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la Junta de Castilla y León (Spain) under projects VA004B08 and VA099/04, and Spanish Ministerio de

Ciencia y Tecnoloǵıa and FEDER funds under project MTM2005–06534. We are particularly thankful

to two anonymous referees for many useful comments.
2Departamento de Estad́ıstica e Investigación Operativa, Universidad de Valladolid, Valladolid, Spain
3Departamento de Economı́a, Universidad Carlos III de Madrid, Madrid, Spain

1



1 Introduction

Pension funds currently represent one of the most important institutions in financial

markets because of their high investment capacity and because they complement the role

of the Government, allowing those workers who have reached retirement age to maintain

their standard of living. These two aspects justify the interest generated over recent years

in the study of the optimum management of pension plans.

There are two principal alternatives in pension plan designs with respect to the as-

signment of risk. In a defined contribution (DC) plan the risk derived from the fund

management is borne by the beneficiary. However, in a defined benefit (DB) plan, where

the benefits are normally related to the final salary level, the financial risk is assumed by

the sponsor agent.

Our aim in this paper is to analyze a BD pension fund of aggregated type, which

is a common model in the employment system. We provide here an extension of the

previous work of the authors, Josa-Fombellida and Rincón-Zapatero (2001, 2004, 2006,

2008a, 2008b), in an attempt to incorporate more realistic assumptions to the model,

dropping the hypothesis of a constant riskless rate of interest. Thus, in our model, there

are three sources of uncertainty: i) the fund assets returns; ii) the instantaneous riskless

rate of interest; and iii) the evolution of benefits, based on the behavior of salaries and/or

other main components of the pension plan.

There are several previous papers dealing with the management of DC funds in the

presence of a stochastic rate of interest. Some of them are Boulier et al (2001), Battocchio

and Menoncin (2004), Cairns et al (2006) and Menoncin (2005), where the interest rate

is assumed to be of the Vasicek type. In Deelstra et al (2003), the interest rate has an

affine structure, as in Duffie and Kan (1996) which includes as a special case the CIR and

the Vasicek models. Other interesting papers where the interest rate is random, though

in a discrete time are Vigna and Haberman (2001) and Haberman and Vigna (2002).

The importance of DB funds calls for the completion of the theory studying this case.

Moreover, the differences in both types of pension plans makes it impossible to transfer

the results from DC to DB plans.

The objective of the shareholder in a DC pension fund is to maximize the expected

utility obtained from fund accumulation at a fixed date. The contribution rate is exoge-

nous to this optimization process, since it is generally determined by salary. However, in a
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DB plan the amortization effort is a control variable. The fund assets could be artificially

increased with high contributions. Obviously, this makes no sense, since benefits are fixed

in advance. Thus, the objective in a DB plan should be related with risk minimization

instead of the maximization of fund assets. Of course, the main concern of the sponsor is

the solvency risk, related to the security of the pension fund in attaining the comprised

liabilities. Similar objectives have been considered in other works, such as Haberman and

Sung (1994), Haberman et al (2000) and Josa–Fombellida and Rincón–Zapatero (2001,

2004). The optimal management of DB plans in the presence of a random interest rate is

found, but in discrete time, in Haberman and Sung (1994), Chang (1999) and Chang et

al (2003).

We make the contribution rate endogenous and dependent on the main variables of

the fund, by adopting a spread method of amortization, as in Owadally and Haberman

(1999). In this way, the contributions are proportional to the unfunded liabilities, requir-

ing more amortization effort when the plan is underfunded. The pension plan is stochastic,

supposing that benefits follow a geometric Brownian motion as in Josa–Fombellida and

Rincón–Zapatero (2004). It is then shown that both the stochastic actuarial liability

and the normal cost are also geometric Brownian motions, and a relationship between

these variables is found. The riskless rate of interest is supposed to be given by a mean–

reverting process, as in Vasicek (1977). An interesting question addressed in the paper is

the selection, according to a valuation criterion, of the technical rate of actualization to

value the liabilities. The financial market also comprises a family of zero coupon bonds

of fixed maturity and a risky stock, which are correlated with the source of uncertainty

of the benefits.

The results obtained are based on the analytical solutions found by means of the

dynamic programming approach. The optimal investment in the bond has four summands:

i) the classical optimal one in Merton (1971); ii) a positive term decreasing to zero with

the terminal date of the plan involving parameters of the riskless rate of interest; iii) the

market price of risk multiplied by an expression involving diffusion coefficients of the bond

and the stock and the excess expected return of the stock; and iv) a term proportional to

the actuarial liability that vanishes if there is no correlation in the financial instruments

or if the benefits are deterministic. The optimal investment in the risky asset follows a

similar pattern, but in this case there is no corresponding term to those described in i)
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and ii).

The paper is organized as follows. Section 2 defines the elements of the pension scheme

of an employment system. We suppose the technical rate of interest is random. The actu-

arial functions are also introduced and we prove a relation between these functions when

the benefits are given by a geometric Brownian motion. In Section 3, we explain the

financial market structure. In Section 4, we find a risk–neutral valuation of the liabilities,

giving rise to an expression for the technical rate of actualization, that relates it with the

interest rate and the correlation parameters between the sources of uncertainty, as well

as with the parameters defining the stochastic evolution of liabilities. In Section 5, we

consider that the fund is invested in a riskless asset (savings account) and in two risky

assets (a bond and a stock). We state the problem of minimizing the expected value of

the terminal solvency risk and we explicitly solve it. In Section 6, the results are illus-

trated with a numerical analysis of the problem, analyzing the investment time evolution

pattern in the bond and in the stock. Finally, Section 7 is dedicated to establishing some

conclusions and possible extensions. All proofs are in Appendix A.

