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Abstract 
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investment. If the investment is implemented in a large number of repetitive and relatively 
independent simple decisions, it is an acceptable method, but risk must be considered otherwise. 
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when the probability distributions of the returns are asymmetric (a common case in marketing). In 
this paper we consider a unifying treatment for optimal marketing resource allocation and 
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for the solution, and present a numerical algorithm for the computation of the optimal plan. We 
use this approach to design optimal advertisement investments in sales response management. 
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1 Introduction

Firms spend billions of dollars on management strategic and tactic investments,
ranging from new product development, to logistics and supply chain decisions,
sales force scheduling, market research, communication, sales promotion, and
other marketing expenditures. In uncertain markets firm stakeholders increas-
ingly want proof of their marketing investment payback. Traditionally, many
companies allocate resources using widespread rules-of-thumb. For example,
funding advertising or sales-forces with a “percentage-of-sales”, or a “bottom-
up” rule investing until some output-measurement level is achieved, or just
imitating the decisions taken by strong competitors or industry-benchmarks.
The caveat with these practices is that they are not based on controlled studies.
Just because the company is doing well, does not mean that the investment is
cause for it, and even so, it does not mean that the same strategy will work in
the future or for a different company.
The economic value of any investment is the return on investment (ROI); i.e.,

the net present value or sum of discounted future returns minus the discounted
value of the expenditure (including all variable costs and the amortization of
the proportional part of any fixed costs). If this value is computed at customer
level, it is known as the Customer Lifetime Value (CLV) for the firm. The
return on investment, at firm/specific customers level, should be maximized to
determine the resource allocation, and the optimal value must be positive or
the investment should not be undertaken. Under perfect certainty, a marketing
action will have only one possible return and marketing decisions can be easily
planned. However the assumption of perfect foresight is unrealistic and can give
misleading insights — the actual ROI and CLV fluctuates randomly.
In an uncertain context, the optimal marketing plan involves choosing be-

tween alternative projects assessing their random values. The marketing lit-
erature essentially focuses on expected returns maximization. Following the
seminal works by Little (1970, 1975), the developments in statistics & econo-
metric theory, OR, and computational capacity for storing and processing data,
have spurred the development of management science decision methods for re-
source allocation (see e.g., Little and Lodish 1969, Lodish 1971, Little 1975,
Blattberg and Hoch 1990, Wierenga et al. 1999, Wierenga 2008, Eisenstein and
Lodish 2002, Divakar et al. 2005, Natter et al. 2007, Tirenni et al. 2007).
The management science procedures essentially consist of two stages. In stage
one, the available information (e.g., market data, experiments, and manager-
ial expertise) is used to estimate the firm expected return conditionally on the
investment decision and other exogenous variables, and in the second one the
optimal decision is made by maximizing the expected economic outcome. If
the model includes exogenous variables, then what-if optimal decisions can be
considered for different scenarios. Nowadays, these tasks are increasingly im-
plemented by firms using computerized platforms known as Decision Support
Systems (DSS) integrating statistical data and managerial judgment to estimate
demands and then to apply optimization tools, see e.g. Divakar et al. (2005).
For a literature review see Little, (2004a, 2004b), Gupta and Steenburgh (2008),
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Shankar (2008) and Wierenga (2008).
Expected value is the most basic form of risk analysis. If the investment is

implemented in a large number of repetitive and relatively independent simple
decisions, it is an acceptable method. But for distinctive decisions it is not so
convenient, since maximizing expected value of investments managers do not
take into account the returns’ fluctuations and can, therefore, expose compa-
nies to considerable risks. Good investment is not just a matter of “pocketing
money” on a short-term horizon, and we observe that after some time a pro-
portion of companies fail with little control about the dimension of failure. The
recent world-wide financial crisis shows how badly an investor may be positioned
without notice due to the emphasis on average returns. In an uncertain market,
risk adverse executives must optimize the expected payback on their investments
whilst penalize the intrinsic risks. Additionally, if the model includes exogenous
variables, then the optimal resource allocation should anticipate the impact on
the plan of exogenous scenario changes.
The idea is to invest in projects that have the minimum level of risk with

the highest possible return. However, most of the customer relationships and
marketing valuation literature use the expected ROI and the balance between
return and risk is not considered. As Hogan et al. (2002) point out, an un-
resolved challenge for marketers is how to adjust for the differential of risk of
different customers. Even if risk is taken into account, the decision is based on
the variance (see, e.g., Holthausen and Assmus 1982, Zhou and Pham, 2004,
and Prakhya, Rajiv and Srinivasan, 2006), giving misleading results when the
returns have asymmetric probability distributions.
In the financial context, Markowitz (1952) lays the basis for valuing a portfo-

lio of investments in terms of expected returns and standard-deviations. How-
ever, financial and marketing investments usually have asymmetric probabil-
ity distributions. In this case, the variance is not an accurate measure of the
investor risk preferences if a downside risk is more weighted than an upside
risk. Markowitz (1991) acknowledges this shortcoming. Since returns are usu-
ally asymmetric, the use of mean-variance methods often provide misleading
results. This fact is nowadays widespread in finance theory, where a set of alter-
native valuation methods such as Value at Risk, and Conditional Value at Risk
are usually considered. This leads to the notions of coherent risk and deviation
measures developed by Artzner et al. (1997, 1999) and Rockafellar et al. (2006).
In this paper we present a procedure for marketing resource allocation, ac-

counting for associated risk. In particular we consider coherent risk measures,
and present a numerical procedure for the computation of this problem in re-
source allocation.
The rest of the paper is structured as follows. In Section 2 we review the

literature about optimal planning under uncertainty and coherent risk measures.
Section 3 presents the general method for resource allocation. In Section 4, we
present an application to illustrate the behavior of the method for sales response
management. In the concluding remarks section we summarize the findings.

