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1 Introduction

Managers in the retail industry face hard decisions on product assortment, pricing, and promo-
tion. Product assortment (selection of products and their shelf space and location) is a strategic
decision, taken over a long-term planning horizon (Kok et al., 2006). In contrast, product pric-
ing and promotion have shorter planning horizons, as they are used in day-to-day marketing
decisions to dynamically respond to demand variations. In the food retail industry, the com-
plexity of pricing and promotion decisions is magnified by the perishability of products.

A standard approach to increase the revenue obtained from perishable products is dy-
namic pricing, i.e., adjusting product prices to demand variations. See, e.g., EImaghraby and
Keskinocak (2003), which gives an extensive overview of dynamic pricing and its adoption in
practice.

However, discrete-time decision making, implementation costs, and retail brand image
strategy make practitioners not to like changing prices too often or in an “unsystematic” fash-
ion, as prescribed by theoretical dynamic pricing models. In addition, price reductions must
usually be done over all product units, thus losing possible profits from customers who are
willing to pay the original, higher price. Revenue managers naturally try to avoid situations in
which the product price is lower than the inventory costs, as they lead to a negative net profit.
Such a behavior may result in conservative product orders, which increase the probability and
duration of stockouts. Based on several studies, Campo and Gijsbrechts (2005) documented
that consumers’ reaction to stockouts may have significant negative impacts on retail sales and
revenues.

The above suggests that there is a strong need by retail managers for a “softer” market-
ing tool, which dynamically allows them to improve sales and revenues, yet without altering
product prices.!

This paper introduces a revenue management model in which demand is altered not by
price changes, but instead by dynamically allocating product units to a limited promotion space,
where they are more likely to attract customers. Examples of such a promotion space include
shelves close to the cash register, promotion kiosks, or a depot used for selling via the Internet.

We thus address the problem of designing a dynamic promotion policy for allocating units of
perishable products to a promotion space, in order to maximize the expected revenue before
all units expire, which we term the knapsack problem for perishable items (KPPI). Throughout the
paper, we use the example of a food retailer, focusing on the case when there is a single unit of
each product.

Our approach relies on a decomposition of the problem to single products. Each product
is assigned a promotion index. Such an index, which we derive in closed form, allows us to
consider a promotion index policy, where higher priority for promition is awarded to items
whose current index values are larger. Although such an index policy may be suboptimal, it
has a sound economic interpretation and is computationally tractable, since the indices are
given in closed form.

! An example of the practical interest of such a tool is provided by the cooperation of Capgemini, Intel, Cisco, and
Microsoft on a decision support system which includes Dynamic Promotion Management as one of three key
solution areas.



1.1 Paper Structure, Goals, and Contributions

Section 2 outlines the model and briefly reviews the work on related models in the literature.
We further describe the milestones in the research on the bandit problem and its extensions,
especially the restless bandit problem, which we use to set our model. The celebrated classic
result on the bandit problem is the optimality of a dynamic solution defined by certain priority
indices. Derivation of such indices for our model is one of the two main goals of this paper.

The KPPI is formalized in section 3. Since the dynamic programming formulation is in-
tractable, we formulate it approximately using a Lagrangian relaxation, which allows us to
decompose the problem into single-item subproblems.

An optimal promotion policy for a single item defined via marginal productivity indices is
derived in section 5. The optimal dynamic promotion policy is shown to be time-monotonous:
the value of promoting increases as the deadline approaches.

This leads us to our second goal and contribution, the development of a new index-based
heuristic for the KPPI in section 6. A computational study is described in section 7.

Concluding remarks are given in section 8. Proofs are deferred to the Appendix.

2 Model Outline and Related Work

A perishable item is a product unit with an associated lifetime ending at a deadline. At the dead-
line (e.g., the “best before” date) the product can no longer be sold, and only a salvage value is
received. If an item is sold before the deadline, it yields a revenue (profit margin). The probabil-
ity of selling only depends on whether the item is being promoted or not.

The KPPI of concern is to dynamically select a subset of items to be included in a promotion
space (knapsack), in order to maximize the expected total discounted revenue.

We set the model in discrete time as a Markov decision process. We assume that the deci-
sions are made in some regular time moments, say, twice a day, and the problem parameters are
adjusted to such time periods. In general, the KPPI defines a stochastic variant of the knapsack
problem with multiple units. As time evolves, some items get sold accordingly to a stochastic
time-homogeneous demand and some items perish deterministically at their deadlines.

A related though distinct model is the dynamic and stochastic knapsack problem (DSKP) (cf.,
e.g., Papastavrou et al. (1996) and Lu et al. (1999)), which concerns the dynamic control of
admission to a knapsack of arriving items with random rewards and weights, in order to max-
imize the knapsack contents’ value by a given deadline.

The KPPI is related to dynamic pricing problems, and we show that a simple dynamic pric-
ing problem (of a single product) can be formulated in our framework as a dynamic promotion
problem when one must pay for promotion.

