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1. Introduction 

In this paper we present instrumental variable estimators of 

panel data models with predetermined variables subject to a symmetric 

normalization rule of the coefficients of the endogenous variables. We 

also evaluate the performance of these techniques for first-order 

autoregressive models with individual effects by mean of simulations. 

Lastly, an empirical illustration is provided. 

This work is motivated by a concern with the biases of ordinary 

IV estimators when the instruments are poor. A linear panel data model 

wl th predetermined variables, typically estlmated by IV techniques, 

takes the form 

E(Lly - Llx' <5 z .. z ) = O, (t=1, .. ,T; i=1, .. ,N).
i t i t 11 i t 

This formulation includes vector autoregressions and linear Euler 

equations. The specification of the equation error in first­

differences reflects the fact that the analysis is conditional on an 

unobservable individual effect. Since the number of instruments 

increases with T, the model generates many overidentifying 

restrictions even for moderate values of T. However, often the quality 

of the instruments is poor given that it is usually difficult to 

predict variables in first differences on the basis of past values of 

other variables. 

The weaker the correlation of the instruments with the endogenous 

variables, the smaller the amount of information on the structural 

parameters for a given sample size. However, as it is well documented 

in the literature on the finite sample properties of simultaneous 
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equations estimators, the way in which this situation is reflected in 

the distributions of 2SLS and LIML differs substantially, despite the 

fact that both estimators have the same asymptotic distribution. While 

the distribution of LIML is centred at the parameter value, 2SLS is 

biased towards OLS, and in the completely unidentified case converges 

to a random variable with the OLS probabili ty limit as its central 

value. On the other hand, LIML has no finite moments regardless of the 

sample size, and as a consequence its distribution has thicker tails 

than that of 2SLS and a higher probability of extreme values (see 

Phlllips (1983) for a good survey of the literature). As a result of 

numerical comparisons of the two distributions involving median-bias, 

interquartile ranges and rates of approach to normali ty, Anderson, 

Kunitomo and Sawa (1982) conclude that LIML is to be strongly 

preferred to 2SLS, particularly if the number of outside lnstruments 

is large. Similar conclusions emerge from the results of asymptotic 

approximations based on an increasing number of instruments as the 

sample size tends to lnfini ty; under these sequences, LIML is a 

conslstent estimator but 2SLS is inconslstent (cf. Kunitomo (1980), 

Morimune (1983) ando more recently, Bekker (1994)).1 (In our contexto 

these approximations would amount to allowlng T to increase to 

inflnlty at a chosen rate as opposed to the standard flxed T, large N 

asymptotics. ) 

Despite this favourable evidence. LIML has not been used as much 

in applications as instrumental variables estimators. In the past, 

LIML was at a disadvantage relative to 2SLS on computational grounds. 

More fundamentally, applied econometric1ans have often regarded 2SLS 

as a more "flexible" choice than LIML from the point of vlew of the 
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restrictions they were will1ng to impose on their models. In effect, 

the IV techniques used for a panel data model wi th predetermined 

instruments are not standard 2SLS estimators, since the model gives 

rise to a system of equations (one for each time period) wi th a 

different number of instruments available for each equation. Moreover, 

concern with heteroskedasticity has lead to consider alternative GMM 

estimators that use as weighting matrix more robust estimators of the 

variances and covariances of the orthogonal1 ty condi tions (following 

the work of Chamberlain (1982), Hansen (1982) and White (1982)). 

In a recent paper, Hillier (1990) shows that the alternative 

normalization rules adopted by LIML and 2SLS are at the root of their 

different sampling behaviour. Indeed, Hill1er shows that the 

symmetrically normalized 2SLS estimator (SN-2SLS) has essentially 

similar properties to those of the LIML estimator. This result, which 

motivates our focus on symmetrically normalized estimation, is 

interesting because SN-2SLS, unlike LIML, is a GMM estimator based on 

structural form orthogonality conditions and therefore it can be 

readily extended to the nonstandard IV situations that are of interest 

in panel data models wi th predetermined variables, while relying on 

standard GMM asymptotic theory. 

To illustrate the situation, let us consider a simple structural 

equation with a single endogenous explanatory variable and a matrix of 

instruments Z: 

y = (3x + u (1.1) 

Letting y and x be the OLS fitted values from the reduced form 
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.equations 

y = Zn + v 
1 

(1. 2)
X = Zr + v 

2 

the 2SLS est1mator of ~ 1s g1ven by 

" = Cov(x:y ) Cov(x,y) 
== A~2SLS 

Var(x) COV(X,X) 

which is not invariant to normal1zation except 1n the just-identified 

case. That 15, it differs from the indirect 2SLS estimator: 

..." = Var(y) Cov(y.y)
~I2SLS " Cov(y,x) Cov{y,x) 

On the other hand, the SN-2SLS estimator is given by the orthogonal 

regression of Y on x, which is invariant to normalization: 

" ... 

= Cov(x,y) Var(y)-I\.
== -----;:~-~SN ... " 

Var(x)-I\. Cov(y,x) 

The stat1stic 1\. is the minimum eigenvalue of the covariance matrix of 

y and x. 

The three estimators have the same first-order asymptotic 

distribution, but satisfy the inequality 
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Moreover, ~SN can be written as 

COy (x+~ y, y)
SN 

~SN= A " " 

Cov(x+~ y.x)
SN 

Therefore. 2SLS, I2SLS and SN can al! be interpreted as simple IV 

estimators that use as instruments x,y and x + ~ y. respectively.
SN 

Symmetrically normalized 2SLS can also be given a straightforward 

interpretation as a GMM or minimum distance estimator. which 

highlights its relation to LIML. Indeed, both SN-2SLS and LIML are 

least-squares estimators of the reduced form (1.2) imposing the over­

identifying restrictions n=~r. Let us define 

(~ .1 ) = argmin [y-zr~l' (V-1®I) [y-zr~l
v v x-Zr x-Zr 

~.r 

Concentrating r out of the LS criterion we obtain 

~v = argmin 

~ 


It turns out that LIML is -~ with V equal to the reduced form 
v 

residual covariance matrix while SN-2SLS is ~v wi th V equal to an 
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identity matrix (cf. Malinvaud (1970), Goldberger and Olkin (1971) and 

Keller (1975», so that both LIML and SN-2SLS solve minimum eigenvalue 

problems. In particular, SN-2SLS is a GMM estimator based on the unit­

length orthogonality conditions 

Notice that in spite of V being a matrix scaling factor, the 

asymptotic distributlon of ~ does not depend on the choice of V. This 
v 

,.. 
is so because optimal MD estimators of ~ based on (n-1~,1-1) and on 

,.. 
(n-1~) are asymptotically equivalent, due to the fact that the 

limi ting distribution of opt1mal MD 1s invar1ant to transformations 

and to the add1tion of unrestricted moments. 

The paper is organized as follows. Section 2 begins with a 

formulation of the SN-2SLS estimator and its relation to 2SLS and LIML 

in the general context of a linear structural equation. Next, we 

present two-step SN-GMM estimators and test statistics of over­

identifying restrictions for panel data models with predetermined 

instruments. Section 3 studies the finite sample properties of SN-GMM 

estimates in relation to ordinary GMM. minimum distance and pseudo 

maximum likelihood estimators for various versions of the first-order 

autoregress1ve model with individual effects. The objective is not to 

assess the value of enforcing particular restrictions in the model, 

but rather to evaluate the effects in small samples, by mean of 

simulations, of using alternative asymptotically equlvalent estimators 

for fixed T and large N. Section 4 re-estimates the employment 
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equations for a sample of UK firms reported by Arellano and Bond 

(1991) using symmetrically normalized and indirect GMM estimators. 

This section further illustrates the techniques by presenting SN-GMM 

estimates and bootstrap confidence lntervals of employment and wage 

vector autoregresslons from a larger panel of Spanlsh flrms. Flnally, 

Section 5 contalns the conclusions of the paper. 

2. The Symmetrically Normalized Instrumental-Variable Estimator 

Preliminaries 

We begin this section by providing explicit express10ns for 2SLS, 

LIML and symmetrically normalized 2SLS estimators in order to 

highlight the algebraic and statistical connections among the three 

statistics. 

Let us cons1der a standard linear structural equation 

y = y ~ + z o + u =Xo + u. (2.1 )
1 2 1 

Also let Y=(y ,Y ) be the nx(l+p) matrix of observations of the
1 2 

endogenous variables, and let Z=(Z ,Z) be the nxk matr1x of 
1 2 

1nstruments, where Z is nxk ,Z 1s nxk , and k ~p.
1 1 2 2 2 

The two-stage least squares (2SLS) estimator of o 1s given by 

o = argmin a'W'MWa (2.2)
2SLS o 

wlth W=(Y,Z), M=ZeZ'Z)-lZ' and a=(l.-~· ,-o')'. An expression for the 
1 

partition of o is given by
2SLS 
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= argmin b'Y' (M-M )Yb = [Y' (M-M )Y ]-ly ' (M-M )y
(32SLS 2 1 2 2 1 1(3 1 

with b=(1, -(3' )' and M =Z (Z' Z) -1Z'. 
1 1 1 1 1 

Similarly, the LIML estimator is given by 


a'W'MWa
(3 = argmin " = [X' (M-i(I-M)/n)X]-IX' (M-i(I-M)/n)y (2.3)
LIML 1(3 b'Qb 

where A=min eigen[Y' (M-M )YQ"-1 ] and Q=Y' (I-M)Y/n, which can be
1 

partitioned in accordance with Y as 

A 

Notice that A~O. Equally, 

b' Y' (M-M )Yb 
= argmin __~,,_1__ = [Y' (M-M )Y -ic ]-1 [Y' (M-M )y -i~ ]

(3LIML (3 b' Qb 2 1 2 22 2 1 1 21 

We define the orthogonal or symmetrically normalized 2SLS 

estimator (SN-2SLS) to be (see Keller (1975) and Hillier (1990»: 
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• • •• 

• • 

a'W'M'Wa 

° = argmin ----;;-¡-;-- (2.4)
SNM 

° 
Let Wa =Yb +2 c =u denote equation (2.1) without imposing a 

1 

•normal1zatlon rule. With the normal1zatlon used by 2SLS a =a, while 

with a symmetric normalization of the coefficients of the endogenous 

variables a• =O+{3' (3) -1/2a. Thus 0SNM is the minimizer of a'• W' M'Wa• 

subject to b 'b =1. 

