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1. Introduction 

Accuracy seems a minimal requirement for a rigorous application of computa­
tional techniques, and an analysis of the approximation error is generally very 
useful for the optimal design and evaluation of alternative numerical procedures. 
The current literature, however, is not particularly helpful for making these critical 
comparisons. There are sorne standard, regular optimization problems in which 
discretized versions of the dynamic programming algorithm may yield arbitrarny 
accurate approximations. In such situations, and in the absence of closed-form 
solutions, a typical evaluation procedure is to compare the outcome of a com­
putational method against the solution of a discretized version of the dynamic 
programming algorithm. This is nevertheless a roundabout accuracy test, which 
is generally very costIy and in sorne cases becomes infeasible. We certainly need 
more operative methods for checking the accuracy properties of numerical solu­
tions and for evaluating the performance of competing algorithms. 

In this paper we derive sorne accuracy properties of numerical solutions based 
upon the size of the Euler equation residuals. If é > Ois the maximum size of the 
Euler equation residuals, then we show that the approximation error involved in 
a numerical solution is of the same order of magnitude, and correspondingly the 
approximation error of the value function generated by such a numerical solution 
is of order é 2 • Since these residuals can be easny computed [cf., Christiano and 
Fisher (1997), Judd (1992)], these asymptotic results should be useful to derive 
accuracy tests which are valid for any proposed algorithm. Furthermore, the con­
stants involved in our orders of convergence can be bounded from primitive data 
of the model, independentIy of the numerical solution. These constants depend 
on the discount factor and on the curvature of the return function. As is typical 
in theoretical results of this nature, these bounds are usually very conservative. 
Rence, at a later stage of this research we suggest sorne further practical ways to 
sharpen these error estimates. 

Our analysis is restricted to a stochastic model of economic growth in which 
every decentralized solution may be derived as the optimal program of a social 
planning problem. This study could in principIe be extended to alternative de­
centralized settings in which the equivalence between' competitive solutions and 
optimal allocations may break down, although one should bear in mind that strong 
concavity and interiority of the individual decision problem are key assumptions 
in all our results. 

2 

........_-_.._-------------..,....--------------------' ----------­



An early procedure for checking the accuracy of numerical solutions was pro­
posed by den Haan and Marcet (1994). Invoking standard statistical techniques 
these authors concoct a test for the orthogonality of the Euler equation residuals 
over current and past information, and consider that such a statistic provides an 
accuracy measure for a given numerical solution. The problem with this approach, 
however, is that orthogonal Euler equation residuals may be compatible with large 
deviations from the optimal policy; moreover, for a given numerical solution these 
residuals can be computed numerically at a relatively low cost without resorting 
to formal statistical techniques. 

Being aware of these criticisms, Judd (1992) suggested an alternative test that 
entails numerical computation of the Euler equation residuals over the whole state 
space. But from these computations, neither Judd nor den Haan and Marcet have 
attempted to infer the size of the approximation errors of the computed value and 
policy functions, without specific knowledge of the true functions. 

To understand the nature of this contribution, it may be helpful to provide the 
following illustration. For a given one-dimensional model, let é be the maximum 
absolute value of the Euler equation residuals, and let E be the corresponding 
value for the approximation error of the numerical solution. Suppose that both 

nvalues are related by the simple functional form, E = aé1
/ , where a and n are 

positive numbers, and for concreteness we let a = 1. Given our present computa­
tional abilities, machine precision imposes a sixteen-digit accuracy; consequently, 
let us assume that é > 10-16 , Now, if n = 1 then E would be of the same order of 
magnitude as é, but if n = 16, then E > 10-1. Note that E > 10-1 would mean 
in this case that there are deviations from the true policy which may be greater 
than ten percent, and this is not generally acceptable in economic applications. 
Hence, in this simple situation the Euler equation residuals could be the basis for 
good accuracy estimates only if n is a small number. Statements of the sort that 
E --? Oas é --? Owould not be useful to appraise the approximation error involved 
in a given numerical solution. 

The remaining sections proceed as follows. Section 2 introduces the model 
and sorne basic methods for characterizing optimal solutions. Section 3 is de­
voted to our main results. Section 4 presents sorne numerical experiments that 
illustrate the nature of our theoretical findings along with sorne other relevant 
implementational issues. Sorne concluding remarks follow in the final section. 
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2. The model and preliminary considerations 

We begin with a reduced form version of a standard stochastic model of eco­
nomic growth [cf., Brock and Mirman (1972), and Stokey and Lucas with Prescott 
(1989)]. Let (K, K) and (Z, Z) be measurable spaces, and let (K x Z, K x Z) be 
the product space. The set K contains aH possible values for the endogenous state 
variable, and Z is the set of possible values for the exogenous shock. The techno­
logical constraints are summarized by a given feasible set n e K x K x Z, which 
is the graph of a correspondence r : K x Z ~ K. The intertemporal objective is 
characterized by a return function v on n and a given discount factor O< (3 < 1. 

The exogenous random variable Z foHows a Markov process defined by a tran­
sition function Q on (Z, Z), which is assumed to be weakly continuous. It foHows 
that for each given Zo E Z one can define a probability measure Il/(ZO,·) on every 
t-fold product space (zt, zt) = (Z x Z xZ, Z x Z ... xZ) comprising aH 
partial histories of the form zt = (Zl' Z2, ,Zt). 

The optimization problem is to find a sequence ofmeasurable functions {1T't}:o, 
1T't : Zt-l ~ K, as a solution to . 

(ko, zo) fixed, 1T'o = ko, O< (3 < 1, t = 0,1,2, 

ASSUMPTION 1: The set K x Z e R/ X Rm is compacto The set n has non­
empty interior, and for each fixed Z the projection n z = {(k, k') I (k, k' , z) En} is 
convexo 

ASSUMPTION 2: The mapping v : n ~ R is bounded, continuous, and differ­
entiable of class 0 2 with bounded derivatives. Also, for all Z there exists some 
constant r¡ > O such that v(k, k', z) + ~ Ilk'11 2 is concave as a function on (k, k'). 

ASSUMPTION 3: For each interior point (ko, zo) in K x Z there exists an opti­
mal solution to (2.1) such that every realization {kt, zdt2:o has the property that 
(kt, kt+1 , Zt) E int(n) for each t 2:: 1. 
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These hypotheses are fairly standard. In Assumption 1, the condition that the 
set K x Z is compact has been adopted for analytical convenience, and such con­
dition becomes pertinent for computing optimal solutions. Using more involved 
arguments, our results could be extended to non-compact domains. For present 
purposes, a key postulate is a mild form of strong concavity of the return function 
v on the endogenous state variables (Assumption 2).1 AIso, excepting sorne simple 
unidimensional cases it seems difficult to relax the interiority of optimal solutions 
in Assumption 3. 

Under the foregoing regularity assumptions, one readily shows that the value 
function W(ko, zo), given in (2.1)' is weH defined and jointly continuous on K x Z. 
Moreover, for each fixed Zo the mapping W(·, zo) is concave, and satisfies the 
BeHman equation 

W(ko, zo) = max v(ko, k1, zo) + f3 r W(k1 , Zl)Q(ZO' dz1) (2.2)
kl }z 

The optimal value W(ko, zo) is attained at a unique point k1 given by the policy 
function k1 = g(ko, zo). Furthermore, {kt, Zt}t>o is an optimal solution to problem 
(2.1) if and only if it satisfies at aH times Bellman's equation (2.2). 