2 The pension model

The pension plan we take into account is an aggregated pension fund of the DB type,

thus the benefits are established in advance by the manager. With the objective of the

delivery of retirement benefits to the workers, the plan sponsor continuously withdraws

time–varying funds. The variables listed below refer to the total group of participants.

The principal elements intervening in the funding process and the essential hypotheses

allowing its temporary evolution to be determined are as follows.
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Notation of the elements of the pension plan

T : Planning horizon or date of the end of the pension plan, with 0 < T < ∞.

F (t) : Value of fund assets at time t.

P (t) : Benefits promised to the participants at time t, which are related to the

salary at the moment of retirement.

C(t) : Contribution rate made by the sponsor at time t to the funding process.

AL (t) : Actuarial liability at time t, that is, total liabilities of the sponsor.

NC (t) : Normal cost at time t; if the fund assets match the actuarial liability,

and if there are no uncertain elements in the plan, the normal cost is

the value of the contributions allowing equality between asset funds and

obligations.

UAL(t) : Unfunded actuarial liability at time t, equal to AL (t)− F (t).

M(x)× 100% : Percentage of the actuarial value of the future benefits accumulated until

age x ∈ [a, d], where a is the common age of entrance in the fund and

d is the common age of retirement for all participants. Function M is a

differentiable distribution function on [a, d]. In particular, M(a) = 0 and

M(d) = 1.

δ(t) : Technical rate of actualization. It is the rate of valuation of the liabilities,

which can be specified by the regulatory authorities.

r(t) : Risk–free market interest rate.

Josa–Fombellida and Rincón–Zapatero (2004) considers that there exist disturbances

affecting the evolution of the benefits P and hence, the evolution of the normal cost NC

and the actuarial liability AL , but the rate of valuation δ of the plan is constant. In this

paper we add a more general assumption: we suppose the short rate of interest r is random.

This means that δ is also random. In order to simplify, we will suppose both processes

have the same source of uncertainty. As we have commented in the Introduction, three

sources of randomness appear in the problem: benefits, interest rate and stock. Thus,

to model this situation, we consider a probability space (Ω,F ,P), where F = {Ft}t≥0 is

a complete and right continuous filtration generated by the three–dimensional standard

Brownian motion, Ft = σ{(w(u), wB(u), wS(u)) : 0 ≤ u ≤ t} and P is a probability
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measure on Ω. We assume that r and δ satisfy stochastic differential equations depending

on wB only. The benefits randomness is due to another Brownian motion wP . Given that

the benefits P are conditioned by the increase in salary of the sponsoring employees, we

suppose the existence of correlation q1 ∈ [−1, 1] between the Brownian motions wP and

wB, and q2 ∈ [−1, 1] between Brownian motions wP and wS, which can be explained by

the effects of salary on inflation and the effects of the latter on the asset prices. This

means that wP (t) =
√

1− q2
1 − q2

2 w(t) + q1wB(t) + q2wS(t), for all 0 ≤ t ≤ T, supposing

q2
1 + q2

2 ≤ 1. When q2
1 + q2

2 < 1, the risk in the benefits outgo cannot be eliminated by

trading in the financial market.

We consider that there r, δ and P are diffusion processes given by the stochastic

differential equations

dr(t) = µr(t, r(t))dt + ηr(t, r(t))dwB(t),

dδ(t) = µδ(t, δ(t))dt + ηδ(t, δ(t))dwB(t),

dP (t) = µP (t, P (t))dt + ηP (t, P (t))dwP (t),

for all t ≥ 0, with r(0) = r0, δ(0) = δ0 and P (0) = P0 representing the initial values of

the interest rates and the benefits. However, to obtain a closed form solution we need a

more concrete specification of these processes.

We extend the definitions of the actuarial functions from the constant rate of valuation

case given in Bowers et al (1986), for deterministic benefits, and Josa–Fombellida and

Rincón–Zapatero (2004), for stochastic benefits. The stochastic actuarial liability and

the stochastic normal cost are defined as follows:

AL (t) = E
(∫ d

a

e−
∫ t+d−x

t δ(s)ds M(x)P (t + d− x) dx | Ft

)
,

NC (t) = E
(∫ d

a

e−
∫ t+d−x

t δ(s)ds M ′(x)P (t + d− x) dx | Ft

)
,

for every t ≥ 0, where E(·|Ft) denotes conditional expectation with respect to the filtration

associated to the standard Brownian motion {(w(t), wB(t), wS(t))}t≥0. Thus, to compute

the actuarial functions at time t, the manager makes use of the information available up

to that time, in terms of the conditional expectation. In this way, AL (t) is the total

expected value of the promised benefits accumulated according to M , discounted at the

rate δ(t), that we suppose is adapted to the filtration. Analogous comments can be given
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to the normal cost NC (t) with function M ′. Note that benefits of retired participants

are not a tradable asset and, in consequence, the inherent risk cannot be hedged and the

market is incomplete.

Since P is a diffusion process, it satisfies the Markov property (see Øksendal (2003)),

hence, conditional expectation with respect to the filtration equals conditional expectation

with respect to the current values of P at time t. It is plausible to think that, in the task

of computing the ideal values of the fund, the information given by the evolution of the

random source will be used. Using basic properties of the conditional expectation, the

previous definitions can be rewritten:

AL (t) =

∫ d

a

E
(
e−

∫ t+d−x
t δ(s)dsP (t + d− x) | Ft

)
M(x) dx,

NC (t) =

∫ d

a

E
(
e−

∫ t+d−x
t δ(s)dsP (t + d− x) | Ft

)
M ′(x) dx.