Minimizing the criterion (2.4) with respect to r we obtain a 

concentrated criterion that only depends on {3. This gives us: 

b' Y' (M-M )Yb
1 = argmin ----Cb'""'''b-- = [y; (M-M )Y - ~Il-1y; (M-M )Y1

1 2 1
{3 

= (2'2 )-12, (y -y ~ )
1 1 1 1 2 SNM 

where A=min eigen[Y' (M-M )Yl. Notice that also A=min(a'W'M'Wa)/b'b and 
1 

that A~O. Equivalently, 

(2.5) 

where ~ = [~ ~l. 
A 

In the just identified case, 2' (y -Xo )=0 which min1mizes the 
1 2SLS 

three criteria, so that A=A=O, with the result that 2SLS, LIML and SN­

2SLS coincide. 

Both 0LIML and 0SNM are invariant to norma11zation while 02SLS is 

noto 2 That is, if the equation 1s solved for an endogenous variable 

other than Y1' contrary to the case with 2SLS, the indirect estimates 
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obtained from o or o coincide wi th .the direct SNM' or LIML
SNM LIML 

estimates, respectively.3 

The LIML estlmator can be regarded as a minimum distance or 

generallzed nonlinear least squares estlmator based on the reduced 

form (see Malinvaud (1970) and Goldberger and Olkin (1971)). 

Similarly, the SN-2SLS estimator can be viewed as an ordinary 

nonlinear least squares estimator. To see this, let the reduced form 

of Y be 

y = ZTI' + V. (2.6) 

In view of the partition in Y, the (l+p)xk matrix of reduced form 

coefficients can be partitioned as TI'={n , TI;). In addition, given the 
1 

structural equation we have 

n~ = ~'TI2 + (o' ,0' ) (2.7) 

so that TI is a function of ~, o and TI • We can consider NLS estimators 
2 

of o and TI that solve
2 

(o TI ) - argmin tr[V-1 (Y-ZTI' )' (Y-ZTl' )] (2.8)NLS' 2,NLS ­

for particular choices of V. This class of estimators was proposed by 

Keller (1975). Since TI is not of direct interest we can obtain a 
2 

concentrated NLS criterion that only depends on o, which gives 0NLS as 

the solutlon to 
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a'W'MWa es = argmin b' Vb . (2.9)
NLS 

Clearly, LIML is es 
NLS 

with V=O whlle SN-2SLS is es
NLS 

with V=I. 

The choice of V, provided it is assumed to be bounded in probability 
... 

or a nonstochastic matrix, leaves the asymptotic distribution of es 
NLS 

unaffected and equal to that of the 2SLS estimator. This result is 

similar to the one that establishes the equivalence between 2SLS and 

3SLS in a system in which there is only one overidentified structural 

equation. 

Symmetrically normalized estimators are attractive alternatives 

to 2SLS on at least three grounds. Firstly, they tend to have a 

smaller finite sample bias than the 2SLS estimators. Hillier (1990) 

shows that for the normal case with p=l SN-2SLS and LIML are 

"spherically unbiased" in finite sainples. 4 However, 2SLS does not have 

this property. 

Secondly, the concentration of the densities of the symmetrically 

normalized estimators depends on the quality of the instruments. In 

the completely unidentified case, as shown by Hillier, these 

estimators have a uniform distribution on the unit circle. This is in 

contrast with 2SLS which converges to the same llmlt as OLS and whose 

distribution is determined exclusively by the normalization adopted. 

When the instruments are poor, as well as when the number of 

instruments is large relative to the sample size, 2SLS tends to 

provide results that are biased in the direction of OLS and also large 

discrepancies between "direct" and "indirect" 2SLS when using 

different normalizations. This situation has been stressed in a number 

of recent papers (Bekker (1994), Bound, Jaeger and Baker (1995», 
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Staiger and stock (1994) and Angrist and Krueger (1995) amongst 

others). In contrast, with poor instruments the distributions of LIML 

and SN-2SLS accurately reproduce the fact that the information on the 

structural parameters is very small. 

Thirdly, they are invariant to normalization. SN-2SLS shares 

these properties in common with LIML; however, one further advantage 

of SN-2SLS in relation to LIML, is that it is a generalized method of 

moments estimator based on structural form moment conditions and 

therefore it can be easily extended to distribution free environments 

and robust statlstlcs. In particular, i t is well sui ted for 

application to nonstandard instrumental-variable problems such as 

those that arise in the context of dynamic and error-in-variables 

models for panel data. 

As the previous discussion reveals, both LIML and SN-2SLS are GMM 

estimators of o solved jointly with TI and based on the vector of the 
2 

reduced form orthogonality conditions: 

(2.10) 

where TI is a function of o and TI (both GMM estimators use a weighting
2 

matrix of the form (V®Z' Z) -1 wi th v=o. " for LIML and V=I for SN-2SLS). 

However, SN-2SLS is also a GMM estimator of o based on the structural 

form orthogonality conditions: 

(2.11) 
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(In the last two expressions, z, y, y and Xl refer to the i-th 
1 1 11 

rows of 2, Y, Y1 and X respectively.) 

There is one disadvantage, however, of SN-2SLS relative to the 

other estimators.< In general, the results are not independent of the 

units in which the variables are measured, so that a sensible choice 

of the units of scale may be of sorne importance. 5 

One further useful perspective on SN-2SLS can be obtained by 

regarding it as a simple IV estimator. The statistic h can be written 

as 

" 
h = y~ (M-M ) (Yl-XoSNM)

1 

Substituting this express ion in the formula for the estimator we 

obtain 

(2.12) 

where 

" 
2 = X + (M-M1)Y1o~NMd 

which reduces to Z=X+y o' if all the variables in X are endogenous.
1 SNM 

Remark that for 2SLS we have Z = X, and more generally for the j-th 

indirect 2SLS estimator obtained by normalizing to unity the 

coefficient on the j-th column of Y, we have 2=W(j) , where W(j) 
"­

coincides w1th W=(Y. 2 
1 

) except for the j-th column of Y which is 

omitted. 
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Models lor Panel Data 

We consider a model with individual effects for panel data given 

by 

= x' Ó + U (t=1 •...• T; i=1 •...• N) (2.13)1t lt 

u = 1) + v 
1t lIt 

The model specifies sequential moment conditions of the form 

E(vlt I (2.14) 

were z;=(zl~ '" zl~)' is a vector of instrumental variables. 

Thus. this setting is sufficiently general to cover models with 

strictly exogenous. predetermined and endogenous explanatory 

variables. We assume that 

i=1 •... N} is a random sample (iid) of size N. 

Estimation will be based on a sequence of orthogonality 

conditions of the form 

(t=1 •...• T-1) (2.15) 

where starred variables denote forward differences or orthogonal 

deviations of the original variables (e.g. y;t=Yl(t+1)-Ylt)' 

It is convenient to rewrite the transformed model in the form 

y. = X·ó + u· 
1 1 1 
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• • • where y -(y )' etc1- 11 Y1 (T-1) , • 

The mx1 parameter vector o 1s usually est1mated by GMM lead1ng to 

est1mators of the form (see Holtz-Eak1n, Newey and Rosen (1988), 

Arellano and Bond (1991), Chamberla1n (1992), Arellano and Bover 

(1995), and Ahn and Schmidt (1995) amongst others): 

(2.16) 

where y.=(y.. ' ... y.')', X·=(X·' ... X·')' and 2=(2i ... 2N)'. 21 1s a (T­
1 N 1 N 

t1 )xq block diagonal matrix whose t-th block is Z1' and AN 1s chosen 

such that it is a consistent estimate of the inverse of E(2'u·u·'2 J. 
I I 1 1 

The standard robust choice is 

AN = (~ 2'u·u·'2 )-1
L.1 I I 1 1 

where u· is a vector of residuals evaluated using some preliminary
1 

consistent estimate of o. Under very general regularity conditions 

.fN'(5GHH-O) is asymptotically normal as N~ and T is fixed, and a 

consistent estimator of the asymptotic variance of o is g1ven by 
GHH 

(X·'2 A 2' X·)-l (2.17)
N 

Moreover, the Sargan or GMM statistic of overident1fylng 

restrlctlons is glven by 

s = u·, 2 A 2' u· ~ i 
N q-m 
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" where u". = y.- X·á .
GHH 

Turning to symmetrically normalized GMM (SNM) estimators of á, 

let us consider a partition of X·=(X· X·) and a corresponding
l' 2 

parti tion of á=(á' á')' distinguishing between non-exogenous and
l' 2 

exogenous variables, such that the m columns of X· are linear 
2 2 

combinations of those of Z while the m columns of X· are noto 
1 1 

SNM is the GMM estimator of á based on the orthogonality 

conditions 

Z' (y·-X ·á -X ·á ) 1 
E 1/1(1.1 ,á) = E 1 1 11 1 21 2 = O (2.18)

1 [ (1+á'á )1/2 
1 1 

Since E[I/1(w ,á)I/1'(w ,á)] = E(Z'u·u·'Z )/(l+á'á )=A l(l+á'á ) A1 1 1111 11 N 11' N 

remains an optimal weighting matrix for the SNM estimator. Therefore, 

(y·-X·á)'M·(y·-X·á)
á = argmin (l+á'á ) (2.19)SNH 

á 1 1 

where M· = ZA Z'. Following our earlier discussion we obtain 
N 

d'W·' (M·-M·)W·d
1 1 2 1 1á = argmin (2.20)lSNH d'd 

1 1á 1 

(2.21) 

where W· = (y. X·) d = (1 -á')' and M· = M·X·(X·'M·X·)-lX·'M·. So 
1 '1' 1 '1 2 2222 

that 
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= [X·' (M·-M·)X· - AIl-1 X·, (M·-M·)y· (2.22)
1 2 1 1 2 

wi th A = min eigen[W·' (M·-M·)W·]. A compact expression for o is 
. 1 2 1 SNH 

given by 

o = (X·'M·X· - AÓ)-l X·'M·y· (2.23)
SNH 

A A 

Since O and O areasymptotically equivalent, Vado ) is
GMM SNM GMH 

also a consistent estímate of the asymptotic varlance of O
SNH 

A A 

However, an alternatíve natural estímator of Vado ), suggested by
SNM 

theexpresslon above, is 

A " 

Vareo ) = (X·'M·X· - AÓ)-l (2.24)
SNM 

Moreover, since A is a minlmized optimal GMM crlterion it can be used 

as an alternative test statistic of overidentifying restrictions. We 

have the result 

(1 + o' o )A ~ -l (2.25)
lSNM lSNM q-m 

which 1s asymptotically equivalent to the Sargan test. 