An alternative way to approach problem (2.1) is via classical variational meth­
ods. Thus, every optimal contingency plan {kt, ZtL>o must fulfil at aH times the 
system of Euler equations ­

where Djv(k, k', z) denotes the partial derivative of the function v with respect 
to the jth component variable, for j = 1,2,3. Likewise, under the aboye basic 
assumptions one readily shows that the set of optimal solutions is completely 
characterized by the system of Euler equations [cí. Benveniste and Scheinkman 
(1982)]. 

It foHows then that under quite general conditions a complete characterization 
of the set of optimal solutions can be achieved by either the methods of dynamic 
programming or by variational techniques. For this fundamental reason, these 
two analytical approaches have been the basic starting point for the design of 

1In Assumption 2, 11·11 denotes the Euclidean norm. For further discussion of this specific 
concavity assumption, see for instance Montrucchio (1987). 
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computational algorithms in dynamic economic models. Thus, there exists a 
family of methods that focus on the computation of the value and policy functions 
[e.g., Christiano (1990), Rust (1997), Santos and Vigo (1998), Tauchen (1990)], 
and a rival family of methods that seek to approximate the Euler equations [cí., 
Christiano and Fisher (1997), Judd (1992), Marcet (1~94), McGrattan (1996)]. 

The most reliable algorithms are those based upon the methodology of dy­
namic programming, since convergence to the fixed point W is guaranteed by the 
familiar method of successive approximations, and arbitrary levels of accuracy 
can be achieved by sufficientIy fine approximations of the functional space [cf., 
Santos and Vigo (1998)]. In contrast, algorithms approximating the Euler equa­
tions are less amenable to the derivation of error bounds or accuracy properties, 
and there is no operational iterative procedure that can insure global convergence. 
Although these latter algorithms may lack convergence to a desired solution, they 
are sometimes more practical. Rence, researchers are often faced with the basic 
problem of sorting out the most appropriate numerical procedure. 

3. Main results 

In order to evaluate the performance of competing algorithms, it becomes then 
imperative to have available accuracy tests that can be applied universally. As 
a step in this direction, we shall derive in this section sorne theoretical results 
on the accuracy of solutions based upon the size of the Euler equation residuals. 
To evaluate these findings, one should bear in mind that sharper error estimates 
are usually obtained at the expense of more stringent assumptions. Indeed, ap­
proximation errors may easily propagate in models displaying complex dynamic 
behavior. 

Taking into account these considerations, we first derive sorne accuracy results 
under a condition that limits the degree of divergence between the computed and 
optimal orbits. (As argued later, this condition seems appropriate for models 
featuring global convergence to a steady state or invariant distribution.) Then, 
we consider the more general case with no restrictions on the degree of divergence 
of the computed and optimal orbits; here, the obtained error estimates are more 
conservative, and so these bounds would not be operational for models with simple 
dynamics. There is, therefore, a clear trade-off pervading these accuracy results: 
More generality may be attained at the cost of rather loose error estimates. 

Let '9 be a measurable selection of the technological correspondence r. Define 
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W~ as9 

Wg(ko,zo) = f{3t r v(gt(ko,zo),gt+l(ko,zo),Zt)j.lt(zo,dzt)
 
t=O }zt
 

where gt(ko, zo) denotes the composite mapping g('9'( . .. , g(ko, zo), ...), Zt-2), Zt-¡) 
for each possible realization (Zl' Z2, ... ,Zt-¡). Let é > O. Assume that 

(3.1) 

for aH (ko, ZO).2 
The interpretation is that 9 is the computed policy function, and Wg is the 

resulting value function under the plan generated by g. Likewise, constant é > O 
is an upper bound for the Euler equation residuals generated by policy g. 

In our search for tight error estimates for models with simple dynamic behav­
ior, we now impose the foHowing condition that limits the degree of divergence 
between computed and optimal orbits. 
CONDITION NDIV: For all 8 > O and (ko, zo), there is H > O such that if 
119 - gil::; 8, then Ill- gt 11 ::; H8 for all t > 1. 
That is, the condition asserts that if both functions 9 and 9 are close to each 
other, then their orbits cannot be far aparto (In particular, if H = 1, then 
Ill(ko" zo,) - gt(ko,zo) 11 ::; 8 for aH t 2: 1.) For simple, deterministic models, the 
asymptotic behavior of these orbits is driven by the speed of convergence around 
the unique, stable steady state. The speed of convergence will provide us with an 
operational estimate for H. 

In the foHowing two lemmas, we shaH present sorne simple results relating the 
approximation errors of the value and policy functions. Then, using an iterative 
argument, Theorem 3.3 provides upper bounds for these approximations under 
conditions (3.1) and NDIV. 

LEMMA 3.1: Assume that conditions (3.1) andNDIV are satisfied. Let 119 - gil ::; 
8. Then, under Assumptions (1)-(3), we have IIW - Wgll ::; (l~~)é 

PROOF: For a given Zo, let {kth~o be the solution generated by function 9 and 
let {k;h~o be the optimal solution for ka = ko = ko. Then, 

2In the sequel, for acontinuous function g : KxZ -+ K, we let Ilgll = max(k,z)EKxZ Ilg(k, z)ll· 
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T 

W(ko,zo) - Wg(ko,zo) - }~¿,Bt r [v(k;,k;+I,Zt) -v(kt,kt+1,Zt)] ¡i(zo,dzt)
t=O } Zt 

T 

<	 lim '""",Bt r [DI v(kt,kt+1, Zt) . (k; - kt) + 
T-+ooLJ J2Zt=O t 

........... ...........	 ........... t
 
+D2v(kt, kt+1, Zt) . (k;+1 - kt+¡)]¡.t (ZO, dzt) 

<	 f ,Bt(H8c) = H8 é (3.2) 
t=O 1 - ,B 

Here, the first inequality follows from the concavity of v. Then, after rearrang­
ing terms and using the fact that ka = ko, the second inequality follows from 
conditions (3.1) and NDIV. 

LEMMA 3.2: Let E > O. Assume that IIW - Wgll ::; E. Then, under Assumptions 

(1)-(3), we have Ilg - gll::;;E 
1/2 

.(	 ) 

PROOF: Write f(k, k', z) = v(k, k', z) +,B fz W(k', z')Q(z, dz'). Let k* = g(k, z) 
and k = g(k, z). Then, since W(k, z) ;::: Wg(k, z), we get 

f(k, k*, z) - f(k, k, z) ::; E	 (3.3) 

11oreover, by virtue of the asserted concavity of v (Assumption 2), 

f(k, k*, z) - f(k, k, z) ;::: ~ Ilk* - 'k11 
2	 

(3.4) 

as D2f(k,k*,z) = O. Combining inequalities (3.3) and (3.4), we finally obtain 

Ilk* - kll ::; (;Er/ 2
. Since kand z are arbitrarily chosen vectors, we conclude 

that Ilg - gll::;;E 
1/2 

. 
THEOREM 3.3: Assume that conditions (3.1) and N DIV are satisfied. Then, un­
der Assumptions (1)-(3), we have IIW - Wgll ::; t) i~;)2é2 and Ilg - gil ::; t)(i~f3)é. 

This theorem is established in the Appendix. ~he corresponding error bounds 
are obtained as the fixed points from successive iterations of Lemmas 3.1 and 3.2. 
Observe that these bounds only depend on observable data of the model, and 
conditions (3.1) and NDIV. 

