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Abstract. Conventional univariate Dickey-Fuller tests tend to produce spurious stationarity when

there exist additive outlying observations in the time series. Correct critical values are usually

obtained by adding dummy variables to the Dickey-Fuller regression. This is a nice theoretical

result but not attractive from the empirical point of view since almost any result can be obtained

just by a convenient selection of dummy variables. In this paper we suggest a robust procedure

based on running Dickey-Fuller tests on the trend component instead of the original series. We

provide both finite-sample and large-sample justifications. Practical implementation is illustrated

through an empirical example based on the US/Finland real exchange rate series.
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1. Introduction

Univariate and multivariate unit root testing procedures are sensitive to the occurrence of anoma-

lous events such as structural breaks and outliers. From the univariate point of view, the effects

of having breaks when applying unit root tests are well documented. Perron (1989) shows that

standard unit root tests break down (finding too many unit roots) if there is a structural break in

the data generating process, such as a level shift. The intuitive idea is that the unit root hypothesis

is closely associated with shocks having a permanent effect. A structural break essentially corre-

sponds to a shock with a lasting effect on the series (see Perron and Vogelsang, 1992). Thus, if

this shock is not explicitly taken into account, standard unit root tests will identify the structural

break as a unit root. On the contrary, if the break occurs early in the series, unit root tests can

lead to over-rejection of the unit root hypothesis (see Leybourne et al., 1998).

A possible solution to this problem requires the use of dummy variables and segmented trends.

For instance, Perron (1989) included a set of deterministic regressors to allow for an alternative

hypothesis having a trend break at a known date. The main problem with this procedure is that,
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even if we know when the structural break occurs, the critical values obtained depend on the size as

well as on the timing of the break. Additionally, the asymptotic distributions of unit root tests also

depend on whether the location of the breaks is known from the outset or not (see, e.g. Christiano,

1992).

Another type of anomalous events are the additive transitory outliers. These are events with

a (possible) large but temporary effect on the series. Provided these additive outliers (AO’s) are

sufficiently large or sufficiently frequent, such an effect can dominate the remaining information

contained in the series and biases unit root inference towards rejection of the unit root hypothesis,

as reported by Martin and Yohai (1986), Franses and Haldrup (1994), Lucas (1995a,b), Shin et al.

(1996), and Vogelsang (1999), among others.

In principle, it is possible to include dummy variables for these transitory shocks as is usually done

in the case of structural breaks and calculate the corresponding new critical values. See Franses and

Haldrup (1994), Shin et al. (1996), and Vogelsang (1999). A crucial step in this approach, however,

turns out to be the detection of the AO’s. Tsay (1986), Chang et al. (1988), Chen and Liu (1993),

Gómez and Maravall (1996) and Kaiser (1998) provide some of the most common procedures to

identify isolate outliers. For practical purposes, however, it requires a considerable skill to identify

the outliers and evaluate the many different test statistics. Alternatively, one could avoid the use

of dummy variables by considering robust estimation techniques following the approach by Lucas

(1995a,b). Hence, the main idea of outlier detection is to throw them out, whereas the basic idea

of robust estimation is to leave them in. See Maddala and Yin (1996) and Yin and Maddala (1997)

for further insights.

Within the robust approach, in this article we explore a different route for testing for a unit root

when AO’s are a possibility in the data. Assume the series of interest, zt, is split in two unobserved

components, zt = zg
t +zc

t , where zg
t denotes the permanent or trend component and zc

t stands for the

transitory or cyclical component. Our proposal is to apply the unit root tests to zg
t instead of the

observed series zt, the idea being that, since the AO’s are transitory, they could be incorporated,

to a large extent, into the cyclical component zc
t and not into the trend. To estimate the growth

component zg
t , we suggest the use of low-pass filters.

The paper is organized as follows. In Section 2 we introduce the model of interest and some

analytical results concerning the effects of frequency and size of AO’s on the well-known Dickey-

Fuller test statistic. Section 3 presents some basic results on filtering and signal extraction. In

Section 4 we discuss the effects of filtering on the Dickey-Fuller tests. Section 5 presents some

Monte Carlo evidence to illustrate the finite sample implications of our analytical findings. Section
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6 provides an empirical example and Section 7 concludes. Proof of Theorem 1 is collected in an

Appendix.

2. Unit Roots and Additive Outliers

Let yt be generated by a random walk with y0 = 0,

yt = yt−1 + εt, t = 1, 2, ..., T, (2.1)

where εt are independent and identically distributed (i.i.d.) N
(
0, σ2

ε

)
variates, and suppose sys-

tematic AO’s of size ±θ may occur with probability π, so that the time series we observe is

xt = yt + θδt, (2.2)

where δt are i.i.d. Bernoulli random variables such that P (δt = 1) = 1
2π, P (δt = −1) = 1

2π and

P (δt = 0) = 1 − π, δ0 = 0.

Consider the unit root regression

∆yt = ρyt−1 + εt. (2.3)

As is well-known, the Dickey-Fuller unit root test takes as null hypothesis H0 : ρ = 0, unit root,

against H1 : ρ < 0, stable root. The test is implemented by means of the least squares estimate of

ρ,

ρ̂ =

(
T∑

t=1

yt−1∆yt

)/(
T∑

t=1

y2
t−1

)
, (2.4)

and the corresponding t statistic for a zero coefficient,

tρ̂ = ρ̂

/
σ̂y

(
T∑

t=1

y2
t−1

)−1/2

, (2.5)

where σ̂2
y = T−1

∑T
t=1 (∆yt − ρ̂yt−1)

2 is the residual variance, ∆ = (1−L) and L is the lag operator

defined so that Lnyt = yt−n for positive and negative values of n.

Note from equation (2.2) that, in the presence of AO’s, regression (2.3) becomes

∆xt = ρxt−1 + ut, (2.6)

where ut = εt + θ∆δt with corresponding least squares statistics

ρ̂AO =

(
T∑

t=1

xt−1∆xt

)/(
T∑

t=1

x2
t−1

)
, (2.7)
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and

tρ̂AO
= ρ̂AO

/
σ̂x

(
T∑

t=1

x2
t−1

)−1/2

, (2.8)

where σ̂2
x = T−1

∑T
t=1 (∆xt − ρ̂AOxt−1)

2 . Therefore, under H0, the observed series turns out to

be an I(1) process with MA(1) innovations, since E (utut−1) = −πθ2, E (utut−j) = 0 for j > 1.