2



2 Optimal resource investment strategies

In this section we consider the problem of optimal investment in a management
context, using coherent risk measures. Consider a probabilistic space (Ω,A, P ),
where ω belongs to a set Ω representing states of nature with probability P . The
space of feasible investment decisions is X ⊂ Rn. Often X is a compact set, for
example a budget set. We assume that the uncertain return outcome associated
to each decision x ∈ X is a random variable Yx = Y (x, ω) with finite variance,
and denote by Y = {Yx : x ∈ X}. Each random variable Yx ∈ Y induces a Borel
probability measure πx = P ◦ Y −1x on R, describing the uncertainty associated
to the decision x. We will denote the cumulative distribution by FYx (y) =
πx {(−∞, y]} . Usually, some preliminary statistical analysis allows the decision
maker to study the distribution πx. This setup can be applied to the majority of
the management decision problems, where company returns to decisions x ∈ X
is given by the random variables Yx.
The central investment decision making problem consists of choosing x ∈ X

so as to minimize risks in Yx. Risk is an ambiguous word. It has been associated
with statistical variances and volatility, but in the investment literature risk is
generally considered as an overall assessment of potential losses. Henceforth, we
will use the expression “deviation measure” when considering generalizations of
standard deviation designed to assess variability around the mean, whereas the
expression “risk measures” will be used in the assessment of losing scenarios
(Yx < 0). The manager must select the investment x∗ solving

min
x∈X

ρ (Yx) (1)

where ρ is a risk measure penalizing losses. Classical risk functions are the
minus expected return ρM (Yx) = E [−Yx] which is insensitive to risks, and even
for investments with E [−Yx] = 0 investors are exposed to large losses for tail-
outcomes −Yx > 0. Expectations are suitable for some long-range strategies
where stochastic ups and downs tend to safely average out, but not in a short-
range operation. Markowitz’s (1952) criteria

ρMD (Yx) = E [−Yx] + γ
p
V ar [Yx] (2)

where γ > 0 is a “safety” scaling, is a widespread method to introduce safety
margins using standard deviations. It enhances solutions x∗ with expected loss
E [−Yx∗ ] not just zero but reassuringly negative. This is due to the fact that
losses −Yx > 0 will occur only in states associated to the high end of the
distribution of −Yx lying more than γ

p
V ar [Yx] units above the mean loss.

Unfortunately, the mean-deviation risk penalizes investments with high re-
turns fluctuations around the mean. As the distribution πx is generally asym-
metric (a distributional asymmetry is found in the returns of almost any man-
agerial investment), the use of mean-variance methods often provides misleading
results. One of the difficulties is to construct a proper measure of risk ρ (Yx)
allowing a higher weight for downside risks than for upside ones.
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Over the past decades, the important limitations of the mean-variance and
expected utility approaches have led banks and financial regulators to develop
a variety of alternative risk measures for the purpose of better quantifying the
financial risks that they face. Most of these methods can be extended to the
management and marketing context. A popular risk measure is the Value at
Risk (VaR) with confidence level α ∈ (0, 1) , defined as a distributional percentile
of losses,

V aRα (Yx) = −F−1Yx
(α) = − inf {z : P (Yx ≤ z) > α} ,

which use was proposed by the Global Derivatives Study Group (GDSG, 1993).
This criterion has been already used to measure risk in marketing investments,
by Dickson and Giglierano (1986) who call it sinking-the-boat-risk. If Yx is nor-
mally distributed, the minimization of VaR is almost equivalent to the Markowitz
mean-deviation model, as V aRα (Yx) = E [−Yx] + Φ−1 (α)

p
V ar [Yx], where

Φ−1 (α) is the α-quantile of a standard normal distribution. But for asymmet-
ric distributions it has a better performance.
A major problem of the VaR is that it does not inform about the likely

size of the loss that we can have when that value is achieved, as a consequence
the Conditional Value-at-Risk (CVaR) risk measure with confidence level α has
been proposed in the finance literature, given by

CV aRα (Y ) = − 1
α

Z α

0

F−1Y (�) d� =
1

α

Z α

0

V aR� (Y ) d�.