The ex1sting evidence from Monte CarIo experiments and empirical 

analysis point in the direct10n that, even for moderately large cross­
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sectional sample sizes, ordinary GMM estimates and their standard 

errors can be worryingly biased when the instruments are poor. This is 

typically the case in the context of autoregressive models with 

individual effects when the roots are close to unity or the 

contribution of the permanent effect to the total variance is high. If 

the desirable fini te sample properties of symmetrical1y normalized 

estimators apply to these environments, o , Var(o ) and A could 
SNK SNM 

provide a useful alternative to estimation and testing. 

3. Experimental Comparisons with Alternative Estimators for First 

Order Autoregressions with Random Effects 

The purpose of this section is to study the finite sample 

properties of the symmetrically normalized GMM estimators in relation 

to ordinary GMM for varIous versions of the first-order autoregressive 

model with Individual effects. The IV restrictions implled by these 

models can also be represented as simple structures on the covariance 

matrix of the data, and so we can also make comparisons with minimum 

distance and pseudo maximum likelihood estImators of these covariance 

structures. The emphasis is not in assessing the value of enforcing 

particular restrIctions in the model, as done for example by Ahn and 

Schmidt (1995) and Arellano and Bover (1995) for quadratic and 

stationarity restrictions, respectively. Rather, we wish to evaluate 

the effects in small samples of usIng alternative estimatIng criteria 

that produce asymptotically equivalent estimators for fixed T and 

large N. However, since we present results for three different sets of 

moment restrictions, we shall also be able to make some comparisons 
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across models. We concentra te on a random effects AR(l) model because 

of its simplicity and the fact that it is a case that has received a 

great deal of attention in the literature. 

Hodels and Estimators 

Let us consider a random sample of individual time-series of size 

T Y:=(Yl1, , .. 'Y1T)' (1=1"" ,N) with second-order moment matrix 

E(//' )=Q={w }. We assume that the joint distribution of /1 and the 
1 1 ts 

unobservable time-invariant effect satisfies the following 

assumption: 

Assumption A 

Ylt = l' + "Y + 'V> + V (t=2, ... , T) (3.1)
1(t-1) "1 lt 

(3.2) 

Notice that since equation (3.1) includes a constant term, it is 

not restrictive to assume that 11 has zero mean. However, in general
1 

TE(11 IYT 
) will be a function of Y ' Moreover, the dependence between 11 

1 1 1 1 

and v is not restricted by Assumption A. Another remark is that 
lt 

Assumption A does not rule out the possibility of conditional 

heteroskedasticity, since E(v~tly~-1) need not coincide with ~~. 

Following Arellano and Bond (1991), Assumption A implies (T-2)(T­

1)/2 linear moment restrictions of the form 
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(3.3) 

These restrictions can also be represented as constraints on the 

elements of n. Multiplying (3.1) by Yls for s<t, and taking 

expectations gives: 

w =aw +c (t=2, ... Ti s=l, ... ,t-l) (3.4)
ts (t-l)s s 

where e =E[y (r+ij )]. This means that, given Assumption A, the 
s 1s 1 

T(T+l)/2 different elements of n can be writ ten as functions of the 

2Txl parameter vector 

We call this moment structure Model 1. Since the moment restrictions 

in (3.3) are linear in a, they can be used as the basis for a linear 

GMM estimator of the type discussed in the previous section. 

The orthogonality conditions (3.3) are the only restrictions 

implied by Assumption A on the second-order moments of the data. 7 In 

particular, wi th T=3 the parameters (a, e ,e ) are just-identified as
1 2 

functions of the elements of n. 

Model 1 is attractive because it is based on minimal assumptions. 

However, we may be wllling to impose addi tional structure if this 

conforms to a priori bellefs. One possibility is to assume that the 

errors vare mean independent of the individual effect ij given
lt 1 

Ylt-l . This situation gives rise to Assumption B. 
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Assumption B 

(3.5) 

Note that Assumption B is more restrictive than Assumption A. When 

T~4, Assumption B implies the following additional T-3 moment 

restrictions 

In effect, we can write 

E [ (y - 'Y - exy - ) (lIy - exlly )] = O'n 
1t a 1 (t-l) "1 Ut-l) Ut-2) 

and since E[('1+r¡ )lIv ]=0 the result follows. GMM estimators of ex 
1 1 (t-l) 

that exploi t these restrictions inaddi tion to those in (3.3) have 

been considered by Ahn and Schmidt (1995). An alternative 

representation of the restrictions in (3.6) is in terms of a recursion 

of the coefficients c introduced in (3.5). Multiplying (3.1) by
t 


('1+r¡ ) and taking expectations gives:

1 

(t=2, ... ,T) (3.7) 

where 4>=l+0'2=E[('1+r¡ )2], so that c ... c can be written in terms of r¡ 1 1 T-1 

C and 4>. This gives rise to Model 2 in which Q depends on the (T+3)x1
1 

parameter vector 
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Notice that with T=3 Assumption B does not imply further restrictions 

in O with the result that a remains just identified relat1ve to the 

second-order moments. 

other forms of addit10nal structure that can be imposed are 

various versions of mean or variance stationarity condit10ns. 

Assumpt10n C. wh1ch requires the change in y
lt 

to be mean independent 

of the individual effect 
T/ 1 • 

1s a particularly useful mean 

stationarity condition. 

Assumption e 

(t=2 •...• T) (3.8) 

Notice that in combination with Assumption B. Assumption e 

1mplies 

= r + aE(y IT/) + T/
1t-l 1 1 

so that if E(Ylt lT/l) 1s constant it must be the case that 

(r+T/ )/(1-0:) (3.9)
1 

and E (y 1t ) =r/ (1-0:) . 

Relative to Assumption A and Model 1. Assumption e adds the 

following (T-2) moment restrictions on o: 
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(t=3, ... ,T) (3.10) 

whieh were proposed by Arellano and Bover (1995), who developed a 

linear GMM estimator of a on the basis of (3.3) and (3.10).8 However, 

relative to Model 2, Assumption e only adds one moment restrietion 

whieh can be written as 

(3.11) 

In terms of the parameters e , the implieation of Assumption e is that 
t. 

e = ... =e if we move from Model 1, or that e =</>/(1-a) if we move 
1 T-l 1 

from Model 2. This gives rise to Model 3 in whieh Q depends on the 

(T+2)x1 parameter vector 

Notiee that with T=3, a 1s overidentified under Assumption C. 

The basie speeifieation can be restrieted further in various 

ways. For example, we could consider time series homoskedasticity of 

the form E(v2 
)=0"2 for t=2, ... , T and stationari ty of the varianee of 

lt. 

the initial eonditions. The eombination of these assumptions with 

Models 2 or 3 would give rise to additional models, some of which have 

been discussed in detail in the paper by Ahn and Sehmidt (1995). 

However, in the simulations we eoncentrate in Models 1, 2 and 3 

beeause they embody the restrietions that have been found most useful 

in applieations. 
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If .E(I/J (yT ,ex) ]=0 denotes the vector of orthogonality conditions 
j 1 

available for Model j (j=l,2,3), the symmetrically normalized 

estimators that we consider are the optimal GMM estimators based on 

the restrictions E(I/J (y ,ex)/(1+ex2)1/2]=O, For example, the SNM 
j 1 

estimator of ex for Model 1 is given by 

b' A b 
1 N o ex = ----= (3.12)

SNM,1 
b' A b - A 

1 N 1 

-1~ -1r: - ­where b =N Lo Z'!J.y A =(N Z' !J.v bv' Z ) -1 
o 1=1 1 1 ' N 1=1 1 1 1 1 ' 

A=min eigen(B'A B), !J.y =(by ., ,by)' ,
N 1 13 lT 

by (1-1) = (!J.y12' , .!J.yi(T-l»' and ZI is a (T-Z)x(T-Z) (T-1)/2 block 

sdiagonal matrix whose sth block is given by Yl' 

All three models can also be estimated by minimum distance (MD) 

or by pseudo maximurn likelihood (PML) on the basis of the rnatrix of 

A -1~ T T
sarnple second-order rnornents Q=N L. Y Y " and the representations as 

1=1 1 1 

covariance structures discussed aboye, 

Optimal MD estirnators minimize a criterion of the form 

(3.13) 

where 

A 

mes) = vech[Q - Q(8)] = w - w(8) 

and 

v = N-1~ W w' - ww' 
N Ll=1 1 1 
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T T ~ ~ 

with w1=vech(Y1Yl') and w=vech(O). 

These estimators have the same asymptotlc d1str1butlon as the 

correspond1ng GMM and SNM est1mators. To see this for Model 1, not1ce 

that 

~ 

=H(a)[w-w(S)]
1 

where H1 (a) 1s a (T-l)(T-2)/2 x T(T+l)/2 seIection matrix that depends 

on a. H (a) eIiminates (2T-l) moments which depend on the 2T 
1 

parameters contained in S. Taking into account that the limiting 

distribution of optimal MD estimators is invariant to transformations 

and to the addi tion of unrestricted moments, the asymptotic 

equivaIence between GMM and MD follows. 

Turning to PML estimators, one possibiI1ty, and the one that we 

simuIate, is to minimize the criterion 

(3.14) 

subject to 0(8»0. 9 The first-order conditions for this PMLE are given 

by: 

where K is a 0-1 matr1x such that K vech(O)=vec(O). It turns out that 

this PMLE 1s asymptotically equivaIent to the MD est1mator that uses 

~-1 ~-1
K' (Q ®O )K as the welghting matrix. Under our Monte CarIo deslgn 
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A_1 A_1 -1 
plim[K' (Q ®Q )K-V ] = O. However, in other environments, such as 

N 

non-normal or noncentred data, this PMLE would be strictly less 

efficient asymptotically that the optimal MDE. 