We further assume in our model that the demand is time-homogeneous (cf. EImaghraby
and Keskinocak (2003) for a justification of such an assumption).

2.1 Bandit Problem Literature

A convenient mathematical setting for the KPPI problem is the multi-armed bandit problem
(cf. Gittins, 1979), in which one wants to dynamically choose between various bandits (reward-
yielding processes) one in an optimal fashion. That model captures the fundamental trade-off



between exploitation of current rewards and exploration of possible future rewards. Gittins (1979)
showed that the multi-armed bandit problem can be optimally solved using his indices, which
can be calculated in polynomial time.

The bandits are here the perishable items. In our model, however, there are four complica-
tions: the bandits are restless, because the items can get sold regardless of being in the knapsack
or not, the time horizon is finite due to perishability, and we are to select more than one item for
the knapsack, which is allowed to be filled partially, due to the heterogeneity of the items. We
thus mix up two models: the bandit problem and the knapsack problem.

The multi-armed restless bandit problem (which is a generalization of the multi-armed ban-
dit problem considered in Gittins (1979)) over the infinite horizon was proven to be P-space
hard even in its deterministic version (Papadimitriou and Tsitsiklis, 1999). The research fo-
cus thus shifts to the design of well-grounded, tractable heuristic policies. For the analysis we
use the framework and methodology proposed for restless bandits by Nifio-Mora (2002, 2006).
That work provided a sufficient condition for a restless bandit to be indexable together with
an adaptive-greedy algorithm, which in O(n?) operations computes corresponding marginal
productivity indices that extend earlier indices of Gittins (classical bandits, 1979) and Whittle
(restless bandits, 1988). In our problem, the marginal productivity index can be interpreted as
the promotion priority index.

The indexability property of a single item modeled as a restless bandit means that there exist
promotion priority indices such that the optimal solution is to promote the item whenever its
promotion priority index is higher than the cost of promotion space occupation (promotion
cost). When coupling the bandits back into a multi-armed (non-restless) bandit problem, the
promotion priority indices define an optimal policy: At every decision epoch choose the bandit
of highest promotion priority index (promotion-priority-index policy). Such a priority policy is in
general not optimal for the restless case, in which it becomes a well-grounded, efficient and
practical heuristic.

Regarding the bandit problems with finite horizon, interesting results of index nature ap-
pear very sporadically, because of the intractability of the model, and therefore other methods
(such as dynamic programming) are usually used. Even then, the problem is computation-
ally intractable. Nevertheless, there is a tractable instance, the so-called deteriorating case, first
presented for an infinite-horizon bandit problem by Gittins (1979), which was also success-
fully applied in a problem with finite-horizon objective (Manor and Kress, 1997). In that set-
ting, the bandits were, however, not restless. The same is the case for the index policies for the
finite-horizon multi-armed (non-restless) bandit problem: Nifio-Mora (2005) showed that such
a problem is indexable and provided a tractable algorithm.

The bandit problem framework was used to analyze adaptive marketing strategies by var-
ious authors. Caro and Gallien (2007) developed a model for dynamic assortment of seasonal
goods and proposed an assortment-priority-index policy using approximate indices that they
obtained in a closed form. An adaptive model for interactive marketing environment was in-
troduced in Bertsimas and Mersereau (2007). Both works build upon the classical multi-armed
bandit problem (in which the bandits are not restless) and propose heuristics based on an ap-
proximate problem decomposition.



3 The Knapsack Problem for Perishable Items

A retailer has a finite collection of perishable items to sell, labeled by k € K £ {1,..., K}. Item
k can only be sold during its lifetime, which consists of time periods ¢t = 0,1, ...,T} — 1, where
T}, < oo is the item’s deadline. If the item is sold, it yields a reward Ry, > 0. Otherwise, a salvage
value oy R}, is obtained, for some (possibly negative) coefficient o, < 1. Rewards and costs are
discounted over time with factor 0 < g < 1.

The retailer can increase the probability that item % is sold during a period, from 1 — g
to 1 — pi (with 0 < g1 < pr < 1), by placing it in a promotion knapsack. We assume that such
Bernoulli demand processes are independent across items. The advantages of promotion must
be balanced by the following factors. First, the knapsack has a limited capacity, having room
for holding an integer number W of physical space units. Item k occupies W}, < W units, and
we assume that ), Wj, > W. Second, usage of the knapsack incurs holding costs at rate v per
unit capacity used per period.

To formulate such a model as an MDP, we consider the state X}, (t) of item k at the beginning
of period t to be X, (t) = T}, — t (the number of remaining periods to the deadline) if t < T}, and
the item has not yet been sold, and to be X (¢) = 0 if either ¢ > T}, or the item has been sold.
Further, we use binary action (active/passive) processes a(t) € {0,1}, where the active action
ar(t) = 1 corresponds to promoting item & into the knapsack at the beginning of period ¢, and
is only allowed when ¢ < T}, and the item remains unsold.

