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Abstract-In this paper the use of neural networks for fitting complex kinetic data is discussed. To assess the 
validity of the approach two different neural network architectures are compared with the traditional kinetic 
identification methods for two cases: the homogeneous esterification reaction between propionic anhydride and 
2-butanol. catalysed by sulphuric acid. and tbe heterogeneous Iiquid-liquid toluene mononitration by mixed acid. 
A large set of experimental data obtained by adiabatic and heat flux calorirnetry and by gas chromatography is 
used for the training of the neural networks. The results indicate tbat tbe neural network approach can be used 
to deal with tbe fitting of complex kinetic data to obtain an approximate reaction rale function in a Iimited 
amount of time. which can be used for design improvement or optimisation when. owing to small production 
levels or time constraints. it is not possible to develop a detailed kinetic anaIysis. 
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INTRODUCTION 

In the last years batch and semibatch operations have 
becorne more popular owing to their versatility which 
aIlows the production of special chemicals - with very 
good yields - in small amounts (when compared with 
those of continuous processes), and permits a rapid 
change from one process to another with minor mod­

ifications. 
Despite the fact that significant economical benefits 

could be derived from optimisation of such processes, 

the complex reaction network that characterises thern 
and the shorter market window make, in many instances. 
the development of a detailed understanding of the 
reaction kinetics impractical. which is the first pre­
requisite for the optimisation procedure. 

lt is therefore desirable to develop approximate 
kinetic models which can be used to maximise the yield 
and selectivity of the desired producto and improve the 
safety of its production. 

The kinetic analysis of complex systems of chemical 
reactions is a difficult problem. The major complication 
results from the complex stoichiometry and thermody­
namics and an enormous number of possible kinetic 
models -combinations of reaction schemes and kinetic 
equations for each reaction- from which to choose. 
Furthermore, heterogeneous reactions involve mass 
transfer and hence the overall conversion rate is also 

inftuenced by factors such as stirred speed. interfacial 
area, diffusion coefficients, etc. 

Various routes have been developed to perform this 
kinetic analysis. Fundamentally, these are: 

(a) Traditional approach: it consists in developing a 
detailed kinetic model based on molecular kinetics and 
studies only sorne of the reactions in the scheme, or at 
least, sorne which reduce the complexity of the problem 
to a set of simple reactions. This alternative is not always 
possible since even for simple reactions the complete 
scheme is still not understood. 

(b) Tendency modelling: to overcome the limitations 
of the white box modelling, a considerable interest has 
appeared, during the last years, in the development of 
alternative kinetic identification techniques. i.e. the so 
caIled tendency modelling (Filippi el al., 1986), which is 
based on a phenomenological approach and on the 
estimation of a small nurnber of kinetic parameters by 
matching the model predictions to experimental data of 
previous batches. This is called grey model approach 
because it does not require a detailed kinetic description 
(white model) but takes into account general knowledge 
about the process such as mass and energy balances. 
This option reduces the kinetic scheme to a very 
simplified one, often lumping chemical species with 
simple kinetics, normally power functions, in the stages 
of the scheme considered. 

The methods applied for calculating the parameters in 
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1452 1. M. GALV ÁN et al. 

such a system are normally based upon regression, and 
have many variations, see Hirnmelblau et al. (1967) for 

a review. The most utilised methods have been the 
differential method (Kennard and Melsen. 1985) and the 

integral method (Himmelblau el al.. 1967). 
(c) Approximation methods: the development of 

mathematical analysis has led to the discovery and study 

of important e1asses of approximating functions. which. 

under certain conditions. have proved to be the natural 

means of approximating other. more or les s arbitrary 

functions. These approximation functions inelude poly­

nomials. trigonometric series. orthogonal functions. 

splines. etc. In this case. the adjusting parameters are 

basically viewed as vehieles for fitting the data ando in 

principIe. do not reftect physical considerations about 

the reacting system. For these reasons. this approach is 

called black mode!. 

In this papero the use of neural network techniques as 

an altemative - black model- approach to solving the 

problem of fitting experimental data to obtain an 

approximate reaction rate function is illustrated and the 

results are compared with sorne existing methods. In this 

contexto the multilayer neural network (MNN) and the 

radial basis function network (RBFN) can be considered 

as merely two additional (parameterized) families of 

functions which have evolved in recent years. The 

Stone-Weierstrass theorem provides a sound basis to 

determine whether a particular e1ass of neural networks 

can approximate arbitrary continuous functions. Based 
on this theorem. different authors have pro ved that the 
MNNs. with as few as a hidden layer. are capable of 
approximating any continuous functions (Cybenko. 

1989; Funahashi. 1989; Gallant and White. 1988; Homik 
et al .• 1989). In the case of RBFNs the studies are quite 
straightforward and there are sorne results about its 
universal approximative proprieties (Poggio and Girosi. 

1990). 

ARTIFICIAL NEURAL NETWORKS 

Artificial neural networks (NN) are parallel intercon­

nected networks of simple computational elements that 

are intended to interact with the objects of the real world 
in a similar way to the biological nervous systems 

(Kohonen. 1988). Formally. an NN is an oriented graph 

in which the nodes represent a set of processing units. 
called neurones. and the arches (or connections) repre­

sent the information ftow channels. Each connection 

between two neurones has an associated value called 

weight (wij) which specifies the strength of the connec­

tion from unit j to unit i. Positive and negative values 

determine excitatory and inhibitory connections. 

respectively. 
The choice of a specific e1ass of networks for the 

approximation of a non linear map depends on a variety 

of factors dictated by the context and is related to the 
accuracy desired and the prior information available 
conceming the input-output pairs (pattems). 