An alternative PMLE which is always asymptotically equivalent to 

the opt1mal MDE, minimizes 

c·Ce) = log detCN-l~ [w - wCe)] [w - wCe)]') (3.15) 
m 1=1 1 1 

S1nce the minimizer of c·Ce) is equivalent to the iterated MD and it 
m 

can be expected to be very similar to the MO, 1t was not included in 

the simulations. 

Monte Carlo Results 

We are particularly interested to analyze the behaviour of the 

estimators in relat10n w1th the quality of the instruments. In Model 1 

the quality of the instruments basically depends on the values of ex 

2 2and r=O' 
r¡

/0' . To illustrate the situation. notice that under 

stat10narity the correlat1on between ~y and y 15 g1ven by 
t-l t-2 

p = - C1 - ex) [2 C1 - ex + C1 + ex) r ) ] -112 

which produces the values 

p ex =0.5 ex = 0.8 

r = O -0.50 -0.32 

r = 0.2 -0.39 -0.19 

r = 1 -0.25 -0.10 
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For this reason, we exclude from the simulations models w1th small 

values of ex, which can be expected to perform relatlvely well. We 

consider cases with ex=0.5, 0.8, ~ 
2 =0, 0.2, 1, T=4, 7 and N=100. The 
1) 

variance of the random error ~2 is kept equal to unity for all cases. 

For each experiment we generated 1000 samples of N independent 

observatlons of (y , .... , y ) from the process
11 iT 

Y =exy +"" +v (t=2, ... ,T)
1t 1 (t-l) "1 it 

with v = (v •.... v )' - N(O.1) and 1) - N(O.~
2 ) independent of v . 

1 11 iT i 1) 1 

Table 1 reports sample medians, percentage biases, interquartile 

ranges and median absolute errors for pseudo maximum likelihood (ML), 

minimum distance (MO). two-step GMM and symmetrically normalized two­

1. 10step GMM (SNM) estimators for Model The weighting matrices of GMM 

and SNM are based on optimal one-step GMM residuals as described in 

Arellano and Bond (1991). In almost every case, SNM is the estimator 

with the smallest bias and the largest dispersion. When ~2=0 all 
1) 

estimators perform very well. although ML and MO have a smaller 

interquartile range than GMM and SNM. a difference which is specially 

noticeable for T=4 (with ~2=0 and ex=0.8 the interquartile range of ML 
1) 

or MO is about three times smaller than that of the ordinary or the 

symmetrically normalized GMM estimators). When ~2=0.2 or 1, the 
1) 

differences in the distributions of GMM and SNM become apparent: the 

higher ~2 or ex. the larger the negative bias of GMM for a given T, 
1) 

whereas SNM remains essentially median unbiased. SNM always has a 
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larger interquartile range than GMM, but the differences are small 

except in the almost unidentified cases (with 0:=0.8 and T=4). The 

median absolute errors of GMM and SNM estimates are of a very similar 

magnitude. although those for GMM tend to be smaller than those for 

SNM with T=4 and larger with T=7. With T=7. Table 1 clearly indicates 

that when N=100 there is information in the data to estimate o: with 

sufficient precision but that, contrary to SNM. GMM estimates may 

still be substantially biased. As far as median bias is concerned, ML 

and MD are practically unbiased when 0:=0.5, but exhibit sorne 

worryingly large biases when u 2 is not zero and 0:=0.8. 
l) 

The evldence from Table 1 suggests that Hillier's basic results 

for ordinary and symmetrically normalized 2SLS estimators may have a 

wider applicability. In effect, GMM and SNM, unlike 2SLS. are not only 

functions of the second moments of the data but also of the fourth 

order moments that enter the weighting matrix of the moment 

condi tions. 

Model 1 is the leading case from the point of view that 

instrumental-variable estimatdrs of structural equations with 

predetermined instruments tend to rely on orthogonal ity conditions 

that are similar to those in Model 1. 

Table 2 reports sorne results for Model 2 that exploits the (T-3) 

quadratic restrictions given in (3.6) in addition to the linear ones 

in (3.3). GMM and SNM are asymptotically efficient two-step GMM 

estimates whose weighting matrix has been calculated using one-step 

GMM residuals based on the same orthogonality conditions but weighted 

by an identity matrix. We found that the results are sensitive to the 

choice of residuals used by the two-step estimates. Unfortunately, in 
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this case, in contrast with the situation for Model 1, there does not 

seem to be a "natural" choice of one-step GMM estimator that would be 

asymptotically efficient under classical errors. Another problem is 

that now GMM is not a linear IV estimator, so that the Justification 

for an estimator based on the downweighted restrictions 

2 -1/2E[(l+o::) Vl (Yl'O::)]=O becomes dubious. We also tded a version of 
J 

SNM that only applied the symmetric normalization to the linear 

orthogonality conditions with very similar results. 

In Table 2, ML is, except in two cases, the estimator with the 

smallest interquartile range and often the one with the smallest bias, 

with MD trailing ML fairly closely. In drawing comparisons among the 

estimators, it should be taken into account that the simulated data is 

normally distributed, so that ML is implicitly using optimally 

weighted moments with less sampling variability than the methods that 

rely on higher order moments. On the other hand, ML and MD are subject 

to the inequality restriction 10::1<1 while GMM and SNM are noto We 

experimented with versions of GMM and SNM subject to 10::1<1 but this 

did not alter qualitatively the results. Turning to the comparison 

between GMM and SNM, SNM always has a smaller median bias than GMM, 

al though SNM can also be substantially biased as in the experiment 

with 0::=0.8, T=7 and ~ 2 =1. Nevertheless, we insist that these results 
11 

are sensitive to the choice of one-step residuals and further 

investigation is required. 

Table 3 presents the results for Model 3 which makes use of the 

restrictions derived from Assumptions B and C. This model incorporates 

the orthogonallty conditions from Model 2. However, by adding the 

stationarity restrictions the entire list of moment conditions admits 
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a linear representation (cf. Ahn and Schmidt (1995)), so that GMM in 

Table 3 is a linear IV estimator (as proposed by Arellano and Bover 

(1995)). AII the estimators in this Table exhibit small median biases 

and dispersions, al though, as in TabIe 2, the comparisons favour ML 

and MD. The differences between GMM and SNM are small in most cases 

without a clear pattern in the relation, except for the fact that on 

average SNM estimates are always higher than the GMM estimates. 

Both GMM and SNM are two-step estimators based on one-step GMM 

residuals that use all the orthogonality conditions from Model 3, and 

the inverse of the second moments of the instruments as the weighting 

matrix. This one-step estimator is not asymptotically efficient, not 

even under classical errors. Moreover, the results for GMM and SNM in 

Table 3 are also sensi tive to the choice of one-step residuals. To 

illustrate the situation, Table 4 reports results for GMM and SNM 

estimates based on both one-step GMM residuals from Model 1 and one­

step residuals from Model 3, but using an identity as the weighting 

matrix. As an extreme example, the median absolute error of GMM or SNM 

in Table 3 can be seen to be haIf of the size of that of GMMb or SNMb 

in Table A.1 for "=0.8, T=4 and q 
2 =1. As one would expect, the impact
1} 

of using Model 1 residuals is more important when Model 1 estimates 

are highly imprecise. These results suggest that an iterated GMM 

estimator may often have very different finite sample properties 

relative to a two-step estimator. 

Finally, it is possible to make comparisons across tables. In 

general, the interquartile ranges become smaller if we move from Table 

1 to TabIe 2 and TabIe 3. The efficiency gains are particularly 

important in the cases wi th "=0.8 and q2=0. 2 or 1. The gains from 
1} 
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enforcing stationar1ty restrictions are always substantial for al! the 

estlmators. A puzzling result is that for sorne experiments the ML and 

MD estimates of Model 2 have a larger lnterquartile range than the 

correspondlng estlmates for Model 1. However, this result may be 

related to problems of nonconvergence that we experienced for sorne of 

the replications for ML and MD in Model 2. 

We have also investigated the flnite sample dlstributions of the 

standardized GMM and SNM "t-statistics" for Model 1 of the form 

A-l/2 " 
t = v (a - al (3.16)

GMM,1 GMM,l GMH,I 

t 
SNH,l 

= 
"-1/2 .. v (a

SNH,l SNH,l 
- a) (3.17) 

where is as defined in 

-expression but with A replaced 

variances are given by: 

(3.12) and 

by zero. The 

has 

estimated 

a similar 

asymptotic 

A 

V 
GHH,l 

= 1I(b' A b )
1 N 1 

v = 1/(b' A b -~l 
SNH,l 1 N 1 

Both t and tare asymptotically N(O,l). Since the usual 
GMM,l SNK,1 

tests of hypotheses and confldence intervals rely on thls 

approximation, lt is useful to check the accuracy of the approximatlon 

for the sample slzes and parameter values consldered aboye. 

Table 5 reports finite sample quantlles of the t-statistics based 

on 10,000 replicatlons. We use a larger number of replications because 
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in this case the 0.9 and 0.95 quantiles in the upper tail of the 

distribution are of special interest. The median shows that the 

distributions of the GMM t-statistics are shifted to the left, w1th 

the absolute value of the shift increasing wi th ex, fT and T. In 
1) 

contrast, the distributions of the SNM t-statistics are centered at 

values very close to zero. Turning to the 0.9 and 0.95 quantiles, when 

T=4 the differences with the corresponding N(O.l) quantiles are always 

smaller for the SNM t-statistics than for the GMM, sometimes by a wide 

margino When T=7, the normal approximation worsens for both 

estimators. In that case, however, the upper-tail GMM quantiles tend 

to be closer to the normal values than those from the SNM t­

statistics. 

4. Empirical Illustrations 

Our first illustration of the previous methods proceeds by re­

estimating the employment equations presented by Arellano and Bond 

(1991) using symmetrically normalized and indirect GMM estimators. 