(	 ) 
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The applicability of the previous results is certainly limited by condition 
NDIV. This condition would not be satisfied around unstable steady states, since 
small deviations from the optimal policy may change drastically the asymptotic 
dynamics of the computed and optimal solutions (d. Figure 1). Indeed, in 
the present illustration for any initial condition ko in the interval (k*, k*) or­
bit {l(ko)}t>lconverges to k and orbit {gt(kO)}t>1 converges to Ji, and such limit 
points do not converge to each other as the computed function 9 gets closer to 
the optimal policy g. But even at an unstable steady state, if the computed and 
optimal policies are arbitrarily close to each other, then for any initial condition ko 
the corresponding orbits will initially remain close. Thus, for small Euler equation 
residuals, a more natural way to bound the distance 1/ k; - kt 11 for each t ~ 1 is 
by an iterated application of the mean-value theorem, invoking sorne asymptotic 
properties of the derivative of the policy function. 

Under the foregoing assumptions it is easy to show from the analysis of Santos 
and Vigo (1998) that the policy function is differentiable on K, and the asymp­
totic exponential growth of the derivative is bounded by JTJ. More precisely, let 

D1l (ko, zo) represent the derivative of the function 9 (g (... (g (ko, zo) ... ) Zt-2) Zt-l) 

with respect to ko for every possible realization (ZI' Z2, oo., Zt-l). Let 

(3.1 ) 

where Duv (ko, k1 , zo) is the second-order own partial derivative of v with respect
 
to ko, evaluated at the point (ko, k1 , zo)
 
PROPOSITION 3.4 [CF., SANTOS AND VIGO (1998)]: Under Assumptions (1)­

(3), the derivative function D1l (ko, zo) is well defined and continuous on K x Z.
 
Moreover,
 

2f j3t { IID1l+1 (ko, zo) 11 f-L (zo, dzt) ::; L (3.5) 
t=o }zt TJ 

In light of these considerations, we now establish the following resulto 
THEOREM 3.5: Assume that condition (3.1) is satisfied. Then, under assump­

2tions (1)-(3), we have 11M! - lVgll::; (1)~ 2 (b.) é and Ilg - 911 ::; 
TI Vi1-1 (1-v11) TI 

(L) 1/2
1

2
) ( ) - é for é > O small enough, 

TI ( ~-1 l-v11 TI 
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II 

The theorem is proven in the Appendix. Observe that again the approximation 
error of the policy function is of the same order of magnitude as the size of the 
Euler equation residuals E, and the approximation error of the value function is 
of order E2• AIso, the discount factor and the curvature of the return function are 
the only pertinent parameters involved in these orders of convergence. 

As in Lemma 3.1, the approximation error of the value function is in this case 
the discounted sum of current and future deviations from the true policy function 
times E [eí., (3.2)]. However, in Theorem 3.5 we consider an additional channel of 
infiuence of the discount factor /3, since the term Ilk; - ktll is now bounded by E 

times an estimate that depends on the derivatives of the policy function, and as 
asserted in Proposition 3.4, such derivatives have an exponential growth factor no 
greater than .n. Likewise, there are two possible channels in which parameter r¡ 
may affect the approximation errors of the computed value and policy functions. 
First, as in Lemma 3.2, for a given value E for the residuals, the approximation 
error of the policy function decreases with r¡. Second, as stated in Proposition 3.4 
the ratio k. limits the asymptotic growth of the derivative of the policy function. 

TI 
It should be observed that the bounds established in Theorem 3.5 hold for small 

E, whereas the bounds derived in Theorem 3.3 hold uniformly. However, this is a 
relatively minor difference, since for results of this nature the main problem is to 
bound the asymptotic rate of convergence of the approximation error. 
REMARK 3.6 (THE INVERSE DIRECTIüN): Note that if 119 - gil::; E, then under 
the postulated differentiability conditions on v it follows that there are constants 
M and N such that IIW - Wgll ::; ME2 and 

D2V (ko,g(ko, zo), zo) + /3l DIv(g(ko, zo), g2(ko, zo), z¡)Q(zo, dz I ) 11 ::; N E 

for all (ko, zo). The purpose of the present theorems is to establish the less triv­
ial, inverse direction: For small Euler equation residuals one can derive uniform 
bounds for the approximation error of the computed value and policy functions, 
without specific knowledge of their true values. In infinite horizon models an 
added analytical difficulty for results of this kind is that each Euler equation 
contains three different capital vectors and there is no terminal condition. 
REMARK 3.7 (THE FINITE DIMENSIONAL CASE): It may be instructive to redo 
this analysis for the finite dimensional case. For instance, let us assume that 
F : Rl ----+ R is a strongly concave, 0 2 mapping. Let 

x* = argmaxF(x) 
xERI 

10 



Then, the derivative 
DF(x*) = o 

Moreover, by virtue of the strong concavity of this function, 

IIDF(x)1I :::; e=> Ilx - x*11 :::; Me	 (3.6) 

where constant Mis inversely related to the curvature of F, and so this estimate 
can be chosen independently of e, for e small enough.3 In addition, concavity 
implies that 

F(x*) - F(x)	 < DF(x). (x* - x) 

< IIDF(x)lIl1x* - xii 
< Me2 

where the last inequality follows from (3.6). Therefore, in the finite dimensional 
case, if IIDF(x)11 :::; e, then there exists a constant M such that 

F(x*) - F(x) :::; Me2 and Ilx - x*11 :::; Me (3.7) 

Matters are not so simple in the infinite horizon model, since asymptotically 
discounting brings down the curvature to zero. Gn the other hand, the bounds in 
(3.7) are valid for the whole domain of optimal decisions, whereas the bounds in 
Theorems 3.3 and 3.5 build upon the recursive nature of the dynamic optimization 
problem, and only apply for the approximation errors of the value and P2licy 
functions. That is, these latter bounds hold for the computed solution k1 = 

g(ko, zo), but not for the entire orbit {¡h2:1. . 
3To prove (3.6), consider the function (x - x*) . DF(y), where the vector (x - x*) is heId 

fixed. Then, for y = x an application of the mean vaIue theorem yieIds 

(x - x*) . DF(x) = (x - x*) . DF(x*) + (x - x*) . D2 F(s) . (x - x*) 

for sorne vector s.	 Therefore 

Ilx - x*IIIIDF(x)11 ~ I(x - x*)· DF(x)1 ~ r¡ Ilx - x*11 2 

where r¡ is a Iower bound on the curvature of F. It follows that 

IIDF(x)11 ~ r¡ Ilx - x*11 

Consequently, IIDF(x)11 ::; e::::} Ilx - x*ll::; *c. 
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As one can observe from these arguments, interiority of optimal solutions 
and strong concavity of the objective are the most fundamental assumptions for 
establishing these results. The interiority assumption together with concavity 
allows us to characterize optimal solutions by the system of Euler equations. 
Likewise, the lower bound r¡ on the curvature of the return function v guarantees 
that the constants associated with these orders of convergence can be chosen 
independently of the optimization problem. Without such a uniform bound on the 
curvature of the return function, small Euler equation residuals are compatible 
with arbitrarily large deviations from both the true value and policy functions. 
This can be illustrated by the following simple example. 

EXAMPLE 3.8: Consider the family of parameterized unidimensional functions 
fr¡ : R ~ R, defined by fr¡(x) = _~X2, r¡ > O. Then, the maximum value is 
attained at X* = O, and for given e > Othe restriction on an approximate solution 
x is that I-r¡xl ~ c. Without loss of generality, let x = ~. Then, for fixed e we get 

that x ~ 00 as r¡ ~ O. Moreover, fr¡(x) = _~X2 = - ~~. Hence, fr¡(x) ~ -00 as 
r¡ ~ O. Consequently, even in the finite dimensional case it is necessary to control 
the curvature of the function in order to bound uniformly the approximation error 
for both the value and policy functions. 