As for the state dynamics, the positive transition probabilities under the active action are
given by pi(s,s — 1) £ p and pi(s,0) £ 1 — py for 2 < s < T}, and pi(1,0) £ 1, whereas those
under the passive action (ai(t) = 0) are p2(s,s — 1) = g and p)(s,0) £ 1 — g, for 2 < s < Ty, and
p%(1,0) = p?(0,0) £ 1. All other state transition probabilities are zero.

The immediate expected rewards for item £ in each state s are as follows. Under the active
action, Rj(s) = (1 —pg) Ry, for 2 < s < Ty, and R}.(1) £ (1 — pg) Ry, + pray Ry.. Under the passive
action, Rg(s) 2 (1 - qp)Ry for2 < s < Ty, Rg(l) 2 (1 — qn)Ry + qpax Ry, and R%(O) £ 0.

Action choice is prescribed by a dynamic promotion policy m, to be chosen from the corre-
sponding class II(IV) of history-dependent policies, which satisfy the sample-path knapsack
capacity constraint

> Wian(t) <W, t=0,1,2,... 1)
keK

The KPPI is to find an admissible policy that maximizes the expected total discounted re-
ward earned. We can formulate such a problem as

maxy Ty
V*(T) = max EF Z Z Rzk(t)(Xk(t))ﬁt ) 2)
wel(w) kEK  1=0

where E7.[] denotes expectation under policy 7 conditioned on the initial joint state being
equal to T = (T}).

Being a finite-horizon MDP, standard results ensure existence of an optimal policy for (2)
that is Markov deterministic. Yet, its computation via numerical solution of the resulting DP
equations becomes intractable as the number K of items grows,due to the curse of dimensionality.



4 Work-Reward Restless Bandit Formulation of KPPI

We next formulate the KPPI as a variant of the multi-armed restless bandit problem, where the
restless bandit is replaced by what we call the work-reward restless bandit. We set out to obtain a
tractable index rule based on the marginal productivity indices.

In the multi-armed restless bandit problem (cf. Whittle, 1988), all bandits have the same
requirement on the resource. In our model, however, we admit non-uniform resource (i.e.,
knapsack space) requirements, which is a special case of the model in Nifio-Mora (2002). In
the Whittle’s restless bandit framework, the immediate work is assumed to be 1 for the active
action and 0 for being passive. Nevertheless, in our case the active action (promoting) requires
a non-uniform utilization of the knapsack and we need to reflect this feature in our model.
Therefore, we define the immediate (promotion) work of an item 7 in state ¢ € .7; under the
active action by its volume, W}, := W;, and W), := 0 under the passive action. We further
define W7, := 0.

We arrive to the following formulation of the KPP],

maX ET Z Z R ?3(8 s)]
i€ s=0
subject to Wfés() ) < W ateach time s =0, 1,. (RB)

€S

where, as before, X;(s) denotes the state of item 7 at time period s, starting at state X;(0) = T;.

4.1 Problem Relaxation and Lagrangian Relaxation Decomposition

Whittle (1988) proposed for restless bandits what has become known as the Whittle’s relaxation:
replace the infinite set of resource constraints by one constraint requiring to use the full resource
in expectation. In our case, the Whittle’s relaxation of the (RB) is the following:

max E7 B°R, a’(s ]
mell ZEZ] g
subjectto E% Z Z W al(s ] = ﬂ (WR)
ie.s s=0 1-6

The Whittle relaxation (WR) can be solved by the Lagrangian method. Let x be a Lagrangian
multiplier for the constraint, then the Lagrangian of (WR) is

s gails . R W
S, |- x (m S ew)] - )

€5 s=0 €S s=0

Eﬂ'

and can be rewritten as

L(m, k) = Z (E%

€S

Z ﬂs al(s)

1-p

S BRI ] — KEF

s=0

)—&-Fa w (L)



For a given penalizing parameter «, (L) can be decomposed and analyzed separately for
each item, which we will do in section 5. We interpret the parameter  as the competitive market
price of space, the resource provided by the knapsack. Indeed, the term xW/(1 — 3) can be
viewed as the money budget allocated for the knapsack space we expect to be using (kW per
period). Since we only consider the space utilization in expectation, we in fact assume existence
of a space market, where we permit to “buy” some amount of space if necessary or to “sell”
some amount of space if it is not used. Then, there is an optimal market price x* which balances
expected supply (selling free space) and expected demand (buying necessary space). If this

price is known, then max L(rw, k*) solves (WR).
TE

This perfect market assumption reflected at the Whittle’s relaxation is sufficient for the KPPI to
be solved efficiently. Its solution, however, is not feasible for the original problem (RB), because
no such space market is in practice available. The optimal solution is a dynamic adaptive-
knapsack policy; in the original problem a dynamic fixed-knapsack policy is sought. Neverthe-
less, the optimal solution to the Whittle’s relaxation yields a tractable bound for the original
problem.

The optimal dynamic adaptive-knapsack policy, however, may be relevant in some appli-
cations. One could think of adjusting the knapsack’s space dynamically as the optimal perfect
market solution requires, e.g. by reserving a necessary number of promotion shelves, where
the price x* must be paid as a promoter’s wage for each reserved space unit.

