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1. Introduction

In this papef we present instrumental variable estimators of
panel data models with predetermined variables subject to a symmetric
normalization rule of the coefficients of the endogenous variables. We
also evaluate the performance of these techniques for first-order
autoregressive models with individual effects by mean of simulations.
Lastly, an empirical illustration is provided.

This work is motivated by a concern with the biases of ordinary
IV estimators when the instruments are poor. A linear panel data mddel
with predetermined variables, typically estimated by IV techniques,

takes the form

E(Ay1t - Ax) 8 | z. - zit) =0, (t=1,..,T; i=1,..,N).
This formulation includes vector autoregressions and linear Euler
equations. The specification of the equation error in first-
differences reflects the fact that the analysis is conditional on an
unobservable individual effect. Since the number of instruments
increases with T, the model generates many overidentifying
restrictions even for moderate values of T. However, often the quality
of the instruments is poor given that it 1is wusually difficult to
predict variables in first differences on the basis of past values of
other variables.

The weaker the correlation of the instruments with the endogenous
variables, the smaller the amount of information on the structural
parameters for a given sample size. However, as it is well documented

in the literature on the finite sample properties of simultaneous




equations estimators, the way in which this situation is reflected in
the distributions of 2SLS and LIML differs substantially, despite the
fact that both estimators have the same asymptotic distribution. While
the distribution of LIML is centred at the parameter value, 2SLS is
biased towards OLS, and in the completely unidentified case converges
to a random variable with the OLS probability 1limit as its central
value. On the other hand, LIML has no finite moments regardless of the
sample size, and as a consequence its distribution has thicker tails
than that of 2SLS and a higher probability of extreme values (see
Phillips (1983) for a good survey of the literature). As a result of
numerical comparisons of the two distributions involving median-bias,
interquartile ranges and rates of approach to normality, Anderson,
Kunitome and Sawa (1982) conclude that LIML is to be strongly
preferred to 2SLS, particularly if the number of outside instruments
is large. Similar conclusions emerge from the results of asymptotic
approximations based on an increasing number of Iinstruments as the
sample size tends to infinity; under these sequences, LIML is a
consistent estimator but 2SLS is inconsistent (cf. Kunitomo (1980),
Morimune (1983) and, more recently, Bekker (1994)).! (In our context,
these approximations would amount to allowing T to increase to
infinity at a chosen rate as opposed to the standard fixed T, large N
asymptotics.)

Despite this favourable evidence, LIML has not been used as much
in applications as instrumental variables estimators. In the past,
LIML was at a disadvantage relative to 2SLS on computational grounds.
More fundamentally, applied econometricians have often regarded 2SLS

as a more "flexible" choice than LIML from the point of view of the



restrictions they were willing to impose on their models. In effect,
the IV techniques used for a panel data model with predetermined
instruments are not standard 2SLS estimators, since the model gives
rise to a system of equations (one for each time period) with a
different number of instruments available for each equation. Moreover,
concern with heteroskedasticity has lead to consider alternative GMM
estimators that use as weighting matrix more robust estimators of the
variances and covariances of the orthogonality conditions (following
the work of Chamberlain (1982), Hansen (1982) and White (1982)).

In a recent paper, Hillier (1990) shows that the alternative
normalization rules adopted by LIML and 2SLS are at the root of their
different sampling behaviour. Indeed, Hillier shows that the
symmetrically normalized 2SLS estimator (SN-2SLS) has essentially
similar properties to those of the LIML estimator. This result, which
motivates our focus on symmetrically normalized estimation, is
interesting because SN-2SLS, unlike LIML, is a GMM estimator based on
structural form orthogonality conditions and therefore it can be
readily extended to the nonstandard IV situations that are of interest
in panel data models with predetermined variables, while relying on
standard GMM asymptotic theory.