For analytical tractability, we will need a more concrete specification for P . A typical

way of modelling P in the certain case is to postulate exponential growth, see Bowers

et al (1986). The stochastic counterpart is to consider the benefits outgo as a geometric

Brownian motion. This is the content of the following hypothesis.

Assumption A. The benefits P satisfies

dP (t) = µP (t)dt + ηP (t)dwP (t), t ≥ 0,

where µ ∈ R and η ∈ R+. The initial condition P (0) = P0 is a random variable that

represents the initial liabilities.

Hence, we are supposing that the benefits increase or decrease on average at a constant

exponential rate. The behavior of the actuarial functions AL and NC is then given in the

following proposition. To this end, we define the following random functions:

ψAL(t) =

∫ d

a

e
∫ t+d−x

t (µ−δ(s))dsM(x) dx,

ψNC(t) =

∫ d

a

e
∫ t+d−x

t (µ−δ(s))dsM ′(x) dx,

ξAL(t) =

∫ d

a

e
∫ t+d−x

t (µ−δ(s))ds(µ− δ(t + d− x))M(x) dx− (µ− δ(t))ψAL(t).
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Proposition 2.1 Under Assumption A the actuarial functions satisfy AL = ψALP and

NC = ψNCP , and they are linked by the identity

(
µ +

ξAL(t)

ψAL(t)

)
AL (t) + NC (t)− P (t) = 0, (1)

for every t ≥ 0. Moreover, the actuarial liability satisfies

dAL (t) =

(
µ +

ξAL(t)

ψAL(t)

)
AL (t) dt + ηAL (t) dwP (t), AL (0) = AL 0 = ψAL(0)P0. (2)

Thus, AL is a geometric Brownian motion with random drift. Processes AL and P

differ in the drift term
(
ξAL(t)/ψAL(t)

)
AL . Notice that ψAL(t) can be interpreted as the

discounted value, at rate δ(s)−µ, of a security paying an amount of M(x) continuously in

the interval [t, t+d−a]. Since ξAL(t) is the derivative of ψAL(t), the quotient ξAL(t)/ψAL(t)

is the stochastic rate of growth of the above discounted value. Thus, the drift of dAL

given in (2) takes into account not only the mean growth of the liabilities, µ, but the

random fluctuations due to the stochastic δ.

We will now use a spread method of fund amortization, as mentioned in the Introduc-

tion. Thus, we will assume that the supplementary contribution rate (difference between

contribution rate and normal cost) is proportional to the unfunded actuarial liability, that

is

C(t) = NC (t) + k(AL(t)− F (t)), (3)

where k is a constant selected by the employer, representing the rate at which surplus or

deficit is amortized. Though actuarial practice takes 1/k equal to a continuous annuity

with amortization over m years, we consider more flexibility in the selection of k than

actuarial practice suggests, as in Haberman and Sung (1994) or Josa–Fombellida and

Rincón–Zapatero (2001, 2004).

3 The financial market

In this section we describe the underlying financial market in our model. The plan sponsor

manages the fund by means of a portfolio formed by a riskless R, a coupon zero bond B

and a stock S.

First we assume the following hypothesis.
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Assumption B. The instantaneous riskless interest rate r(t) satisfies the stochastic

differential equation:

dr(t) = α(β − r(t))dt + σdwB(t), r(0) = r0, (4)

where α, β and σ are strictly positive constants.

This process of type mean–reverting and known as the Orstein–Uhlenbeck process,

has been introduced in Vaşicek (1977) to explain interest rate behavior.

We assume the price process of the riskless asset R is given by

dR(t) = r(t)R(t)dt, R(0) = R0, (5)

where the evolution of r(t) is given by (4). This asset can be interpreted as a bank account

paying the instantaneous interest rate r(t) without any risk.

Given r we assume that there exists a market for zero coupon bonds with a fixed

maturity T1 > T . Following Vasicek (1977) (see also Battocchio and Menoncin (2004))

the price at instant t of a zero coupon bond with maturity T1, with t < T < T1, is given

by

B(t, T1) = ec(t,T1)−b(t,T1)r(t),

where

b(t, T1) =
1

α
(1− e−α(T1−t)),

c(t, T1) = −R(∞)(T1 − t) + b(t, T1)

(
R(∞)− σ2

2α2

)
+

σ2

4α3
(1− e−2α(T1−t)),

and R(∞) = β+σζα−σ2/(2α2) represents the return of a zero coupon bond with maturity

equal to infinite, and ζ is the constant market price of risk. Applying Itô’s formula,4 the

price of the bond process verifies the stochastic differential equation

dB(t, T1) = B(t, T1)
((

r(t) + σζb(t, T1)
)
dt− σb(t, T1) dwB(t)

)
, B(T1, T1) = 0. (6)

4Given an scalar Itô process dX(t) = µ(t, X(t)) dt + σ(t,X(t)) dW (t) with W a standard Brownian

motion, and a function f that is twice continuously differentiable on [0,∞) × R, Y (t) = f(t,X(t)) is

again an Itô process and (Itô’s formula)

dY (t) =
(

ft(t,X(t)) + fx(t,X(t))µ(t, X(t)) +
1
2
fxx(t,X(t))σ2(t, X(t))

)
dt+fx(t,X(t))σ(t, X(t)) dW (t).
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Finally, we consider a stock whose dynamic is given by the stochastic differential

equation

dS(t) = S(t)
(
µS(r(t))dt + σrdwB(t) + σSdwS(t)

)
, S(0) = s0, (7)

where σr, σS are positive constants defining the stock volatility, that is
√

σ2
r + σ2

S, and

the drift parameter µS(r) is the instantaneous mean having the form µS(r) = r + mS,

with mS a constant representing the expected excess return from investing in the stock,

as in Deelstra et al (2003), Battocchio and Menoncin (2004) or Menoncin (2005).