If Y has an absolutely continuous probability distribution, then

CV aRα (Y ) = −E
£
Y |Y ≤ F−1Y (α)

¤
= −E [Y |Y ≤ −V aRα (Y )] .

and we can interpret the CV aR as the expected shortfall or expected loss for an
investment whose return does not exceed a predetermined quantile threshold.
This risk measure has been recognized and encouraged by the Basel Committee
on Banking Supervision of the Bank for International Settlement (BIS, 2006).
Once again, if Y is normally distributed, the minimization of CVaR is almost
equivalent to the Markowitz mean-deviation model1 .
There exists an alternative approach for measuring risk, based on von Neu-

mann and Morgernstern’s (1944) expected utility theory, which stems from
Bernoulli’s work (1738). Regular preferences on losses (satisfying the complete-
ness, transitiveness, continuity and independence axioms) can be expressed by

ρ (Y ) = −
Z

u (y) dFY (y) = −
Z 1

0

u
¡
F−1Y (y)

¢
dy,

1For normally distributed returns,

CV aRα (Y ) = −E [Yx] +
φ
¡
Φ−1 (α)

¢
α

p
V ar [Yx]

where φ is the density of a standard normal distribution.
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where u is a non-negative function of the returns. A concave function u was
considered to introduce risk-aversion. The expected utility theory is refuted in
experiments showing that this approach is not compatible with the decision-
makers behavior (e.g., Tversky and Kahneman, 1979). Wang (2000) proposed
an alternative procedure, applying weights ν (·) on FY as in

R
u (y) d (ν ◦ FY ) ,

and considering also u (y) = y, leading to a more realistic risk-measure

ρ (Y ) = −
Z

y d (ν ◦ FY ) (y) = −
Z 1

0

F−1Y (y) dν (y) .

This family can be found in the statistical literature as L-statistics. In risk-
analysis context, the weight measure ν is usually asymmetric around some an-
chor point. The VaR is a particular case with

ν (y) =

½
0 y ≤ α
1 y > α,

and the CVaR with

ν (y) =

½
y/α−1 y ≤ α
1 y > α.

A variety of measures ν can be considered alike.
Fueled by these developments, all the classical financial problems are be-

ing revisited by the researchers, and the new risk measures are being infused
into insurance and finance daily practice. But not all these risk measures are
equally popular, and some seem less useful for investment decision planning. To
clarify these issues, finance scholars have developed a conceptual theory of risk
measurement.

2.1 Coherent risk measures

To successfully incorporate the new risk measures into decision models, they
must be compatible with the axiomatic required for decision making problems.
Artzner et al. (1997, 1999) first present and justify a set of risk-measure ax-
ioms — the axioms of coherency — and this axiomatic has become one of the
most important recent achievements in the financial risk area, and they were
reformulated later by Rockafellar et al. (2006). Consider the class L2 of random

variables Y with E
h
|Y |2

i
<∞. Having Y ∈ L2 ensures that both the mean and

the standard deviation of Y are well defined and finite. According to Rockafellar
et al. (2006),

Definition 1 A function ρ defined over L2 is said to be a coherent measure (in
the basic sense) if it satisfies:
(R1) ρ (c) = −c for all c ∈ R.
(R2) Convexity: ρ ((1− λ)Y + λY 0) ≤ (1− λ) ρ (Y )+λρ (Y 0) for all Y, Y 0 ∈

L2 and λ ∈ (0, 1)
(R3) Monotonicity: ρ (Y ) ≤ ρ (Y 0) for all Y, Y 0 ∈ L2 s.t. Pr (Y ≥ Y 0) = 1
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(R4) Closedness: for all Yn, Y ∈ L2, if E
h
|Yn − Y |2

i
→ 0 and ρ (Yn) ≤ c,

then ρ (Y ) ≤ c
(R5) Positive homogeneity: ρ (λY ) = λρ (Y ) for all Y ∈ L2, λ > 0
ρ is a coherent measure in the extended sense if it satisfies (R1)− (R4) but

not necessarily (R5).

Note that R1 with R2 imply that ρ (Y + c) = ρ (Y ) − c for all Y ∈ L2,
c ∈ R, and R1 with R5 imply that ρ (Y + Y 0) ≤ ρ (Y ) + ρ (Y 0) for all Y, Y 0 ∈
L2, furthermore this subadditive property with R5 implies R2. The original
definition of coherency in Artzner et al. (1999) requires (R5), but some authors
have questioned it and that is why the “extended sense” concept is sometimes
used.
For example, for any weight γ ≥ 0 the following risk measures

Least absolute deviation ρ (Y ) = E [−Y ] + γ ·pE [|Y −E [Y ]|],
Semideviation ρ (Y ) = E [−Y ] + γ ·

r
E
h
(max {Y −E [Y ] , 0})2

i
,

CVaR with α ∈ (0, 1) ρ (Y ) = E [−Y ] + γ ·CV aRα (Y −E [Y ]) ,

are coherent risk measures in the basic sense. The mean-deviation measure
ρ (Y ) = E [−Y ]+γ ·pV ar [Y ] is not coherent since the monotonicity condition
is not satisfied. The value at risk ρ (Y ) = V aRαY is not coherent either (the
subadditivity is not satisfied, and convexity fails), and for that reason is less
commonly used than the CVaR. We will emphasize the CVaR, which satisfies

ρ (Y ) = E [−Y ] + γ · CV aRα (Y −E [Y ]) = (γ − 1)E [Y ] + γ · CV aRα (Y ) .