To illustrate the situation, let us consider a simple structural
equation with a single endogenous explanatory variable and a matrix of

instruments 2Z:

y =Bx +u _ (1.1)

Letting y and x be the OLS fitted values from the reduced form
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the 2SLS estimator of B is given by

é - Covix,y) _ Covix,y)
2SLS B

Var(;) Cov(;,x)

which is not invariant to normalization except in the just-identified

case. That is, it differs from the indirect 2SLS estimator:

-~

Var(y) _ Covly,y) -
125LS -

Cov(y,x) Covl(y,x)

On the other hand, the SN-2SLS estimator is given by the orthogonal

regression of y on x, which is invariant to normalization:

_ Cov(x,y) = Var(y)-A

l§ ~ ~ ~
Var(x)-A Cov(y,x)

SN

-~

The statistic A is the minimum eigenvalue of the covariance matrix of

y and X.

The three estimators have the same first-order asymptotic

distribution, but satisfy the inequality
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Moreover, BSN can be written as

Cov (x+BSNy, y)

B_.= — =
SN
Cov(x+BSNy,x)

Therefore, 2SLS, I2SLS and SN can all be interpreted as simple IV
estimators that use as instruments ;,; and ; + ésu;’ respectively.
Symmetrically normalized 2SLS can also be given a straightforward
interpretation as a GMM or minimum distance estimator, which
highlights its relation to LIML. Indeed, both SN-2SLS and LIML are

least-squares estimators of the reduced form (1.2) imposing the over-

identifying restrictions n=By. Let us define

(&,.7,) = a;gmin[zgigf] (V'1®I)[{;i;f]
' 7

~

= argmin ?:78 (v'lez’'2) F:WB

B,¥ Y Ty
Concentrating 7 out of the LS criterion we obtain

(y-Bx)'2(2'2)" 12’ (y-Bx)

B = argmin
v

B 5)v| }
w0 ]

It turns out that LIML is §v with V equal to the reduced form

residual covariance matrix while SN-2SLS is §v with V equal to an



identity matrix (cf. Malinvaud (1970}, Goldberger and Olkin (1971) and
Keller (1975)), so that both LIML and SN-2SLS solve minimum eigenvalue
problems. In particular, SN-2SLS is a GMM estimator based on the unit-

length orthogonality conditions

z (y -Bx.)
(1+89)

Notice that in spite of V being a matrix scaling factor, the
asymptotic distribution of év does not depend on the choice of V. This
is so because optimal MD estimators of 8 based on (;-78,;-7) and on
(%-7%) are asymptotically equivalent, due to the fact that the
limiting distribution of optimal MD is invariant to transformations
and to the addition of unrestricted moments.

The paper is organized as follows. Section 2 begins with a
formulation of the SN-2SLS estimator and its relation to 2SLS and LIML
in the general context of a linear structural equation. Next, we
present two-step SN-GMM estimators and test statistics of over-
identifying restrictions for panel data models with predetermined
instruments. Section 3 studies the finite sample properties of SN-GMM
estimates in relation to ordinary GMM, minimum distance and pseudo
maximum likelihood estimators for various versions of the first-order
autoregressive model with individual effects. The objective is not to
assess the value of enforcing particular restrictions in the model,
but rather to evaluate the effects in small samples, by mean of
simulations, of using alternative asymptotically equivalent estimators

for fixed T and large N. Section 4 re-estimates the employment



equations for a sample of UK firms reported by Arellano and Bond
(1991) using symmetrically normalized and indirect GMM estimators,
This section further illustrates the techniques by presenting SN-GMM
estimates and bootstrap confidence intervals of employment and wagé
vector autoregressions from a larger panel of Spanish firms. Finally,

Section 5 contains the conclusions of the paper.

2. The Symmetrically Normalized Instrumental-Variable Estimator

Preliminaries

We begin this section by providing explicit expressions for 2SLS,
LIML and symmetrically normalized 2SLS estimators in order to
highlight the algebraic and statistical connections among the three
statistics.