4 Risk neutral valuation of the liabilities

The accurate valuation of liabilities is of the utmost importance for the sponsor. We

address here the question of how to perform a fair valuation, keeping in mind that the

promised benefits to participants is not a tradeable asset. To circumvent this problem we

resort to a valuation based on a concept of equilibrium, see e.g. Constantinides (1978).

The risk–neutral valuation of liabilities offers a univocally defined value for the technical

rate of actualization, δ. This value is a modification of the short rate of interest, r, to take

into account the drift and diffusion components of the financial instrument and benefits

as well as the several correlations existing between them.

For age x, let Y x(t, P ) be the asset, valued at time t, consisting in a payment of P

monetary units at the age of retirement, d, to a participant with current age x. Process

P is a geometric Brownian motion according to Assumption A. As P is not tradeable, it

cannot be used to form a portfolio to hedge the risk. Thus we form a portfolio formed

by Y x, B and S, with two tradeable assets and three independent Brownian motions. To

obtain a risk neutral valuation it is assumed that the risk uncorrelated with the two freely

traded financial instruments, i.e. the stock and the bond, is not priced. Notice that the

actuarial liability of the fund is

AL (t) =

∫ d

a

Y x(t, P (t))M(x) dx.

Once Y x is found, and after matching this expression of AL with that given in Section

2, the value of δ is determined. To this end, consider the asset at any intermediate time,

Y x(t + τ, P ), for 0 ≤ τ ≤ d− x. Forming a portfolio Π = Y x + πBB + πSS with one unit

10



of asset Y x, πB units of B and πS units of S, and applying Itô’s formula–see footnote 4–,

we have

dΠ = dY x + πB dB + πS dS

=
(
Y x

p µP +
1

2
Y x

ppη
2P 2 + Y x

τ

)
dt + Y x

p ηP dwP

+ πB

(
(r + σζb)B dt− σbB dwB

)
+ πS

(
µS(r)S dt + σrS dwB + σSS dwS

)

=
(
Y x

p µP +
1

2
Y x

ppη
2P 2 + Y x

τ + πB(r + σζb)B + πSµS(r)S
)

dt

+ Y x
p η

√
1− q2

1 − q2
2P dw +

(
Y x

p ηPq1 − πBσbB + πSσrS
)
dwB +

(
Y x

p ηPq2 + πSσSS
)
dwS.

The first equality is due to the self–financing property of the strategies πB, πS. In the

following equalities we use Assumption A, (6) and (7).

Now we select πB and πS in order to eliminate the risks related with wB and wS, that

is πBB = (Y x
p ηPq1 + πSσrS)/(σb) and πSS = −Y x

p ηPq2/σS. We also disregard the risk

orthogonal to them, that is, the risk related with w is not priced. The total return of the

hedge portfolio must be equal to the rate of interest at time t + τ , r(t + τ). Thus, we

obtain

r(t + τ)(Y x + πBB + πSS) = Y x
τ + Y x

p µP +
1

2
Y x

ppη
2P 2 + πB(r + σζb)B + πSµS(r)S,

that, with the expressions for πB and πS found above and using µS(r) = r +mS, becomes

the pricing partial differential equation

r(t + τ)Y x = Y x
τ + ωPY x

p +
1

2
η2P 2Y x

pp (8)

with boundary conditions Y x(t + d− x, P ) = P , Y x(t + τ, 0) = 0, and where

ω = µ + ζηq1 − mS + ζσr

σS

ηq2.

The solution to (8) is Y x(t+τ, P ) = Pe−
∫ t+d−x

t+τ (r(s)−ω)ds hence, Y x(t, P ) = Pe−
∫ t+d−x

t (r(s)−ω)ds.

Consequently,

AL (t) =

∫ d

a

Y x(t, P (t))M(x) dx = P (t)

∫ d

a

e−
∫ t+d−x

t (r(s)−ω)dsM(x) dx.

On the other hand, by Proposition 2.1 the actuarial liability satisfies

AL (t) = P (t)ψAL(t) = P (t)

∫ d

a

e
∫ t+d−x

t (µ−δ(s))dsM(x) dx.

Comparing both values of AL , δ(t) must be chosen equal to r(t)+µ−ω in order to attain

a risk–neutral valuation.
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Thus we will assume throughout the paper, in a similar way to that found in Josa–

Fombellida and Rincón–Zapatero (2004, 2008b), that the technical interest rate coincides

with the rate of return of the bond modified to get rid of the sources of uncertainty, that

is:

Assumption C. The technical rate of actualization is chosen to be

δ(t) = r(t)− ζηq1 +
mS + ζσr

σS

ηq2.

Besides the risk–neutral valuation it provides, this selection of δ allows us to solve

explicitly the problem in the following section.

5 The optimal portfolio

In this section we analyze how the sponsor may select, in an optimal way, the proportion

of fund assets put into a savings account, or invested in a bond and in a risky stock.