The Arellano-Bond dataset consists on an unbalanced panel of 140 

quoted companies from the UK, whose main activity 1s manufacturing and 

for which seven, eight or nine continuous annual observations are 

available for the period 1976-1984. 

The models are all log-linear relationships between the number of 

employees, the average real wage, the stock of capital, a measure of 

industry output, lagged values of the previous variables, time dummies 

and company effects. The reader 1s referredto the Arellano and Bond 

article for a detailed description of the models and the data. 

The first two panels of Table 6 contain the resul ts for two 
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different models estimated in flrst differences using instrumental 

variables. Model A includes contemporaneous wage and capital 

variables, which are treated as endogenous along with the first lag of 

employment. In this model lagged sales and stocks are used as outside 

instruments in addition to lags of the endogenous variables included 

in the equation. Model B only includes lagged values of wages and 

capital and it could be interpreted as an approximated Euler equation 

for employment wi th quadratic adJustment costs. Columns labeled GMM 

reproduce some of the resul ts obtained by Arellano and Bond. The SNM 

estimates are calculated as described in Section 2, and for Model A 

there is an additional column containing indirect GMM estimates that 

were obtained by normalizing to unity the coefficient of 

contemporaneous wages. Fl na lly • the third panel of Table 6 presents 

GMM and SNM estimates of some simple second-order autoregressive 

models for employment with and without the inclusion of lagged wages. 

As Table 6 shows, SNM and indirect GMM estimates are far apart 

from the direct GMM estimates. These results uncover the fact that the 

GMM estimates from the dataset of UK flrms are probably much less 

reliable than what their estimated asymptotic standard errors would 

suggest. Interestingly, the SNM estimates of Model B are more 

compatible with the Euler equation interpretation than the GMM 

estimates. For example, in the Euler equation discussed by Arellano 

and Bond the coefficient on n is given by (2+r) where r is the real 
t-l 

discount rateo 

Our second empirical illustration is based on a similar but 

larger balanced panel of 738 Spanish manufacturing companies, for 

which there are available annual observations for the period 1983-1990 
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(see the AppendIx for a descrIption of these data). We cónsIder a 

bIvarIate V!\R model for the logarithms of employment and wages. The 

employment equation contalns both lagged employment and lagged wages, 

whIle the wage equatIon only Includes its own lags. ThIs model can be 

regarded as the reduced form of an intertemporal model of employment 

determInation under rational expectations (see Sargent (978». To 

obtain the reduced form, an !\R(2) process for log wages is assumed, 

and the Euler equation in the log of employment for the optimum 

contlngency plans is solved. 

Table 7 presents GMM and SNM estimates of the two equations, 

flrstly using only lagged variables in levels as instruments for 

equations in flrst-differences (the baslc set of moment conditions 

that we called "Model 1"), and secondly adding lagged variables in 

first-differences as instruments for equations in levels (that is, 

including the stationarity restrictions of "Model 3"). For Model 1 we 

also report estimates of a univariate !\R(2) process for employment. 

In addition to asymptotic confidence intervals, we calculated 95 

percent semiparametric bootstrap confidence intervals based on 1000 

replications from the empirical distribution function of the data 

subject to the moment restrictions (cf. Back and Brown (1993». 

Following Brown and Newey (1992) we drew the bootstrap samples from 

the mass-point distribution that estimated the probability of the i-th 

observation as 

p = 1/(1+l'W(y ,9»N
1 1 

where 
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i 

... 1 N '" 2t = argmin -N L 10g[t+t'ljJ(y,S)]
1=1 1 

and ljJ(Yt'S) is the vector of orthogonality conditions for observation 

evaluated at the appropriate parameter estimates. 

rabIe 7 contains some interesting results. GMM and SNM estimates 

of Model 1 are still different from each other but by a smaller margin 

than the corresponding estimates for the UK panel. The difference 

becomes even smaller for the univarlate employment estlmates that are 

based on half the number of moments used for the estimates in the 

first two columns. On the other hand, the estimates of Model 3 appear 

to be more precise, presumably because the additional orthogonality 

conditions are highly informative. In this case, GMM and SNM estimates 

provide very similar results. However, the Sargan statistics indicate 

a clear reJection of the stationarity restrictions in both the 

employment and the wage equations. It is also noticeable that although 

bootstrap confidence intervals are always larger than the asymptotic 

confldence intervals, the differences between the two are generally 

small. 

\ole re-estimated Model 1 with a random subsample of 200 firms. 

which is similar to the size of the UK sample. Interestingly. the 

results (reported in rabIe 8) are closer to the UK results for similar 

specifications than those based on the full Spanish sample. In 

particular, the SNM estimates of the AR(2) model for employment are 

remarkably stable over the three datasets whlle standard GMM estimates 

would be seriously downward biased in the smaller samples. Moreover, 

the discrepancies between asymptotic and bootstrap confidence 
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intervals in the random subsample were greater than in the full 

sample. 11 

Finally, we simulated data as clase as possible to the AR(2) 

employment equation, to see if the findings that we obtained with the 

subsample of 200 companies were substantiated in the Monte CarIo 

simulations. Random errors and individual effects were generated from 

independent normal distributions with variances equal to the values 

estimated from the SNM residuals of the full Spanish sample. Since the 

estimated time effects showed very little variability, the constant 

was set to a common value for all periods given by the average 

estimated time effect in levels, although the estimates in the 

simulations included time dummies. As a consequence the model was 

stationary, and we generated (and discarded) 100 preliminary 

observations for each individual to minimize the impact of ini tial 

conditions. The results are reported in Table 9, and confirm the 

impression conveyed by the real data. The SNM estimates are almost 

median unbiased, but GMM shows large downward biases, specially when 

N=200. A comparison in terms of median absolute errors also favours 

SNM for both sample sizes and parameter estimates. Lastly, looking at 

the quantiles of the t-ratios shown in the lower panel of Table 9, it 

appears that the N(O,l) approximation is reasonable for the SNM t­

ratios but not for the GMM t-ratios. 
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5. Conclusions 

It has long been established that the lack of finite sample bias 

is an important advantage of LIML estimators of structural equations 

over 2SLS, which by contrast have thinner tails than LIML. The bias of 

2SLS towards OLS can be specially worrying when the instruments are 

"poor" and/or the degree of overidentification is l~rge. In practice, 

this means that while LIML is invariant to normalization, often a 2SLS 

regression of y on x provides results that are fairly different from 

those of the (inverted) 2SLS regression of x on y, despite being 

asymptotically equivalent estimators. However, LIML has not been used 

much in applications. The reasons for this include a computational 

disadvantage over 2SLS, concerns with outliers, the fact that 2SLS can 

be more easily accommodated into the GMM framework, and we suspect 

that sometimes the use of an implicit prior that favored closeness to 

OLS when structural coefficients were poorly identified. 

There has recently been a renewed interest in the finite sample 

properties of GMM estimators in various time series and cross­

sectional contexts. Several papers have emphasized the role of 

estimated weighting matrices for the properties of the estimators in 

small samples, and a number of alternative methods have been 

considered (eg. Altonji and Segal (1994), Hansen, Heaton and Varon 

(1995), Angrist, Imbens and Krueger (1995) or Imbens (1995). In 

contrast, in this paper we have focused on the role of normalization 

rules for the finite sample properties of GMM estimators that make use 

of standard two-step weighting matrices. Our work is motivated by the 

results in Hillier (1990), who argued that the alternative 

normalization rules adopted by LIML and 2SLS are at the basis of their 
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d1fferent sampling behaviour. Hillier showed that a symmetr1cally 

normal1zed 2SLS has similar finite sample propert1es to those of LIML. 

Th1s resul t 1s interestlng because, unlike LIML, SN-2SLS 1s a GMM 

est1mator based on structural form moment cond1t1ons and therefore 1t 

can be easlly extended to distr1butlon free env1ronments and robust 

statlstics. 

In particular, SN-2SLS 1s well sulted for appl1catlon to the 

nonstandard IV s1tuations that arise in panel data models with 

predetermined variables, which are the models of interest in this 

papero These models are typically est1mated in first-differences using 

all the avallable lags as instruments. Usual1y, there is a large 

number of instruments avallable, but of poor quality since they tend 

to be only weakly correlated wl th the first-differenced endogenous 

variables that appear in the equation. 

In this paper we have presented SN-GMM estimators for dynamic 

panel data models that are asymptotically equivalent to ordinary 

optimal GMM estimators. We have also showed how a byproduct of the 

estimation is a test statistic of overidentifying restrictions, based 

on a minimum eigenvalue calculatlon. 

We have reported Monte CarIo evidence on the performance of GMM 

and SN-GMM est1mates for a flrst-order autoregress1ve model with 

individual effects. For this model we have considered three 

alternative sets of moment conditions as discussed by Arellano and 

Bond (1991), Ahn and Schmldt (1995), and Arellano and Bover (1995). 

Since for these models, the IV restr1ct1qns can be expressed as 

stralghtforward structures on the data covariance matrlx, using these 

representations we have also calculated MD and QML estimates for 
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comparisons with the IV estimates. Our findings suggest that Hillier's 

basic results may have a wider applicability. In most cases, SN-GMM is 

the estimator wi th the smallest median bias, and the one wi th the 

largest interquartile range. However, the differences in dispersion 

with ordinary GMM are small except in the almost unidentified cases. 

Finally, as an empirical illustration, we havereported estimates 

of employment and wage equations from UK and Spanish firm panels. The 

results show that GMM estimates from the (smaller) UK panel can be 

very unreliable when the degree of overidentification is large. The 

resul ts from the (larger) Spanish panel produce a closer agreement 

between ordinary and symmetrically normalized GMM estimates, although 

there is evidence that there can still be serious biases in GMM 

estimates. Some of these results are confirmed by simulating data as 

close as possible to the empirical data. Moment restricted bootstrap 

confidence intervals show that asymptotic confidence intervals are 

often over-optimistic, and Sargan tests consistently reject the 

restrictions implied by the stationarity of initial conditions. 
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Footnotes 

1. Split sample or jackknife IV estlmators, however, arealso 
conslstent when the number of lnstruments tends to lnflnity (cL 
Angrlst and Krueger (1995) and Angrlst, Imbens and Krueger (1995»). 