Let us consider a standard linear structural equation

v, = YZB + 217 +us X8 + u. (2.1)
Also let Y=(y1,Y2) be the nx(1+p) matrix of observations of the
endogenous variables, and let Z=(21,22) be the nxk matrix of
instruments, where Z1 is nxkl, Z2 is nxkz, and kzzp.

The two-stage least squares (2SLS) estimator of 8 is given by

~

= argmin a’W' MWa = (X’MX)—lx’MyI. (2.2)

2SLS
8

with W=(Y,21), M=2(2'Z)"'2' and a=(1,-B',-v')'. An expression for the

partition of 62&5 is given by
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2SLS

s = “R'Y)? = ’ -1,
with b=(1,-B8')’ and M1 21(2121) 21'

Similarly, the LIML estimator is given by

N .. a'W MWa
() = argmin —————

= [X' (M-A(I-M)/n)X]"X’ (M=A(I-M)/n)y (2.3)
LIML s b’ Qb 1

where A=min eigen[Y’(M-Ml)YQ_I] and Q=Y' (I-M)Y/n, which can be

partitioned in accordance with Y as

0>
]
€
>

Notice that A=0. Equally,

R b'Y'(M—Ml)Yb a~n 1 ~n

B = argmin —————— = [Y' (M-M_)Y_-AQ_1 " [Y’ (M-M )y -Aw__]
LIML 8 b’ ab 2 1772 T2 2 1771 T
- e o

Yoo = (2121) 21(y1 YZBLIHL)

We define the orthogonal or symmetrically normalized 2SLS

estimator (SN-2SLS) to be (see Keller (1975) and Hillier (1990)):



) = argmin (2.4)

SNM
8

a’'W’'MWa
b'b
L L L L
Let Wa =Yb +21c =u denote equation (2.1) without imposing a
normalization rule. With the normalization used by 2SLS a.=a, while
with a symmetric normalization of the coefficients of the endogenous

-1/2

variables a.=(1+B’B) a. Thus 6S is the minimizer of a.’W’MWa.

NM
* *
subject to b 'b =1.
Minimizing the criterion (2.4) with respect to ¥ we obtain a

concentrated criterion that only depends on 8. This gives us:

. b Y’ (M-, )Yb _
BSNH = arggln 6 = [Yz(M_M1)Y2 - All Yz(M_M1)y1
. NI

SNM (2121) 21(y1 Yzﬁsnn)

where A=min eigen[Y’(M—Ml)Y]. Notice that also A=min(a’'W’MWa)/b’b and

that A=0. Equivalently,

s - ) - N -1 )
S gy = (X'MX = A0) XMy, (2.5)

where A = IP 0 .
00

In the just identified case, 2’(y1—X625Ls)=0 which minimizes the
three criteria, so that A=A=0, with the result that 2SLS, LIML and SN-
2SLS coincide.

Both & and & are invariant to nofmalization while & is

LIML SNM 2sLS
not.2 That is, if the equation is solved for an endogenous variable

other than yl, contrary to the case with 2SLS, the indirect estimates
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obtained .from & or 3 coincide with .the direct SNM or LiML
SNM LIML
estimates, respectively.3
The LIML estimator can be regarded as a minimum distance or
generalized nonlinear least squares estimator based on the reduced
form (see Malinvaud (1970) and Goldberger and Olkin (1971)).
Similarly, the ©SN-2SLS estimator can be viewed as an ordinary

nonlinear least squares estimator. To see this, let the reduced form

of Y be
Y = 21" + V. (2.6)

In view of the partition in Y, the (1+p)xk matrix of reduced form
coefficients can be partitioned as H’=(n1, ﬂ;). In addition, given the

structural equation we have
n; = B’H2 + (¥,0") 2.7

so that T is a function of 8, 7 and Hz' We can consider NLS estimators

of 8 and H2 that solve

~ ~

(6, T ) = argnin tr[V ' (Yy-2m )’ (Y-2I")] (2.8)