Thus, the sponsor faces three elements of randomness: one due to the benefits, which is

inherent to the pension plan, and the other two are financial market variables, specifically

the stochastic interest rate and a risky stock.

The plan sponsor invests the fund in a portfolio formed by the savings account R,

given by (5), the zero–coupon bond B with maturity T1 > T , given by (6), and the stock

S whose dynamic is given by (7).

The amounts invested in the bond B and the stock S are denoted by λB and λS,

respectively. The remainder, F −λB −λS, goes to the savings account R. Borrowing and

shortselling is allowed. A negative value of λB (resp. λS) means that the sponsor sells

shares of B (resp. S) short, while, if λB + λS is greater than F , then he or she gets into

debt to purchase the stocks, borrowing money at the interest rate r.

We suppose {(λB(t), λS(t)) : t ≥ 0} is a Markovian control process adapted to filtration

{Ft}t≥0 and satisfying

E
∫ T

0

(λ2
B(t) + λ2

S(t))dt < ∞. (9)

Therefore, the fund’s dynamic evolution under the investment policy (λB, λS) is:

dF (t) = λB(t)
dB(t)

B(t)
+λS(t)

dS(t)

S(t)
+(F (t)− λB(t)− λS(t))

dR(t)

R(t)
+(C(t)−P (t)) dt. (10)

12



By substituting (5), (6) and (7) in (10), and taking into account Proposition 2.1 and

(3), we obtain:

dF (t) =

(
b(t)σζλB(t) + λS(t)(µS(r(t))− r(t)) + (r(t)− k)F (t)

+

(
k + µ +

ξAL(t)

ψAL(t)
− δ(t)

)
AL (t)

)
dt

+ (−b(t)σλB(t) + σrλS(t)) dwB(t) + σSλS(t) dwS(t),

(11)

with initial condition F (0) = F0 > 0. By (2), and the relation wp =
√

1− q2
1 − q2

2w +

q1wB + q2wS in terms of X = F − AL equation (11) is

dX(t) =
(
b(t)σζλB(t) + mSλS(t) + (r(t)− k)X(t) + (r(t)− δ(t))AL (t)

)
dt

− η
√

1− q2
1 − q2

2AL (t) dw(t)− (
b(t)σλB(t)− σrλS(t) + ηq1AL (t)

)
dwB(t)

+
(
σSλS(t)− ηq2AL (t)

)
dwS(t),

(12)

with the initial condition X(0) = X0.

Let us now turn to the preferences of the controller. We assume that he or she wishes

to minimize the terminal solvency risk. Thus, the objective functional to be minimized

over the class of admissible controls AX0,AL0,r0 , is given by

J((X0,AL 0, r0); (λB, λS)) = EX0,AL0,r0X
2(T ). (13)

Here, AX0,AL0,r0 is the set of measurable processes {(λB(t), λS(t))}t≥0 where (λB, λS)

satisfies (9) and where X, AL and r satisfy (12), (2) and (4), respectively. In the

above, EX0,AL0,r0 denotes conditional expectation with respect to the initial conditions

(X0,AL 0, r0).

In the following developments we will suppose only the underfunded case where X0 <

0, so we will refer to X as debt. The overfunded case, X0 > 0, leads to similar results.

The dynamic programming approach is used to solve the problem. To make the process

work, some properties of the value function need to be established. The value function is

defined as

V̂ (t,X,AL , r) = min
(λB ,λS)∈At,X,AL,r

{
J(t, (X,AL , r); (λB, λS)) : subject to (12), (2), (4)

}
.

(14)

13



The connection between value functions in optimal control theory (deterministic or stochas-

tic) and optimal feedback controls is accomplished by the HJB equation, see Fleming and

Soner (1993).

We have the following result.

Theorem 5.1 Suppose that Assumptions A, B and C hold. Then the optimal investments

are given by

λ∗B(t,X,AL ) =
−α

σ(1− e−α(T1−t))

( (
ζ − 2

σ

α

(
1− e−α(T−t)

)
+

mSσr + ζσ2
r

σ2
S

)
X

+

(
q1 − σr

σS

q2

)
ηAL

) (15)

λ∗S(t,X,AL ) = −mS + ζσr

σ2
S

X +
q2

σS

ηAL . (16)

Remark 5.1 From (15) in Theorem 5.1, the optimal investments do not depend on r

and the investment in the bond is of the form

λ∗B(t,X,AL ) =
1

1− e−α(T1−t)

(−αζ

σ
X + 2

(
1− e−α(T−t)

)
X

− α

σσ2
S

(mSσr + ζσ2
r)X − αη

σσS

(σSq1 − σrq2)AL

)
.

Leaving aside the common factor, it is the sum of four terms. The first term coincides

with the classical optimal one in Merton (1971) when the coefficients are deterministic.

The second term is proportional to X and depends on the time horizon planned, vanishing

at the terminal date T . The third term is also proportional to the debt, with a coefficient

that depends on several of the elements defining the prices of the bond and the stock.

The fourth term is quite different, as it involves random liability instead of debt. The

summand is now proportional to AL , with a coefficient that depends on the volatilities

of the processes AL , B and S and their respective correlations. Thus, this last term

cares about the random evolution of liabilities. In fact it vanishes when benefits are

deterministic or when the relation: q1σS = q2σr, between variances and covariances holds.