Consequently, ut satisfies Phillips (1987) general mixing conditions, and a functional central limit

theorem applies to the partial sums of ut, so that the asymptotic distribution of (2.7) and (2.8)

can be derived. In particular, it can be proved that, as T → ∞,

T ρ̂AO ⇒
(∫ 1

0
W (r) dW (r)

)/(∫ 1

0
W 2 (r) dr

)
− (θ/σε)

2 π

(∫ 1

0
W 2 (r) dr

)−1
(2.9)

and

tρ̂AO
⇒
(
1 + 2 (θ/σε)

2 π
)−1/2

×
(∫ 1

0
W (r) dW (r)

)/(∫ 1

0
W 2 (r) dr

)1/2

− (θ/σε)
2 π

(∫ 1

0
W 2 (r) dr

)−1/2

,

(2.10)

where ⇒ denotes weak convergence and where W (r) is a standard Brownian motion defined on

the unit interval r ∈ [0, 1] .

Equations (2.9) and (2.10) were first derived by Franses and Haldrup (1994). From these equa-

tions we learn that if π > 0, ρ is still estimated superconsistently, but the asymptotic distributions

of the Dickey-Fuller statistics shift to the left, leading to tests with exact size greater than as-

ymptotic nominal size and, consequently, to over-reject the unit root hypothesis in favor of the

stationary alternative. Note that a positive AO and a negative AO with the same magnitude have

the same effect on the limiting distributions. Note also that distributions are the same for any

combination of θ, π and σ2
ε giving rise to the same value of (θ/σε)

2 π. In other words, large shocks

with small chance of occurrence have the same effect as that of small shocks with high probabil-

ity of occurrence. The Dickey-Fuller tests simply cannot distinguish infrequent large shocks from

frequent small shocks. On the other hand, Franses and Haldrup’s findings are readily extended to

models allowing for the presence of deterministic components as well. See Yin and Maddala (1997).
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3. Filters and Signal Extraction

Filter techniques have been used for a long time in estimating the states of stochastic dynamic

systems or in extracting information from noisy observations. These techniques are also widely

adopted in economics, specially with macroeconomics series. The usual aim of filtering in this

latter case is to isolate the business cycle component of the series from slowly evolving secular

trends and rapidly varying seasonal or irregular component.

For simplicity, assume that we are interested in splitting an observed time series, zt, in two

unobserved components,

zt = zg
t + zc

t , (3.1)

where zg
t is the growth or trend component and zc

t stands for the cyclical component. Note that

(3.1) can be rewritten as

zt = zg
t + (zt − zg

t ) , (3.2)

or

zt = (zt − zc
t ) + zc

t . (3.3)

Equation (3.2) requires a definition of the trend component while (3.3) needs a definition of the

business cycle component. Burns and Mitchell (1946) is the seminal contribution to the measure-

ment of business cycles. They proposed a decomposition that is no longer in common use. Instead,

modern empirical macroeconomics employ a variety of detrending and smoothing techniques to

carry out trend-cycle decompositions. Examples of these techniques are application of two-sided

moving averages, first differencing, removal of linear or quadratic time trends and applications of

the Hodrick and Prescott (1997) filter.

3.1. The Hodrick-Prescott filter. The Hodrick-Prescott (HP) filter is particularly widely used

in real business cycle models to detrend macroeconomic time series and concentrate on the stylized

facts of an economy along the business cycle. See, e.g., Harvey and Jaeger (1993), King and Rebelo

(1993), Cogley and Nason (1995), Guay and St-Amant (1997), Canova (1998), Ehglen (1998),

Baxter and King (1999), and Kaiser and Maravall (1999).

The basis of the filter is as follows: Starting from equation (3.2), they define the permanent

component zg
t of the series as the solution to the optimization problem

min
zg
t

T∑
t=1

[
(zt − zg

t )2 + λ
(
∆2zg

t+1

)2]
. (3.4)
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The first term of (3.4) might be regarded as a measure of the goodness of fit of the trend

component to the observed series, while the second one imposes a penalty in order to obtain a

smooth trend component. King and Rebelo (1993) show that the infinite-sample version of the HP

filter defines the cyclic component of zt as zc
t = H(L)zt, where

H(L) =
λ(1 − L)2

(
1 − L−1

)2
1 + λ(1 − L)2 (1 − L−1)2

, (3.5)

that is an optimal linear filter in the sense of minimum mean squared error.

On the other hand, letting F (L) = 1−H(L), from (3.5) it follows that the growth HP filter has

expression

F (L) =
[
1 + λ

(
1 − L−1

)2 (1 − L2
)]−1

× [λL2 − 4λL + (1 + 6λ) − 4λL−1 + λL−2
]−1

,

(3.6)

which turns out to be a symmetric infinite order low-pass filter that must be approximated for

practical purposes. In this respect, one possibility would be to truncate its weights at some fixed

lag n. However, in actual practice, an alternative procedure is as follows. First, stack the data

into a column vector X. Second, define a matrix Γ that links the corresponding vector of trend

components, Xg, to the data: X = ΓXg. The matrix Γ is implied by equation (3.6), i.e.,

xt = λxg
t+2 − 4λxg

t+1 + (1 + 6λ)xg
t − 4λxg

t−1 + λxg
t−2, (3.7)

with some modifications near the endpoints:

x1 = (1 + λ)xg
1 − 2λxg

2 + (1 + λ)xg
3,

and

x2 = −2λxg
1 + (1 + 5λ)xg

2 − 4λxg
3 + λxg

4.

Comparable modifications must be made near the end of the sample. Finally, the growth HP filter

is given by Xg = Γ−1X. This alternative procedure has the attractive property that there is no loss

of data from filtering.

The values of the smoothing parameter λ suggested by Kydland and Prescott (1990) are λ = 1600

for quarterly data and λ = 400 for annual data, since these are the values for the ratios of the

volatility of the cycle component relative to the volatility of the growth component. However, for

reasons that will become clear later on, we also analyze other values of λ.



EFFECTS OF FILTERS ON UNIT ROOT TESTS 7

3.2. The Baxter and King filter. Application of the HP filter is frequently ad hoc in the sense

that the researcher only looks for a stationary business cycle component without explicitly specify

the statistical characteristics of business cycles. By contrast, Baxter and King (1999) develop

methods for measuring business cycles that require the researcher begin by specifying such as

characteristics. Technically, they develop approximated band-pass filters, i.e., filters passing only

frequencies between ω and
−
ω of the corresponding spectrum. See, e.g., Christiano and Fitzgerald

(1999). These band-pass filters turn out to be moving averages of infinite order. In fact, most of the

filters used in macroeconomic time series are two-sided moving averages, say h (L) =
∑∞

j=−∞ hjL
j ,

that, for practical purposes, have to be approximated by a finite two-sided moving average of order

p, hp (L) =
∑n

j=−n hjL
j . We will further specialize the analysis to symmetric moving averages

where hj = h−j for all j.