NLS' ~2,NLS
for particular choices of V. This class of estimators was proposed by
Keller (1975). Since Hz is not of direct interest we can obtain a
concentrated NLS criterion that only depends on &, which gives SNL as

S

the solution to

10



S = argmin a’ W’ Mia

NLS "B Vb (2.9)

Clearly, LIML is gms with V=§ while SN-2SLS is 3ms with V=I.
The choice of V, provided it is assumed to be bounded in probability
or a nonstochastic matrix, leaves the asymptotic distribution of 3NLS
unaffected and equal to that of the 2SLS estimator. This result is
similar to the one that establishes the equivalence between 2SLS and
-3SLS in a system in which there is only one éveridentified structural
equation.

Symmetrically normalized estimators are attractive alternatives
to 2SLS on at least three grounds. Firstly, they tend to have a
smaller finite sample bias than the 2SLS estimators. Hillier (1990)
shows that for the normal case with p=1 SN-2SLS and LIML are
“spherically unbiased" in finite samples.? However, 2SLS does not have
this property.

Secondly, the concentration of the densities of the symmetrically
normalized estimators depends on the quality of the instruments. In
the completely unidentified case, as shown by Hillier, these
estimators have a uniform distribution on the unit circle. This is in
contrast with 2SLS which converges to the same limit as OLS and whose
distribution is determined exclusively by the normalization adopted.
When the instruments are poor, as well as when the number of
instruments is large relative to the sample size, 2SLS tends to
provide results that are biased in the direction of OLS and also large
discrepancies between "direct" and "indirect" 2SLS when wusing
different normalizations. This situation has been stressed in a number

of recent papers (Bekker (1994), Bound, Jaeger and Baker (1995)),

11



Staiger and Stock (1994) and Angrist and Krueger (1995) amongst
others). In contrast, with poor instruments the distributions of LIML
and SN-2SLS accurately reproduce the fact that the information on the
structural parameters is very small.

Thirdly, they are invariant to normalization. SN-2SLS shares
these properties in common with LIML; however, one further advantage
of SN-2SLS in relation to LIML, is that it is a generalized method of
moments estimator based on structural form moment conditions and
therefore it can be easlily extended to distribution free environments
and robust statistics. In particular, it 1is well suited for
application to nonstandard instrumental-variable problems such as
those that arise in the context of dynamic and error-in-variables
models for panel data.

As the previous discussion reveals, both LIML and SN-2SLS are GMM
estimators of 8§ solved jointly with H2 and based on the vector of the

reduced form orthogonality conditions:

E[zi®(y1 - HZI]] =0 (2.10)

where T is a function of & and H2 (both GMM estimators use a weighting
matrix of the form (V@Z’Z)-1 with V=Q for LIML and V=I for SN-2SLS).
However, SN-2SLS is also a GMM estimator of 8 based on the structural

form orthogonality conditions:

z (y -x’3)
E——i——“———iﬁ =0 (2.11)
(1+8’RB)

12
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(In the last two expressions, 21’ yl, y11 and xl refer to the i-th
rows of 2, Y, Y, aﬁd X respectively.)

There is one disadvantage, however, of SN-2SLS relative to the
other estimators. In general, the results are not independent of the
units in which the variables are measured, so that a sensible choice
of the units of scale may be of some importance.S

One further useful perspective on SN-2SLS can be obtained by

regarding it as a simple IV estimator. The statistic A can be written

as
A= y1(M_M1)(y1_X65NM)
Substituting this expression in the formula for the estimator we
obtain
N - ~) _1~,
SSNH = (2’X) "2 Y, (2.12)
where

Z =X+ (M—Ml)y165NnA

~ A A A

which reduces to 2=X+y16’sNH if all the variables in X are endogenous.
Remark that for 2SLS we have 2 = i, and more generally for the j-th
indirect 2SLS estimator obtained by normalizing to unity the
coefficient on the j-th column of Y, we have 2=Q(J), where Q(J)

coincides with W=(Y,21) except for the j-th column of Y which is

omitted.