In particular, for γ = 1 we obtain ρ (Y ) = CV aRα (Y ) . The worst-case risk
measure ρ (Y ) = supω∈Ω Y (ω) is also coherent, but very conservative. Note
that when α % 1 the CV aRα (Y ) & E [Y ] (risk insensitive), and when α & 0
the CV aRα (Y )% supY (conservative assessment), and typically a significance
level of 0.05 is used.
A quite general way to define coherent risk measures is to correct the mean-

deviation measure by replacing the element γ
p
V ar [Yx] in (2) by a more general

measure of deviation with respect to the mean, D (Y ). Rockafellar et al. (2006)
introduce an axiomatic approach to deviation measures of financial outcomes
around its mean, inspired by the work of Artzner et al. (1999). A coherent risk
measure ρ in the basic sense is “risk averse” if it satisfies the lower bound (R6) :
ρ (Y ) > E [−Y ] for all nonconstant Y (aversity). Rockafellar et al. (2006) prove
a one-to-one match between deviation and risk averse measures, considering

ρ (Y ) = E [−Y ] +D (Y ) ,

D (Y ) = ρ (Y −E [Y ]) .

There is a useful characterization for coherent risk measures in the basic
sense. Any coherent risk measure ρ (Y ) defined in L2 can be written as

ρ (Y ) = max
q∈Q

E [−Y q]
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whereQ is a uniquely defined2 convex and weakly compact set of functions in L2.
The set Q can be characterized as Q =

©
q ∈ L2 : E [−Y q] ≤ ρ (Y ) ,∀Y ∈ L2

ª
. There are also extensions of this result for coherent measures in the ex-
tended case, see Rockafellar (2007, Theorem 4). The set Q has been com-
puted for the many coherent risk measures (see, e.g., Rockafellar et al. 2006).
For example, if ρ (Y ) = E [−Y ] then Q = {1} . If ρ (Y ) = supY , then Q =©
q ∈ L2 : q ≥ 0, E [q] = 1ª . For the CV aRα with α ∈ (0, 1) , the set Q is given
by

Q =
©
q ∈ L2 : 0 ≤ q ≤ α−1, E [q] = 1

ª
. (3)

Unfortunately, in most cases ρ (Y ) is not differentiable, and specific algorithms
are required to minimize this measure. In the next section we present a numer-
ical method for risk minimization based on this characterization.

3 A scenario planning approach for optimal-risk
managerial investment

In most practical stochastic decision problems, the probability distribution is
approximated by discrete distributions with a countable number of outcomes
called scenarios. Optimal investment planning based on coherent risk measures
can be easily handled with scenarios. In this section we present an algorithm
for coherent risk optimization based on “scenario planning.” In particular, we
consider that x is an investment in monetary units, X is the budget set, and
Y = {Yx : x ∈ X} are the possible financial return outcomes.
Minimizing ρ (Yx) in x ∈ X is not trivial, since the functional ρ (Yx) is not

differentiable. In this paper we present a scenario-based algorithm to minimize
ρ (Yx) in x ∈ X which can be used for any coherent risk measure. We assume
henceforth that

ρ (Yx) = E [−Yx] + γ ·CV aRα (Yx −E [Yx]) , (4)

being 0 < α < 1 the level of confidence, and γ ≥ 0. Furthermore, we will
assume that all the random variables in Yx ∈ Y take discrete values on the
scenario revenues set {y0, y1, y2, y3, ...}, with probability

πx (n) = Pr {Yx = yn}

for n = 0, 1, 2, 3, ... In many cases the scenario set is infinite, but sometimes a fi-
nite discretization {y0, y1, y2, , .., yK} suffices to obtain a good insight. Note that
firm managers tend to do a softer version of “scenario planning,” considering
one or at most two alternatives to a “most likely” base case. The consequence of
this simplification an extrapolative image of the future in which business risks

2Alternative notations can be found. Define Π = {π = qP : q ∈ Q} . Since R qdP = 1,
then Π is a family of probability distributions and ρ (Y ) = max {Eπ [−Y ] : π ∈ Π} can be
interpreted as a type of preferences under ambiguity of probabilities (see Ellsberg 1961, Gilboa
and Schmeidler 1989).

7



and opportunities are more or less similar to the present average. To avoid these
limitations, we will discuss a general algorithm that works for large scenario sets,
and can be applied even in some infinite scenario cases, as we illustrate in the
next subsections.
For all variables in Yx ∈ L2 with probability πx (n) , the risk of the return

Yx, is given by:

ρ (Yx) = (γ − 1)E [Yx ] + γ ·max
q∈Q

E [−Yx q]

= (γ − 1)E [Yx ]− γ · min
{qn}∈Q

∞X
n=0

yn qn πx (n) , (5)

Q =

(
{qn} ∈ L2 :

∞X
n=0

qnπx (n) = 1, 0 ≤ qn ≤ α−1
)

using that E [q] = 1. Since we consider sequences {qn} which are bounded,
we are actually optimizing in the space of bounded sequences L∞. The risk
measure can be addressed solving the linear minimization problem in q ∈ Q, as
the solution to the Lagrangian saddle point in L2 ∩ L∞, with

L
³n

qn, λ
L
n , λ

U
n

o
, λo, x

´
=

∞X
n=0

yn qn πx (n) + λo
Ã ∞X
n=0

qnπx (n)− 1
!

−
∞X
n=0

λUn
¡
α−1 − qn

¢− ∞X
n=0

λLnqn.

The Karush-Kuhn-Tucker (KKT) first order conditions (necessary and suffi-
cient) for a solution are:

yn πx (n) = λoπx (n) + λUn − λLn , n = 0, 1, 2, ...P∞
n=0 qnπx (n)− 1 = 0,

λLnqn = 0, n = 0, 1, 2, ...

λUn
¡
α−1 − qn

¢
= 0, n = 0, 1, 2, ...