In this work we shalI distinguish two e1asses of 

networks which will be described briefty: (1) Multilayer 

Neural Networks (MNN). and (2) Radial Basis Net­
works (RBFN). 

Mullilayer neural networks 

The MNN have their nodes divided into disjoint 

subsets. called layers. Each node forms a weighted sum 

of the inputs from previous layers to which it is 

connected. adds a threshold value and produces its 

activation or output value. 

(1) 

where xj (j= I •...• n).wij (j= I •...• n) and (Ji are the inputs. 

weights and threshold associated to the unit i. respec­

tively. f is called activation function and the most often 

used are the smooth sigmoidal functions: 

I-e' e' 
j(x)= -- or j(x)= --

l+e' I+e' 
(2) 

This output value serves as input to the next layer to 

which the node is connected. and the process is repeated 

until output values are obtained in the output layer. 

The number of layers in the network. and the number 
of nodes in each layer are important parameters of the 
network. Once these have been selected. by trial and 
error in each specific contexto only the adjustable 

weights have to be determined to specify the network 
completely. At this point the so-called learning rule 
comes into operation. which determines the modification 
of the weights and the threshold values. Most learning 
rules are formulated with a specific goal. e.g. move the 
weight vector to a position which mini mises or maxi­

mises sorne particular cost or performance function. The 
weights in the MNN are generally adjusted to mini mise 

the error between the output (y) of the network and sorne 

desired output (o). 

1 Np 

Error= - ~ (Yi - oy 
Np i=1 

(3) 

where Np is the number of pattem presented to the NN. 

Owing to the presence of non linear functions in the 

network. it al so follows that the output of the network 

depends non linearly on the weights. Many useful 

optimisation techniques existo but the most commonly 
used method makes use of gradient information. The 
algorithm used for gradient calculation is the e1assic 

backpropagation algorithm (Rumelhart el al.. 1986). 
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Radial basis networks 

An alternative to MNN are the radial basis networks 

(Moody and Darken, 1989). The RBFN is a three layer 
network in which the first layer only transmits the 
external input to the hidden layer with no connections. 
The hidden layer performs a fixed nonlinear transforma­
tion with no adjustable parameters. The output layer 
combines Iinearly the outputs of the nodes in the hidden 
I ayer. The equation that describes the output of the 
RBFN is the following: 

N 

y= ~ W¡,eP¡{u) + () (4) 
;=1 

where W¡ (i = I, ... ,N) are the weights in the network, u is 
the input vector to the network, ePi are functions that 
have an appreciable value on1y in the neighbourhood of 
a vector CI which is called the center of ePi and () is the 
threshold associated to the output node. 

These types of function are called radial basis 
functions and the most general cIass contains the 
Gaussian functions that have the form: 

n (u-el 
eP¡(u)=exp( - ~ _J _'J_) 

j=1 207 (5) 

where e¡=(c¡I'"'' e¡n) and (7'¡ are the center and width of 
the Gaussians. respectively. 

Designing an RBFN in vol ves determination of the 

parameters W¡. e¡ and (7'¡. This problem may be sol ved by 

breaking it into two phases. The first phase determines 

the centers e¡ and the standard deviation O'; in an 
unsupervised manner, while the second phase performs 

the optimisation via supervised training to determine W¡. 

Phase 1: During this phase the centers and the widths 
of the n radial basis functions are computed. The K­

means cIustering (Duda and Hart, 1973) or Kohonen 
algorithm (Kohonen, 1982Kohonen. 1984) can be used 
to find the n cIusters in the input training examples. The 
centers of the cIusters determine values of the e¡ and the 
width (7'¡ is calculated as the distance from the center e, to 
its two nearest neighbours. 

Phase 2: The weights W¡ in the RBFN are found from 
minimisation of the error function, equation 3. Since 
these parameters are related Iinearly to the output and 
hence to the output error, they can be adjusted using the 
least squares method. 

The number of the radial basis units or hidden units 
needed to approximate a given function is a critical 
factor. Generally this number tends to increase exponen­
tially with the dimension of the input space. so that the 
approach becomes practically unfeasible when the 
dimension of the input space is high. In such cases it is 
possible to use a different learning performance in order 

to reduce the number of the radial basis units required. 
We will call it supervised method (Moody and Darken, 

1989). The difference of this model with respect to the 

RBFN model is in the leaming algorithm. A number of 

Gaussians units. whose centers are initialised using the 

Kohonen algorithm. is fixed. Afterwards. the centers and 
widths are also adapted as the weights. to minimise the 
error function (equation 3) in a supervised manner. Since 
the output is a non linear function of those parameters the 
rule used to adapt them ís based on the gradient method. 
The derivatíves of the output with respect to the 

adjustable parameters W¡, e¡ and (7', can be easily 
calculated. 

CASE STVDIES: ESTERIFICATION AND NITRATION 

REACTIONS 

To assess the validity of the NN approach for kinetic 
identification, two different reactions have been chosen: 
acid catalysed esterification reaction between propionic 
anhydride and 2-butanol (homogeneous) and toluene 
nitration by mixed acid (heterogeneous). 