The implications of those two-sided filters are clearly seen in the frequency domain by looking at

the corresponding frequency response functions. The frequency domain function of the two-sided

MA(∞) equation is defined as

β (ω) =
∞∑

j=−∞
bje

−iωj , (3.8)

while for the finite two-sided MA(n), the frequency domain function is

α (ω) =
n∑

j=−n

aje
−iωj . (3.9)

King and Rebelo (1993) show that the optimal (in the sense of minimizing the mean squared

error of the discrepancy δ (ω) = β (ω)−α (ω)) approximating filter for given maximum lag length n,

is constructed by simply setting aj = bj for j = 0, 1, ..., n, and aj = 0 for j ≥ n+1. Moreover, they

also prove that symmetric moving average with weights summing up to zero, i.e.,
∑n

j=−n aj = 0,

has trend elimination properties. In fact, these moving averages make stationary series containing

quadratic deterministic trends or even I(1) or I(2) processes. Note that
∑n

j=−n aj = 0 if and only

if α (0) = 0.

These trend reducing filters are called high-pass filters because they pass components of the

data with frequency larger than a predetermined value
−
ω close to zero, i.e, β (ω) = 0 for |ω| <

−
ω

and β (ω) = 1 for |ω| ≥−
ω. By contrast, the so-called low-pass filters retain only slow-moving

components of the data. An ideal symmetric low-pass filter passes only frequencies −ω ≤ ω ≤ ω

, having frequency-response function given by β (ω) = 1 for |ω| ≤ ω and β (ω) = 0 for |ω| > ω

. Therefore, low frequencies (long term movements) remain unchanged while others are canceled
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out. In terms of the finite symmetric MA(n) filter, this means that low-pass filters must satisfy∑n
j=−n aj = 1.

Letting b(L) =
∑∞

j=−∞ bjL
j denote the time-domain representation of the ideal infinite-order

low-pass filter, King and Rebelo (1993) show that the filter weights bj can be found by the inverse

Fourier transform of the frequency response function, i.e.,

bj =
1
2π

∫ π

−π
β (ω) eiωjdω,

yielding b0 = ω/π and bj = sin (jω) /jπ, j = 1, 2, ... The complementary high-pass filter has

coefficients (1 − b0) at j = 0 and −bj for j = 1, 2, ... While the weights tend to zero as j becomes

large, notice that an infinite-order moving average is necessary to construct the ideal filter. This

leads to consider approximation of the ideal filter with a finite moving average a(L) =
∑n

j=−n ajL
j .

Usually, the definition of business cycle is associated with the NBER business cycle duration as

defined by Burns and Mitchell (1946) where ω corresponds to 32 quarters (eight years) and
−
ω to

six quarters (eighteen months). So, the trend component is obtained with a low-pass filter with

cycles of duration of eight years or less, ω = π/4. This low-pass filter is what we call BK filter in

the Monte Carlo simulations.

3.3. Nonlinear filters. The HP and BK filters are examples of linear filters. For completeness,

herein we will also consider a class of nonlinear filters, called the median filters (Wen and Zeng,

1999), that has been proven very useful in recent years in signal processing in the field of electrical

engineering. Median filters have two interesting properties: edge (sharp change) preservation and

efficient noise attenuation with robustness against impulsive-type noise. Neither can be achieved

by traditional linear filtering techniques. To compute the output of a median filter, an odd number

of sample values are sorted, and the middle or median value is used as the filter output. If the filter

length is 2n + 1, the filtering procedure is denoted as

med
{
xt−n, xt−n+1, ..., xt, ..., xt+n

}
. (3.10)

To be able to filter also the outmost input samples, where parts of the filter window fall outside

the input signal, the time series is appended to the required size.

Frequency analysis and impulse response have no meaning in median filtering since the impulse

response of a median filter is zero. Nonetheless, one very important property of the median filter is

the so-called root-convergence property, namely, any finite sample time series contains a root signal

set that is invariant to the median filtering. From an economic point of view, this invariant property
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is of interest because it makes possible that possible structural shifts of economic fundamentals be

not disturbed by the filtering operation. See Wen and Zeng (1999) for further details.

4. Filtering Unit Root Processes

From Section 2 we learn that testing for a unit root in the presence of systematic AO’s is similar

to testing for a unit root in the presence of MA errors. This might suggest the use of more general

tests like the ADF and PP tests or the use of unit root statistics robust to MA errors, such as the

modifications to the PP statistics proposed by Perron and Ng (1996). Indeed, Vogelsang (1999)

reports some experimental evidence showing the good size and power properties of these modified

PP statistics when there are outliers. In this sense, his paper and the present article can be viewed

as complements rather than substitutes.

Herein we study two different possibilities to test for a unit root in the presence of AO’s. First,

we are interested in trying to approximate the temporary AO’s by adding lags of the contaminated

series xt in equation (2.2), and therefore estimate the model

∆xt = c + ρxt−1 +
p∑

i=1

φi∆xt−i + ηt, (4.1)

where the number of lags, p, chosen for instance by means of an order selection criteria, is such

that ηt is a white noise process. Of course, using the t statistic of ρ in equation (4.1) to test for

the null hypothesis ρ = 0 is nothing else that the customary ADF test.

Second, we want to analyze the impact of applying unit root tests to the trend component, xg
t ,

of the observed series xt. The basic goes as follows. Let xt be split into the unobserved components

xg
t and xc

t as in equation (3.1). By substituting in (2.6) we have

∆xg
t = ρxg

t−1 + ξt, (4.2)

where ξt = ut − ∆xc
t = εt − ∆ (xc

t − θδt) under the null ρ = 0. Now, since the AO’s generated by

δt are transitory, they should be incorporated, to a large extent, into the cyclical component and

not into the trend. Consequently, (xc
t − θδt) would be an I(0) series free of AO’s that can be well

approximated by adding autoregressive terms of ∆xg
t in equation (4.2).

In order to obtain xg
t , one can use (approximate) low-pass linear filters, i.e.,

xg
t = a (L)xt =

n∑
j=−n

ajxt−j , (4.3)
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with
∑n

j=−n aj = 1. There is no ”best” choice of n. Increasing n leads to a better approximation

to the ideal infinite-dimensional filter, but results in more lost observations at the beginning and

end of the sample. Thus, the choice of n in a particular instance will depend on the length of the

sample and the importance attached to obtaining an accurate approximation to the ideal filter.

Nowadays, after some experimentation, Baxter and King (1999) suggest to use moving averages

based on three years of past data and three years of future data, as well as the current observation,

when working with both quarterly and annual time series. Moreover, following Baxter and King’s

suggestions, we require that the low-pass filter be symmetric ( aj = a−j , j = 1, 2, ..., n) and time

invariant, with coefficients not depending on the point in the sample. These requirements prevent

from filters introducing phase shift (i.e., altering the timing relationships between series at some

frequency) and dependencies on the length of the sample period.