13



Models for Panel Data
We consider a model with individual effects for panel data given

by

Y = xlta + U (t=1,...,T; i=1,...,N) (2.13)

u
it i it

, nl) =0 (2.14)

t . . .
were 21=(21; . zi;)’ is a vector of instrumental variables.

Thus, this setting is sufficiently general to cover models with

strictly exogenous, predetermined and endogenous explanatory
variables. We assume that {w=(y ,...,y ,x'..,x',z',...,z.")",

i i1 1T’ 11 1T 11 iT
i=1,...N} is a random sample (iid) of size N.

Estimation will be based on a sequence of orthogonality

conditions of the form
Elz(y}, - X 8)] = 0 (t=1,...,T-1) (2.15)

where starred variables denote forward differences or orthogonal

* y ).

deviations of the original variables (e.g. Ylt‘yluﬁl)' it

It is convenient to rewrite the transformed model in the form

x _ % *
Yy T Xla Y

14



where y:=(y:1 e y‘ )', etc.

1(T-1)

The mx1 parameter vector & is usually estimated by GMM leading to
estimators of the form (see Holtz-Eakin, Newey and Rosen (1988),
Arellano and Bond (1991), Chamberlain (1992), Arellano and Bover
(1995), and Ahn and Schmidt (1995) amongst others):

-

Sam = (X*¥'2 AZ’ XM TIX™ 2 A2 Y | (2.16)

where y'=(y:’...y;’)’, X'=(X?...X;’)’ and 2=(2}...2%)'. 2, is a (T-
1)xq block diagonal matrix whose t-th block is zt, and Ay is chosen
such that it is a consistent estimate of the inverse of E(Z;u:u:’zl).

The standard robust choice is

— ’ ~*~‘v -1
A, = (Zl 2 uiu 21)

where u: is a vector of residuals evaluated using some preliminary
consistent estimate of 8. Under very general regularity conditions
Iﬁ(acnn—a) is asymptotically normal as N»» and T is fixed, and a

-

consistent estimator of the asymptotic variance of 6GHH is given by
Var (8gpy) = (X2 AZ' X7 (2.17)

Moreover, the Sargan or GMM statistic of overidentifying

restrictions is given by

s=u"zAz0* 342
N q-m

15



where u* = y* - X'SGMH.

Turning to symmetrically normalized GMM (SNM) estimators of 8§,
let us consider a partition of X'=(X;,X;) and a corresponding
partition of 6=(6;,6;)’ distinguishing between non-exogenous and
exogenous variables, such that the m2 columns of X; are liﬁear
combinations of those of 2 while the m, columns of X: are not.

SNM 1is the GMM estimator of & based on the orthogonality
conditions

z (y:—X *s -X “52)

Ey(w,8) =E LI =0 (2.18)

Yz
(1+6161)

. [ YR IR Y » — »
Since Elw(wi,s)w (wi,ﬁ)] E(Ziu u 21)/(1+6161)-AN/(1+6161), A

i N

remains an optimal weighting matrix for the SNM estimator. Therefore,

~ _ . (y!_xia)’M!(y!_xia)
SSNH = argmin (13573 ) (2.19)
o} 11
where M* = ZANZ’. Following our earlier discussion we obtain
- d;w;’ (M'-M;)w;dl
= argmin ; (2.20)
1SNM d’d
84 11
A _ IRV T R ST TRV T .
azsun = (X2 M Xz) X2 M*(y X161SNM) | (2.21)
. _ * * = IFIRY . _ X% M*X* -IX"M'. S
where w1 (y*, Xx)’ d1 (1, 61) and M2 M XZ(X2 M 2) ) o

that

16



. *, LR VLEY A -1 t; LIRVLAWN |
SISNH = [X1 (M MZ)XI All X1 (M Mz)y (2.22)
with A = min eigen[w;’(M'—M;)w;]. A compact expression for &_ 1is
given by
A _ t;tt_N‘l IRy
SSNH = (X""'M'X AL) XMy (2.23)