λLn , λ
U
n ≤ 0, n = 0, 1, 2, ...

(6)

The optimal solution {q∗n (x)} ∈ Q depends on x ∈ X .
Theorem 2 Whenever k ≤ λo < k+1, with k ∈ N, the solution of problem (5)
is defined as:

q∗n (x) =
1

α
, for n = 0, 1, 2, ..., k − 1,

q∗k (x) =

Ã
1− 1

α

k−1X
n=0

πx (n)

!
1

πx (k)
,

q∗n (x) = 0, for n = k + 1, k + 2, ...
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Proof.
First, note that λL0 = 0.Assume that λ

L
0 6= 0, then q0 = 0, and

P∞
n=1 qnπx (n) =

1, implying that there are infinite solutions for problem (5).
Assume that λo = 0, then λU0 = 0, and q∗0 ≤ 1/α, q∗0 6= 0. Furthermore, for

all n = 1, 2, ..., λUn = yn πx (n) or λ
L
n = −yn πx (n) , since at least one of them is

not equal to zero. As, λUn ≤ 0, necessarily λUn = 0, λLn = −yn πx (n) and q∗n = 0
for all n = 1, 2, ... Then, q∗0 =

1
πx(0)

.

Assume that k ≤ λo < k + 1. If λLn = 0, for n = k + 1, k + 2, ..., then
λUn = (yn − λo) πx (n) ≤ 0, implying yn ≤ λo which is a contradiction, and
therefore, λLn 6= 0 for n = k + 1, k + 2, ... and q∗n = 0 for n = k + 1, k + 2, ...;
as a consequence λUn = 0 for n = k + 1, k + 2, ... Therefore, problem (5) can be
rewritten as:

min

(
kX

n=1

qn yn πx (n) :
kX

n=0

qn πx (n) = 1, 0 ≤ qn ≤ α−1
)
.

Since
kX

n=1

qn yn πx (n) = λo +
kX

n=1

qn
³
λUn − λLn

´
,

and λLn , λ
U
n ≤ 0, the optimal solution of problem (5) is λUn = 0, λLn 6= 0, for

all n = 0, 1, ..., k − 1, therefore, q∗n = 1/α , for all n = 0, 1, ..., k − 1, and the
constraint

P∞
n=0 qnπx (n)− 1 = 0, define the optimal solution of qk as

q∗k =
1

πx (k)

Ã
1− 1

α

k−1X
n=0

πx (n)

!
≤ 1

α
.

¤

Corollary 3 Under the conditions of Theorem 2, the risk function is given by

ρ (Yx) = (γ − 1)E [Yx ] + γ

α

k−1X
n=0

(yk − yn)πx (n)− γyk.

Proof.
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It follows directly from Theorem 2, using that

ρ (Yx) = (γ − 1)E [Yx ]− γ · min
{qn}∈Q

∞X
n=0

yn qn πx (n) =

= (γ − 1)E [Yx ]− γ

α

k−1X
n=0

ynπx (n)− γ

πx (k)

Ã
1− 1

α

k−1X
n=0

πx (n)

!
ykπx (k) =

= (γ − 1)E [Yx ] + γ

α

k−1X
n=0

(yk − yn)πx (n)− γyk.

¤

Corollary 4 k is the solution of problem

min

(
k :

kX
n=0

πx (n) ≥ α

)
.

Proof.
It follows directly from Theorem 2, using that:

1

πx (k)

Ã
1− 1

α

k−1X
n=0

πx (n)

!
≤ 1

α
, for all x;

i.e.,
kX

n=0

πx (n) ≥ α, for all x.

Then, we should consider the minimum k such that
Pk

n=0 πx (n) ≥ α. ¤
The previous results can be used to compute ρ (Yx) . However, it is not

immediate how to solve Problem (1) since changes in x often imply changes in
k. Since a grid evaluation procedure is particularly inefficient in high dimensions,
we propose a two-step algorithm to solve minx∈X ρ (Yx) using Theorem 2 and
Corollary 4. A summary of the proposed algorithm is:

Algorithm 5

Step 1. Select the final stop tolerance �TOL. Initialize variables x ∈
X.

Step 2. Find k = k (x) as the solution of problem

min

(
k :

kX
n=0

πx (n) ≥ α

)
. (7)
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Step 2.1. Compute q = q (k, x) as follows:

qn =
1

α
, for n = 0, 1, 2, ..., k − 1,

qk =
1

πx (k)

Ã
1− 1

α

k−1X
n=0

πx (n)

!
,

qn = 0, for n = k + 1, k + 2, ...

Step 2.2. Solve the problem

min
x∈X

(
(γ − 1)E [Yx ] + γ

α

k−1X
n=0

(yk − yn)πx (n)− γyk.

)
. (8)

Denote by x the solution of this problem.

Step 2.3. Update new point x← x. Repeat until

|x− x| ≤ �TOL.

Next let us show that the convergence of sequences (xj)
∞
j=1 ⊂ X and (qj)∞j=1 ⊂

Q, as constructed in Algorithm (5), implies that the limit of (xj)
∞
j=1 solves Prob-

lem (1). Actually we can prove a more general result.