Esterifieation reaetion 

The system 2-butanol/propionic anhydride (acid) 

which has been studied by Snee el al. (1992) in safety 

assessment was selected as a specific case. This 
homogeneous reaction has sorne characteristics that 

make it very interesting for testing studies: moderately 

exothermic with no danger of decomposition reactions; 

reaction rate variable as a function of catalyst (strong 

acid, i.e. sulphuric acid); the reaction exhibits a second­

order kinetics when no strong acid is present and a kind 
of autocatalytic behaviour when sulphuric acid is 

introduced. 
Experimental parto An extensive experimental pro­

gramme was carried out using adiabatic and heat f10w 
calorimetry supported by chemical analysis. The adia­
batic experiments were performed using the PHI-TEC 
calorimeter (Singh, 1989), while the isothermal and 
isoperibolic - constant jacket temperature - experi­
ments were made using an RC I reaction calorimeter 
(Riesen and Grob, 1985) and a small jacketed vessel 
(approximately 200 mI). Gas Chromatography (GC) was 
used for the concentration analysis of different species. 

The adiabatic experiments are summarised in Table l. 
A series of measurements in the PHI-TEC were made 
using a different molar ratio between propionic anhy­
dride (PAn), 2-butanol (2-B) and propionic acid (PAc) 
catalysed by various concentrations of sulphuric acid 
(Sul) with a total sample mas s of approximately 60 g. 
Reagents were added with the sample container posi­
tioned inside the calorimeter and adiabatic conditions 
were established from ambient temperature without 
using the 'heat-wait-search' mode of operation. 

The isothermal variation of the rate of heat generation 
with time was measured using the Mettler RC I calorim-

3



1454 1. M. GALvÁN el al. 

Ex. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
lO 
11 
12 

Table l. Adiabatic experiments: initial conditions 

npAh:n2_B:npAc xsu)·IIY 

1:1:2 0.0 
1:1:0 0.0 
1:2:0 0.0 
1:1:0 2.2 
1:1:0 2.9 
1:1:0 3.6 
1:1:0 4.3 
1:1:0 5.9 
1:1:2 1.5 
1:2:0 1.9 
1:3:0 1.5 
1:2:1 1.4 

eter. Table 2 summarises the isothermal experiments. 
During these experiments, the concentration of 2-buta­

nol and 2-butyl propionate was measured by OC. The 
alcohol was added to the reactor and time was allowed 
for the control system to achieve the temperature 
selected for isothermal measurement. Propionic anhy­
dride (or propionic acid. or a mixture) at ambient 
temperature was then added quickly to the reactor and 
the reaction was allowed to proceed until completion. 

The isoperibolic experiments were carried out in the 
same way as the isothermal tests in the bench-scale 
reactor by configuring it to operate at constant jacket 
temperature. Experiments were performed at a series of 
fixed jacket temperatures with an equimolar mixture of 
propionic anhydride/2-butanol catalysed by the addition 
of the same amount of sulphuric acid (see Table 3). 

The data from adiabatic (temperature versus time) and 
isothermal (concentrations versus time) experiments 
were used to fit the kinetic expressions whereas the 

Table 2. Isothermal experiments: initial conditions 

Ex. T,p (K) npAh: n 2.B:npAc XSu)' 1 IY 

13 343.2 0:1:1 0.0 
14 343.2 0:1:1 3.0 
15 343.2 0:1:1 6.0 
16 343.2 1:1:0 0.0 
17 331.6 1:1:0 0.0 
18 303.2 1:1:0 3.0 
19 303.2 1: 1:1 2.0 
20 303.2 1:1:2 1.5 
21 303.2 2:2:1 2.4 

Table 3. Experimental isoperibolic test matrlx: initial condi-
tions 

Ex. T,(K) npAh:n2_B:npAc xsu)·lOl 

22 293.9 1:1:0 3.0 
23 295.7 1:1:0 3.0 
24 298.2 1:1:0 3.0 
25 300.7 1:1:0 3.0 
26 303.2 1:1:0 3.0 
27 308.2 1:1:0 3.0 

isoperibolic data were used to test the accuracy of such 
kinetics through the comparison of experimental versus 
the theoretical by simulation. 

Identification 01 kinetic scheme. The esterification 
mechanism involving acidic catalysis has been studied in 
detail and a number of general possibilities have been 
recognised (March, 1992). There are four possible 
mechanisms depending on the following criteria: unim­
olecular or bimolecular. and acyl or alkyl cleavage. AH 

four of these are SNI. SN2 or tetrahedral mechanisms. 
This applies to the reaction between 2-butanol and 

propionic anhydride as well as propionic acid. Moreo­
ver. in this relatively simple reaction system another 
group of reactions have been recognised: 

- The reaction between the sulphuric acid and the 
2-butanol to form the mono-alkyl sulphuric acid which 
acts as a different catalyst of the reaction (Dhanuka et 

al., 1977) and can favour the IOnisation of the alcohol to 
carbonium ando in consequence. the alkyl cleavage 
(Deno and Newman, 195\). 

- The reaction between the sulphuric acid and the 
propionic anhydride to form the propyl sulphate which 
acts as a different catalyst of the reaction (Yvernault, 
1955). 

In addition, different authors (Haldar and Rao, 
1992a, b) have shown the inftuence of the Hammett's 
acidity function on the reaction rate which depend on the 
sulphuric and propionic acid concentrations, and tem­
perature. 

For all these reasons, only empirical kinetic models 
can be found in literature, in which the reaction rate 
constant depends on the sulphuric acid concentration, 
the initial ratio between reagent concentrations, the 
organic acid concentration, etc. (Sreeramulu and Rao, 
1973; Troupe and Kobe, 1950; amongst others). 