2. Empirical likellhood estlmators of the type considered by Qin and 
Lawless (1994) and Imbens (1995) w111 also be lnvariant to 
normalization due to the invariance property of ML estimators. 

3. Notlce that if the only explanatory exogenous variable in the 

equation is a constant term, o coincides wi th the orthogonal
SNM 

regression on the fitted values Y (cf. Malinvaud (1970) and Anderson 
(1976»). 

.... ...." 1/2
4. Meaning that the density of o: = b/(b' b) deflned on the unit 

circle is symmetric about the true points ±o:=±b/(b'b)1/2 having modes 
at ±o:. 

5. This problem does not arise in the autoregressive panel data models 
discussed below, since in that case the SN-GMM estimator is invariant 
to units and to normalization. 

6. If no columns of X· are perfectly predictable from Z, or if the 
entire vector of coefficients is normalized to unity, then Á = I and 

A=min eigen(W·'M·W·), with W· = (y. ,X·). 

7. However, they are not the only restrictions available since (3.2) 

also impl1es that nonlinear functlons of y~-2 are uncorrelated with 

ÁV . The semiparametric efficiency bound for this model can be 
lt 

obtalned from the results in Chamberlain (1992). One reason why 
estimators based on (3.3) may not be fully efficient asymptotically is 

that the dependence between ~ and y T may be nonlinear. Another reason 
i i 

would be unaccounted conditional heteroskedasticity. 

8. Notice that the (T-2) restrictions in (3.10) can also be written as 

(t=3, ... ,T) 

For example, we have the identity 

where u =y -o:y
iT iT lIT-t)' 
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9. In all cases, optlmlzatlon wlth respect to o: was conducted over the 
range 10:1 <1. Thls was achleved uslng the reparameterlzatlon 

0:=2P/{1+p2) . 

10. Means and standard devlations are not reported slnce the 
symmetrlcally normalized estimators, in common with LIML. can be 
expected to have lnfinite moments. 

11. Bootstrap standard errors for the UK unbalanced panel were not 
calculated, since they would depend on a nontrivial specification of 
the empirical distribution function for the unbalanced observations. 
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Data Appendix 

The Spanish dataset is a balanced panel of 738 manufacturing 
companies recorded in the database of the Bank of Spain's Central 
Balance Sheet Office from 1983 to 1990. This survey contains information 
on firm's balance sheets and other complementary information, including 
data on employment and total wage bill. This survey started in 1982 with 
the collection of data from large companies with a tendency in 
subsequent years towards the addition of smaller companies. The database 
includes both quoted and non quoted firms. The manufacturing firms 
included in this data set represent more than 40% of the Spanish value 
added in manufacturing in 1985. 

We selected firms reporting information during the whole period 
1983-1990 that fulfilled several coherency condHions. Al! companies 
with negative values for net worth, capital stock. accumulated 
depreciation. accounting depreciation, labour costs, employment, sales, 
output or those whose book value of capi tal stock jumped by a factor 
greater than 3 from one year to the next, were dropped from the sample. 
Finally, we concentrated on non-energy, manufacturing companies with a 
public share lower than 50 percent. 

Variable construction 

Employment 

Number of employees is dissagregated into permanent employees 
(those wi th long-term contracts) and temporary employees (those wi th 
short-term contracts). Total employment is calculated as the number of 
permanent employees, plus the average annual number of temporary 
employees (number of temporary employees during the year times the 
average number of weeks worked by temporary employees divided by 52). 

Real wage 

The measure of the firm's annual average labour costs per employee 
1s computed as the ratio of total wages and salaries (in million Spanish 
pesetas) to total number of employees. This measure was deflated using 
Retail Price Indices for each of the subsectors of the manufacturing 
industry. (Source: Spain's Institute of National Statistics.) 

Descriptive statistics 

Mean Median Std. deviation Minimum Maximum 

Employment 310.4 124.0 702.4 10.0 11004.0 

Real Wage 1. 86 1. 75 0.67 0.32 6.66 
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rabie 1 


l\Iodel 1: linear restrictiom 


a=0.5 a=0.8 

ML :MI) GMM SNM ML :MI) GMM SNM 

T=4 
<TTI=0 

median 0.50 0.51 0.49 0.50 0.79 0.80 0.76 0.80 
% bias 0.1 2.1 2.1 0.2 1.5 0.0 5.0 0.3 

iqr 0.11 0.12 0.19 0.19 0.10 0.10 0.28 0.30 
¡q80 0.22 0.23 0.36 0.38 0.20 0.21 0.57 0.61 
mae 0.05 0.06 0.09 0.09 0.05 0.05 0.15 0.15 

<TTI= 0.2 
median 0.50 0.51 0.47 0.49 0.69 0.71 0.65 0.76 
% bias 0.1 1.3 6.4 1.8 13.7 n.3 18.7 4.5 

iqr 0.19 0.20 0.24 0.25 0.28 0.28 0.47 0.55 
iq80 0.36 0.39 0.47 0.50 0.54 0.58 0.94 1.30 
mae 0.09 0.10 0.12 0.13 0.12 0.11 0.27 0.27 

<TTI= 1 
median 0.47 0.49 0.44 0.47 0.65 0.65 0.46 0.65 
% bias 5.5 2.2 12.8 5.3 19.1 19.1 42.6 18.1 

iqr 0.32 0.32 0.35 0.38 0.47 0.48 0.68 0.99 
iq80 0.54 0.56 0.72 0.80 0.90 0.94 1.36 2.59 
mae 0.15 0.16 0.18 0.19 0.18 0.18 0.43 0.51 

T=7 
<T1]=0 

median 0.50 0.51 0.48 0.50 0.80 0.81 0.75 0.79 
% bias 0.2 2.0 4.1 0.1 0.5 1.4 5.7 0.8 

iqr 0.08 0.09 0.10 0.10 0.08 0.10 0.13 0.13 
iq80 0.14 0.17 0.19 0.19 0.15 0.17 0.24 0.25 
mae 0.04 0.04 0.05 0.05 0.04 0.05 0.07 0.07 

<TTI= 0.2 
median 0.50 0.50 0.47 0.50 0.74 0.74 0.69 0.79 
% bias 0.3 0.1 6.2 0.5 7.7 7.8 13.7 1.7 

iqr 0.10 0.12 0.12 0.12 0.14 0.17 0.20 0.20 
iq80 0.19 0.23 0.23 0.23 0.27 0.34 0.39 0.41 
mae 0.05 0.06 0.06 0.06 0.08 0.09 0.13 0.10 

<T1]= 1 
median 0.50 0.50 0.45 0.49 0.72 0.71 0.59 0.77 
% bias 0.6 0.2 9.8 1.4 10.6 11.1 25.9 3.9 

iqr 0.14 0.15 0.14 0.15 0.19 0.22 0.27 0.28 
iq80 0.26 0.29 0.28 0.30 0.37 0.46 0.53 0.59 
mae 0.07 0.08 0.08 0.07 0.10 o.n 0.21 0.15 

1,OO~ reRlications. N=100, 0',,2=1~. ., . .,
% biaS glves the percentage median bias for all esbmates; lqr IS the 75th-25th mterquartJle range; 
iq80 is the 9Oth-lOth interquantile range; mae denotes the median absolute error. 



Table 2 


1\1ode12: linear and quadmtic restrictions 


0.=0.5 0.=0.8 

:MI., :MI) GMM SNM :MI., :MI) GMM SNM 

T=4 
0211=0 

median 0.50 0.51 0049 0.50 0.73 0.74 0.75 0.80 
% bias 004 1.1 3.0 0.6 8.5 7.2 6.7 0.1 

iqr 0.18 0.19 0.17 0.18 0.19 0.19 0.24 0.27 
iq80 0.33 0.34 0.34 0.36 0.35 0.37 0.50 0.53 
rnae 0.09 0.10 0.09 0.09 0.10 0.10 0.13 0.13 

0211= 0.2 
median 0049 0.50 0048 0.51 0.70 0.72 0.71 0.78 
% bias lA 0.3 3.3 lA 12.0 10.3 10.8 2.9 

iqr 0.22 0.22 0.20 0.23 0.22 0.23 0.27 0.33 
iq80 0.39 0041 0.41 0046 0040 0041 0.56 0.63 
rnae 0.11 0.10 0.10 0.11 0.12 0.13 0.16 0.16 

0211 = 1 
median 0048 0049 0048 0.52 0.72 0.73 0.63 0.71 
% bias 4.3 1.7 404 304 10.3 9.2 21.2 11.2 

iqr 0.23 0.24 0.24 0.27 0.24 0.25 0.33 0.39 
iq80 0046 0046 0049 0.57 0.44 0045 0.67 0.71 
rnae 0.12 0.12 0.12 0.13 0.14 0.13 0.22 0.21 

T=7 
0211=0 

median 0.50 0.50 0047 0049 0.79 0.80 0.74 0.78 
% bias 0.2 1.0 5.0 1.6 1.6 0.1 7.3 2.9 

iqr 0.08 0.10 0.09 0.09 0.11 0.13 0.12 0.13 
iq80 0.16 0.20 0.17 0.18 0.20 0.24 0.23 0.24 
rnae 0.04 0.05 0.05 0.05 0.06 0.06 0.08 0.07 

0211= 0.2 
median 0.50 0.50 0047 0049 0.78 0.78 0.68 0.72 
% bias 0.3 0.6 6.5 2.6 2.9 204 14.8 lOA 

iqr 0.09 0.11 0.10 0.10 0.11 0.13 0.15 0.16 
iq80 0.16 0.21 0.19 0.20 0.22 0.25 0.32 0.35 
rnae 0.04 0.05 0.06 0.05 0.06 0.07 0.13 0.11 

0211= 1 
median 0.50 0.51 0045 0047 0.78 0.78 0.55 0.59 
% bias 0.1 lA 10.9 6.9 2.8 204 30.7 26.8 

iqr 0.08 0.11 0.11 0.11 0.12 0.15 0.23 0.24 
iq80 0.17 0.22 0.22 0.24 0.23 0.26 0047 0048 
rnae 0.04 0.05 0.07 0.07 0.06 0.07 0.25 0.22 

See Notes to Table l. 

