboratory,
Navy Center for Applied Research in Artificial Intelligence, 1997.

E. K. Burke, P. Cowling, J. D. Landa Silva, and S. Petrovic. Combining Hy-
brid Metaheuristics and Populations for the Multiobjective Optimisation of Space
Allocation Problems. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon,
H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO’2001), pages 1252-1259, San Francisco, California, 2001. Morgan Kauf-
mann Publishers.

E. K. Burke, S. Petrovic, and R. Qu. Case-based heuristic selection for examination
timetabling. In 4th Asia-Pacific Conference on Simulated Evolution and Learning
(SEAL’02). Nayang Technology Umiversity, NTU Press. CD-ROOM, 2002.

J. G. Carbonell, J. Blythe, O. Etzioni, Y. Gil, R. Joseph, D. Kahn, C. Knoblock,
S. Minton, A. Pérez, S. Reilly, M. M. Veloso, and X. Wang. PRODIGY4.0: The
manual and tutorial. Technical Report CMU-CS-92-150, Department of Computer
Science, Carnegie Mellon University, 1992.

L. Castillo, J. Fdez-Olivares, and A. Gonzédlez. Automatic generation of control
sequences for manufacturing systems based on nonlinear planning techniques. Ar-
tificial Intelligence in Engineering, 4(1):15-30, 2000.

L. Castillo, J. Fdez-Olivares, and A. Gonzalez. A hybrid hierarchical/operator-
based planning approach for the design of control programs. In ECAI Workshop
on Planning and configuration: New results in planning, scheduling and design,
2000.

L. Castillo, J. Ferndndez-Olivares, and A. Gonzdlez. Mixing expressiveness and
efficiency in a manufacturing planner. Journal of Experimental and Theoretical
Artificial Intelligence, 13:141-162, 2001.

P. Cowling, G. Kedall, and E. Soubeiga. A hyperheuristic approach to scheduling
a sales summit. In Selected Papers of the Third International Conference PATAT
2000, Lecture Notes in Computer Science, pages 176-190, Konstanz, Germany,
2000. Springer.

P. Cunningham and B. Smyth. Case based reasoning in scheduling: reusing solution
components. Interantional Journal of Production Research, 35:2947-2961, 1997.
G. DeJong and R. Mooney. Explanation-based learning: An alternative view. Ma-
chine Learning, 1(2):145-176, 1986.

23

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

K. Erol, J. Hendler, and D. Nau. UMCP: A sound and complete procedure for
hierarchical task-network planning. In Artificial Intelligence Planning Systems,
pages 249-254, 1994.

T. A. Estlin and R. J. Mooney. Learning to improve both efficiency and quality of
planning. In M. Pollack, editor, Proceedings of the 15th International Joint Con-
ference on Artificial Intelligence (IJCAI-97), pages 1227-1232. Morgan Kaufmann,
1997.

M. Fabian, B. Lennartson, P. Gullander, S. Andreasson, and A.Adlemo. Integrating
process planning and control for flexible production systems. In Proceedings of
ECC’97, Brussels, Belgium, July 1997.

A. Garland, K. Ryall, and C. Rich. Learning hierarchical task models by defining
and refining examples. In In First International Conference on Knowledge Capture,
2001.

A. Gerevini and L. Schubert. Inferring state constraints for domain-independent
planning. In Proceedings of the Fifteenth National Conference on Artificial Intelli-
gence and the Eighth Innovative Applications of Artificial Intelligence Conference,
pages 905-912, Menlo Park, California, 1998. AAAI Press.

Y. Gil. A specification of manufacturing processes for planning. Technical Re-
port CMU-CS-91-179, School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, August 1991.

F. Giunchiglia. Using Abstrips Abstractions - Where do we stand? Artificial
Intelligence Review, 13:201-213, 1999.

H. Guang-hong and L. Zu-shu. Intelligent control system based on industrial PC
for middling and small coal boiler. Control Engineering China, 10(4):339-63, 2003.
L. Han, G. Kendall, and P. Cowling. An adaptive length chromosome hyperheuris-
tic genetic algorithm for a trainer scheduling problem.