The reaction rate without sulphuric acid 

The analysis of experiments without sulphuric acid 
(Ex. 1-3, 16 and 17) showed that in this particular case 
the reaction rate followed a second-order expression (see 

Fig. 1 (a», 

(6) 

where ko=5.36178·107.exp( - 80.47864/RT m) I/mol·s. 
Furthermore, the propionic acid seemed not to inftuence 

the reaction mechanism. 
The reaction rate between propionic acid and 2-butanol 

In a separate set of experiments (Ex. 13-15), it was 
demonstrated that the reaction rate between the pro­
pionic acid and 2-butanol was negligible in presence of 
propionic anhydride (the constant rate is approximately 
200 slower), and the reaction could be fitted using an 
elementary reversible second-order kinetics, 

r=k,'C2 - B,CPA, - L ,·CBP"CW (7) 

in which the sulphuric acid inftuence could be correlated 
by the following expressions (Dhanuka et al., 1977), 
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(8) 

(9) 

where a was the specific reaction rate constant for non­

catalytic reaction and 13 was a constant 
(al = 1.4813.10-7, a_ 1 =3.8072.10-8, f31 =3.746· 10-\ 

13_1=1.4863.10- 3 atTm =343 K). 

second order reaction and the latter producing a first 

order reaction expression. Furthermore, the transforma­

tion of the catalysts was correlated with the acidity 

function (Haldar and Rao, 1992a) and the concentration 
of 2-butanol. This empirieal model can be written as, 

PAh+2-B-PAc+BPt (10) 

(11) 

The sulphuric acid as catalyst where the main reaction can be expressed as, 

The following experimental observations were found 

during the reaction between 2-butanol and propionie r (I-+k C )c e +k C C 2= "O 2' Cat., "Ah' 2-B 3' Cat.,· "Ah 

anhydride catalysed by sulphuric acid: 
(12) 

- The initial reaetion rate from adiabatie experiments 

seems proportional to the concentration of sulphuric 

aeid. In addition, the heat of reaction does not change, 

between the experimental error, with the addition of 

sulphuric acid (Snee and Hare, 1992). 

- The propionic acid concentration increases the 

reaction rate, producing a sort of autocatalytic behaviour 

only if there is sulphuric acid. 

- After some concentration level the propionic acid 

seems not to increase the reaction rate anymore. 

Since the elueidation of the real pathway was so 

complex. it was abandoned for another more empirical 

approach. The existence of two eatalysts was postulated 

(Dhanuka et al., 1977). The former accelerating the 

r3+k4·IO;H,CCat."C2_B (13) 

and HR is related to the acidity function (Rochester, 

1970) and is correlated as, 

(14) 

The parameters for these expressions were obtained by 

minimisation through the complete set of experimental 

data from Table 1 and Table 2 (see Fig. 2). Afterwards, 

the isoperibolic experiments (Table 3) were used to 

check their validity. Kinetie parameters are shown in 

Table4. 

T 1 8 S abe . UDefVtsed RBFN oerfonnances for reaction rate prediction. 

EsterUlcadon rucdon 

R. B. unla Error 

5 2.9.10-5 36 

10 l.2·1O-5 71 

15 8.1·1~ 106 

1~~;~21 
300 350 400 450 

Temperature (K) 

al 
,-.. 102 r::---~--~---"" 

! ~x.lO 
'::' Ex. 11 
:s! 
~1~2~--~----~--~ 

250 300 350 400 
Temperature (K) 

c:J 

Nltradon racCion 

R.B. unIts 

6 

10 

15 

Error .... ameten 
1.5.10-3 49 

2.9.104 81 

7.9.10-5 121 

300 350 400 450 
Temperature (K) 

1Y 

Fig. l. Experimental (+) and simulated (continuous Iines) rates of self-heating for the esterification in the PHI-TEC calorirneter. 
(a) Without sulphuric acid (see equation 6); (b) and (e) with sulphuric acid (see equations 12-14). 
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di 
Fig. 2. Experimental (+ and o) and simulated (eontinuous lines) eonversion profiles for the esterifieation with sulphurie aeid. (a) 

Ex. 18; (b) Ex. 19; (e) Ex. 20; (d) Ex. 21. 

In Fig. 3 the temperature profiles of six isoperibolic 

experiments at different jacket temperatures are plotted. 

The initial drop in reactor temperature is due to the 

endothennic mixing of the reagents. As can be seen, the 

Table 4. Kinetic parameters of equations (l2}-14) 

2.8074. 1010 

79.1595 
3.9480. 10'0 
69.9746 
1.4031 x lOS 
76.6172 
2.oo2x 10-' 
3.205 x 10- 2 

- 21.3754 
12706.0 

behaviour of the reaction mass shows that in these 

conditions we are working in a parametric sensitivity 

region, defining sensitivity as the the variation of the 

maximum of reactor temperature with respect lo that of 

the jacket, i.e. dT JdT.. In Ex. 22 at jacket temperature of 

293.9 K the maximum temperature reached by the 

reaction mass is 310.5 K whereas in Ex. 27 with a jacket 

temperature of 308.2 K the maximum temperature is 

407.5 K, i.e. a change of 14.3 degrees in jacket 

temperature produces a change of 97 K in the maximum 

temperature reached by the reaction mass. This shows 

how an exothermic reaction can proceed under sub­

critica) (controlled) and supercritica) (runaway) condi­

tions. In the latter, the reaction stops when all reagents 

have been consumed. 