5 Optimal Promotion of Perishable Item

The aim of this section is to obtain the marginal productivity indices (MPIs) for a perishable
item in isolation, which will be the building block for the KPPI solution developed in section 6.
The MPIs capture the marginal rate of promotion and define an index policy, which furnishes
an optimal control of a perishable item by indicating when it is worth promoting. For that end,
we introduce a per-period promotion cost v; > 0, which must be paid in every period when the
item is being promoted.

Since we are considering item ¢ in isolation, in the following we drop the item’s subscript :.
Starting from state ¢, we define the expected total discounted net revenue under policy 7 as

= s pals) = psrrrals)
E; [ZB Ry | — VE] [Zﬁ WX(S)], 3)

s=0 s=0

where, as before, X (s) is the state at time period s and a(s) is the action applied in time period
s, counting promoting as 1 and not promoting as 0. The symbol EJ denotes the expectation
under policy 7 if starting from state ¢.

Denote by II the set of all non-anticipative policies for such a problem. The goal is to find a
policy 7* € II that maximizes (3) for t = 7" among all such policies, and thus optimally resolves
the trade-off between the expected total discounted revenue and the expected total discounted
promotion cost.

The perishable item as defined above falls to the concept of restless bandit (a binary-action
MDP). Under some circumstances, one can identify its optimal control in terms of marginal
productivity indices (MPIs). Next we show that such an optimal MPI policy for perishable
item exists under a demand regularity condition, and we identify it.



51 Assumption

We will continue under the following assumption, which requires the promotion power ¢ — p
to be positive.

Assumption1. ¢ —p > 0.

Assumption 1 is a consistency requirement on promotion power which rules out uninter-
esting items that should never be promoted. Indeed, the optimal action in all the states for an
item with promotion power ¢ — p < 0 is not promoting (as long as v > 0). We will show that
promoting is optimal if promoting was optimal in the previous period, i.e., the efficiency of
promoting nondecreases over time.

5.2 Marginal Productivity Index

Now we examine the economics of promoting the perishable item. In particular, we examine
the efficiency of promoting the item in its current state if one must pay for promotion. We
will identify circumstances in which it is worth to promote the item, by assigning the marginal
productivity index (MPI), which captures the marginal rate of promoting, to each controllable
state. The optimal MPI policy is: “Promote the item if and only if the MPI of the actual state
is greater than the promotion cost v.” We employ the MPI calculation method as described for
restless bandits in Nifio-Mora (2006).

We show in Proposition 1 that a perishable item is indexable, that is, the optimal decisions
are prescribed by the MPI policy, using marginal productivity indices assigned to controllable
states.

Proposition 1. The perishable item is indexable, and the marginal productivity index for its controllable
state t is

v

(4-p) (1= )2 + (1~ o) (8p)"]

R
= — 4
w 1 - (8g — pp) =20 @
The proof of Proposition 1 is presented in the Appendix together with a more detailed
description of the work-reward analysis. Next we list the most appealing properties of the MPI,
which have insightful interpretation and define heuristical priorities for promotion if various
items compete for a limited promotion space. In section 6 we implement MPI as promotion
priority measure: the higher the MP]I, the higher the promotion priority.

Proposition 2 (MPI Properties). For any controllable state t,

(i) the MPI is nonnegative and proportional to R/W;
(ii) an item with lower probability of being sold when not promoted ((1—q)’s), ceteris paribus, has higher
MPI;
(iii) (Time Monotonicity) the MPI of an item is nondecreasing as t diminishes (i.e., as the deadline ap-
proaches).



MPI resolves the trade-off between immediate and postponed promotion. Proposition 2(iii)
is a crucial property of MPIs, which demonstrates that the marginal productivity index is non-
decreasing as the deadline approaches. Armed with this result, we can look for an optimal pro-
motion starting time 7%,

" :=max{r € I : v/ >vforallt € 7 suchthatt > 7}. (5)

In other words, (if 7* is finite,) 7* is the threshold time period, from which the MPI is larger
than the promotion cost v, i.e. from which it is optimal to start to promote the item, ceasing to
promote it at the deadline. If 7* is not finite, then it is never optimal to promote the item.

Proposition 3. The optimal starting time 7* is finite if and only if

R (1-fa)

_ 1.
W (q—p) >

Further,
(i) if " is finite, then promoting is optimal in all time periods from T* to 1 and not promoting is optimal
in the remaining time periods;
(ii) if T7* is not finite, then not promoting is optimal in all time periods.
The above result assures that promotion is to be made in a natural way: the item is selected
for promotion only once and remains promoted while it is profitable to do it.

5.3 Special Cases and Further Remarks

We further give the marginal productivity index for certain classes of perishable items.

Proposition 4.

(i) [Undiscounted Case] Under quasi-nondecreasing promotion power, in the case 3 = 1, the marginal
productivity index for controllable state t is
,_RO-a)(g—p)A—pp"

v = —
PTW 1—q+(g—pptt

(ii) [Reduction to cp-rule] If ¢ = 1, W = 1, and the discount factor 3 = 1, then the perishable item is
indexable, and the marginal productivity index for its controllable state t € .7 is

vi =R(1—a)(1—p).