Finally, we would like to close this section with sorne comments on our choice 
of metric for the approximation errors. In all our analysis, we have always con­
sidered the maximum of these values, and this is just the so called sup norm in 
the corresponding space of functions. This norm is the standard one in numerical 
analysis, and it seems natural in our case where there is not a specified prior 
distribution on the set of initial values (ko,zo). Furthermore, our most basic pre­
sumption is that a desired level of accuracy for the value and policy functions 
should be determined by the researcher guided by economic and analytical con­
siderations. (These considerations include a variety of issues such as sensitivity of 
the solution to variations in parameter values or initial conditions, computational 
and approximation errors, feasible range for calibrating the parameters, units of 
measurement for the chosen variables, measurement errors, sample variability of 
the analyzed variables, and importance of the economic issue under study.)4 Once 

4It has been widely recognized [e.g' l see the discussion in Cooley and Prescott (1995, p. 
35)] that testing the output of a computer simulation (or for that matter, selecting a desired 
accuracy level) is an issue with many dimensions to it. Hence, the desired accuracy level is 
bound to depend on the particularities of the issue under concern, and there is no hard-and-fast 
rule that will work weH in aH cases. 
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the appropriate accuracy level for the computed policy and value functions has 
been selected, in our case one can easily compute the constants involved in the 
orders of convergence so as to set an appropriate bound for the Euler equation 
residuals. Of course, the numerical algorithm must be formulated so as to conform 
with the tolerance level imposed on these residuals. 

Although we maintain that the desired level of accuracy is bound to depend 
on the situation under consideration, it may be worth pointing out that our ac­
curacy results are invariant to linear transformations (or measurement units) of 
the variables. Thus, for illustrative purposes, assume that 

Now, let us consider a linear transformation y = Ak, for A> O. Then, differenti­
ating with respect to y, it follows that 

if and only if 

11 D2v (k, k' , z) + (31DI V ( k' ,k" , z') Q (z, dz') 11 :S E. 

AIso, as it is to be expected, under the new measurement units, and using the 
corresponding bound :% for the residuals, the estimates for the approximation error 
IIW - Wgll in Theorems 3.3 and 3.5 remain unchanged, since the corresponding 
parameters concerning the curvature of the return function are in this case, :?' 
and ;2' Further, the estimate of the approximation error Ilg - gil for the policy 
function is now A times the previous one, which is consistent with the change of 
units. 

In conclusion, these simple calculations illustrate that after a change of mea­
surement units the same accuracy results are obtained by modifying accordingly 
the tolerance allowed for the Euler equation residuals. Similar considerations can 
be drawn for linear transformations of the objective function. 

4. N umerical experiments 

In this section we consider sorne numerical exercises in order to illustrate the 
behavior of the approximation error of the policy function in a simple growth 
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model. Although for our benchmark parameterizations the model does not fea­
ture an exact analytical solution, we shaH use a standard numerical procedure 
to estimate the evolution of the approximation error, and correspondingly the 
constants involved in the orders of convergence. In aH our numerical experiments 
these constants display a relatively stable behavior for our best convergence or­
ders. 

4.1. The growth model 

For simplicity, our numerical experiments are confined to the foHowing standard, 
one-sector growth model 

s. t. kt+1 AZtk~ + (1 - 7r)kt - Ct (4.1) 

log Zt+l - plogZt+ét 

ko and Zo fixed, t = 0,1, .... 

O< (3 < 1, A > O, O< a < 1, O:::; 7r :::; 1, O< P < 1, kt , Ct :::: O 

where Ea is the expectations operator at time O. 
In order to solve this model, we focus on the system of Euler equations 

C¡CT - (3Etct:l(aAzt+lk~;/ + (1- 7r)) = O for aH t :::: O (4.2) 

We shaH first consider a deterministic version of this simple growth model in 
which we fix the foHowing values 

a = 0.34 7r = 0.05 and Zt = 1 for aH t :::: O 

and we let parameters a and (3 vary across experiments. As explained below, 
in order to illustrate the sensitivity of our error estimates to variations in the 
curvature of the utility function, we select twoalternative steady-state values for 
consumption, c* = 0.3 and c* = 3.0, over three different values for a [d., Tables 
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1-2]. These steady-state values are obtained after adjusting suitably parameter 
A. Parameter {3 will be equal to 0.95 in all cases considered, except for Table 3 
where {3 = 0.99. And, all our computations will be restricted to the domain of 
capital values, k E [!k*, ~k*], where k* is the corresponding steady-state value for 
the deterministic model. 

4.2. The numerical algorithm 

Computation of the model solutions will follow a standard numerical procedure 
for approximating the Euler equation [cf., Christiano and Fisher (1997)]. As 
discussed in Marcet (1994), the idea here is to approximate the right-hand-side 
term on (4.2) by a polynomial function ~ (kt , Zt). Once function ~ has been 
computed, the optimal consumption policy 2 is obtained as 

2(k, z) = [\íf(k, z)t 1/0" (4.3) 

Then, the law of motion of capital g(k, z) can be derived from (4.1). Moreover, 
the Euler equation residuals are subsequently calculated as 

for each (ka, za) for k1 = g(ka,za). As already stressed, computation of the resid­
uals for a given finite sample of points is a relatively easy task, since it just 
entails functional evaluations. In our algorithm, function ~ belongs to the space 
of Chebyshev polynomials [cf. Judd (1992)]. Alternative numerical experiments 
were carried out with ~ in the space of piecewise-linear functions [cf., McGrattan 
(1996)] without substantial changes in our error estimates. (For our one-sector 
growth model, however, finer grids were needed under piecewise-linear interpola­
tions so as to achieve the same accuracy levels.) 

4.3. Error bounds for the computed policy function 

\Ve shall consider three alternative approaches for bounding the approximation 
error of the policy function. First, we calculate the worst-case errors derived in 
Theorem 3.5. These bounds are expected to be fairly pessimistic, since they do not 
take into account stability properties of our optimization problem. Then, from the 
above analysis we derive tighter error bounds using condition NDIV. This condi­
tion seems fairly appropriate for the present, globally convergent model. Likewise, 
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to have a further sense of these approximations we also present a numerical esti­
mation of these error bounds. 

(a) Worst-case error bounds: Prom Theorem 3.5 the approximation error of 
1 

the policy function is bounded by (1 )( ) (!=.) 2" c. For the benchmark 
1/ ~-l l-V/J 1/ 

parameterization reported in Table l(a), we have computed the values !=. and r¡
1/ 

for a thousand of equally spaced points in K, using for g(k) the value of the 
approximate solution g(k). We have considered from Prop. 3.4 that a good 
proxy for !=. is the maximum value of the ratio of the largest over the smaHest 

1/ 

eigenvalue of the matrix second-order derivatives D 2v evaluated at points (k, g(k)). 
Also, from the proof of Lemma 3.2 a good proxy for r¡ is the minimum absolute 
value of the second order derivative of the utility function over the computed 
solution with smaHest Euler equation residuals. Under these computations, we 

1 

obtain ~ (~) 2" = 2.4 x 10, and (*) tl-V/J) = 1.52 x 103 for j3 = 0.95. Hence, 
1 

(1 )( ) (!=.) 2" = 3.648 X 104 
• Likewise, for the calibrated values considered 

1/ ~-l l-V/J 1/ . 
1 

in Table 3(a) below with j3 = 0.99, we obtain (1 )( ) (!=.) 2" = 1.6 X 106
. 