, ,, 
l' 
i 



Table 3 


Model 3: linear and stationarity restrictiom 


a=0.5 a=0.8 

NIL fv1D GNIM SNM NIL fv1D GMM SNM 

T=4 
d=O11 

median 0.50 0.51 0.50 0.51 0.80 0.81 0.79 0.81 
% bias 0.1 1.2 0.8 2.1 0.1 0.7 0.9 1.5 

iqr 0.07 0.07 0.15 0.15 0.05 0.05 0.17 0.17 
iq80 0.12 0.14 0.28 0.28 0.09 0.09 0.32 0.31 
mae 0.03 0.03 0.07 0.07 0.02 0.02 0.08 0.08 

d 11 = 0.2 
median 0.50 0.51 0.50 0.51 0.80 0.81 0.79 0.82 
% bias 0.5 1.8 0.9 2.7 0.3 1.3 0.7 2.7 

iqr 0.16 0.19 0.17 0.17 0.19 0.21 0.20 0.19 
iq80 0.30 0.33 0.31 0.32 0.35 0.36 0.37 0.36 
mae 0.08 0.09 0.09 0.09 0.09 0.10 0.10 0.10 

d=l11 
median 0.50 0.51 0.52 0.54 0.79 0.82 0.85 0.87 
% bias 0.2 2.3 3.1 8.5 1.3 2.1 5.7 9.2 

iqr 0.20 0.21 0.19 0.20 0.21 0.22 0.19 0.18 
iq80 0.36 0.39 0.36 0.37 0.40 0.40 0.38 0.38 
mae 0.10 0.11 0.09 0.10 0.09 0.10 0.11 0.11 

T=7 
d=O11 

median 0.50 0.51 0.49 0.50 0.80 0.80 0.78 0.80 
% bias 0.1 1.2 2.9 0.1 0.1 0.4 3.0 0.5 

iqr 0.05 0.06 0.08 0.08 0.03 0.04 0.09 0.08 
iq80 0.09 0.11 0.15 0.15 0.06 0.08 0.17 0.16 
mae 0.02 0.03 0.04 0.04 0.02 0.02 0.05 0.04 

d 11 = 0.2 
median 0.50 0.50 0.49 0.50 0.80 0.81 0.78 0.80 
% bias 0.3 0.6 2.6 0.9 0.2 1.1 2.4 0.5 

iqr 0.08 0.10 0.09 0.09 0.09 0.12 0.11 0.10 
iq80 0.15 0.20 0.18 0.18 0.17 0.22 0.20 0.19 
mae 0.04 0.05 0.05 0.05 0.05 0.06 0.05 0.05 

d=l11 
median 0.50 0.50 0.50 0.51 0.80 0.81 0.83 0.85 
% bias 0.2 0.4 0.7 2.9 0.1 1.8 3.5 5.7 

iqr 0.08 0.11 0.10 0.11 0.11 0.13 0.12 0.11 
iq80 0.16 0.22 0.19 0.20 0.20 0.25 0.22 0.21 
mae 0.04 0.05 0.05 0.05 0.06 0.07 0.07 0.07 

See Notes to Table 1. 



Iable 4 


GMM and SNM estimates for :Model 3 witb a1temative residuals 

0:=0.5 0:=0.8 

GMMa SNMa GMMb SNMb GMIvJa SNMa GMMb SNMb 

T=4 

02=0
11 

median 0.49 0.51 0.49 0.51 0.77 0.81 0.79 .0.81 
% bias 2.1 1.1 1.2 1.8 3.2 1.4 1.2 1.4 

iqr 0.16 0.16 0.14 0.15 0.18 0.18 0.18 0.17 
iq80 0.30 0.31 0.28 0.28 0.33 0.34 0.34 0.33 
rnae 0.08 0.08 0.07 0.07 0.09 0.09 0.09 0.09 

0211=0.2 
median 0.49 0.51 0.49 0.51 0.79 0.83 0.75 0.78 
% bias 1.2 2.6 2.1 1.1 1.3 4.4 6.7 2.1 

iqr 0.18 0.19 0.18 0.18 0.20 0.19 0.26 0.26 
¡q80 0.33 0.35 0.32 0.32 0.36 0.36 0.48 0.47 
rnae 0.09 0.09 0.09 0.09 0.10 0.11 0.14 0.13 

02=111 
median 0.52 0.55 0.48 0.51 0.86 0.90 0.66 0.73 
% bias 3.3 10.1 4.3 1.8 7.2 12.5 17.3 9.1 

iqr 0.21 0.22 0.21 0.22 0.17 0.16 0.41 0.42 
¡q80 0.38 0.39 0.39 0.39 0.34 0.34 0.76 0.85 
rnae 0.11 0.12 0.11 0.11 0.10 0.12 0.22 0.21 

T=7 
02=011 

median 0.46 0.50 0.49 0.51 0.74 0.81 0.78 0.80 
% bias 7.9 0.4 1.7 1.1 7.9 1.5 2.3 0.0 

iqr 0.10 0.11 0.08 0.08 0.11 0.11 0.09 0.09 
¡q80 0.19 0.21 0.15 0.15 0.21 0.21 0.17 0.16 
rnae 0.06 0.05 0.04 0.04 0.07 0.06 0.05 0.04 

0211=0.2 
median 0.46 0.51 0.49 0.51 0.76 0.84 0.75 0.78 
% bias 8.3 1.5 1.9 1.3 5.5 4.8 6.3 3.1 

iqr 0.11 0.12 0.09 0.09 0.12 0.12 0.13 0.13 
iq80 0.21 0.22 0.17 0.18 0.23 0.23 0.24 0.23 
rnae 0.06 0.06 0.05 0.04 0.06 0.07 0.07 0.06 

02=11') 

median 0.49 0.54 0.48 0.50 0.83 0.90 0.68 0.70 
% bias 2.7 8.6 3.9 0.3 4.0 12.3 15.5 12.6 

iqr 0.12 0.13 0.11 0.11 0.11 0.10 0.18 0.18 
¡q80 0.23 0.25 0.19 0.20 0.22 0.20 0.35 0.34 
rnae 0.06 0.07 0.06 0.05 0.06 0.10 0.13 0.11 

See Notes to Table 1. 

G!v1Ma and SNMa use GMM residuals from Model 3 with wei~tin~ identity matrix. 

GMMb and SNMb use optimal one-step GMM residuals from ode 1. 




Jable 5 

l\1odel 1: linear restrictions 
QJantiles of tite t-statistics 

T=4 T=7 


a=0.5 a=0.8 a=0.5 a=0.8 


GNlM SNM GMM SNM GMM SNM GMM SNM 


0\=0 
0.05 -2.04 -1.94 -2.25 -2.07 -2.49 -2.20 -2.74 -2.18 
0.10 -1.61 -1.51 -1.80 -1.57 -2.01 -1.70 -2.28 -1.74 
0.25 -0.87 -0.77 -1.00 -0.78 -1.22 -0.89 -1.47 -0.92 
0.50 -0.11 0.01 -0.22 0.02 -0.33 0.00 -0.57 -0.03 
0.75 0.58 0.70 0.45 0.69 0.56 0.89 0.28 0.83 
0.90 1.18 1.30 1.00 1.23 1.30 1.64 1.03 1.57 
0.95 1.54 1.65 1.30 1.53 1.76 2.09 1.46 1.99 

d ll=O·2 
0.05 -2.15 -2.04 -2.68 -2.44 -2.62 -2.25 -3.28 -2.34 
0.10 -1.71 -1.58 -2.15 -1.87 -2.11 -1.73 -2.73 -1.83 
0.25 -0.93 -0.81 -1.28 -0.94 -1.30 -0.91 -1.88 -0.98 
0.50 -0.17 -0.02 -0.43 -0.05 -0.41 -0.02 -0.97 -0.11 
0.75 0.54 0.69 0.29 0.68 0.45 0.85 -0.05 0.76 
0.90 1.13 1.28 0.77 1.16 1.24 1.63 0.70 1.50 
0.95 1.44 1.60 0.98 1.42 1.69 2.08 1.13 1.94 

d=l11 
0.05 -2.36 -2.23 -3.17 -3.09 -2.76 -2.30 -3.82 -2.62 
0.10 -1.83 -1.70 -2.58 -2.46 -2.27 -1.79 -3.26 -2.04 
0.25 -1.09 -0.90 -1.68 -1.42 -1.44 -0.94 -2.35 -1.13 
0.50 -0.25 -0.05 -0.78 -0.28 -0.56 -0.05 -1.37 -0.17 
0.75 0.46 0.68 0.01 0.58 0.32 0.84 -0.43 0.71 
0.90 0.98 1.22 0.50 1.06 1.09 1.59 0.35 1.44 
0.95 1.28 1.50 0.70 1.35 1.51 2.03 0.76 1.86 

10,000 ~lications. N=100 a2:1. 
The 5tl), Oth, 25th, 50th, 75th, 90th, and 95th quantiles for the standard nonnal distribution are, 
respectlvely, -1.64, -1.28, -0.67, O, 0.67, 1.28 ano 1.64. 



rabIe 6 (continued) 

Employment equations 

SNM and GMM estimates fmm tite UK sample 


Dependent Sample perlod: 1979-1984 (140 companies) 
variable: &lit 

AR(2) Models 

Independent 

variables 
 GMM SNM GMM SNM 

0.691 1.635 0.320 0.827 
(0.051) 	 (0.074) (0.053) (0.065) 
-0.114 -0.439 0.022 -0.094 
(0.026) (0.039) (0.022) (0.032) 
0.598 1.958 

(0.070) 	 (0.095) 
0.0l3 -0.075 

(0.036) (0.053) 

Sargan test (df) 65.9 (50) 71.3 (50) 32.8 (25) 31.3 (25) 

R2 's for IVs: 