Proposition 4(ii) tackles the situation in which there is no possibility of selling the item if not
promoted. Thus, only promoted item can be sold, and selling happens with probability 1 — p
in every period. Interpreting this probability as a service rate, the MPI reduces to the cpu-rule,
well-known in the queueing theory (see, e.g., Buyukkoc et al., 1985), where ¢ := R(1 — «) is
the reduction in revenue if item is not sold during its lifetime. Such an MPI is constant over
time and in particular it does not depend on the number of periods before the deadline. This
rule is fittingly applied in assortment practice where products are chosen accordingly to their
profitability and attractiveness.



5.4 Formulation of Dynamic Pricing Problem in our Framework

Suppose that we are given an additional parameter called discount (price markdown) D > 0, so
that the revenue is R — D instead of R if the item is promoted. Thus, 1 — ¢ can be interpreted as
the probability of selling the item priced at R, and 1 — p can be interpreted as the probability of
selling the item priced at R—D. Let v be the per-period cost of maintaining (or informing about)
the lower price. We are thus addressing a simple case of the classic dynamic pricing problem.

In particular, we would like to have the following revenues:

RY := BR(1 —q), fort € 7\ {1}
Rt = OBR(1 — q) + PaRg, fort =1;
R} := B(R—D)(1—p), fort € 7\ {1};
R} := 3(R — D)(1 — p) + BaRp, fort =1;
ES =0,
Denote by D := 3D(1 — p). In order to cast the above problem into our framework, we

define the one-period revenue for all t € .7 as follows:
RY .= fz?, R} = ]§t1 + lN?, R8 = EO,

and the promotion cost v := & + D.

Then, this modified model is effectively the same as the original one, and hence the optimal
policy for the dynamic problem is the following: “Price the product at the lower price if and

only if the MPI of the actual state is greater than the cost v + D.”

6 Index-Based Heuristics for KPPI

Together with the relaxation, Whittle (1988) proposed a simple priority policy for the multi-
armed restless bandit problem employing the indices once an optimal index policy for each
bandit is available: “Promote the bandit of highest index”. Heuristics based on this simple
idea showed an exceptionally accurate performance in various problems formulated in the
framework of the multi-armed restless bandit problem. In the KPPI problem, however, this
heuristic may not be the best proposal, since it assumes the same space requirement of all
perishable items (W; = 1).

In a more general model of Nifio-Mora (2002), the resource requirements were assumed to
be non-uniform and stochastic. Thus, his indices differ from the Whittle’s and it was shown
that the latter may be suboptimal in the Nifio-Mora (2002)’s model. We applied this approach
to the perishable item in section 5, where the item’s MPI is volume-adjusted (since it includes
a division by the volume W;), so that the heuristic is: “Promote the item of highest volume-
adjusted index”.

Since the marginal productivity index can be interpreted as measuring the marginal rate of

substitution (i.e., the price per unit of space requirement) of promoting the item, we propose the
following heuristic construction for the KPPI: “Promote the items that are given by an optimal



solution to the knapsack subproblem defined below with item’s MPIs multiplied by volumes as
the objective function price coefficients and item volumes as the knapsack constraint weights”.

Notice that the greedy solution to the knapsack problem arising in our heuristic reduces
it to “Promote the items of highest volume-adjusted index”. It is well known that the greedy
algorithm yields an optimal solution of a knapsack problem when all the weights are uniform;
however, in the general case it is suboptimal. Our simulation study presented in section 7 sug-
gests that the latter heuristic reveals an analogous performance: it is inferior and converging to
ours.

In the following we assume that ¢; > p; holds for all items ¢ (otherwise not promoting is
always optimal for such an item). Recall expression (4) for the MPI calculation, which is to be
used in the heuristics via

V; = WiV;Ti' (6)

Heuristic MPI-OPT: Calculate the prices v; and then solve the knapsack subproblem opti-
mally.

Heuristic MPI-GRE: Calculate the price/volume ratios v;/W; and then select the items for
promotion in a greedy manner (highest first).

6.1 Knapsack Subproblem

Suppose that the knapsack-problem prices v; of all items are calculated using expression (6).
Then we have the following 0-1 knapsack problem to solve:

max Z Z;U;
® s
subject to Z W, <W (KP)
=
z; € {0,1} foralli € ¥

where z = (z; : i € .¥) is the vector of binary decision variables denoting whether the item i is
selected for the promotion knapsack or not.

The quality of the solution z is not guaranteed to be optimal. The experimental study in the
next section, however, reveals its nearly-optimal behavior, systematically outperforming other
considered heuristics.

Finally, the next proposition asserts that the KPPI is a generalization of the knapsack prob-
lem.

Proposition 5 (KPPI Reduction to KP). If T; = 1,¢; = 1,p; = 0 forall i € .#, then any optimal
solution z* of the knapsack problem (KP) is an optimal solution of the KPPL.