1/ ~-l l-V/J 1/ 

Hence, for Euler equation residuals c ::: 10-10 , the approximation error of the 
policy function Ilg - gil::: 3 x 10-6 for j3 = 0.95, and Ilg - gil::: 10-4 for j3 = 0.99. 
Even though these theoretical estimates will turn out to be fairly conservative, 
aH these values can still be useful in sorne practical situations. Of course, these 
bounds depend on the calibrated parameter values. Thus, for the parameterization 
reported in Table 2(a), the preceding estimates would have to be factored by 102

, 

since the level of consumption is roughly 10 times higher. 
(b) Error bounds under the assumption of non-divergent orbits: The previous 

bounds are valid on a worst-case basis, and hence they are not expected to be 
tight in aH applications. Sharper estimates can be derived from further properties 
of the solution. For instance, in the present model there is global convergence to 
the unique steady state, k*.5 Invoking this property of global convergence in our 
method of proof [cf., Prop. 3.4], we get that IIg - gil :::; 1/(i!-f3)C, where constant M 

5Using information of the curvature of the utility function, Montrucchio (1995) has derived 
a lower bound §., such that for discount factors aboye this lower bound any multisectoral model 
would exhibit a global turnpike. 
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would depend on the speed of convergence to the steady-state solution. Rather 
than going through this estimate, we propose here an alternative derivation using 
condition NDIV. At the steady-state solution, constant H is determined by the 
stable root of the Euler equation. Thus, if 1 > Al > O is such a stable root, 
the difference between the steady states of the computed and optimal solutions is 
locally bounded by H = l~>'l' Then, let 

N ndiv = 2H (4.4)
1](1 - (3) 

be the upper bound derived in Theorem 3.3. To compute this error bound,6 we 
need to provide upper estimates for H and 1]. As already explained, we let H = 
1~>'1' where Al is the smallest root of the Euler equation evaluated at the steady­
state solution. Also, as in our previous computations in part (a) our estimate 
for 1] is the minimum absolute value of the second order derivative of the utility 
function over a thousand of equally spaced points k evaluated at the numerical 
solution with smallest Euler residuals. Using these estimates, we obtain that 
Nndiv = 5.79x 101 for the parameterization considered in Table l(a) with (3 = 0.95, 
and Nndiv = 4.28 X 102 for the parameterization considered in Table 3(a) with 
(3 = 0.99. These are therefore much sharper bounds than those derived in part 
(a). 

(c) Numerical error bounds: The aboye theoretical estimates are usually too 
conservative, since they are derived on a worst-case error basis. In order to have a 
better sense of these approximations, these bounds will be estimated numerically. 
Thus, one can view that a main implication of Theorems 3.3 and 3.5 is that the 
approximation error of the policy function is of the same order of magnitude as 
the size of the Euler equation residuals, and with this theory now available we 
can try to estimate the effective constant associated with the convergence order. 

8ince for our parameterizations the model does not feature a closed-form so­
lution, we shall follow a standard numerical procedure in order to estimate the 
approximation error and the constant involved in the convergence order. 7 To this 

6There are two main differences between the estimate in (4.4) derived in Theorem 3.3 and 
that in Theorem 3.5. First, the bound in (4.4) applies uniformly (Le., for aH é > O), whereas the 
bound in Theorem 3.5 is only valid for small é > O. Second, parameter r¡ in (4.4) comes from 
the proof of Lemma 3.2, and such curvature parameter is not exactly the same as that required 
in the proof of Prop. 3.4. In Lemma 3.2, parameter r¡ corresponds to the minimum curvature 
of the utility function over the optimal solution. 

7To the best of our knowledge this is the first application of this procedure for accuracy tests 
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end, we first consider as the true policy the solution g¡ obtained from a relatively 
fine approximation with arbitr~rily smal1 Euler equation residuals. Then, for any 
numerical solution, we derive Ng as 

--- Ilg(ko, zo) - g¡(ko, zo)11 (4.5)Ng = sup 
(ko,zo)EKxZ Eg(ko,zo) 

where Eg (ko,zo) =1- O is the value of the Euler equation residuals under 9 at the 
point (ko,zo), and Ilg(ko,zo) - g¡(ko,zo) 11 is the deviation of 9 from our estimate g¡ 
of the true policy at the given point. Of course, in order to obtain good estimates 
for N---g, it is crucial to have variability of the tolerance al10wed for the residuals 
Eg, and if for difIerent discretizations constant Ng settles down around a certain 
value N, one would be more confident to believe that this is the relevant constant 
for the computational problem at hand. For such a given N our estimate of the 
approximation error for g¡ would then be 

119 - g¡11 ::; NEg¡ 

where 9 is the true policy function and Eg¡ is the maximum size of the residuals 
under g¡. 

Tables 1(a)-(c) report the approximation errors and estimated constant Ng 
for several degrees of interpolation, for three difIerent values for a, for parameter­
izations of the deterministic version of the model with steady-state consumption, 
c* = 0.3. Tables 2(a)-(c) replicate the same numerical experiments for parame­
terizations of the model with steady-state consumption, c* = 3.0. In al1 these 
computations we also indicate the estimate Nndiv from part (b), along with its 
component values ~ and r¡(1~¡3)' (In these tables, the notation me + n means 
m x lOn and me - n means m x lO-n.) 

There are several useful points to be drawn from these exercises. First, the 
residuals are arbitrarily small (in sorne cases, with values close to 10-10), and 
so are the estimated errors for the policy function. 8 Second, assuming linear 

using the Euler equation residuals, but similar approaches have been adopted in other numerical 
experiments; for instance, see Bona and Santos (1997, p. 266) and Kahaner et al. (1989, Ch. 
5). 

sIn each of these exercises constant Ng was derived by considering a solution g- whose Euler 
equation residuals are at least 10 times smaller than any of the values for the residuals reported 
in each tableo In sorne cases, we also compared the estimates Ng with those obtained from a 
solution ?JI of a sufficiently accurate dynamic programming algorithm, and the results remained 
basically unchanged. 
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~nvergence for the policy function [cf. (4.5)] as in Theorems 3.3 and 3.5, constant 
Ng settles down as we refine the interpolations. Third, as it is to be expected, 
constant N --g becomes smaHer as we increase the curvature of the utility function 
[cf., Tables 1 and 2]. Indeed, in aH these experiments parameter value r¡ seems to 
be the main driving force for the estimate Ng, and remarkably the rule of thumb, 
Ng ~ 1 x 10, appears to be of sorne practical use; furthermore, r¡(l~f3) is a tight 
upper bound. Observe that for e < 1 parameter r¡ increases with (J', whereas for 
e > 1 parameter r¡ may decrease with (J'. AH these changes are refiected accordingly 
in our numerical experiments in Tables 1 and 2, with steady-state consumption 
c* = 0.3 and c* = 3.0, respectively.9 

These calculations seem to suggest that our estimate H = 1-.!->'1 from part (b) 
is not tight enough in the deterministic version of the model. In order to trace out 
the separate effects of (3 and H in Nndiv, we have considered a further increase 
in the discount factor and the introduction of uncertainty. Thus, in Tables 3(a)­
(b), we report the same numerical experiment for Chebyshev interpolation, with 
(J' = 1 and {3 = 0.99 (a higher discount factor) for parameterizations of the model 
with c* = 0.3 and c* = 3.0. The increase in the discount factor changes slightly 
the speed of convergence, Al, and has a direct effect on the term l~f3 in (4.4). 