Now, denote by ρ̂g
AO and tρ̂g

AO
the Dickey-Fuller statistics when applied to equation (4.2), i.e.,

ρ̂g
AO =

(
T∑

t=1

xg
t−1∆xg

t

)/(
T∑

t=1

(
xg

t−1

)2)
, (4.4)

and

tρ̂g
AO

= ρ̂g
AO

/
σ̂g

x

(
T∑

t=1

(
xg

t−1

)2)−1/2

, (4.5)

with σ̂g
x =

(
T−1

∑T
t=1

(
∆xg

t − ρ̂g
AOxg

t−1

)2)1/2
. Further, assume, without loss of generality, the

initial condition xg
0 = 0. The limiting behavior of ρ̂g

AO and its t ratio can now be stated as follows.

Theorem 1. Let T > 2n + 1 for fixed n. Then, as the sample size grows large, we have that

T ρ̂g
AO ⇒

(∫ 1

0
W (r) dW (r) + Φ

)(∫ 1

0
W 2 (r) dr

)−1

(4.6)

tρ̂g
AO

⇒ Ψ
(∫ 1

0
W (r) dW (r) + Φ

)(∫ 1

0
W 2 (r) dr

)−1/2

(4.7)

where

Φ =
1
2

n∑
j=−n

aj(1 − aj) − (θ/σε)2π
n∑

j=−n

aj(aj − aj−1)

Ψ =

[
n∑

j=−n

a2
j + 2(θ/σε)2π

n∑
j=−n

aj(aj − aj−1)

]−1/2

.

Therefore, as in the unfiltered case, ρ is estimated (super-) consistently with the limiting distri-

butions having nuisance parameters depending now on θ, π, σ2
ε , n and the weights {aj}n

j=−n . When
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n = 0, a0 = 1, we recover expressions (2.9) and (2.10). Note that, if we choose a sequence of weights

such that
∑n

j=−n a2
j ≈ ∑n

j=−n ajaj−1 ≈ 1, then Φ ≈ 0 and Ψ ≈ 1, independently of the AO’s and

for all n. In the particular case where aj = 1/ (2n + 1) for j = −n, ..., n, Φ and Ψ become

Φ =
n

2n + 1
, (4.8)

Ψ =
[

1
2n + 1

]−1/2

. (4.9)

Actually, this uniform or moving average low-pass filter,

xg
t =

1
2n + 1

n∑
j=−n

xt−j , (4.10)

where the growth or trend component is defined as a two-sided or centered moving average, is a

widely used method of detrending economic time series.

In Figure 1 we displayed the empirical density functions for the Dickey-Fuller (no constant, no

lags) t test using equation (2.5) and equation (4.5) with the HP (λ = 10), the BK and the median

filters, for a sample size of T = 1000 and for π = 0.1, θ = 16, i.e, in the presence of large and frequent

AO’s. For comparison purposes, we have also included the customary Dickey-Fuller distribution

without AO’s. It is clear the huge shift to the left of the Dickey-Fuller distribution in the presence

of AO’s, as well as the apparent gains from using the different filtered versions of the Dickey-Fuller

distribution.

[Figure 1 about here.]

5. Experimental Evidence

Herein we provide some Monte Carlo evidence on the numerical implications of our analytical

findings. The data is generated according to the following data generating process (DGP),

∆yt =ρyt−1 + εt, εt ∼ N (0, 1) ,

xt =yt + θδt,

with π = 0, 0.01, 0.05, 0.10, θ = 1, 6, 16 and T = 100, 200, 500, 1000. We considered that at most

10% of the series yt is contaminated, which is standard in this kind of studies, see, e.g., Franses and

Haldrup (1994). However, they consider breaks of sizes 3, 4 and 5, while we consider more abrupt

ones. The full factorial design means that we have 48 cases for the Monte Carlo experiment. In

order to obtain the critical values, we simulate the DGP under H0 : ρ = 0, and consider the lower

5% tail of the ordered Dickey-Fuller t-statistics tρ̂AO
and tρ̂g

AO
as the critical values of interest. The
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power of the tests has been obtained by simulating the DGP under H1 : ρ = −0.2, and computing

the percentage of rejections using the critical values previously obtained. For all experiments,

10,000 replications of the DGP were used.

In our experiments, HP stands for the HP filter, BK stands for the low-pass Baxter and King

filter, U stands for the uniform or moving average filter, and MD stands for the median filter.

With respect to the HP filter, we choose different values of the smoothing parameter λ, namely,

λ = 10, 100, 400 and 1600. The window parameter of the BK, U and MD filters were set at n = 3,

implying a window size of 2n + 1 = 7. The number of lags (p) of the ADF test were chosen by

means of the SIC criterion. The results are reported in Tables 1 to 5.

[Table 1 about here.]

[Table 2 about here.]

Consider first the effects of AO’s on the standard Dickey-Fuller tests. The estimated regressions

are given by

∆xt = c + ρxt−1 + ηt, (5.1)

and

∆xt = c + ρxt−1 +
p∑

i=1

φi∆xt−i + ηt. (5.2)

From Table 1 we learn that the critical values of tρ̂AO
are very unstable in the case of model

(5.1), ranging from -2.85 (π = 0) to -17.319 (π = 0.1) for T = 1000 and θ = 16. With respect to

model (5.2), we can see in Table 1 that in the case of no AO’s (π = 0), critical values are virtually

the same as in the case of no lags, which indicates that the lag order selection criterion works well.

Nonetheless, the critical values are still very unstable, ranging from -2.9 to -11, for T < 500, but

more stable for T > 500, ranging from -2.85 to -6. In turn, the size adjusted power of tρ̂AO
against

H1 : ρ = −0.2 is good for T > 100 in both cases as we can see from Table 2.

Consider now the behavior of tρ̂g
AO

. The estimated model is

∆xg
t = c + ρxg

t−1 +
p∑

i=1

φi∆xg
t−i + ξt. (5.3)

[Table 3 about here.]

[Table 4 about here.]

As we can see in Table 3, the critical values are very stable for sample sizes as small as 100 in

the case of the HP filter and 200 when using the BK filter. For instance, the critical values range

from -2.8 to -3.22 in this latter case. As regards the HP filter, the critical values obtained from
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the different values of λ are not very different, specially for medium to large sample sizes. Critical

values are also fairly stable with respect to π, θ and T when using the U and MD filters. Overall,

from our simulations it shows up that the most stable critical values are obtained when using the

MD filter. It is interesting to note that when there are no AO’s, the detrending procedure or the

value of λ does not affect, to a large extent, the critical value. In fact, in that case the critical

values obtained with the trend component are similar to those obtained with the observed series.

On the other hand, (size adjusted) power is high in all cases for medium to large sample sizes. See

Table 4. It is not as high as the unfiltered case for small sample sizes, which is an expected result

(cf. Ghysels and Perron, 1993).

Finally, it is also of interest to analyze the robustness of the critical values obtained so far in

Tables 1 and 3. In particular, in Table 5 we present some results concerning the empirical sizes

obtained from the different testing procedures when using the critical values for the π = 0 case. It

is particularly noticeable the size distortions of the ADF test in model (5.2) specially for θ = 16,

and the good performance of the MD filter for any value of π, θ and T included in the Monte Carlo

design.