7 Experimental Study

In this section we present results of computational experiments, in which we evaluate the per-
formance of heuristics MPI-OPT and MPI-GRE. We further compare their performance to the
greedy Earlier-Deadline-First policy (EDF-GRE), a benchmark policy often observed in practice.



Heuristic EDF-GRE: Select products in a greedy manner after sorting the items so that prod-
uct ¢y is preferred to product iy, if:

@) Ti, <Ty,
(11) Ti1 = Ti2 and Ri1(1 — 041'1) > Rz‘l(l — ail)/
(iii) T, =T, and Ri1(1 - ail) = Ri1(1 - O‘i1) and VVZ& < WiQ'

The following is the worst-case (i.e., minimizing) solution of the knapsack subproblem
whenever all the price coefficients are positive, which is our case.

Heuristic MIN: Leave the knapsack empty.

In each experiment we randomly generate 10? instances for each fixed pair (I, 7)), denoting
the number of products and the time horizon, respectively, such that I € {2,3,4,...,8} and
T €{2,4,6,...,20}. For each product i we set ; = 0.5 and we assure that 7} := T". We assume
that the standard and the promotion demands are Poisson with the respective means \?, A and
such that £A\¢T; < 1 < 3AT; for both a € {0,1}. The last condition assures that each item has
a non-extreme probability of being sold before the deadline. Thus, we define ¢; := exp{—\’}
and p; := exp{—A!}, and assure that ¢; > p;. We further generate the following uniformly

distributed parameters:

2J; 2J;
W, e[l : e 1 : T, € [2,T7; VI ety
6[0,50], R 6[0750], G[ ) ]’ ir N € <3Ti’ Tz]

Finally, a uniformly distributed knapsack volume is generated: W' € [max{W;},30% - >, W;).

We focus on the discount factor 3 = 1, as this is the case most likely to be implemented
in practice. Moreover, our experiments (not reported here) suggest that this is also the hardest
case and the performance of index-based heuristics improves as the discount factor diminishes.

The experiments were performed on PC with 2.66 GHz CPU and 1.5 GB RAM working on
Windows XP. A Delphi code was developed by the author, implementing a standard enumer-
ative routine for the knapsack subproblem. Finally, the performance evaluation measures (see
below) were calculated using Matlab, which also created the figures presented here.

7.1 Performance Evaluation Measures

We obtain the maximizing policy solving the KPPI optimally, which also yields the optimal ob-
jective value DMAX, The objective values of the other policies are also obtained via the Bellman
equations, employing the respective heuristic at each step, denoted D™ for a policy 7. We next
introduce performance evaluation measures we use to report the experiment results.

The relative suboptimality gap of policy 7 is calculated via

DMAX _ DT
g(T) = —pMax (7)

Clearly, we have 0 < rsg(m) < 1, where rsg(7) = 0 is obtained by the maximizing policy.
However, rsg(m) = 1 cannot be achieved unless a; < 0 at least for some item i. This motivates
us to introduce the adjusted relative suboptimality gap of policy =, calculated via

DMAX _ DT

arsg(m) = DMAX — DMIN- (8)
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Figure 1. Mean relative suboptimality gap of heuristic MPI-OPT.
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Figure 2. Mean adjusted relative suboptimality gap of heuristic MPI-OPT.

In our case 0 < arsg(w) < 1, and both limiting values can be achieved.

We further introduce a measure to be used to compare the mean performance of an alterna-
tive heuristic with respect to Heuristic MPI-OPT, as follows:

mean(rsg(m))
mean (rsg(MPI-OPT)) "

ratio(m) = )
This ratio captures the extent to which the mean absolute gap (i.e., the revenue loss) created by
Heuristic MPI-OPT may be expected to be magnified if policy 7 is implemented instead. Thus,
we have ratio(m) > 1 if and only if policy 7 is on average worse than Heuristic MPI-OPT. An
analogous ratio is used with the arsg measure.

7.2 Results

Figure 1 exhibits two projections of the mean rsg(MPI-OPT) as function of the number of pro-
ducts I and the time horizon 7T'. The figure shows an excellent mean performance of heuristic
MPI-OPT well below 0.01%, and further suggests that such a performance can be expected even
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Figure 4. Performance ratio in terms of arsg of EDF-GRE over MPI-OPT.

for higher values of I and T'. These strong results are further confirmed in Figure 2 considering
the arsg measure.

The ratio of the benchmark Heuristic EDF-GRE is presented in Figure 3 and Figure 4. The
benchmark policy’s mean gap is in all cases more than 50-times larger than that of Heuristic
MPI-OPT, and the ratio grows with the number of items I. Further, in Figure 5 and Figure 6
we evaluate Heuristic MPI-GRE, whose mean performance is in all cases more than 10-times
worse, though improving with higher I once this passes the value 5.