420,---~~~------~------~------__ -------. 
Ex. 27 

400 

g 380 

1 
¡2 

Ex. 26 

Ex. 25 
Ex. 24 

2000 4000 6000 8000 10000 
Time (s) 

Fig. 3. Experimental (dotted lines) and simulated (continuous lines) reactor temperatures of isoperibolic batch experiments ofTable 
3 using the empirica! model (equations 12-14).884.0 g. of propionic anhydride were added to 503.2 g of 2-butanol. The molar 

fraction of sulphuric acid was 3.0 x 10 - 3. 
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Table 5. Test matrix of isothermal experiments in the Rel calorimeter 

Temperatures (K) 288. 298. 308. 318 
Sulphuric acid strength (wt.%) 78.9.74.8.72.4.70.6.68.0. 66.\, 63.9. 61.4 
Stirring speeds (s - 1) 6.67. lO. 13.33 
Feeding times (h) batch. 2. 4 

Toluene nitration by mixed acid 

The estimation of conversion rate in aromatic nitra­

tions by mixed acid (H2SOc HN03-H20) in discontin­
uous reactors involves a considerable number of prob­

lems owing to the fact that. in these heterogeneous 
liquid-liquid reactions. che mi cal reaction and mass 
transfer phenomena occur simultaneously. Furthermore. 

as the nitration proceeds water is formed. equation (15). 

and the acid phase composition varies. This is the reason 
for which the observed second-order rate constant 
decreases appreciably in the course of the reaction 
(Schofield. 1980). 

(15) 

A series of toluene nitration experiments (see Table 5) 
were carried out in an Rel reaction calorimeter to study 
the dynamic behaviour and the influence of the different 
initial and operating conditions (temperature. sulphuric 
acid strength. stirrer speed and feeding rate) in dis­
continuous toluene mononitration. 

From the analysis of experimental and simulated 
results it was coneluded (Zaldívar et al.. 1992a) that 
toluene mononitration can follow different reaction 
regimes; at low temperature or low sulphuric acid 
strength. the overall conversion rate is in the kinetic 
regime (slow liquid-liquid reaction). in this case. the rate 
of mass transfer is not enhanced by the occurring 
reaction and the reaction proceeds in the bulk of the acid 
phase (Zaldívar et al .• 1995a) 

(16) 

However. as we increase temperature or sulphuric acid 

strength the nitration rate increases and the heteroge-

mally, under the conditions employed during the experi­
ments, the reaction rate could be fitted using the fast 

liquid-liquid reaction expression (Zaldívar et al., 
1995b): 

(17) 

where a IS the effective interfacial area which is 
normalIy evaluated by the expression: 

(18) 

€d is the fraction of dispersed phase and d32 is the Sauter 
mean diameter which can be computed as: 

(19) 

where ni is the number of droplets with a diameter di. 

The Sauter mean diameter cannot be evaluated through a 
simple analysis. Therefore, it is customary to evaluate 
the maximum stable diameter dmax encountered in the 
impeller zone of the vessel and multiply it by an 
empirical factor to obtain d32, see Sprow (1967). The 
general form of the correlations is (Tavlarides and 
Stamatoudis, 1981): 

d32 -A·n )W: -0.6 
- - "J\€d e 
Da 

(20) 

where .f{.o) normally represents a linear correlation of the 
volume fraction of dispersed phase: 

(21) 

and We is the Weber number of the main flow, defined 

Pc"n~·D! 
We=--­

u 
(22) 

neous system enters the fast regime. In this situation the as: 
conversion rate is affected not only by the physical and 
chemical characteristics of the system but al so by the 
mechanical features of the equipment. The former 
ineludes viscosities and densities of the phases. inter­
facial surface properties. diffusion coefficients, distribu­ The mathematical model as well as the experimental 
tion coefficients of reagents and products between the 
phases and chemical reaction constants. The latter 
ineludes, for example, the type and diameter of the 
impeller, vessel geometry, the flow rate of each phase 
and the rotational speed of the impeller. Furthermore, 
dispersion phenomena such as coalescence and breakage 
of droplets, drop size distribution and phase inversion 
phenomena will affect the extent of conversion and the 
selectivity of the reactions (VilIermaux, 1981). Nor-

CACE 10-11-6 

determination of its parameters and constants is 
described in detail elsewhere (Zaldívar et al., 1 992a, 
1995a. b) and will therefore not be discussed here. The 
model employed, based on the effective interfacial area 
between the two liquids and the description of mass 
transfer with reaction using the film model is the most 
common approach. Figure 4 shows the calculated and 
simulated, equation (17), reaction rate as a function of 
sulphuric acid strength during semibatch toluene mono-

7
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Fig. 4. Experimental (dotted lines) versus simulated, equation (16), reaction rate (mol/l.s) for semibateh toluene mononitration 
during the fast reaction regime experiments (x, sulphurie acid strength): (a) x=74.8 WI.%: (b) x=72.4 WI.%: (e) x=70.6 wt.%. 

[,.=308.16 K, and Na=6.67 s-', 

nitration experiments. The instantaneous reaction rate -
no accumulation of nitric acid in the reactor - is also 
plotted. As can be seen the agreement between experi­
mental and simulated results is satisfactory. However, 
the effort required to carry out such analysis was not 
negligible. 