I, 0
S witha=|"™ |6
0

Since 6GHM and SSNM are ‘asymptotically equivalent, Var(SGHH) is

also a consistent estimate of the asymptotic variance of asnn'

However, an alternative natural estimator of Var(SSNH), suggested by

the ‘expression above, is

var(s_ ) = (X"M'X* - an)™ (2.24)
SNM
Moreover, since A is a minimized optimal GMM criterion it can be used
as an alternative test statistic of overidentifying restrictions. We
have the result

~ ~

(1 +8 8 A S x (2.25)
1SNM 1SNM q-m

which is asymptotically equivalent to the Sargan test.
The existing evidence from Monte Carlo experiments and empirical

analysis point in the direction that, even for moderately large cross-

17



sectional sample sizes, ordinary GMM estimates and their standard
errors can be worryingly biased when the instruments are poor. This is
typically the case in the context of autoregressive models with
individual effects when the roots are close to unity or the
contribution of the permanent effect to the total variance is high. If

the desirable finite sample properties of symmetrically normalized

~
PN

estimators apply to these environments, SSNH, Var(SSNH) and A could

provide a useful alternative to estimation and testing.

3. Experimental Comparisons with Alternative Estimators for First

Order Autoregressions with Random Effects

The purpose of this section is to study the finite sample
properties of the symmetrically normalized GMM estimators in relation
to ordinary GMM for various versions of the first-order autoregressive
model with individual effects. The IV restrictions implied by these
models can also be represented as simple structures on the covariance
matrix of the data, and so we can also make comparisons with minimum
distance and pseudo maximum likelihood estimators of these covariance
structures. The emphasis is not in assessing the value of enforcing
particular restrictions in the model, as done for example by Ahn and
Schmidt (1995) and Arellano and Bover (1995) for quadratic and
stationarity restrictions, respectively. Rather, we wish to evaluate
the effects in small samples of using alternative estimating criteria
that produce asymptotically equivalent estimators for fixed T and
large N. However, since we present results for three different sets of

moment restrictions, we shall also be able to make some comparisons

18



across models. We concentrate on a random effects AR(1) model because
of - its simplicity and the fact that it is a case that has received a

great deal of attention in the literature.

Models and Estimators

Let us consider a random sample of individual time-series of size
T yf=(yu,...,le)’ (i=1,...,N) with second-order moment matrix
E(yTyT’)=Q={wts}. We assume tha£ the joint distribution of yf and the
unobservable time-invariant effect n satisfies the following

assumption:

Assumption A

+ 7 + vV (t=2,...,T) (3.1)

=5 +
y LARER ATTIR: i it

it
E(vie|y;) = 0 (3.2)

2 2 2,_ 2
where E(nl)—o, E(vn)--crt and E(nl)—vn.

Notice that since equation (3.1) includes a constant term, it is
not restrictive to assume that n1 has zero mean. However, in general
E(nl|yf) will be a function of yf. Moreover, the dependence between n
and Vii is not restricted by Assumption A. Another remark is that
Assumption A does not rule out the possibility of conditional
heteroskedasticity, since E(vft|y:—1) need not coincide with @f.

Following Arellano and Bond (1991), Assumption A implies (T-2)(T-

1)/2 linear moment restrictions of the form

19



t-2(

Ely, “(dy,, - aby )1 =0 (3.3)

it 1(t-1)
These restrictions can also be represented as constraints on the
elements of Q. Multiplying (3.1) by yls for s<t, and taking

expectations gives:

W =

s = “nye +c (t=2,...T; s=1,...,t-1) (3.4)

where cs=E[yls(7+nl)]. This means that, given Assumption A, the
T(T+1)/2 different elements of Q can be written as functions of the

2Tx1 parameter vector

R

e = (e,c,...,C W T

We call this moment structure Model 1. Since the moment restrictions
in (3.3) are linear in «, they can be used as the basis for a linear
GMM estimator of the type discussed in the previous section.