Finally, we remark that the worst-case performance achieved by the maximum rsg (arsg)
values of Heuristic MPI-OPT are relatively small, ranging between 0.3% and 15% (4% and
14%). The maximum rsg (arsg) values of Heuristic MPI-GRE range between 1% and 8% (22%
and 72%), that is, its worst-case performance is good in absolute terms, but is especially bad in
the problems where promotion has small effect on total revenues. The worst-case performance
of Heuristic EDF-GRE ranges between 3% and 8% (51% and 100%).
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8 Conclusions

We have developed a dynamic and stochastic model of dynamic promotion and proposed a
policy that has a natural economic interpretation and suggests itself to be easily implementable
in practice. These advantages come at the cost of possible suboptimality of such a dynamic
solution, which was, however, shown to be negligible and smaller than the cost of implement-
ing a naive marketing solution. The model has an appealing property of being extensible to a
variety of ad-hoc requirements that managers or certain circumstances may impose.

A challenge showing itself is to extend the model presented in this paper to account for
price changes, inventories with dependent demands and product assortment, and obtain an
appealing index-based solution. The analysis of that problem is, however, more complex and
the theoretical background must be extended in order to tackle such problems.

Our model offers a comprehensive modeling framework that may be used in other applica-
tions, since the items considered in knapsack problems are often perishable, either naturally or
due to special restrictions. An application, for example, arises in surgery, when only a limited
number of patients may be chosen to undertake an alternative treatment (e.g., a transplanta-



tion). Further, the task management problem, in which tasks have associated deadlines and one
can work only on a subset of them at a time, also falls to the general KPPI setting.
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A Work-Reward Analysis

In order to prove Proposition 1, we describe some crucial points from the restless bandit frame-
work in more detail. For a survey on this methodology refer to Nifio-Mora (2007). Note that
any set . C .7 can represent a stationary policy, by being active in all the states belonging to
. and being passive in all the states belonging to .7 \ .. We will call such a policy an .*-active
policy, and . an active set. Note also that we can restrict our attention to stationary determin-
istic policies, since it is well-known from the MDP theory that there exists an optimal policy
which is stationary, deterministic, and independent of the initial state.

Let . C 7 be an active set. We can reformulate (3) as

t—1 t—1
. s S| S s S| s
;7 —ve? =B | pP) R —uEY Zﬁﬂmwﬁ)r (10)
s=0 s=0

where P] 7 s the probability of moving from state i € 2 to state j € 2" in exactly j — 4
1, ifses
0, ifs¢.”
call f;” the expected total discounted revenue under policy .7 if starting from state ¢, and we will
write it in a more convenient way as

periods under policy . and I #(s) is the indicator function [ (s) = { " We will

t
Zﬂt sPt S|/R£y(s)

s=1

7 =E 11)

Similarly, we will call g7 the expected total discounted promotion work under policy . if start-
ing from state ¢, and we will write it in a more convenient way as

Eéﬂ

Zﬁt Py, S'ywiy“)]. (12)

Let, further, (a,.”) be the policy which takes action a € ./ in the current time period and
adopts an .-active policy thereafter. For any state t € .7 and an .“-active policy, the (¢, .7)-
marginal revenue is defined as

= 10 1, (13)
and the (t, .”)-marginal promotion work as

: 1,7 0.7
w =g = g™, (14)

These marginal revenue and marginal promotion work capture the change in the expected total
discounted revenue and promotion work, respectively, which results from being active instead
of passive in the first time period and following the .”-active policy afterwards. Finally, if

7 # 0, we define the (t,.%)-marginal productivity rate as
5%
v/ =1 (15)

7
Wy



set %:: @;

for k:=0 to T'+1 do R
choose Tpy1 € {1 € T\ S vk > Z/ty’C forallt € 7\ 4 };
set Spi1:= 5@ U{7Tk+1};
set Up,, = VT{L;

end {for};

Figure 7. Adaptive-greedy algorithm for calculation of MPIs.

In order to verify that a perishable item satisfies PCL-indexability (which implies existence
of MPIs), we need to postulate a family .# of optimal active sets. We define it as a family of
nested sets .# := {7, .7, ..., 1}, where .}, := {1,2,..., k}. The following assumption must
be verified.

Assumption 2 (Positive Marginal Works). The marginal promotion work wy’ > 0 for all states
t € T under any .#-active policy from a feasible family of active sets F C 27.

If Assumption 2 holds and the quantities vy, ,, computed in the adaptive-greedy algorithm
presented in Figure 7 are nonincreasing in k, then the marginal productivity indices exist and
equal v} := 7, and .# contains an optimal active set for any v.

B Proof of Proposition 1

We next show that Assumption 2 holds and derive a closed-form expression for the MPI given
in Proposition 1. Plugging (11) and (12) into (13) and (14), respectively, we obtain two expres-
sions that will be used in the following analysis:

t—1
rf = (R}~ RY) — (Ba— Bp) Y B> 1P R, (16)
s=1
t—1 P
g —5— —s—1|. s
w = (W =WP) — (B — 6p) Y g P W wir©), (17)
s=1

It is well known from the MDP theory that the transition probability matrix for multiple
periods is obtained by multiplication of transition probability matrices for subperiods. Hence,
given an active set . C .7, we have

t—s

pt—sls — (P”‘V) 7 (18)

where the matrix P! is an (T+1) x (T'+1)-matrix constructed so that its row € 2 is the row
x of the matrix P17 if z € .#, and is the row z of the matrix P'? otherwise. For definiteness,
we remark that P° is an identity matrix.