Lemma 6 Lemma. Consider two topological spaces A and B and a continuous
function V : A×B → R∪{+∞}. Consider also two sequences (aj)∞j=1 ⊂ A and
(bj)

∞
j=1 ⊂ B such that

V (aj , bj) =Max {V (aj , b) ; b ∈ B} (9)

and
V (aj+1, bj) =Min {V (a, bj) ; b ∈ B} (10)

for every j ∈ N. Suppose that there exists
(a0, b0) = lim

j→∞
(aj , bj) .

Then,
i) (a0, b0) is a saddle point of V , i.e.,

V (a0, b) ≤ V (a0, b0) ≤ V (a, b0) (11)

holds for every a ∈ A and every b ∈ B.
ii) a0 solves the optimization problem½

Min (Sup {V (a, b) ; b ∈ B})
a ∈ A
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Proof.
i) If a ∈ A we have that (10) implies the inequality

V (a, b0) = lim
j→∞

V (a, bj) ≥ lim
j→∞

V (aj+1, bj) = V (a0, b0) .

Besides, if b ∈ B (9) leads to

V (a0, b) = lim
j→∞

V (aj , b) ≤ lim
j→∞

V (aj , bj) = V (a0, b0) .

ii) We must prove the expression

Sup {V (a0, b) ; b ∈ B} ≤ Sup {V (a, b) ; b ∈ B}
for every a ∈ A. The first inequality of (11) leads to

Sup {V (a0, b) ; b ∈ B} = V (a0, b0) .

On the other hand, it is obvious that

Sup {V (a, b) ; b ∈ B} ≥ V (a, b0)

for every a ∈ A, and bearing in mind the second inequality in (11) we have that

Sup {V (a, b) ; b ∈ B} ≥ V (a0, b0)

for every a ∈ A. ¤

4 Risk minimization in sales response manage-
ment

Successful marketing budget allocation requires an optimal use of sales response
models. To get firm money’s worth from any marketing campaign, managers
must control the risk of the expected loss. We will consider a firm planning the
marketing expenditure x, where the range of feasible decisions is the budget set
X = {x ∈ Rn : 0 ≤ x ≤M} and {Yx : x ∈ X} are the associated outcomes. Note
that the returns are given by Yx = mSx−x where m > 0 is the the unit margin
and Sx is the sales response associated with the decision x. In particular Sx is a
random variable taking discrete values {0, 1, 2, ...} , and following a probability
distribution πx. We consider that the firm considers the risk of loss as given by
(4).
To illustrate the proposed approach, we will assume that sales response

Sx follows: (case 1) Poisson distribution with parameter µx > 0, and (case
2) Negative Binomial distribution with parameter px = r/ (r + µx) , where r,
µx > 0. Furthermore, we assume that µx follows an ADBUG function

µ (x) = β0 + (β1 − β0)
xγ

(β2 + x)γ
∈ (β0, β1)

12



If x = 0, then the mean of sales is equal to the floor µ (x) = β0. When x
grows it tends to the maximum level µ (x) = β1 > β0. If γ > 1, the curve is
S-shaped, whereas for 0 < γ ≤ 1, we obtain a concave function, (see e.g., Little,
2004a). We have implemented the algorithm 5 usingMATLAB 7.6 on a Mobile
Workstation Intel R° Centrino R° ProTM with machine precision 10−16.

4.1 Case 1. The Poisson distribution

Assume that the sales response Sx follows a Poisson distribution,

πn (x) = π (Sx = n) =
µnx
n!
exp (−µx) , n = 0, 1, 2, ...

where the expected sales response µx follows the ADBUG model with β0 = 0.1,
β1 = 50, β2 = 2 and γ = 3. We consider a unit margin m = 100. The budget
constraint is X = {x ∈ R : 0 ≤ x ≤M} with M = 1000.
Using Theorem 2, whenever k ≤ λo ≤ k + 1, with k ∈ N, the solution of

problem is defined by:

q∗n (x) =
1

α
, for n = 0, 1, 2, ..., k − 1,

q∗k (x) =

Ã
eµx − 1

α

k−1X
n=0

µnx
n!

!
k!

µkx
,

q∗n (x) = 0, for n = k + 1, k + 2, ...

and using Corollary 4, k is the solution of problem

min

(
k : α ≤ e−µx

Ã
kX

n=1

µnx
n!

!)
.

Table 1 summarizes the optimal decision x∗ for the (4) risk measure with
different weights γ ≥ 0, and significance level α = 0.05.We compare the results
with the ones obtained from the mean-deviation criteria,

ρMD (Yx) = E [−Yx] + γ
p
V ar [Yx] = E [x−m Sx] + γ m

p
V ar [Sx]

= x−m µ (x) + γ m
p
µ (x).