NEURALNETWORKAPPROACH 

Many studies have proved the ability of NNs to 
approximate any nonlinear relationship between a set of 
inputs and outputs. In OUT case we are interested in 
finding the reaction rate value (output of the network) as 
a function of state variables (inputs to the network). In 
our system the inputs will be temperatures and concen­
trations plus sorne parameters related to the equipment 
for the heterogeneous system. 

The implementation of the neural network approach 
consists of two steps: the learning procedure and the 
evaluation procedure. 

Leaming procedure: training data set 

The performance of the NNs in estimating the reaction 
rate is directty related to the training data. To achieve 
robust performance, data must be distributed across all 
the regions of the input space that are of interest. It has 
been demonstrated that performance of NNs often 
deteriorates when extrapolating into regions of the input 

space for which the network has not been trained 
(Venkatasubramanian and Chan, 1989). 

Two different training data sets for esterification and 
nitration were generated. The reaction rate was esti­
mated from calorimetric reconstruction using a special 
version of the reaction calorimeter simulator (Hemández 
et al., 1993). In this version, the mathematical model is 
reduced by introducing the measured variables, i.e. 
reactor, jacket, ambient and feeding temperatures, and 
replacing their values in the respective differential and 
algebraic equations (Hemández et al., 1993). The 
estimation step is carried out by using a recursive least 
square algorithm with constant forgetting factor (Ljung, 
1987). Our simulator produces similar results to the RC 1 
evaluation package (see RCl Mettler operating instruc­
tions manual) for the calculation of the heat flow owing 
to the chemical or physical process in the reactor. In the 
particular case of esterification and nitration the heat of 
dilution was subtracted from the total heat produced 
during the process using a model developed in a 
previous work (Zaldívar et al., 1992b). Once the rate of 
heat generated is estimated the rate of reaction can be 
obtained assuming known enthalpy of reaction, in our 
case equation (lO) or equation (15). To validate this 
calorimetric reconstruction, independent OC measure­
ments (Molga et al., 1993) were used. 

In the case of esterification reaction the variables used 
as inputs to the NN for fitting the reaction rate are: 
reactor temperature (T m), propionic anhydride concentra-

8
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tion (CPAh)' 2-butanol concentration (C2•B), propionic 
acid concentration (CPAc)' and sulphuric acid concentra­
tion (Csu'). The training data set was the same as those 
used for the deterrnination of kinetic function, Le. the 
data from experiments listed in Table 1 and Table 2. 

In the case of nitration the reactor temperature, and 
the overall concentrations of water, nitric and sulphuric 

acids and toluene were chosen as the inputs to the NN. 

As the training data set contained experiments carried 

out in fast nitration regime the interfacial area, which is 

proportional to the conversion rate (see equation (17» 

should be introduced. The interfacial area, equations 
(18)-(22) is a function of dispersed phase volume and 
the Weber number, which tums out to be a function of 
continuous phase density, interfacial tension, stirrer 
diameter and stirrer speed. It would be interesting to 
introduce into the network the characteristics of the 
equipment to see if it is possible to consider scaling-up 
effects. However, experimental data trom different 
equipment would be necessary to perform such a study. 
As these data were not available the stirred speed was 
considered as the only input to the NN, since the stirrer 
diameter and the other shape factors are constant during 
all the experiments. 

In the esterification case the training set had 2000 
pattems while 10,000 pattems were used in the nitration 
case. The pattems were randomly sampled before being 
presented to the network. AH data were norrnalised in the 
interval [O, 1]. 

Different MNN architectures with three layers have 
been trained using the backpropagation procedure. The 
mean-square error (see equation 3) obtained for each 
architecture in both cases: esterification and nitration is 
shown in Table 6. The number of adjusted parameters 
(connection weights) in the network is also specified. As 
can be seen, 36 parameters are enough to obtain the 

desired error in the esterification case, while in the 
nitration case it is necessary to add more hidden nodes to 

obtain the same order of magnitude for the error. The 

results obtained with lOor 15 hidden nodes are 
acceptable. 

The RBFN model was also used to approximate the 
reaction rateo The centers c¡ and the widths ui (equation 
5) were deterrnined in an unsupervised manner using the 
Kohonen algorithm. Owing to the fact that the number of 
pattems is considerable, instead of using the least 
squares method, the gradient method was employed to 

calculate the weights. The calculation of the derivatives 
of the output with respect to the weight vector is 

immediate using equation (4). The number of radial 

basis units was deterrnined by trial and error. Table 7 
shows that in the nitration case 350 units are necessary to 
cover the input space to obtain an acceptable approxima­
tion, while 200 hidden units are required in the 
esterification case to obtain error of similar magnitude to 
those found using the MNN. 

The resuIts obtained with the supervised method 
aiming to decrease the number ofhidden units are shown 
in Table 8. As can be seen, in both cases: esterification 
and nitration, the number ofradial basis units required to 
obtain similar errors using this type of leaming is 
considerably reduced in comparison with the unsu­
pervised leaming method (RBFN). 