[Table 5 about here.]

Figures 2 and 3 provide the graphical counterpart to the previous comments on the stability

of the critical values. Note in particular that the distribution of the MD filtered version of the

ADF test is virtually the same with and without AO’s (Figures 2.e and 3.e), in contrast with the

unfiltered version of the ADF test (Figures 2.a and 3.a). On the other hand, the size problems of

the BK filtered version of the ADF test come up after looking at the different left tails for T = 100

(Figure 2.d) and T = 200 (Figure 3.d). All these findings are in full agreement with the results

obtained in Table 5.

[Figure 2 about here.]

[Figure 3 about here.]

6. Empirical Application

The above procedures were applied to the US/Finland exchange rate series (in logarithms) based

on the consumer price index (CPI). See Figure 4. The data is annual and spans the years 1900-1988.

This series was analyzed by Perron and Vogelsang (1992) in the context of testing for a unit root

in the presence of a changing mean at an unknown date. They did not consider the possibility of

AO’s in the data. By conducting an ADF test as in model (5.2) with p = 1, they found a t ratio

of -5.74 (5% critical value =-2.89). Thus, the unit root hypothesis was rejected for this series.
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[Figure 4 about here.]

Franses and Haldrup (1994) (FH94, henceforth) pointed out that the series may contain additive

outlying observations so that the results by Perron and Vogelsang (1992) may be biased towards

false rejection of the unit root hypothesis. Using the methods to detect outliers of Chen and Liu

(1993) as implemented in the TRAMO Program (Gómez and Maravall, 1996), FH94 found evidence

of AO’s in the series.

To remove the influence of outliers, FH94 suggested to conduct the model

∆xt = c + ρxt−1 +
p∑

i=1

φi∆xt−i +
p+1∑
i=0

ωiD
i
t−i + ηt, (6.1)

where we test whether ρ = 0 by using the ADF t ratio. Di indicates impulse dummy variable

taking the value 1 at the time the outlier occurrence takes place and 0 otherwise.

FH94 reported the following (most significant) AO’s: 1917-1919, 1932, 1933, 1945, 1949 and

1950. This means an empirical percentage of AO’s of about π̂ = 0.09. The ADF t ratio in model

(6.1) with p = 2 was -2.65 which fails to reject the unit root hypothesis at the 5% level.

On the other hand, Vogelsang (1999) (V99, henceforth) proposes a second procedure for detecting

AO’s which is related to the approach suggested by FH94. The procedure is based on the following

regression estimated by OLS:

xt = c + αDi
t + ηt. (6.2)

Let tiα denote the t statistic for testing α = 0 in ( 6.2). Then, V99 suggests to test for the

presence of AO’s using τ = supi=1,2,...,T

∣∣tiα∣∣. The asymptotic distribution of τ is nonstandard but

asymptotic critical values has been tabulated by V99.

V99 applied the τ statistic to the CPI-based data in an iterative manner detecting the following

AO’s: 1917, 1918, 1919, 1921 and 1932. To remove the influence of the outliers on the unit root

test, regression (6.1) was used with p = 0. The ADF t ratio was -3.51, rejecting the unit root

hypothesis at the 5% level in contrast with FH94’s results.

These differences clearly illustrate the sensitivity of unit root tests to the choice of dummy

variables and choices of lag length and led V99 to suggest the use of the modifications to the

Phillips-Perron statistics proposed by Perron and Ng (1996) to the data without searching for or

removing outliers. For the CPI-based series the modified PP statistics, MZα and MZt, defined in

(6.3)–(6.5), reject the unit root hypothesis at any reasonable significance level.
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Consider now the application of tρ̂g
AO

in model (5.3) to the CPI-based series. In view of the

simulations in Section 5, we only report the results obtained with the BK, the HP10 and the MD

filters.

[Table 6 about here.]

In Table 6, the column CVf stands for the 5% critical values of tρ̂g
AO

in model (5.3) assuming

π = 0 and a sample size T = 89, the number of observations of the CPI-based real exchange rate.

Under this assumption, only the BK filter suffers from size distortions, see Table 5. CV �
f is the

critical value of the tests assuming that the series includes outliers at the same positions and with

the sizes reported by V99. From Table 6, it turns out that we fail to reject the unit root hypothesis

at the 5% significance level with any of the filter procedures, in contrast with V99’s findings and

in accordance with FH94’s claims. However, with the BK and MD filters, the p–values are around

0.07 and 0.08 when using the corresponding CVf , and 0.07 and 0.09 when using CV �
f , respectively.

In light of Table 4, a possible explanation for such discrepancies could be the small power of

the filtered unit root tests in small samples. Accordingly, Figures 5 and 6 plot the (size adjusted)

power of the ADF tests for the original and the filtered data with (π = 0.1, θ = 16) and without

AO’s, and for T = 100 (Figure 5) and T = 200 (Figure 6). For completeness, we have also included

the MZt statistic proposed by Perron and Ng (1996), defined as

MZα =
T−1x̃2

T − s2

2T−2
∑T

t=1 x̃2
t

(6.3)

MSB =

√
T−2

∑T
t=1 x̃2

t−1

s2
(6.4)

MZt = MSB × MZα (6.5)

where x̃t is the GLS–demeaned series, and we take s2
AR as the estimator of s2 (see Ng and Perron,

1998, Vogelsang, 1999).

s2
AR =

s2
ek

(1 − φ̂(1))2
, (6.6)

and s2
ek = T−1

∑T
t=k+1 ê2

tk, φ̂(1) =
∑k

j=1 φ̂j , where φ̂j are {êjk} obtained from the autoregression

∆x̃t = bx̃t−1 +
k∑

j=1

φj∆x̃t−j + ejk.

The order of this autoregregression, k, is chose by the MIC criterion as proposed by Ng and Perron

(1998).

[Figure 5 about here.]
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[Figure 6 about here.]

A first remarkable conclusion of Figures 5 and 6 is the small power of the MZt statistic for

non-local alternatives when no outliers are present in the data, in contrast with the filtered unit

root tests (Figures 5.a and 6.a). In the presence of AO’s and for T = 100 (Figure 5.b) the power of

the MD and HP10 filtered unit root tests are uniformly smaller than the power of the rest of the

ADF tests. The highest power corresponds to the MZt statistic for local alternatives and to the

ADF and BK filtered tests for non-local alternatives. For T = 200 (Figure 6.b) the power of the

MZt statistic is not the highest one even for local alternatives. In fact, it has the smallest power

for non-local alternatives.

From all the preceding analysis, thus, it turns out that in order to test for a unit root in the

presence of AO’s one can propose to use the MZt statistic along with size adjusted versions of the

original ADF and BK filtered ADF tests. However, we know that the latter tests have size problems

in small to medium sample sizes.