Indeed, foHowing (4.4) we should expect constant Ng to experience a five-fold 
1 

increase, since ~ = 5. This increase, however, is not refiected in the actual 
1-0.95 

estimations of Ng. Part of the problem is that an increase in {3 leads to a further 
adjustment of parameter r¡ (for high capital values an increase in (3 fosters savings 
and consequently raises r¡) and to further changes in the domain due to a shift in 
the steady state value k*. 

FinaHy, in Tables 4 and 5 we replicate the computational experiment for the 
original stochastic growth model with uncertainty. In our first experiment, et is 
an U.d. process, with mean equal to O and standard deviation equal to 0.008. 
This random process et is coming from a normal distribution, where the domain 
has been restricted to e E [-0.032,0.032], and the density function has been 
appropriately rescaled in order to get a cumulative mass equal to unity. (Observe 

9Table 2(c) seems to be the only case where actual estimate Ng is greater than Nndiv. This 
calibration of the model is where .a takes on the highest value. Hence, in this case the Euler 

ry ~ 

equation residuals are less accurate, and correspondingly the estimate Ng may be subject to a 
non-negligible approximation error. 
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that the end-points of the domain are four standard deviations away from the 
mean.) AIso, we let p = 0.9, and restrict the domain of feasible values to k E 

[~k*, ~k*] and Z E [exp(-.32), exp(.32)], where k* is the deterministic steady state. 
The introduction of stochastic variable Z does not affect the curvature of the 

optimization problem, but it may infiuence the degree of convergence of the orbits 
{gt(ko, zO)}t>o and {gt(ko, zO)}t>o' In this case, however, the stochastic innovation 
has a small variance, and consequently it is expected that the final effect on the 
aboye estimates will be rather small. lO As shown in Tables 4(a)-(b), constant 
Hg is of the same order of magnitude as that in Tables 1(a)-2(a). Of course, the 
degree of convergence of the orbits {l (ko,zo) }t>O and {gt (ko,zo) }t>O may change 
substantially with further increases in the variañce of the innovatioñ process. Ta­
bIes 5(a)-(b) replicate the aboye numerical experiments for the case with p = 0.95 
and al; = 0.08. For such a relatively large value of the variance of the stationary 
distribution of z, we just observe a two-fold increase in constant Hg. This is in fact 

the only case where the constant Hg is greater than the estimate r¡(1~(3)' and cor­
respondingly it becomes pertinent to take into account the convergence properties 
of the orbits. Here, constant Nndiv becomes a much tighter upper bound. 

In summary, these computations illustrate that the curvature of the return 
function and, to a lesser extent, the discount factor are the main determinants for 
the accuracy of the Euler equation residuals. Moreover, condition NDIV seems 
fairly appropriate for the present model, and from comparisons in Tables 1 to 
5 it appears that the estimate H = 1-\1 (where Al is the stable root of the 
Euler equation at the stationary solution) is not a tight upper bound, even for 
relatively high values of the variance of the stochastic innovation. Of comse, these 
error estimates may faíl to apply for further extensions of the model, such as the 
existence of taxes, externalities, or other frictions to the economy. 

4.4. A comparison with other accuracy tests 

It may be worth discussing the present analysis as compared to alternative accu­
racy checks proposed in the literature. One can certainly argue that the aboye 
theoretical bounds (cí., Theorem 3.5) are not sufficiently tight. However, this 
state of affairs is going to prevaíl for any other derivation of error bounds on a 

lOIn the stochastic model, there is an additional error stemming from the evaluation of the 
integral. In order to keep this error negligible, we have used very fine partitions for carrying out 
the integrations. 
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worst-case basis [cí., Santos and Vigo (1998)]. Theoretical error bounds inform 
us of the order of convergence-and may be applied in a particularly important 
computation or to settle sorne controversial key issue- but these bounds become 
inoperative when one is interested in sampling the whole parameter space. In 
situations when one needs to compute the model over a wide range of parameter 
values, it becomes essential to use more operational procedures. The present pa­
per illustrates that one can sharpen these error estimates by making use of certain 
appropriate assumptions (e.g., condition NDIV for globally convergent models), 
or by estimating these errors numerically. These latter procedures are easy to 
implement, and seem more reliable than sorne other simple alternative methods 
to be discussed presently. 

One widely used strategy is to test the algorithm against a particular case 
where the model displays an analytical solution, or against the outcome of a more 
reliable algorithm. The problem with this approach is that for alternative para­
meterizations the approximation error of the computed value and policy functions 
may change substantially, and correspondingly this initial test may become inef­
fective. As shown in the preceding examples, changes in the curvature of the 
utility function and in the discount factor may affect considerably the accuracy 
of the algorithm. These changes in parameter values are indeed accounted for in 
the accuracy tests proposed in parts (b) and (c) aboye, which consider specific 
information of the solutions. 

Another commonly employed stopping rule is to fix a tolerance level E > O 
for the error obtained after successive approximate solutions. For instance, the 
algorithm may be instructed to stop when IIWn - Wn+111 < E, where Wn and 
Wn+1are the functions obtained at iterations n and n + 1, respectively. If the 
algorithm is generated by a contractive operator with modulus j3 and W is the true 
solution, then it is well known that the approximation error IIW - Wnll :s 1~/3' 

But if the algorithm does not satisfy the contraction property, then we cannot 
infer the magnitude ofthe error IIW - Wnll from these differences from successive 
approximations. In other words, this simple stopping rule seems useful only if it 
is possible to pin down the speed of convergence of the algorithm. 

Finally, we should also refer to the aforementioned work of den Haan and 
Marcet (1994) and Judd (1992). These authors were the first to advocate for the 
use of the Euler equation residuals as diagnostic tests for the accuracy of numerical 
solutions, but they faíl torelate these measures to the approximation errors of the 
value and policy functions. Judd (1992) further argues that the residuals should 
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be error free. Error-free measures are particularly convenient and informative 
in sorne situations, but one should realize that such simple rules cannot yield 
a complete account of the accuracy of the residuals, since accuracy depends on 
the curvature of the utility function, the discount factor, and on further possible 
features of the economy such as the existence of taxes and externalities. 

5. Caneluding remarks 

In this paper we have shown that the approximation error of the policy function is 
of the same order of magnitude as the Euler equation residuals, and correspond­
ingly the approximation error of the value function exhibits a quadratic order of 
convergence. These asymptotic results are the best possible, since these are the 
orders of convergence observed in the finite-dimensional case. In our dynamic 
model the method of proof is more convoluted, and involves the search for a fixed 
point from successive iterations of the approximation errors of the value and policy 
funetions. 

The constants obtained in these error bounds only depend on the curvature 
of the return function and on the discount factor. (Uncertainty plays an indirect 
role in the actual estimates, since the existence of random shocks does affect the 
law of motion and convergence properties of both optimal and computed paths.) 
These findings provide theoretical foundations for the construction of tests that 
can assess the accuracy of numerical solutions. For the one-sector neoclassical 
growth model, we have presented an analysis of the evolution of the error using 
both worst-case error and numerical estimates. In both cases, our accuracy tests 
can be cheaply implemented, and appear to be much more effective than other 
indirect, alternative procedures currently used in the literature. 