Validation procedure: test data set 

The performance of trained neural network was tested 
using different experiments to those used for the training 
procedure. In the case of the esterification, the test set 
consisted of the isoperibolic experiments described in 
Table 3. In this case, the different trained NN were 
introduced in the numerical simulator of the reaction 
calorimeter (Zaldívar et al., 1990) replacing the empiri­
cal equation ofthe rate ofreaction. As can be seen in Fig. 
5 the resuIts using the MNN are similar to those obtained 
using the empirical model. However, in the case of 

RBFN (Fig. 6) the agreement is less satisfactory. Owing 
to the high dimension of the input space it is difficult to 

find the location of the centres of the radial basis 

Table 6. MNN performances for reaction rate prediction 

Esterification reaction Nitration reaction 

Architec. Error parameters Architec. Error parameters 

5·5-1 5.1·10" 36 6-6-1 9.5' 10- 4 49 
5-10-1 4.3· 10-' 71 6-10-1 6.8' 10-' 81 
5-15-1 4.7,10-' 106 6-15-1 8.8' 10-' 121 

Table 7. RBFN performances for reaction rate prediction 

Esterification reaction Nitration reaction 

R. B. units Error parameters R. B. units Error parameters 

60 9.8,10- • 61 60 2.4.10- J 61 
100 3.9,10- • 101 100 4.1,10-- 101 
200 2.7-10- , 201 350 9.8'10-' 401 

9
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rabie 8. Supervised RBFN perfonnances for reaction rate prediction 

Esterification reaction 

R. B. units Error parameters 

5 2.9' lO-s 36 
lO \.2·IO- s 71 
15 8.1.10- 6 106 

function in order to obtain posltlve generalisation 
properties. Hence pattems that should appertain to 
different classes fall within the same radial unit in the 
network and as the units have local character the outputs 
ofthe NN are close. 

420 
27 

400 Ex. 26 

Ex. 25 

g 
e a 
R e 
~ 

320 

300 

Nitration reaction 

R. B. units Error parameters 

6 1.5. 10- 3 49 
10 2.9'10-' 81 
15 7.9' lO-s 121 

When the supervised method is used to obtain the 
reactor temperature profiles this effect is partially 
corrected. Because the widths are adapted to minimise 
the error, the local representation capacities of the units 
in the network are lost, i.e. one pattem could activate 

Time (s) 

Fig. 5. Experimental (dotted lines) and simulated (continuous lines) reactortemperature profiles using the MNN model (5-10-1) for 
the isoperibolic experiments described in Fig. 3. 
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Fig. 6. Experimental (dotted lines) and simulated (continuous lines) reactor temperature profiles using the RBFN model (200 units) 
for the isoperibolic experiments described in Fig. 3 
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different units. even units whose centre is far away. As 
can be seen in Fig. 7 the results are better than the 
approximation obtained with the RBFN model. 

In the case of the nitration reaction some of the 
experiments that were not included in the training data 
set have been used to test the NNs reaction rate 
estimation. In Figs 8 and 9 the experimental and 

estimated reaction rate results for the different networks 
are compared for two experiments. 

Figure 8 (b) shows the reaction rate estimated with the 
RBFN model. In this case, the results are very similar to 
the results obtained with the MNN model because the 
input pattems for this experiment are well represented in 
the training data set and hence these pattems faH within 

420r--r-~~.-------~------~------,-----~ 
• 7 

400 

380 

g 
!:! 360 
a 

i 340 
~ 

320 

Ex. 26 

EX.25 

Ex. 24 

Ex. 22 

300 fIIIIIj¡¡¡;;~~~~:~~~~~~""~""-:'-'~""'~""~'" ~~--==J 
2800~-----2~0~0~0-----4~0~0~0----~60~0~0----~80~0~0----~10000 

Time (s) 

Fig. 7. Experimental (dotted Iines) and simulated (continuous Iines) reactor temperature profiles using the supervised method (10 
units) for the isoperibolic experiments described in Fig. 3. 
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Fig. 8. Experimental (dotted Iines) versus estimated reaction rate (moIII.s) for semibatch toluene mononitration during the fast 
reaction regime experiments: (a) MNN (6-10-1). (b) RBFN (350 units). (e) Supervised method (15 units). x(sulphuric acid 

strength) =72.4 wt.%. T,p=308.16 K. feeding time=2 h and Na=6.67 s-'. 
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Fig. 9. Experimental (dolled lines) versus estimated reaetion rate (mollI.s) for semibatch toluene mononitration during the fast 
reaetion regime experiments: (a) MNN (6-10-1), (b) RBFN (350 units), (e) Supervised method (15 units). x(sulphurie acid 

strength)=78.9 WI.%. T",=308.16 K, feeding time=4 h and Na= 10.0 S-l. 

the right radial unit. However, the results for the other 
experiment (Fig. 9(b» are less satisfactory. The situation 
is the same as that in the esterification case. 

DISCUSSION 

AII the approximation methods have their own charac­
teristics. Conditions under which one method is prefera­
ble to another are also known but no one method is 
absolutely the best. In this work, two types of neural 
network architectures have been implemented and tested 
to predict the reaction rate of two different systems. 
However, since polynomials, orthogonal functions and 
splines can also be used to approximate such reaction 
rates, it is not readily apparent as to why neural networks 
should be preferred. 

During the past few years extensive studies have 
revealed that both MNN and RBFN have sorne advan­
tages over conventional methods for approximation. For 
example, the polynomial or orthogonal series approx­
imation are difficult to implement in hardware. In 
contrast, neural networks are readily implementable in 
hardware. Another important feature of the neural 

networks is that the networks contain only the linear 
operations of multiplication by a scalar constant and 

summation in addition to the nonlinear function activa­
tion which is known. This makes it mathematically 
attractive for the approximations of functions. 