In both cases the optimal investment in the bond is proportional to the unfunded liability,

UAL = −X.
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The optimal investment in the stock given by (16) is simpler. It is the sum of two

terms, one proportional to debt X and the other proportional to the actuarial liability

AL . The latter is zero, that is, λ∗S is proportional to debt X, if either the benefits are

deterministic or when there is no correlation between stock and benefits.

Substituting (15) and (16) in (12) we obtain that the optimal debt satisfies the stochas-

tic differential equation:

dX(t) =

(
−ζ2 − (mS + ζσr)

2

σ2
S

+
2

α
(1− e−α(T−t))ζσ + r(t)− k

)
X(t) dt

− η
√

1− q2
1 − q2

2AL (t)dw(t) +

(
ζ − 2

α
(1− e−α(T−t))σ

)
X(t) dwB(t)

− mS + ζσr

σS

X(t) dwS(t),

(17)

with the initial condition X(0) = X0 and where AL is given by (2) and r by (4). In the

following section we will numerically integrate the linear system of SDEs formed by (2),

(4) and (17) to illustrate the results.

6 A numerical illustration

In this section we consider a numerical application in order to illustrate the dynamic

behavior of the debt and its expected value, and the optimal portfolio strategy. The

parameters defining the financial market have been taken from Boulier et al (2001). Thus,

the initial value for the interest rate r0 = 0.05 coincides with its equilibrium value β, the

maturity is T1 = 10 and the market price of risk is ζ = 0.15. These and the remainder

parameter values are shown in Table 1.

[INSERT TABLE 1 HERE]

We consider a contribution period before retirement of T = 6 years and that benefits

are random with µ = 0.04 and η = 0.08. The effort of amortization is k = 0.06. The

initial values for the actuarial liability and the fund wealth are taken to be AL 0 = 100

and F0 = 80 respectively, so X0 = −20, that is the fund is 20% underfunded. Initial

15



benefits are supposed to be 1% of AL 0, that is, P0 = 1. It is supposed that benefits are

accumulated uniformly, M(x) = (x− a)/(d− a).

The correlation between benefits and short rate is selected as q1 = 0.2 and the corre-

lation between benefits and stock as q2 = 0.2. Figure 1 shows the evolution of debt, fund

assets, actuarial liability and its expected values along the planning interval. First, we

have run a sample path of r in the interval [0, T +d−a], which is needed to obtain ψAL(t)

and ξAL(t) for t ∈ [0, T ]. To obtain r, we have used the Euler method, see e.g. Kloeden

and Platen (1999)5, and to obtain both ψAL(t) and ξAL(t), the composed trapezoidal rule

has been used to compute the integrals. With this data at hand, the Euler scheme has

been employed again to find the solution of the system (2), (4) and (17), of course with

the same sample path used for r, restricted to [0, T ]. This particular sample path drawn

in Figure 1 shows that the debt takes values in the range −43 to −12 and it attains the

value of −16.14 at instant t = 6, from an initial value of −20 at t = 0. Figure 1 also shows

the evolution of F and AL for the same simulation. Obviously, growth of expected fund

assets and expected liabilities over time is observed, since benefits present a positive mean

increase. This trend is seen in the next graph, where the expected values of debt, fund

and actuarial liability are shown. These curves have been computed with Monte Carlo

simulation, see e.g. Kloeden and Platen (1999). The expected value of X is increasing,

that is, the expected debt decreases. In our example, mean debt is reduced from −20 to

−7.18, that is, 64% of its value. This fact is better appreciated in the fourth graph, where

EF (t) gets closer to EAL (t) as t increases.

[INSERT FIGURE 1 HERE]

Figure 2 represents the proportions of the fund invested in the portfolio in order to

minimize the terminal solvency risk. The paths correspond to the same sample as in

Figure 1. These functions depend on the individual values of correlations q1 and q2, see

(15) and (16), whereas the processes in Figure 1 depend on the aggregate value q2
1 + q2

2,

see (17). Thus we consider four possible scenarios: (q1, q2) = (−0.2,−0.2), (−0.2, 0.2),

5It should be possible to apply other methods with higher order of convergence, as the Milstein scheme,

see e.g. Kloeden and Platen (1999). For our purposes it suffices the Euler scheme. The calculations have

been done with Matlab c©.
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(0.2,−0.2), (0.2, 0.2).

[INSERT FIGURE 2 HERE]

The four graphs in Figure 2 show a similar pattern. In the first years where debt is

large, the optimal strategy is to take more risk, borrowing money to invest in the bond and

in the stock. The higher mean returns they provide compared with the bank account is

the factor that may explain this behavior. In fact, the time when debt takes the maximum

value, that is, when X is minimum, is just when λ∗B +λ∗S also attains its maximum value.

At this point the strategy is quite aggressive indeed, requiring the borrowing of money

for the amount of approximately 278% of the fund’s wealth, or 2.78F to invest with risk

(first graph in Figure 2, with negative value of both correlations). In the final part of the

time interval the amount held in cash increases and the amount invested in the stock and

the bond diminishes, considerably reducing the risky composition of the portfolio. The

behavior described is similar in the four cases of correlations considered.

The relative weight of the stock and the bond in the portfolio is highly influenced

by the signs of correlations, at least in the sample shown. In the first two graphs where

q1 < 0, the bond participates in the portfolio in a larger proportion than the stock,

independently of the sign of q2. When q1 > 0 the situation is reversed, except the last

year. Thus, the feature observed in the model studied in Menoncin (2005), where the

bond’s share in the portfolio is larger than the share of the stock, is not maintained in

our model. This different behavior may be due, on the one hand, to the existence of

correlations and on the other hand, to the aim of the sponsor to minimize the expected

square of debt, instead of maximizing expected utility from surplus.