To correct these size problems, Arranz (2001) has recently considered the use of bootstrap

resampling techniques. In particular, he shows how the small sample size distortions of the BK

filtered ADF test can be corrected to a large extent by means of the following bootstrap procedure:

(1) Estimate the restricted model

∆xg
t = c +

p∑
i=1

φi∆xg
t−i + νt.

(2) Resample residuals ν∗
t and build xg∗

t using the model

∆xg∗
t = c +

p∑
i=1

φi∆xg∗
t−i + ν∗

t .

The size of the reconstructed series is m = T 3/4 in order to solve the problem of the distribution

discontinuity (see Datta, 1996).

(3) Estimate the model

∆xg∗
t = c + ρxg∗

t−1 +
p∑

i=1

φi∆xg∗
t−i + ξt,

obtaining ρ̂∗ and the corresponding customary t–statistic, t∗. Repeat steps (2) − (3) NB times,

where NB indicates the number of bootstrap resamples. The bootstrap critical value is obtained

by looking at the 5% lower tail of the empirical distribution of t∗.

The bootstrap critical values (NB = 10, 000) for the CPI-based US/Finland exchange rate series

and for the different filtering procedures are collected in Table 6 , column CVb. Note, as expected,
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the similarity of the Monte Carlo and the bootstrap critical values for the MD filtered unit root tests.

More interestingly, note that now the BK filtered ADF test rejects the unit root null hypothesis

according with the bootstrap 5% critical value (the p–value is 0.045), in agreement with V99. In

the case of the MD filtered case, the p–value of the boostrap test is 0.0762.

Finally, the trend component of the CPI-based US/Finland exchange rate series with respect to

the HP10, the BK and the median filters are graphed in Figure 7. Note that the linear filters are

not so efficient as the median filter in retaining the signal component of the CPI-based series in

terms of effectively capturing sharp changes in the trend component.

[Figure 7 about here.]

7. Conclusions

Time series observations are often influenced by interruptive events such as strikes, outbreaks of

wars, sudden political or economic crises, or even unnoticed errors of typing and recording. The

consequences of these interruptive events create spurious observations, which are inconsistent with

the rest of the series. Such observations are usually referred to as outliers.

In this paper we propose two different ways of addressing the question of testing for unit roots

in the presence of additive outliers. The first approach considers the possibility of adding extra

dynamic terms to the Dickey-Fuller equation. By means of Monte Carlo simulations we show that

the critical values are more stable than the ones obtained without any dynamic term as suggested

by the data generating process. Nonetheless, the stability (robustness) of the critical values is

further increased by our second approach which suggest to run the Dickey-Fuller tests on the trend

or permanent component of the series, obtained by either linear or nonlinear filtering techniques.

Simulations show that this procedure is robust to additive outliers in terms of size and power.

Specially remarkable is the robustness of the nonlinear median filter.

In order to test for a unit root in the presence of additive outliers, our analysis suggests the use

of the MZt statistic for local alternatives, the bootstrap version of the BK filtered ADF test in

small samples and for global alternatives, and the normal (or bootstrap) version of the BK filtered

ADF test in medium to large samples and global alternatives.

On the other hand, it appears that the median filter can be more useful than the linear filters in

obtaining the trend-cycle decompositions of the underlying series because of its greater capability

of tracing sharp changes in removing the stochastic trend component of a time series.
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Appendix A. Proof of Theorem 1

Denote by a(L) a general symmetric low-pass filter of order n, i.e., a linear filter a(L) =∑n
j=−n ajL

j for which a(L) = a(L−1) and a(1) = 1. Let xg
t = a(L)xt denote the filtered ver-

sion of xt in equation (2.2), so that xg
t = xg

t−1 + ξt, ξt = a(L)ut under the unit root hypothesis,

with ut = εt + θ∆δt. Let σ2
u = limT→∞ T−1E

(
S2

T,u

)
and σ2

ξ = limT→∞ T−1E
(
S2

T,ξ

)
, where

St,u =
∑t

j=1 uj and St,ξ =
∑t

j=1 ξj , t = 1, 2, ..., T. Note that both ut and ξt satisfy Phillips’ (1987)

mixing conditions for the application of a functional central limit theorem to their partial sums,

yielding

T ρ̂g
AO ⇒

∫ 1
0 W (r) dW (r) + λξ/σ2

ξ∫ 1
0 W 2 (r) dr

(A.1)

and

tρ̂g
AO

⇒
(

σξ

sξ

) ∫ 1
0 W (r) dW (r) + λξ/σ2

ξ(∫ 1
0 W 2 (r) dr

)1/2
, (A.2)

where λξ = 1/2
(
σ2

ξ − s2
ξ

)
and s2

ξ = var (ξt) . From Franses and Haldrup (1994) we have that

σ2
u = σ2

ε ,which, in turn, implies that σ2
ξ = σ2

u using the fact that a(1) = 1. The variances of

the processes ut and ξt are however, different. Franses and Haldrup prove that s2
u = var (ut) =

σ2
ε

(
1 + 2 (θ/σε)

2 π
)
. By contrast,

s2
ξ = var (a(L)ut) =

n∑
j=−n

n∑
i=−n

ajaicovu (j − i) . (A.3)

As noted in the main text, ut is an MA(1) process with autocovariance function

covu (k) =


σ2

ε

(
1 + 2

(
θ/σε

)2
π
)

k = 0

−θ2π k = 1

0 k > 1

(A.4)

Therefore, using (A.4) and the properties of a(L), it can be proved after some algebra that

s2
ξ = s2

u

n∑
j=−n

a2
j − 2θ2π

n∑
j=−n

ajaj−1, (A.5)
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which, in turn, implies

λξ/σ2
ξ =

1
2

1 −
n∑

j=−n

a2
j − 2 (θ/σε)

2 π
n∑

j=−n

a2
j

+2 (θ/σε)
2 π

n∑
j=−n

ajaj−1

 = Φ,

(A.6)

and (
σξ

sξ

)2

=

 n∑
j=−n

a2
j + 2 (θ/σε)

2 π
n∑

j=−n

aj (aj − aj−1)

−1

= Ψ2. (A.7)

The theorem is finally proved by substituting (A.6) and (A.7) in expressions (A.1) and (A.2).
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Figure 1. Density Estimation of the t DF test (no constant, no lags) under the
unit root null hypothesis, based on 50000 replications. T = 1000. π = 0.1 and
θ = 16. DF wo AO and DF refer to the distributions of the t–stat in expressions
(2.5) and (2.8), respectively; HP10, BK and MD refer to the distribution of the t–
stat in expression (4.5), using the Hodrick–Prescott (with λ = 10), the Baxter–King
and the median filters
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Figure 2. Density estimation of the ADF test and the filtered unit root tests with
and without AO’s. T = 100, π = 0.1 , θ = 16.
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Figure 3.a: ADF
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Figure 3.b: HP10
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Figure 3.f: U