As in many other approximation results, the main tools of our analysis come 
from differentiable calculus. Thus, the max norm provides an operational notion 
of distance for the theoretical study. For choosing an appropriate accuracy level in 
particular applications, it may be more informative to express the error in relative 
values or in sorne other unit-free measure or elasticity, and these values can be 
readily derived from our previous estimates. In our view, however, derivation 
of unit-free measures is not essential for appraising the accuracy of the Euler 
equation residuals. Indeed, as this paper illustrates, a more valuable aspect is to 
understand how the asserted measurement units will affect the estimates involved 
in the accuracy tests. Besides, unit-free measures for the residuals fail to capture 
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the effects of key deterrninants of accuracy of solutions such as the curvature of 
the return function or the discount factor, or other features of the econorny not 
considered in this paper such as the existence of taxes or externalities. 
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Appendix 
This apperidix is devoted to the proofs of Theorems 3.3 and 3.5. The proof 

of Theorem 3.3 follows from a repeated application of Lemmas 3.1 and 3.2. The 
same argument is then applied to prove Theorem 3.5, once the corresponding 
analogue of Lemma 3.1 is established for the more general situation contemplated 
in this theorem. 
PROOF OF THEOREM 3.3: Let 'Y = diam(K). Then, by a simple modification of 
the proof of Lemma 3.1 we can get IIW - Wgll ~ ~c; moreover, by Lemma 3.2 

1/2
1 2we obtain 119 - :911 ~ Toc / , where To = ( 11(¡2,B) ) . Then, again by Lemma 3.1 

it follows that IIW - Wgll ~ (f!,~)C3/2. Also, a further application of Lemma 3.2 
1/2 

yields that 119 - :911 ~ T1c3
/ 
4 for TI = ( l1~f!~) ) . 

Now, with the new estimate for TI we can derive 

_ ( 2HT1 ) 1/2
T2 ­

7](1 - (3) 

And after a repeated application of this same argument we deduce that 

(6.1) 

where 
1/2

T = 2HTn _ 1 
n (6.2)

( 7](1 - (3) ) 

for To given aboye. 
Observe that the sequence Tn converges to the fixed point 

T = ( 2HT ) 1/2 (6.3)
7](1 - (3) 

Hence, 
T= 2H 

7](1 - (3) 

From (6.1)-(6.3) we may then conclude that 

2H 
119 - :911 ~ 7](1 _ (3) c 
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Moreover, by Lemma 3.1 

It remains now to prove Theorem 3.5. In order to apply the previous argument, 
we first need to extend Lemma 3.1 to the more general case contemplated in the 
theorem. 
LEMMA A.1: Assume that condition (3.1) is satisfied. Let 119 - gil:::; 8 for 8 > O. 

1/2 
Then, under Assumptions (1)-(3), we have IIW - Wgll :::; (1) ( b ) 8c

'711-1 (1-vi1l r¡ 

for sufficiently small 8. 
PROOF: As in the proof of Lemma 3.1, observe that 

T 

IIW(ko,zo) - Wg(ko,zo)11 < )~L13t lzt [D1v (kt,kt+1,zt)' (k; - kt) 
t=O 

+ D2v (kt,kt+1,Zt) . (k;+1 - kt+1)] ¡..tt (zo, dzt) 
T 

< )~~ L 13t lzt é 11 k;+1 - kt+111 ¡..tt (zo, dzt) (6.4) 
t=O 

We now bound the terms Ilk; - ktll in (6.4) for 8> Osufficiently small. Thus, 

(a) For t = 1, we have 

(6.5) 

(b) For t = 2, we get 

13lz Ilk~ - k211 ¡..t (zo, dz1) - 13lz 119 (k;, Z1) - g(k1,Z1) 11 ¡..t (zo, dz1) 

< 13lz (119(k;,z1) - 9 (k1,Z1) 11 

+ 11 9 (k1,Z1) -g(k1,Z1)11) ¡..t(zo,dz1) 
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< ~ (1z IIDg (k~, z¡) . (k~ - k1) 1111 (ZO, dz¡) + 8) 
< ~ (1z IIDg (k~, Zl) 11 811 (zo, dz¡) + 8) 
< {3 [1+ (~r] 8 (6.6) 

Here, the first and third inequalities follow from well known properties of the 
integral and the norm. The second inequality follows fram the mean value the­
orem and part (a). (In this inequality we have evaluated the derivative at the 
optimal point (kr, Zl), and for present purposes, this later estimate entails no loss 
of generality since 8 is considered to be sufficiently small.) And, the last inequality 
follows from Prop. 3.4. Now, using the same arguments 

(c) For t = 3 we obtain 

~21z2 II k; - k31111 (zo, dZ2) ~ ~21z21Ig(k~, Z2) - g(k2,z2)III1(zo, dZ2) 

< ~21z2 (1Ig(k~, Z2) - g(k2,Z2) 11 + Ilg(k2,Z2) - g(k2,Z2) 11) l1(zo, di2) 

< ~2 [IzJIDg(k;, Z2) . (k; - k2)1111(zo, dZ2) + 8] (6.7) 

Then, as in part (b) we can write the term k2-
~ 

k2 as 

k;-k2 = g(k~,Zl)-g(kl,Z¡)+g(kl,Z¡)-g(kl,Zl) 

~ Dg(k~, Zl) . (k~ - k¡) +g(k1 , Zl) - g(k1 , Zl) (6.8) 

Now, plugging in (6.8) into (6.7), and making use of Praposition 3.4, it follows 
that 

(3' L1lk;-k3111'(zo, dz') < {3' [1+ (~ r (1+ )¡,)] 8 
< {3'[1+(~r(~~11)]8 (6.9) 
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Finally, 

(d) For an arbitrary t ~ 4, an extension of these arguments yields 

..... 
We remark that the previous bounds apply for kt sufficient1y close to k;, i.e. for 
Ó small enough. 

Without loss of generality, we assume that f3 > 1/4 and (~r/2 > 1. Then, 

the infinite sum of terms (6.4)-(6.6) and (6.9)-(6.10), for all t, is bounded by 

1 (L) 1/2 
- Óé (6.11)

(v1J -1) (1- v71) 7] 

This is the bound asserted in the lemma. However, in order to complete this 
proof, we need to establish that (6.11) holds for sufficiently small Ó > O. For 
the sake of brevity, our arguments for proving this rather technical point will be 
restricted to the case of no uncertainty (Le., to the case where functions W and 
9 only depend on state variable k). This method of proof can be extended to 
our stochastic framework, and such a proof entails repeated use of Chebyshev's 
inequality.ll 

Since the derívative Dg(k, z) is continuous over the compact set K x Z, this 
functíon must be uniformly continuous. Then for every E > O, there ís a > O 

such that if 11 (k, z) - (k, z) 11 < a, it must hold that IIDg(k, z) - Dg(k, z) 11 < E. 
For fixed a > O, choose T and ÓT such that 

(6.12) 

11 For any non-negative measurable function f : Z ---+ R, and any constant a > 0, Chebyshev's 
inequality asserts that P[e E Z : f(e) ~ al :::; ~ J f(e)¡.¡,(de). 
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Hence, by (6.10) we have that Ilk; -ktll ::; a for all O::; t ::; T. Since Ilk; - ktll ::; 
'"'f, for '"'f =diam (K), it follows from (6.4) and (6.11) that for sufficiently small a 

1 (3T '"'f(L) 1/2
IIW(ko, zo) - Wg(ko, zo)11 ::; () - . 8T é + ~(3 (6.13)

J¡;-l (1-v7J) 1] -

Thus, in order to establish the lemma, it remains to show that the remainder term 

eJin (6.13) vanishes as 8T goes to O (and T goes to 00). That is, ~ converges 
to zero as 8T - O. However, this follows immediately from (6.12). 