&li(t.l) 0.216 0.152 


Notes to Table 6 

(i) Time durnmies are inc\uded in all equations. 
(ii) Asyrnptotic standard errors robust to heteroskedasticity are reported in parentheses. 
(iii) AH reported estimates are two step. 
(iv) Model A treats &!¡(I.I) , 6,wil, 6,Wi(I.I)' and&¡! as endogenous. Model B treats &!¡(I.l) ,6,Wi(l.l), and 
&¡ l.) as endogenous. 
(v)The instrument set for Models A and B includes lags ofemployrnent dated (t-2) and earlier, lags 
ofwages and capital dated (t-2) and (t-3) and the levels and first differences offirm real sales and 
firm real stocks dated (t-2). The instrument set for all the AR(2) models inc\udes lags ofemployrnent 
dated (t-2) and earlier, and for those in the first two columns also lags of wages dated (t-2) and 
earlier. 
(vi) The R2 's for the IVs denote the partial R2 between the instruments and each endogenous 
explanatol)' variable once the exogenous variables inc\uded in the equation have been partialled out. 



rabIe 7 


VAR estimates for employment and wage equations 

fmm the Spanish sample 

Sample perlad: 1986-1990 (738 companies) 

Independent 
variables 

3I1u Equation 

.óni(t-2) 

Sargan test (df) 

R2 's for IVs: 
.óni(t-I) 

~Wi(t.l) 

Alvu Equation 

Sargan test (df) 

R2 '5 for IVs: 

~Wi(t-I) 

"MadeI 1" restrictions 

GMM SNM GMM SNM 

0.842 1.087 0.748 0.812 
(0.669;1.015) (0.894;1.280) (0.575;0.921) (0.636;0.988) 
[0.470;1.004] [0.729;1.258] [0.505;0.989] [0.541;0.995] 

-0.003 -0.074 0.038 0.030 
(-0.060;0.054) (-0.140;-0.008) (-0.005;0.081) (-0.015;0.075) 
[-0.030;0.137] [-0.110;0.067] [-0.012;0.113] [-0.015;0.113] 

0.078 0.222 
(-0.086;0.242) (0.046;0.398) 
[-0.299;0.199] [-0.183;0.377] 

-0.053 -0.074 
(-0.102;-0.004) (-0.127;-0.021) 
[-0.110;0.021] [-0.137;-0.003] 

36.9 (36) 37.2 (36) 14.4 (18) 13.5 (18) 

0.033 
0.031 

0.178 0.228 0.178 0.228 
(-0.042;0.398) (-0.008;0.464) (-0.042;0.398) (-0.008;0.464) 
[-0.170;0.491] [-0.172;0.636] [-0.208;0.542] [-0.237;0.734] 

-0.012 -0.002 -0.012 -0.002 
(-0.081 ;0.049) (-0.066;0.062) (-0.081;0.049) (-0.066;0.062) 
[-0.082;0.073] [-0.076;0.101] [-0.082;0.082] [-0.078;0.108] 

12.7 (18) 12.9 (18) 12.7 (18) 12.9 (18) 

0.019 



Iabl~ 6 
EmpIoyment equations 


SNM and GMM estimates fmm 1he UK sample 


I ¡ 

De1?':ndent 

varIable: LIDit 


Independent 

variables 


LIDi(t-l) 

LIDi(t-2) 

~Wit 


~Wi(t-l) 


&¡t 

&¡(t-I) 

~ySit 


~ySí(t-l) 


~ySi(t-2) 


Sargan test (df) 


R2 'S fQ[ IVs: 

LIDí(t-l) 
~Wit 

~Wi(t-l) 

&¡t 


&¡(t-I) 


lDependent variable is L\wit• 

Sample period: 1979-1984 (140 companies) 

Model A Model B 

Indirect 
GMM SNM GMM1 GMM SNM 

0.800 1.596 1.214 0.825 2.186 
(0.048) (0.105) (0.056) (0.216) 
-0.116 -0.384 -0.282 -0.074 -0.455 
(0.021) (0.045) (0.020) (0.077) 
-0.640 -1.897 -4.638 
(0.054) (0.160) 
0.564 2.138 1.567 0.431 2.841 

(0.066) (0.142) (0.076) (0.312) 
0.219 0.238 0.604 

(0.051) (0.089) 
-0.077 -0.787 
(0.045) (0.126) 

0.890 1.747 3.105 
(0.098) (0.204) 
-0.874 -2.897 -4.101 -0.115 -2.438 
(0.105) (0.229) (0.100) (0.358) 

0.095 1.511 
(0.091) (0.266) 

63.0 (50) 67.1 (50) 62.8 (50) 68.3 (51) 66.5 (51) 

0.271 0.269 
0.193 
0.309 0.289 
0.108 

0.158 



Table 7 (continued) 

VAR estimates for employment and wage equations 
fmm the Spanish sample 

Sample perlod: 1986-1990 (738 companies) 

"Model 3" restrictions 
Independent 
variables GMM SNM 

&íj¡ Equation 

1.163 1.208 
(1.112;1.214) (1.137;1.279) 
[1.064;1.222] [1.157;1.370] 

llni(t.2) -0.135 -0.142 
(-0.172;-0.098) (-0.185;-0.099) 
[-0.166;-0.044] [-0.178;-0.033] 

0.121 . 0.116 
(0.086;0.156) (0.077;0.155) 
[0.075;0.166] [0.054;0.154] 

-0.132 -0.151 
(-0.171;-0.093) (-0.194;-0.108) 
[-0.180;-0.073] [-0.232;-0.113] 

Sargan test (df) 80.1 (48) 69.1 (48) 

Alvit Equation 

0.854 0.873 
(0.815;0.893) (0.834;0.912) 
[0.790;0.888] [0.828;0.926] 

0.152 0.138 
(0.105;0.199) (0.089;0.187) 
[0.107;0.235] [0.074;0.207] 

Sargan test (df) 71.4 (24) 72.2 (24) 

Notes lo Table 7 

(i) Time durnmies are included in all equations. 
(ii) AH reported estimates are two step. 
(iii) The instrument set for all the employment equations under "Model 1" includes lags ofemployment dated 
(t-2) and earlier, and for those in the ftrSt two columns also lags of wages dated (t-2) and earlier. The 
instrument set for the wage equation under "Model 1" includes lags of wages dated (t-2) and earlier. 
(iv) The R2 's for the IVs denote the partial R2 between the instruments and each endogenous explanatory 
variable once the exogenous variables included in the equation have been partialled out. 
(v) 95% asymptotic confidence intervals based on heteroskedasticity-robust standard errors in parentheses; 
95% moment-restricted bootstrap confidence intervals in brackets. 
(vi) The bootstrap confidence intervals under "Model 1" for the equations in the ftrSt two columns are based 
on a distribution that satisfies a larger set of moment conditions than those in the third and fourth columns. 
The reason is that the former include lagged wages as instruments for the employment equation, which are 
absent from the latter. 



Table 8 

VAR estimares for employment and wage equatiom 
fmm the Spanish sample 

Random sample containing 200 companies 

Sample period: 1986-1990 (200 companies) 

Independent 
variables GMM SNM GMM SNM 

0.788 1.160 0.441 0.815 
(0.610;0.966) (0.888;1.432) (0.167;0.715) (0.509;1.121) 
[0.037; 1.234] [0.365; 1.657] [-0.609;0.812] [0.237;1.566] 

-0.042 -0.206 0.063 0.003 
(-0.109;0.025) (-0.306;-0.106) (0.002;0.124) (-0.062;0.069) 
[-0.101;0.235] [-0.370;0.138] [0.000;0.221] [-0.109;0.145] 

0.337 0.650 
(0.151;0.523) (0.371;0.929) 
[-0.238;0.950] [0.090; 1.759] 

0.001 -0.040 
(-0.065;0.067) (-0.120;0.040) 
[-0.098;0.290] [-0.108;0.254] 

Sargan test (df) 30.2 (36) 23.0 (36) 23.3 (18) 24.3 (18) 

R2 '8 for IV8: 
LIDi(t.l) 0.064 
~w¡(t-1) 0.080 

.&vil Equation 

-0.612 -1.198 -0.612 -1.198 
(-0.984;-0.240) (-1.442;-0.953) (-0.984;-0.240) (-1.442;-0.953) 
[-3.837;0.314] [-4.183;-0.933] [-3.766;0.227] [-3.989;-0.893] 

-0.120 -0.270 -0.120 -0.270 
(-0.231;-0.009) (-0.349;-0.l91) (-0.231;-0.009) (-0.349;-0.l91) 
[-0.715;0.1 07] [-0.878;-0.183] [-0.840;0.067] [-0.958;-0.160] 

Sargan test (df) 17.3 (18) 11.0 (18) 17.3 (18) 11.0 (18) 

R2 '8 for IVs: 

~Wi(t.l) 0.023 


See Notes to Table 7. 



t ! 

Iabl~ 2 
MOnte Carlo simulations for the AR(2) model for employment 

a¡=tl.813, ~ =tl.03, y=(J.777, d TJ=tl.038, d v=tl.01 

N=738 N=200 

GMM SNM GMM SNM 

SUll1lllalY of 
estimates 

a¡ 
median 0.72 0.82 0.56 0.82 
% bias 11.6 0.8 30.8 1.1 

iqr 0.15 0.15 0.26 0.27 
iq80 0.28 0.31 0.53 0.58 
mae 0.11 0.08 0.25 0.14 

median 0.01 0.03 -0.02 0.02 
% bias 57.7 5.9 165.6 33.8 

iqr 0.03 0.04 0.06 0.08 
iq80 0.07 0.07 0.11 0.14 
mae 0.02 0.02 0.05 0.04 

Quantiles of 
the t-rntios 

a¡ 
0.10 -2.41 -1.40 -3.43 -1.63 
0.25 -1.75 -0.71 -2.66 -0.76 
0.50 -0.98 0.06 -1.82 0.06 
0.75 -0.20 0.77 -0.96 0.85 
0.90 0.47 1.40 -0.20 1.43 

0.10 -2.13 -1.47 -2.85 -1.87 
0.25 -1.37 -0.80 -2.07 -1.13 
0.50 -0.70 -0.07 -1.26 -0.23 
0.75 0.05 0.71 -0.43 0.60 
0.90 0.67 1.30 0.26 1.25 

1,000 replications. 

% bias gives the percentage median bias for al! estimates; iqr is the 75th-25th interquartile range; 

iq80 is the 90th-10th interquantile range; mae denotes the median absolute error. 

The 10th, 25th, 50th, 75th and 90th quantiles for the standard normal distribution are, respectively, 

-1.28, -0.67, O, 0.67 and 1.28. 