For γ = 0 we obtain ρCV aR = ρMD = E [−Yx] the expected loss criteria.
Table 1: Optimal decisions for (4), and different mean-deviation measures

γ = 0 γ = 0.1 γ = 0.4 γ = 1

Risk measure ρCV aR = ρMD ρCV aR ρMD ρCV aR ρMD ρCV aR ρMD

x∗ 169.00 169.21 168.38 169.61 166.49 170.02 162.66
E [−Yx∗ ] -4657.95 -4657.95 -4657.94 -4657.94 -4657.91 -4657.94 -4657.71p
V ar [−Yx∗ ] 694.76 694.77 694.71 694.80 694.57 694.83 694.28
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When γ increases the CVaR tends to invest more than the mean-deviation
criteria. The mean and variance of the optimal investments shows little differ-
ence, with gaps increasing with the weight γ. Note that the loss −Yx∗ associated
to the optimal decision is generally an asymmetric random variable. The third
order moment is an indicator of tail-asymmetry of losses distribution from the
origin,

E
h
(−Yx)3

i
= E

h
(x−mSx)

3
i
= x3 − 3mx2E [Sx]−m3E

£
S3x
¤
+ 3m2xE

£
S2x
¤
,

which will be negative when higher profits (negative losses tail) are more likely
than losses (positive losses tail). The more negative this value is, the better the
financial outcomes of the investment tend to be.
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Figure 1. Third order moment for optimal losses using (4) and
mean-deviation, using different weights γ ≥ 0.

Figure 1 shows the E
h
(−Yx)3

i
for the optimal decisions based on (4) with

α = 0.05, and different mean-deviation measures when γ increases. The results
show a clear advantage for the CVaR. In all the cases, as the returns have
asymmetric probability distributions, the optimal decision based on the CVaR
risk measure has higher asymmetry coefficient,which suggests lower losses.

4.2 Case 2. The Negative Binomial

For a Poisson distribution, the mean is equal to the variance. Empirical re-
searchers often find this assumption unrealistic, as conditional variance of data
exceeds the conditional mean, which is usually referred to as “overdispersion”
(relative to the Poisson model). The standard model for count data model
with overdispersion is the negative binomial. Assume that the sales Sx have a
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negative Binomial distribution, so that

πn (x) = π (Sx = n) =
Γ (n+ r)

Γ (n+ 1)Γ (r)

³
1 +

µx
r

´−r µ µx
r + µx

¶n
, n = 0, 1, 2, ...

with r, µx > 0, and Γ (x) =
R∞
0 ux−1e−udu the Gamma function, with Γ (n+ 1) =

n! When r → ∞ the negative Binomial tends to the Poisson distribution with
parameter µx > 0. We assume that µx has an ADBUG model with β0 = 1,
β1 = 1000, β2 = 2 and γ = 3.We consider a unit margin m = 20, and a budget
constraint X = {x ∈ R : 0 ≤ x ≤M} with M = 1000.
Using Theorem 2, whenever k ≤ λo ≤ k + 1, with k ∈ N:

q∗n (x) =
1

α
, for n = 0, 1, 2, ..., k − 1,

q∗k (x) =

Ã
1− 1

α

Γ (k + 1)

Γ (k + r) (1− px)
k

k−1X
n=0

Γ (n+ r)

Γ (n+ 1)
(1− px)

n

!
,

q∗n (x) = 0, for n = k + 1, k + 2, ...

Using Corollary 4, k is the solution of problem

min

(
k :

prx
Γ (r)

kX
n=0

Γ (n+ r)

Γ (n+ 1)
(1− px)

n ≥ α

)
.

We consider two cases for the Binomial negative: r = 1 (we obtain rel-
atively symmetric distributions ), and r = 0.1 (where we obtain asymmetric
distributions).

Table 2: Optimal decisions for (4), and mean-deviation measures for r = 1
(relatively symmetric distributions)

γ = 0 γ = 0.1 γ = 0.4 γ = 1

Risk measure ρCV aR = ρMD ρCV aR ρMD ρCV aR ρMD ρCV aR ρMD

x∗ 342.22 342.16 324.45 342.03 264.17 341.90 0
E [−Yx∗ ] -19311.53 -19311.53 -19310.57 -19311.53 -19288.82 -19311.53 -19.99p
V ar [−Yx∗ ] 19663.75 19663.69 19645.02 19663.57 19562.99 19663.43 28.28

As we can observe, even with r = 1 where the Binomial negative is a rel-
atively symmetric distribution, when γ increases to one the Mean-Deviation
criteria stops the investment, whereas the CVaR varies more smoothly when
the penalty γ is increased.
Figure 2 shows a clear advantage of the CVaR in terms of third order moment

E
h
(−Yx∗)3

i
from the origin, as the negative loss tail is heavier for optimal
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investments based on the CVaR than for the optimal decisions using Mean-
Deviation risk measures.
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Figure 2. Third order moment for optimal losses using (4) and mean-deviation,
using different weights γ ≥ 0, for a Negative Binomial with r = 1.

We have computed the experiment for relatively more asymmetric distribu-
tions. Table 3 summarizes the findings.

Table 3: Optimal decisions for (4), and mean-deviation measures for r = 0.1
(asymmetric distributions)

γ = 0 γ = 0.1 γ = 0.4 γ = 1

Risk measure ρCV aR = ρMD ρCV aR ρMD ρCV aR ρMD ρCV aR ρMD

x∗ 342.22 326.37 282.29 289.55 0 242.79 0
E [−Yx∗ ] -19311.53 -19310.77 -19298.98 -19302.08 -19.99 -19271.47 -19.99p
V ar [−Yx∗ ] 62153.80 62101.28 61924.60 61957.37 66.33 61712.7 66.33

For r = 0.1 the results are even more advantageous for the CVaR than in the
relatively more symmetric case considered in Table 2. Figure 3 shows a clear
advantage of the CVaR in terms of third order moment E

h
(−Yx∗)3

i
from the

origin.
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Figure 3. Third order moment for optimal losses using (4) and mean-deviation,
using different weights γ ≥ 0, for a Negative Binomial with r = 0.1.