A. Haskose, B. Kingsman, and D. Worthington. Performance analysis of make-to-
order manufacturing systems under different workload control regimes. Interna-
tional Journal of Production Economics, 90(2):169-86, 2004.

J. Heinonen and F. Pettersson. Scheduling a specific type of batch process with
evolutionary computation. In Proceedings of the Congress on Evolutionary Com-
putation, volume 2, pages 966—70, Canberra, ACT, Australia, 2003.

Y. Huang, B. Selman, and H. Kautz. Learning declarative control rules for
constraint-based planning. In P. Langley, editor, Proceedings of the Seventeenth
International Conference on Machine Learning, ICML’00, Stanford, CA (USA),
June-July 2000.

O. Ilghami, D. Nau, H. Munoz-Avila, and D. Aha. Camel: Learning method pre-
conditions for HTN planning. In M. Ghallab, J. Hertzberg, and P. Traverso, ed-
itors, Proceedings of the Sizth International Conference on Artificial Intelligence
Planning Systems (AIPS-02), pages 131-141, Toulouse (France), 23-17 April 2002.
AAAT Press.

S. Kambhampati. Planning graph as a (dynamic) CSP: Exploiting EBL, DDB
and other CSP search techniques in graphplan. Journal of Artificial Intelligence
Research, 12:1-34, 2000.

S. Kaparthi, N. Suresh, , and R. Cervaney. An improved neural network leader
algorithm for part-machine grouping in group technology. FEuropean Journal of
Operational Research, 69(3):342-356, 1993.

D. Kiritsis, P. Xirouchakis, and C. Gunther. Petri net representation for the process
specification language. 1. manufacture process planning. In First International
Workshop on Intelligent Manufacturing Systems (IMS-Europe 1998)., pages 595—
608. Ecole Polytech. Federale de Lausanne, Lausanne, Switzerland, 1998.

24

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

I. Klein, P. Jonsson, and C. Backstrom. Efficient planning for a miniature assembly
line. Artificial Intelligence in Engineering, 13(1):69-81, 1998.

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture for general
intelligence. Artificial Intelligence, 33(1):1-64, 1987.

B. Liu, W. Hsu, Y. M, and S. Chen. Discovering Interesting Knowledge using DM-
II. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-99), San Diego, CA, USA, 1999. Industrial
Track.

B. Liu, W. Hsu, and Y. Ma. Integrating Classification and Association Rule Mining.
In Knowledge Discovery and Data Mining, pages 80-86, 1998.

G. e. Luger, editor. AAAI Special Interest Group in Manufacturing Workshop:
Artificial Intelligence and Manufacturing, State of the Art and Sate of the Practice.
AAAI Press, 1998.

P. Maropoulos. Review of research in tooling technology, process modelling and
process planning. Part II: Process planning. Int. Journal of Computer Integrated
Manufacturing Systems, 8(1):13-20, 1995.

T. McCluskey, D. Liu, and R. Simpson. GIPO II: HTN Planning in a Tool-
supported Knowledge Engineering Environment. In N. M. Enrico Giunchiglia and
D. Nau, editors, Proceedings of the Thirteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS-03), pages 92-101, Trento, Italy, June
2003. AAAT Press.

T. McCluskey, N. Richardson, and R. Simpson. An interactive method for inducing
operator descriptions. In M. Ghallab, J. Hertzberg, and P. Traverso, editors, Pro-
ceedings of the Sizth International Conference on Artificial Intelligence Planning
Systems (AIPS-02), Toulouse (France), 23-17 April 2002. AAAT Press.

S. Minton. Learning Effective Search Control Knowledge: An Ezplanation-Based
Approach. PhD thesis, Computer Science Department, Carnegie Mellon University,
1988. Available as technical report CMU-CS-88-133.

H. Munoz-Avila, D. W. Aha, L. A. Breslow, R. Weber, and D. Nau. HICAP:
An interactive case-based planning architecture and its application to noncombat-
ant evacuation operations. In Proceedings of the Ninth Conference on Innovative
Applications of Artificial Intelligence, pages 879-885, 1999.