Figure 3. Density estimation of the ADF test and the filtered unit root tests with
and without AO’s. T = 200, π = 0.1 , θ = 16.
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Figure 5.a: No outliers
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Figure 5.b: AO’s, π = 0.1, θ = 16

Figure 5. Size–adjusted power of the ADF, MZt and filtered unit root tests with
and without additive outliers, T = 100, π = 0.1 and θ = 16
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Figure 6.a: No outliers
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Figure 6. Size–adjusted power of the ADF, MZt and filtered unit root tests with
and without additive outliers, T = 200, π = 0.1 and θ = 16
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Figure 7. Log of CPI–based US/Finland real exchange rates. Trend and cycle components
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DF ADF

π θ T=100 T=200 T =500 T =1000 T=100 T=200 T =500 T =1000

0 -2.899 -2.879 -2.866 -2.850 -2.920 -2.889 -2.865 -2.850

1 -2.927 -2.887 -2.870 -2.873 -2.942 -2.891 -2.870 -2.873
0.01 6 -3.546 -3.227 -3.136 -3.642 -3.429 -3.111 -3.002 -2.975

16 -5.814 -4.870 -4.586 -6.902 -5.318 -3.388 -3.123 -3.168

1 -3.057 -2.979 -2.941 -2.952 -3.053 -2.965 -2.933 -2.933
0.05 6 -5.949 -5.539 -5.201 -5.781 -5.501 -3.892 -3.390 -3.081

16 -8.909 -9.815 -10.886 -13.024 -8.909 -9.571 -3.584 -3.451

1 -3.139 -3.074 -3.066 -3.069 -3.118 -3.052 -2.994 -2.910
0.10 6 -6.603 -6.845 -7.479 -7.852 -6.570 -4.704 -3.404 -3.334

16 -8.819 -10.988 -14.975 -17.319 -8.819 -10.988 -5.915 -3.751

Table 1. 5% critical values of DF and ADF tests with AO’s. Estimated models
(5.1)–(5.2).

DF ADF

π θ T=100 T=200 T =500 T =1000 T=100 T=200 T =500 T =1000

0 87.55 99.99 100.00 100.00 86.35 99.95 100.0 100.0

1 95.58 95.63 95.57 95.96 74.14 99.85 100.0 100.0
0.01 6 98.74 97.83 97.45 99.36 76.85 99.61 100.0 100.0

16 100.00 99.98 99.85 100.00 76.48 99.70 100.0 100.0

1 96.58 96.49 96.33 96.59 76.57 99.83 100.0 100.0
0.05 6 100.00 100.00 100.00 100.00 76.56 99.84 100.0 100.0

16 100.00 100.00 100.00 100.00 60.92 99.92 100.0 100.0

1 97.16 97.10 97.05 97.24 78.04 99.75 100.0 100.0
0.10 6 100.00 100.00 100.00 100.00 80.89 99.80 100.0 100.0

16 100.00 100.00 100.00 100.00 52.38 99.83 100.0 100.0

Table 2. Size–adjusted power of DF and ADF tests with AO’s. ρ = −0.2. Esti-
mated models (5.1)–(5.2).
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BK Filter

π = 0 π = 0.01 π = 0.05 π = 0.1
T θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16

100 -3.023 -2.958 -2.938 -3.344 -2.975 -3.158 -3.295 -2.951 -3.385 -5.630
200 -2.928 -2.945 -2.890 -2.950 -2.917 -2.920 -3.247 -2.923 -2.899 -3.072
500 -2.855 -2.852 -2.818 -2.808 -2.844 -2.789 -2.862 -2.833 -2.823 -3.293
1000 -2.855 -2.870 -2.817 -2.844 -2.861 -2.840 -2.933 -2.847 -2.842 -3.072

HP10 Filter

100 -3.195 -3.211 -3.081 -2.897 -3.201 -2.963 -2.958 -3.173 -2.967 -3.220
200 -3.038 -3.040 -3.092 -2.932 -3.079 -3.019 -3.106 -3.079 -3.022 -3.416
500 -2.859 -2.877 -2.993 -2.970 -2.912 -2.971 -2.956 -2.995 -2.831 -3.143
1000 -2.858 -2.872 -3.013 -2.931 -2.891 -2.926 -3.041 -2.916 -2.885 -3.350

HP100 Filter

100 -3.171 -3.188 -3.535 -3.068 -3.329 -3.082 -2.894 -3.367 -3.082 -3.022
200 -2.907 -2.918 -3.030 -3.201 -2.933 -3.181 -3.108 -2.938 -3.108 -3.213
500 -2.861 -2.871 -2.940 -3.137 -2.887 -3.136 -3.160 -2.931 -3.070 -3.036
1000 -2.847 -2.870 -2.965 -3.039 -2.887 -3.102 -3.054 -2.914 -3.013 -3.111

HP400 Filter

100 -3.232 -3.215 -3.752 -3.385 -3.311 -3.314 -2.818 -3.344 -3.255 -2.864
200 -2.900 -2.943 -3.033 -3.455 -2.963 -3.304 -3.167 -2.977 -3.185 -3.121
500 -2.876 -2.883 -2.963 -3.112 -2.904 -3.021 -3.132 -2.950 -3.193 -3.078
1000 -2.853 -2.867 -2.970 -3.103 -2.896 -2.987 -3.013 -2.918 -3.106 -3.053

HP1600 Filter

100 -3.389 -3.419 -3.865 -3.990 -3.471 -3.878 -3.024 -3.502 -3.721 -3.145
200 -2.982 -3.008 -3.130 -3.503 -3.043 -3.363 -3.074 -3.071 -3.364 -3.088
500 -2.914 -2.905 -3.000 -3.147 -2.934 -3.052 -3.090 -2.984 -3.223 -3.053
1000 -2.869 -2.878 -2.951 -3.171 -2.913 -2.982 -2.972 -2.932 -3.060 -2.919

U Filter

100 -3.562 -3.55 -3.22 -2.91 -3.48 -3.03 -2.62 -3.42 -3.01 -3.11
200 -3.234 -3.22 -3.12 -2.90 -3.21 -2.87 -2.69 -3.17 -2.99 -2.88
500 -3.229 -3.22 -3.13 -2.96 -3.21 -2.94 -2.80 -3.15 -3.07 -2.96
1000 -3.157 -3.15 -3.03 -2.98 -3.14 -3.00 -2.90 -3.13 -2.98 -3.05

MD Filter

100 -2.885 -2.902 -2.899 -2.899 -2.900 -2.860 -2.859 -2.914 -2.831 -2.831
200 -2.935 -2.939 -2.935 -2.935 -2.925 -2.885 -2.884 -2.916 -2.836 -2.836
500 -2.973 -2.973 -2.972 -2.972 -2.968 -2.940 -2.940 -2.969 -2.868 -2.668
1000 -2.994 -3.009 -2.997 -2.997 -3.002 -2.963 -2.964 -3.008 -2.917 -2.847