Finally, the method of proof of Theorem 3.3 can now be applied mutatis mutan­
dis to substantiate Theorem 3.5, once the upper bound in Lemma 3.1 is replaced 
by that in Lemma Al. 
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é~ NndivVertex points N-:-
2 2 

9 9 ;¡ ;j(1-t3)
 

3 5.5311e-05 1.3735 0.2824 5.6485 5.7957e+Ol
 
4 2.2548e-06 2.4819 0.2824 5.6485 5.7957e+Ol
 
5 3.5750e-07 3.8452 0.2824 5.6485 5.7957e+Ol
 
6 2.8974e-08 1.1331 0.2824 5.6485 5.7957e+Ol
 

Table l(a).- Steady-state consumptlOn c* = 0.3; Parameter values: {3 = 0.95 
and (J = 1. 

2 2 NndivVertex points N~é~
9 9 ;; 11(1-8) 

3 1.004ge-03 2.3148e-02 2.4664e-03 4.932ge-02 1.1944 
4 4.9691e-05 1.0533e-02 2.4664e-03 4.9329e-02 1.1944 
5 6.4451e-06 5.8136e-02 2.4664e-03 4.9329e-02 1.1944 
6 1.2084e-06 2.0356e-02 2.4664e-03 4.9329e-02 1.1944 

Table l(b).- Steady-state consumptlOn c* = 0.3; Parameter values: {3 = 0.95 
and (J = 4. 

2 2 NndivVertex points N~ ;¡é~
9 9 ñTl-8) 

3 4.9980e+Ol 1.5394e-05 1.1967e-06 2.3934e-05 1.1184e-03 
4 4.2533 7.6553e-06 1.1967e-06 2.3934e-05 1.1184e-03 
5 0.3928 2.5241e-05 1.1967e-06 2.3934e-05 1.1184e-03 
6 8.2850e-03 4.3287e-08 1.1967e-06 2.3934e-05 1.1184e-03 

Table l(c).- Steady-state consumption c* = 0.3; Parameter values: {3 = 0.95 
and (J = 10. 

Vertex points é- N~ 1 2 
9 9 'TI mI-PI 

3 4.1292e-06 1.1518e+02 2.4966e+Ol 4.9932e+02 5.1234e+03 
4 1.7309e-07 2.0058e+02 2.4966e+Ol 4.9932e+02 5.1234e+03 
5 2.4044e-08 1.0950e+03 2.4966e+Ol 4.9932e+02 5.1234e+03 
6 1.6817e-09 1.5300e+02 2.4966e+01 4.9932e+02 5.1234e+03 

Table 2(a).- Steady-state consumption c* = 3.0; Parameter values: {3 = 0.95 
and (J = 1. 
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é~ 
2 2 NndivVertex points N~ ;:¡9 9 71(1-8) 

3 3.0586e-04 6.7501e+03 2.530ge+02 5.061ge+03 1.2256e+05 
4 4.9240e-04 5.7024e+03 2.530ge+02 5.061ge+03 1.2256e+05 
5 2.158ge-03 8.091ge+03 2.530ge+02 5.061ge+03 1.2256e+05 
6 2.0085e-04 1.515ge+03 2.530ge+02 5.061ge+03 1.2256e+05 

Table 2(b).- Steady-state consumption c* = 3.0; Parameter values: (3 = 0.95 
and (J' = 4. 

2 NndivVertex points é~ N~ l 
9 9 71 1íT1...::6l 

3 1.6661e-08 9.1585e+05 8.5087e+04 1.7ü17e+06 7.9521e+ü7 
4 2.8803e-1O 5.6024e+05 8.5087e+04 1.7017e+06 7.9521e+07 
5 2.5645e-11 5.2188e+06 8.5087e+04 1.7017e+06 7.9521e+07 
6 1.4276e-13 5.9703e+08 8.5087e+04 1.7017e+06 7.9521e+07 

Table 2(c).- Steady-state consumptlOn c* = 3.0; Parameter values: (3 = 0.95 
and (J' = 10. 

2 2 Nndiv
é~Vertex points N~ ;:¡

I 9 9 71(1-8) 

3 1.3676e-04 3.8760 0.2718 2.7181e+01 4.2804e+02 
4 4.2590e-06 1.7074 0.2718 2.7181e+01 4.2804e+02 
5 5.0893e-07 2.8132 0.2718 2.7181e+01 4.2804e+02 
6 1.1294e-07 3.4914 0.2718 2.7181e+01 4.2804e+02 

Table 3(a).- Steady-state consumptlOn c* = 0.3; Parameter values: (3 = 0.99 
and (J' = 1. 

2 2 Nndiv
é~ N~Vertex points ;:¡9 9 71(1-8) 

3 6.9633e-06 3.4096e+02 2.758ge+01 2.758ge+03 4.3447e+04 
4 2.3065e-07 1.959ge+02 2.758ge+01 2.758ge+03 4.3447e+04 
5 1.1238e-08 1.7596e+02 2.758ge+01 2.758ge+03 4.3447e+04 
6 6.1241e-09 2.9434e+02 2.758ge+01 2.758ge+03 4.3447e+04 

Table 3(b).- Steady-state consumptlOn c* = 3.0; Parameter values: (3 = 0.99 
and (J' = 1. 
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Vertex points é~
9 

N~
9 

2 2 Nndiv 
'Ti n7J.-=Bi 

2x2 1.6479e-02 6.1995 3.9458e-01 7.8917 8.0941e+01 
3x2 1.3916e-02 1.4615 3.9458e-01 7.8917 8.0941e+01 
3x3 1.0534e-04 1.5700 3.9458e-01 7.8917 8.0941e+01 

Table 4(a).- Steady-state consumptlOn c* = 0.3; Parameter values: (3 = 0.95, 
p = 0.9, eJe = 0.008 and eJ = 1. 

Vertex points é-9 N-9 
2 2 Nndiv 
'Ti ;;TI-13) 

2x2 1.6900e-03 2.2786e+03 3.9128e+01 7.8256e+02 8.0263e+03 
3x2 1,4258e-03 1.4584e+02 3.9128e+01 7.8256e+02 8.0263e+03 
3x3 5.3793e-05 1.3812e+02 3.9128e+01 7.8256e+02 8.0263e+03 

Table 4(b).- Steady-state consumptlOn c* = 3.0; Parameter values: (3 = 0.95, 
p = 0.9, eJe = 0.008 and eJ = 1. 

Vertex points N- 2 2 Nndivé~
9 9 ;¡ ;;TI-S) 

2x2 0.3752 1.7154e+02 5.7151 1.1430e+02 1.1723e+03 
3x3 7.9374e-03 1.3625e+02 5.7151 1.1430e+02 1ó1723e+03 
5x3 1.0500e-03 2,4192e+01 5.7151 1.1430e+02 1.1723e+03 

Table 5(a).- Steady-state consumptlOn c* = 0.3; Parameter values: (3 = 0.95, 
p = 0.95, eJe = 0.08 and eJ = 1. 

2 2 NndivVertex points N~ 
'Ti

é~
9 9 ñ71-13) 

2x2 3.1858e-02 2.2786e+03 2,4117e+02 4.8234e+03 1.154ge+05 
3x2 3.1858e-02 1,4584e+02 2,4117e+02 4.8234e+03 1.154ge+05 
3x3 1.1737e-04 7.2293e+03 2,4117e+02 4.8234e+03 1.154ge+05 

Table 5(b).- Steady-state consumptlOn c* = 3.0; Parameter values: {3 = 0.95, 
p = 0.95, eJe = 0.08 and eJ = 1. 
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Figure 1 - Divergence of computed and optimal orbits. Condition 
NDIV fails to hold at the unstable steady state k-. 
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