7 Conclusions

We have analyzed the management of a pension funding process of a DB pension plan

when the short interest rate is the Vasicek model. The problem of the minimization of

the terminal solvency risk has been solved analytically when the benefits process is a

geometric Brownian motion under a suitable selection of the technical interest rate. The

components of the optimal portfolio (investments in the bond, in the stock and in the
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cash) are the sum of two terms, one proportional to the unfunded actuarial liability, and

another to the actuarial liability, depending on parameters of the randomness of benefits

and its correlations with the interest rate and the stock.

We have done a numerical simulation showing some properties of the model. Though

there are three sources of randomness, the debt is reduced by means of risky investment

in the first years and with a more conservative investment policy in the last years of the

planned period.

Further research should include other dynamics for the interest rate processes, such as

the Cox–Ingersoll–Ross (CIR) model, the Ho–Lee model or affine models in general. As

for benefits, it would also be interesting to consider the possibility of jumps, such as in

Ngwira and Gerrard (2006), or some more general Lévy process.

A Appendix

Proof of Proposition 2.1. The process ∆t(u) = e−
∫ u

t δ(s)ds satisfies

d∆t(u) = −δ(u)∆t(u) du, ∆t(t) = 1,

hence, by Assumption A, ∆tP is a geometric Brownian motion with non-constant coeffi-

cients satisfying

d(∆tP )(u) = ∆t(u) dP (u) + d∆t(u)P (u) = (∆tP )(u)
(
(µ− δ(u)) du + η dwP (u)

)
.

This follows from the integration by parts formula since d∆t has no diffusion term, see

e.g. Karatzas and Shreve (1997). Then, the conditional expectation is

E (∆t(t + d− x)P (t + d− x) | Ft) = ∆t(t)P (t)e
∫ t+d−x

t (µ−δ(u))du,

thus, recalling the definition of AL and ψAL we get:

AL (t) = P (t)

∫ d

a

e
∫ t+d−x

t (µ−δ(u))du M(x) dx = P (t)ψAL(t),

because ∆t(t) = 1. Analogously, NC (t) = P (t)ψNC(t).
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Now, by means an integration by parts, and the definition of ξAL we have

ψNC(t) =

∫ d

a

e
∫ t+d−x

t (µ−δ(s))dsdM(x)

= e
∫ t+d−x

t (µ−δ(s))dsM(x)
∣∣∣
x=d

x=a
+

∫ d

a

e
∫ t+d−x

t (µ−δ(s))ds(µ− δ(t + d− x))M(x) dx

= 1 + ξAL(t) + (µ− δ(t))ψAL(t).

In consequence

NC (t) = ψNC(t)P (t)

= P (t) + ξAL(t)P (t) + (µ− δ(t))ψAL(t)P (t)

= P (t) +

(
µ− δ(t) +

ξAL(t)

ψAL(t)

)
AL (t),

which is (1). Finally we deduce the stochastic differential equation that the actuarial

liability satisfies. Notice that dψAL(t) = ξAL(t) dt. Thus, using Assumption A,

dAL (t) = d(ψALP )(t)

= ψAL(t)dP (t) + dψALP (t)

= ψAL(t)P (t)(µdt + ηdwP (t)) + ξAL(t)P (t)dt

=

(
µ +

ξAL(t)

ψAL(t)

)
AL (t) dt + ηAL (t) dwP (t),

with the initial condition AL (0) = AL 0 = ψAL(0)P0. ¤

Proof of Theorem 5.1. Consider the value function (14) of the control problem (2),

(4), (12), (13). This function so defined is non–negative and strictly convex. Under

some sufficient conditions, including smoothness, V̂ is a solution of the HJB equation, see

Fleming and Soner (1993):

Vt + min
λB ,λS

{
(bσζλB + mSλS + (r − k)X + (r − δ)AL )VX + (µ + ξAL/ψAL)ALVAL + α(β − r)Vr

+
1

2

(
(1− q2

1 − q2
2)η

2AL 2 + (bσλB − σrλS + ηq1AL )2 + (σSλS − ηq2AL )2
)
VXX

+
1

2
η2AL 2VAL,AL + (−η2AL 2 + ηq1(σrλS − bσλB)AL + ηq2σSλSAL )VX,AL

+
1

2
σ2Vrr + σηq1ALVr,AL + σ (−bσλB + σrλS − ηq1AL ) VrX

}
= 0,

(18)
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V (T,X,AL , r) = X2. (19)

If there exists a smooth solution V of this equation, strictly convex with respect to X,

then the optimal values of the investments are given by

λ̂B(VX , VXX , VX,AL, VrX) =
1

bσσ2
SVXX

(
− (

ζ(σ2
r + σ2

S) + mSσr

)
VX + σσ2

SVrX

+ ησS(σrq2 − σSq1)AL (VXX − VX,AL)
)
,

(20)

λ̂S(VX , VXX , VX,AL) =
1

σ2
SVXX

(
− (mS + ζσr)VX + ησSq2AL (VXX − VX,AL)

)
. (21)