H. Mufioz-Avila and J. Huellen. Retrieving cases in structured domains by using
goal dependencies. In M. Veloso and A. Aamodt, editors, Proceedings of the 1st
International Conference on Case-Based Reasoning Research and Development,
volume 1010 of LNAI pages 241-252, Berlin, 1995. Springer Verlag.

A. Nareyek. Choosing search heuristics by non-stationary reinforcement learning,
2001.

D. Nau, Y. Cao, A. Lotem, and H. Mufioz-Avila. SHOP: Simple hierarchical
ordered planner. In Proceedings of the IJCAI-99, pages 968-973, Stockholm (Swe-
den), August 1999.

D. Nau, S. Gupta, and W. C. Regli. Al planning versus manufacturing-operation
planning: A case study. In Proceedings of IJCAI-95, pages 16706, 1995.

J. F. Olivares. Planificacion Hibrida para el diserio automdtico de programas de
control industrial. PhD thesis, Universidad de Granada. E.T.S de Ingenieria In-
formética. Departamento de Ciencias de la Computacién e Inteligencia Artificial,
2001.

S. Park, M. Gervasio, M. Shaw, and G. D. Jong. Explanation-based learning for
intelligent process planning. IEEFE Transactions on Systems Man and Cybernetics,
23(6):1597-1616, 1993.

25

53

54.

53.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

J. Peschke. Real-time java for industrial controls in flexible manufacturing systems.
In Proceedings of IEEE International Conference on Industrial Informatics (IEEE
Cat. No.0SEX768), pages 325-31, 2003.

M. E. Pollack, D. Joslin, and M. Paolucci. Flaw selection strategies for partial-order
planning. Journal of Artificial Intelligence Research, 6:223-262, 1997.

E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelli-
gence, 5:115-135, 1974.

R. Simpson, T. McCluskey, W. Zhao, A. R.S., and C. Doniat. GIPO: An integrated
graphical tool to support knowledge engineering in Al Planning. In Procedings of
the 6th European Conference on Planning (ECP-2001), 2001.

E. Szelke and G. Markus. A learning reactive scheduler using CBR. Computer
Industry, 33:31-36, 1997.

A. Tate. Project planning using a hierarchic non-linear planner. Research Re-
port 25, Department of Artificial Intelligence, University of Edinburgh, Edinburgh,
Scotland, 1976.

M. Valyov, C. Potts, and V. Strusevich. Batching decisions for assembly production
systems. European Journal of Operational Research, 157(3):620-42, 2004.

M. van Lent and J. Laird. Learning hierarchical performance knowledge by obser-
vation. In Proceedings of the 16th International Conference on Machine Learning,
pages 229-238, San Francisco, CA, 1999. Morgan Kaufmann.

M. Veloso, J. Carbonell, A. Pérez, D. Borrajo, E. Fink, and J. Blythe. Integrating
planning and learning: The PRODIGY architecture. Journal of Ezperimental and
Theoretical Al 7:81-120, 1995.

M. M. Veloso. Planning and Learning by Analogical Reasoning. Springer Verlag,
December 1994.

S. Viswanathan, C. Johnsson, R. Srinivasan, V. Venkatasubramanian, and K.-E.
Arzen. Procedure synthesis for batch processes: Part 1. knowledge representation
and planning framework. Computers and Chemical Engineering, 22:1673-1685,
1998.

D. Vrakas, G. Tsoumakas, N. Bassiliades, and I. Vlahavas. Learning Rules for
Adaptive Planning. In N. M. Enrico Giunchiglia and D. Nau, editors, Proceedings
of the Thirteenth International Conference on Automated Planning and Scheduling
(ICAPS-03), pages 82-91, Trento, Italy, June 2003. AAAI Press.

D. S. Weld. An introduction to least commitment planning. AI Magazine, 15(4):27—
61, 1994.

T. Zimmerman and S. Kambhampati. Learning-assisted automated planning:
Looking back, taking stock, going forward. AI Magazine, 24(2):73-96, 2003.

26