Lemma 1. Let t € .7 and consider any integer 0 < k < T Then,

[ 1— (Bp)~!
R(qg — _ B3 \PE)
(q—p) _(1 5y T~ gp
+(1 = Ba) (ﬁp)t_l} : ifk>t—1>0,
He _ [ 1— (Bg)t+1
ry* =4 R(qg—p) _(1 - ﬁ)l—ﬂqk (19)
1—
+(1-p) (g L
+(1 = Ba) (Bg) (ﬁp)’“T, fr—1>t—1>k.
, W[l(ﬁqﬂp)l_(ﬁp)t_l 7 ifk>t—1>0,
S 1—0p 20
T S -84 (20)
W [1—(ﬁq—ﬁp)(ﬁq)t g 1}, fr—1>t—1>k.
1—pp
Proof. Under an active set .7, from (18) we getfor 7' >t —-1> s > 1,
7 P ifk>t—1>52>0,
Pﬁ:i;”y’“ =g ifT>t—1>s>k,
¢ T >t—1>k>s>0,

These expressions together with the definitions of Rf and W} plugged into (16)—(17) after sim-
plifying conclude the proof. 0

Lemma 2. For any integer k > 0 we have

i) w* > 0;
(i) w* > 0forallt € 7.

Proof. Denote by

B k
) = (30— ) @

so that, using (20), w}fk =W 1 - h(k)].

(i) For k = 0, we have h(0) = 0 by definition. For k > 1, h(k) = (1 — (ﬁp)k)ﬁlq:ﬁpp <L 0

(ii) Implied by (i) and (20). O

Lemma 3. In each step k = 0,1,...,T — 1 of the adaptive-greedy algorithm presented in Figure 7,
Assumption 2 is satisfied and the algorithm sets

_ k
N rla-p [0 -9 2+ (- o) (30
Te+1 = k+ 1 yk+1:{1,...,k+1}; ﬁk+1: 1—(ﬂp)k
w {1 - (Bg - 5P)W}




Proof. Consider the step k. Having Sy = {1,2,...,k}, fort € T\ Ty by Lemma 1 we have

=R [0 - P
=) (g L
+(1 - Ba) (Bg) " (Bp)*]
i = [1= (6= o) (g0 L]

where the positivity is due to Lemma 2 (which also holds for ¢ € Ti)s implying that Assump-
tion 2 is satisfied. Furthermore, then rf) * is nondecreasing and wf * is nonincreasing as t dimin-

ishes (i.e. as t gets closer to the deadline). Hence the maximum Vi/ *is attained att = £+ 1 and
the algorithm sets what is stated. 0

Lemma 3 is a crucial result in the proof of Proposition 1. It verifies that the family .% re-
quired in Assumption 2 is the family of nested active sets .# = {.%,.71,...,.%r}. Finally,
Proposition 2(iii) assures that the algorithm’s output 7; is nondecreasing as ¢ diminishes. This
concludes the proof of Proposition 1. O

C Proof of Proposition 2

(i) Immediate from (4). O
(ii) Formally, we are to prove the following statement: If the probability ¢ is replaced by ¢’ < ¢,
then v} < v for any t € 7. It is straightforward to see that (4) is nondecreasing in g. O

(iii) In order to see that the marginal productivity index is nondecreasing as ¢ diminishes, it is
enough to compare the MPIs for ¢t € .7 \{T'} and ¢t+1. Nifio-Mora (2007, p. 172) showed that
under positive marginal works, v/ > v/, is equivalent to ytyt“ > utff ', which is satisfied

as shown in the proof of Lemma 3. O

D Proof of Proposition 3

In order the set {r € .7 : v/ > vforallt € .7 suchthatt > 7} to be nonempty, due to
Proposition 2(iii) we need to have v} > v, that is, %(1 — Ba)(qg —p) > v. O

E Proof of Proposition 4

(i) The MPI for 8 = 1is given by the limit of the discounted MPI (4), if it exists. The limit exists
and is equal to the stated expression. 0
(ii) Straightforward from (4) after setting ¢ := 1 and 3 := 1. O



F Proof of Proposition 5

Under the above assumptions, all the products perish within one period, and promoting is
equivalent to avoiding the deadline cost. The problem thus reduces to a combinatory problem
of choosing a subset of items not to be promoted that minimizes the aggregate cost of not
promoted items while the remaining items do not occupy more than W. Since the aggregate
cost of all items is constant, this problem is equivalent to choosing a subset of items to be
promoted that maximizes the aggregate cost of promoted items while their aggregate volume
is not greater than W, which is the knapsack problem. O
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