All the results suggest that rational investors with strong risk aversion (high
γ), who are keen on decisions with a high probability of upside returns should
use the CVaR instead of Markovitz’s Mean-Deviation risk measure for market-
ing budget allocation planning, even in cases where the loss distributions have
moderate level of symmetry.

5 Concluding remarks
Under perfect foresight, marketing budget allocation decisions should be based
on the net present value of the returns. But due to markets uncertainty, returns
are random variables that can be analyzed by analytical models, and market-
ing decisions are usually based on the expected value of this return. For some
years, business schools have formed managers keen on market orientation and
customers relationship management driven by expected returns, with little em-
phasis on risk assessment. Financial safeguards are central to avoid debacles as
the one currently shocking the world economy.
Managers and marketers should include the risk analysis in the decision mak-

ing process. The analysis of risk is not simple. First we discuss why Markowitz’s
mean-deviation approach is inappropriate when the returns have asymmetric
probability distributions, which is a common case in marketing investment man-
agement. The class of coherent risk measures, currently used in finance theory
and practice, provide an alternative approach suitable for marketing decision
making. The procedure is particularly appealing to firms operating in turbu-
lent markets preventing the consequences of averse outcomes.
In this paper we consider a unifying treatment for optimal marketing re-

source allocation and risk assessment in marketing investments, with particular
emphasis on sales response management. Though we propose the use of coher-
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ent risk measures for marketing planning and risk valuation under uncertainty,
computing the optimal decision is not simple. Finance theory does not have
developed computational methods for solving these problems in general. In this
paper we present a set of first order conditions for the solution, and provide an
algorithm for the numerical computation of the optimal decision. We show how
this method can be applied for planning the marketing expenditure with the
ADBUG sales response model. The results are useful for both marketing and
finance managers, and can be used in a variety of marketing strategic decisions.
We have discussed the application of these techniques for budget allocation,

emphasizing sales response to marketing expenditures. But this approach has
a variety of applications, for example firm valuation.
Valuations based on expected returns overestimate the actual brand value

compared to the coherent risk measure. For example, brand value can be com-
puted as

−ρ
Ã

nX
i=1

Yi

!
= E

"
nX
i=1

Yi

#
−D

Ã
nX
i=1

Yi

!
where {Yi} are net returns from different customers, and n the number of cus-
tomers. Firms with high risk levels could have significantly lower brand values
than suggested by estimations derived from the expected ROI-CLV, as the rep-
resentativeness of the mean can be overstated. Coherence is essential as it
guaranties that ρ (

Pn
i=1 Yi) ≤

Pn
i=1 ρ (Yi) introducing the classical risk mea-

sure requirement that risk is reduced by increasing our assets, i.e. our customer
base.
Finally note that the algorithm covers dynamic problems by using a sce-

nario tree if a "here-and-now" decision is addressed. These ideas can be ex-
tended to the case of adaptive decision problems where sequential investments
are decided with increasing information. In particular, we can consider that
x = (x1, ..., xT ) ∈ X is a sequence of investments in monetary units and in-

troduce the notation xts = (xs, ..., xt) for s ≤ t, and
n
Yx1 , Yx21 , ..., YxT1

o
is

the cash-flow of financial returns associated with x (in present values at time
zero). If we assume that at time t we have observed the previous outcomes
Yx1 , Yx21 , ..., Yxt−11

, then we can update the probability function of the invest-

ment value Yx =
PT

t=1 Yxt−11
. In particular, the multistage investment considers

at each period t the previous decisions xt−11 given, and solves

min
xTt ∈Xt(xt−11 )

ρt

Ã
TX
τ=t

Yxτ−11

!
where Xt

¡
xt−11

¢
=
©
xTt :

¡
xt−11 , xTt

¢ ∈ X :ª , and the conditional CVaR risk mea-
sure ρt is defined as

ρt (Y ) = (γ − 1)Et [Y ] + γ ·max
q∈Qt

Et [−Y q]

where Qt =
©
q ∈ L2 : 0 ≤ q ≤ α−1, Et [q] = 1

ª
, and Et [·] denotes the condi-

tional expectation. A discrete scenario tree can be used to adapt the proposed

18



algorithm to this context. Under Markovian assumptions, the conditional ex-
pectation can be specified using transition probabilities. Note also that we can
express the present value of the project as:

V0 = min
xTt ∈X

ρ1

Ã
Yx1 + min

xT2 ∈Xt(x1)
ρ2

Ã
Yx21 + ....+ min

xTT−2∈Xt(xT−21 )
ρT

Ã
YxT−11

+ min
xT∈Xt(xT−11 )

ρT

³
YxT1

´!!!
.

The project value can be also reconsidered as a variation of the Bellman Dynamic
Programing equation, see Ruszyński and Shapiro (2006). We leave the details
to future research.
Summarizing, budget allocation decisions must balance between the ex-

pected profitability and the degree of risk to undertake. Measuring risk is
the first dilemma of a company manager. The CVaR and some other coher-
ent risk measures have the ability to differentiate between different sides of risk
asymmetries. However, they are not always easy to handle due to the lack
of differentiability. By choosing the appropriate risk framework, the presented
algorithm lead to profitable marketing decision plans with mitigated downside
risk.
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