Assuming that neural networks are to be used for the 

approximation of reaction rate, the immediate question 
that arises concerns the choice of the neural networks to 
be used, Le., an MNN or an RBFN. In this section we 
will discuss the advantages and disadvantages for each 

model. 
MNN have been applied with sorne success as 

regression models in a wide variety of chemical 
engineering problems. From fault c1assifiers (Hoskins 
and Himmelblau, 1988; Watanabe et al., 1989) to model 
and control chemical reactors (Bhat and McAvoy, 1990; 
Zaldívar et al., 1991). However, difficulties were 
encountered. The first Iimitation is in the determination 
of the required number of hidden nodes and the resulting 
problem in pruning redundant nodes or weights. Another 
disadvantage of MNN is that the parameters (weights) 
appear in a non-linear form, so the gradient method has 
to be used for their adjustment. This implies that the 
parameters can converge to local minima. Furthermore, 
the adjustment of a single parameter of the network 
affects the output globally. Hence, all the weights have 
to be adjusted simultaneously for each pattern. This 
reduces the effect of previous learning or in other words 

causes a rapid forgetfulness owing to seldom-seen 
input-output pairs. Both the aboye factors contribute to 
the slow convergence rate or slow learning. About 15 or 

20 thousand iterations over the training set are necessary 
to stabilise the weights in the trained architectures. 

Broomhead and Lowe (1988) and Moody and Darken 
(1989) considered, to improve network training time and 

12
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generalisation characteristics, the use of RBFN. The 
learning of an RBFN is faster than that of MNN. There 
are two factors that contribute to this phenomenon. The 
first is that owing to the fact that the parameters are 
linearly related to the error, convergence is guaranteed. 
The second factor is the local character of the radial 
basis functions in contrast to the global character of the 
sigmoidal functions. When an input panern is presented 
to the network, only the hidden nodes whose centres are 
c10se to the input will be active. The magnitude of this 
activation will depend on the width of each Gaussian. 
Thus for each pattern only sorne weights will be adjusted 
and the convergence will be faster. Furthermore, local 

representation should provide better generalisation char­
acteristics (Leonard and Kramer, 1990). However, owing 

to the high input space (the dimension is 5 in the 
esterification and 6 in the nitration case) to guarantee a 
good reaction rate approximation and generalisation 
properties with RBFN, the number of fitted parameters 
has to be much larger than in the approximation with 

multilayer neural network. 
As we have said, to reduce the number of radial basis 

unÍts it is possible to use the supervised method. This 

method yields high precision results, but places no 

architectural restrictions on parameters of the network. 

For instance, the widths are not restricted to remain 
small, so the local representation is not guaranteed. 
Furthermore, the learning in this method is a non-linear 

optimisation problem because the dependence of the 
output of the network with respect to these parameters is 
non-linear. Those characteristics are responsible for the 
loss of the fast convergence and local character propri­
eties of the RBFN model. 

Owing to the similar performance learning between 
the supervised method and the MNN model it is 
interesting to compare them. In general the supervised 
network does not offer advantages over the standard 
multilayer network because the convergence is also slow 
and the number of parameters to adjust is not reduced. In 
sorne cases the results obtained with this kind of 
network, of comparable size with the multilayer net­
work, are better. Note that in the esterification case the 
supervised method achieved better performance than the 
more traditional sigmoidals units (Table 5 and Table 7). 
However, it is not possible to conclude a general result 
because a good approximation depends on the Gaussian 
shape and we cannot guarantee how it will be using the 
gradient method to adapt its centers and its width. 

CONCLUSIONS 

The results obtained indicate that the MNN model is 

more adequate for determining kinetic functions of 
complex processes in contrast to the RBFN model. 

Simulations carried out using both MNN and RBFN for 
the approximating functions C(Rn

• R) for small values of 
n (n:::3) c1early show the superiority of RBNN (White 
and Sofge. 1992). For large values of n the radial basis 
functions needed become excessive, and the location of 
the basis functions should be chosen with considerable 
careo Hence sorne prior information is needed. The MNN 
does not require such information. Consequently it is 
preferred when the dimensionality of the input space is 
high. 

Furthermore, the comparison of the neural network 
approach with the traditional identification methods 
white or grey models showed that when the kinetic 
scheme is simple or when the amount of data available is 
limited other methods are suitable, since the knowledge 
about the exponential dependence on temperature and 
the function of concentration as a product of power of 
different compounds can be included. However, if a 
considerable amount of thermo-kinetic data is available, 

there is Iittle knowledge about the kinetic pathway and/ 
or the amount of time available to determine a reaction 
rate expression is limited, the neural network approach 

can be used at least as a first approximation for process 
design and optimisation. 

NOTATION 

a=Interfacial area (m2/m3
) 

A =Frequency factor 
C=Concentration (mol/\) 
D=Diffusion coefficient (m2/s) 

Ea=Activation Energy 
f=Sigmoidal activation function 

HR =Acidity funetion 
k=Rate constant 
n=Molar hold-up 
p=Pararneter of kinetic expression 
r=Reaction rate (molr '.s-') 

R=üverall conversion rate in heterogeneous systems 
(molr '.s -') 

R=Gas constant 
T=Temperature (K) 
u =Input vector to the network 
w=Weight vector 
x=Input vector to the neuron 
x=Molar fraction 
y=Output vector 
e=Volumetric fraetion 
q=Threshold value 
j=Gaussian activation function 

Subscripts and superscripts 
aq=Aqueouslacid phase 

PAh=Propionic Anhydride 
2-B=2-butanol 
PAc=Propionic Acid 
BPt=2-butyl propionate 

i =Interphase 
Sul=Sulphuric Acid 

W=Water 
m=Reaction mixture 
e=Heat transfer fluid 

sp=Set point 
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