After substitution of these values in (18) we obtain that V̂ satisfies

Vt+

(
(r − k)X + (r − δ)AL +

η

σS

(
ζ(q2σr + q1σS) + mSq2

)
AL

)
VX

+

(
µ +

ξAL

ψAL

)
ALVAL + α(β − r)Vr

+
1

2
(1− q2

1 − q2
2)η

2AL 2VXX +
1

2
η2AL 2VAL,AL +

1

2
σ2Vrr

−(1− q2
1 − q2

2)η
2AL 2VX,AL + ηq1σALVr,AL

− 1

2σ2
S

(
(mS + ζσr)

2 + ζ2σ2
S

) V 2
X

VXX

+ ζηq1AL
VXVX,AL

VXX

+ ζσ
VXVrX

VXX

−1

2
σ2 V 2

rX

VXX

− 1

2
η2(q2

1 + q2
2)AL 2

V 2
X,AL

VXX

− ηq1σAL
VrXVX,AL

VXX

= 0,

(22)

with the final condition (19). We will use a guessing method6 to solve (22), trying a

quadratic solution of the form

V̂ (t,X,AL , r) = fXX(t, r)X2 + fAL,AL(t, r)AL 2 + fX,AL(t, r)XAL , (23)

6Once a smooth solution of the PDE and the final condition is found, further conditions are needed

to check in order to be sure that actually it is the value function. They are existence and uniqueness

of a strong solution of the optimal SDEs (2), (4) and (17), and admissibility of the controls λ̂B , λ̂S in

the sense of (9). In our model this conditions are fulfilled, since the controls turn out to be linear in X.

Thus, the SDEs can be reduced to a single one in process X—linear, with stochastic coefficients—, once

the explicit expressions for r and AL are substituted into (17).
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and the following ordinary differential equations are obtained for the above coefficients:

(fXX)t +

(
−ζ2 − (mS + ζσr)

2

σ2
S

+ 2(r − k)

)
fXX + (2ζσ + α(β − r))(fXX)r

− σ2 (fXX)2
r

fXX

+
σ2

2
(fXX)rr = 0, fXX(T, r) = 1.

(24)

(fAL,AL)t − 1

4

(
ζ2 +

(mS + ζσr)
2

σ2
S

− 2ζηq1 + η2(q2
1 + q2

2)

)
f 2

X,AL

fXX

+ 2(µ + ξAL/ψAL)fAL,AL

+

(
r − δ − ζηq1 + ηq2

mS + ζσr

σS

− (1− (q2
1 + q2

2))η
2

)
fX,AL +

σ

2
(ζ − ηq1)

fX,AL(fX,AL)r

fXX

+ α(β − r)(fAL,AL)r + (1− q2
1 − q2

2)η
2fXX − σ2

4

(fX,AL)2
r

fXX

+ η2fAL,AL +
σ2

2
(fAL,AL)rr

+ 2ηq1σ(fAL,AL)r = 0, fAL,AL(T, r) = 0.

(fX,AL)t +

(
−ζ2 − (mS + ζσr)

2

σ2
S

+ ζηq1 + r − k + µ +
ξAL

ψAL

)
fX,AL +

σ2

2
(fX,AL)rr

+ 2

(
r − δ − ζηq1 + ηq2

mS + ζσr

σS

)
fXX +

(
ζσ + ηq1σ + α(β − r)

)
(fX,AL)r

+ (ζ − ηq1)σ
fX,AL(fXX)r

fXX

− σ2 (fX,AL)r(fXX)r

fXX

= 0, fX,AL(T, r) = 0.

(25)

In order to solve (24), we try fXX(t, r) = g(t)eγ(t)r, with the final conditions g(T ) = 1

and γ(T ) = 0, and after simplification we obtain

ġ+ (γ̇ − αγ + 2) rg +

(
−σ2

2
γ2 + (2ζσ + αβ)γ − 2k − ζ2 − (mS + ζσr)

2

σ2
S

)
g = 0.

Choosing γ, such that γ̇ − αγ + 2 = 0, function g is given by ġ + hg = 0, where

h(t) = −(σ2/2)γ2(t) + (2ζσ + αβ)γ(t)− 2k − ζ2 − (mS + ζσr)
2/σ2

S.

With the final conditions we obtain

γ(t) =
2

α
(1− e−α(T−t))

and g(t) = eH(T )−H(t) with H a primitive of h. Hence we obtain

fXX(t, r) = eH(T )−H(t)+(2/α)(1−e−α(T−t))r.
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Using Assumption C, it is easy to prove that function fX,AL, satisfying (25), is fX,AL = 0.

Inserting (23) into (20)–(21) we obtain that the optimal investments are given by

λ∗B(t,X,AL , r) =
1

b

(
−ζ(σ2

r + σ2
S) + mSσr

σσ2
S

+
(fXX)r

fXX

)
X

+
1

2bfXX

(
−ζ(σ2

r + σ2
S) + mSσr

σσ2
S

fX,AL + (fX,AL)r

)
AL

+
η(σrq2 − σSq1)

bσσS

(
1− fX,AL

2fXX

)
AL ,

λ∗S(t,X,AL , r) = − mS + σrζ

σ2
S

X +
ηq2

σS

AL ,

that is to say, (15) and (16), respectively, because fXX(t, r) = g(t)eγ(t)r and fX,AL = 0. ¤
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Table 1
Values of parameters

Interest rate

Mean reversion, α 0.2

Mean rate, β 0.05

Volatility, σ 0.02

Initial rate, r0 0.05

Maturity bond

Maturity, T1 10

Market price of risk, ζ 0.15

Stock

Risk premium, mS 0.06

Interest rate source risk, σr 0.06

Stock own volatility, σS 0.19
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Fig. 1. Debt, fund, actuarial liability and their expected values.
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