Table 3. 5% critical values of filtered unit root tests with AO’s. Estimated model (5.3)
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BK Filter

π = 0 π = 0.01 π = 0.05 π = 0.1
T θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16

100 21.85 23.93 32.43 47.08 25.42 39.28 44.67 26.54 50.23 55.81
200 69.04 68.41 76.42 79.69 71.42 81.57 90.36 73.84 86.21 99.56
500 99.99 99.99 100.00 100.00 99.99 100.00 100.00 99.99 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

HP10 Filter

100 30.42 12.32 14.41 21.70 12.53 24.91 40.53 13.14 25.99 40.77
200 74.81 59.43 59.25 72.10 58.38 76.11 92.52 58.96 83.19 96.04
500 100.00 99.95 99.93 99.99 99.93 100.00 100.00 99.91 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

HP100 Filter

100 15.43 11.89 5.97 11.77 9.33 13.87 20.37 8.59 13.08 16.78
200 44.36 35.16 30.35 23.07 35.17 26.96 38.58 35.01 35.65 50.11
500 98.67 96.45 95.71 93.51 96.37 95.60 99.50 95.87 97.51 99.94
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

HP400 Filter

100 7.69 20.80 12.50 15.11 18.99 19.08 27.25 18.37 17.19 18.06
200 28.99 30.47 26.35 12.02 29.45 17.44 29.32 28.86 22.35 31.56
500 91.80 84.59 81.85 77.22 84.16 83.16 93.78 82.25 78.21 93.69
1000 99.97 100.00 100.00 99.99 99.99 99.98 100.00 99.99 99.99 100.00

HP1600 Filter

100 4.78 28.34 20.35 17.75 27.37 21.23 38.01 26.56 22.88 29.77
200 15.75 32.04 29.04 19.78 31.67 26.02 44.72 30.84 23.78 39.01
500 72.66 66.09 62.45 57.80 64.55 59.63 70.84 62.15 47.82 62.28
1000 99.01 99.15 99.11 98.45 99.21 99.13 99.29 99.15 98.99 99.95

U Filter

100 28.78 29.07 29.36 23.45 28.93 33.92 21.31 28.33 27.25 38.88
200 60.44 61.33 60.30 54.85 59.92 61.16 64.72 60.60 58.70 54.09
500 99.95 99.96 99.96 99.96 99.94 99.94 99.98 99.95 99.99 100.00
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

MD Filter

100 33.81 32.64 32.29 32.31 32.33 30.24 30.26 31.15 29.68 29.71
200 86.70 86.59 86.53 86.53 86.50 86.35 86.37 87.02 86.57 86.59
500 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
1000 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 4. Size–adjusted power of filtered unit root tests with AO’s. ρ = −0.2.
Estimated model (5.3).
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ADF

π = 0.01 π = 0.05 π = 0.1
T θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16 θ = 1 θ = 6 θ = 16

100 5.26 11.78 23.67 6.64 27.91 88.53 7.66 46.36 97.00
200 5.01 7.82 12.30 5.89 20.81 41.52 7.08 23.57 67.50
500 5.05 6.94 8.72 5.81 12.12 12.11 6.79 13.21 34.97
1000 5.35 6.76 9.83 6.09 8.36 15.37 5.86 12.97 20.30

BK Filter

100 4.98 4.71 8.67 5.00 6.99 8.76 4.91 9.81 31.67
200 4.96 4.39 5.18 4.62 4.80 8.91 4.70 4.66 7.43
500 4.97 4.39 4.40 4.83 4.06 5.11 4.62 4.47 12.30
1000 4.82 4.24 4.41 4.70 4.48 5.72 4.47 4.60 8.22

HP10 Filter

100 5.00 3.69 2.31 4.92 2.76 2.39 4.64 2.86 5.44
200 5.12 5.58 3.85 5.58 4.88 6.05 5.64 4.83 11.22
500 5.03 6.60 6.22 5.44 6.36 6.35 6.71 4.64 9.51
1000 5.10 7.07 5.93 5.31 5.80 7.43 5.73 5.17 13.53

HP100 Filter

100 5.24 8.95 3.71 6.21 4.07 2.30 6.63 4.07 3.73
200 5.00 6.38 9.04 5.15 8.56 8.21 5.20 7.94 10.25
500 4.97 5.95 9.02 5.24 9.14 9.53 5.80 8.10 7.74
1000 5.06 6.30 7.40 5.30 8.53 7.87 5.64 7.30 9.19

HP400 Filter

100 5.06 9.57 6.31 5.72 5.80 1.51 6.11 5.35 1.82
200 5.01 6.15 12.64 5.30 10.43 8.95 5.53 8.66 8.26
500 5.02 6.27 8.41 5.35 6.88 8.67 5.98 9.71 7.93
1000 5.14 6.62 8.67 5.48 6.83 7.12 5.88 8.79 7.82

HP1600 Filter

100 5.13 8.81 11.49 5.68 10.29 1.84 5.96 8.69 2.42
200 5.12 6.45 11.80 5.49 9.76 6.14 5.63 9.33 6.32
500 5.07 6.37 8.55 5.41 6.90 7.40 6.05 9.34 6.84
1000 5.15 6.28 9.75 5.62 6.73 6.46 5.85 7.87 5.63

U Filter

100 4.83 2.71 1.08 4.36 1.42 0.16 3.72 1.50 1.03
200 4.83 3.85 2.25 4.77 1.89 0.89 4.45 2.74 1.81
500 4.93 3.97 2.64 4.72 2.60 1.51 4.11 3.46 2.52
1000 4.94 3.68 3.26 4.87 3.17 2.49 4.65 3.17 3.76

MD Filter

100 5.13 5.06 5.05 5.21 4.54 4.53 5.28 4.42 4.42
200 4.89 4.84 4.84 4.82 4.21 4.20 4.73 3.84 3.83
500 4.95 4.97 4.97 4.92 4.48 4.46 4.84 3.79 2.06
1000 4.96 4.88 4.88 4.97 4.42 4.43 5.01 3.87 3.23

Table 5. Size of the ADF and filtered unit root tests with AO’s. Critical values
obtained from Tables 1 and 3 with π = 0
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p tρ̂g
AO

CVf CV �
f CVb

HP10 4 -1.4576 -3.2314 -3.1592 -2.8572
MD 1 -2.6381 -2.9376 -2.8983 -2.8924
BK 3 -2.8261 -3.0074 -3.0475 -2.7510

Table 6. Filtered ADF tests on CPI–based US/Finland real exchange rates.CVf

stands for the 5% critical values of tρ̂g
AO

in model (5.3) assuming π = 0 and a sample
size T = 89CV �

f is the 5% critical value of the tests assuming that the series includes
outliers at the same positions and with the sizes reported by V99. CVb is the 5%
critical value obtained by bootstrap.