The orthogonality conditions (3.3) are the only restrictions
implied by Assumption A on the second-order moments of the data.” In
particular, with T=3 the parameters (a,cl,czl are Jjust-identified as
functions of the elements of Q.

Model 1 is attractive because it is based on minimal assumptions.
However, we may be willing to impose additional structure if this
conforms to a priori belliefs. One possibility is to assume that the
errors v - are mean independent of the individual effect n, given

y:—l. This situation gives rise to Assumption B.

20



Assumption B

,m) =0 : (3.5)

Note that Assumption B is more restrictive than Assumption A. When

Tz4, Assumption B implies the following additional T-3 moment

restrictions

ElQy,, = oy )@Yy, ~ ¥y, )] =0 (t=4,....T) (3.6)
In effect, we can write

Bl =7 = @Yy ™ M B gy 7 ¥BY )01 = 0
and since E[(7+nl)Avi“_”]=0 the result follows. GMM estimators of «

that exploit these restrictions in addition to those in (3.3) have
been considered by Ahn and Schmidt (1995). An alternative
representation of the restrictions in (3.6) is in terms of a recursion
of the coefficients <, introduced in (3.5). Multiblying (3.1) by

(7+ni) and taking expectations gives:
c. = ac + ¢ (t=2,...,T) (3.7)

where ¢=72+¢3=E[(7+n1)2], so that C,.--C,, can be written in terms of

c, and ¢. This gives rise to Model 2 in which Q depends on the (T+3)xl1

parameter vector
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e = (a,¢,cl,w T

11
Notice that with T=3 Assumption B does not imply further restrictions
in Q with the result that « remains Just identified relative to the
second-order moments,

Other forms of additional structure that can be imposed are
various versions of mean or variance stationarity conditions.
Assumption C, which requires the change in Yie to be mean independent
of the individual effect n is a particularly wuseful mean

stationarity condition.

Assumption C

E(Y, .= Y oy =0 (t=2,...,T) 8

Notice that 1in combination with Assumption B, Assumption C

implies

E(yit(ni) v aE(ylt-llni) * ni

so that if E(y1t|n1] is constant it must be the case that
= - 3.9
Ely, [n) = (ym )/(1-0) (3.9)
and E(yit)=7/(1-a).

Relative to Assumption A and Model 1, Assumption C adds the

following (T-2) moment restrictions on Q:
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)Ay 1=0  (t=3,...,T) (3.10)

ELOY = 9 ey 10 ey

which were proposed by Arellano and Bover (1995), who developed a
linear GMM estimator of « on the basis of (3.3) and (3.10).8 However,
relative to Model 2, Assumption C only adds one moment restriction

which can be written as

E[(y13 - aylz)Ay‘Z] =0 (3.11)

In terms of the parameters C, the implication of Assumption C is that

C=...=

. =C. if we move from Model 1, or that c1=¢/(1-a) if we move

from Model 2. This gives rise to Model 3 in which Q depends on the
(T+2)x1 parameter vector

6 = (a,¢,w1 v w )’

1 TT
Notice that with T=3, « is overidentified under Assumption C.

The basic specification can be restricted further 1in various
ways. For example, we could consider time series homoskedasticity of
the form E(vft)=02 for t=2,...,T and stationarity of the varliance of
the initial conditions. The combination of these assumptions with
Models 2 or 3 would give rise to additional models, some of which have
been discussed in detail in the paper by Ahn and Schmidt (1995).
However, in the simulations we concentrate in Models 1, 2 and 3

because they embody the restrictions that have been found most useful

in applications.
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If~E[wJ(yT,a)]=0 denotes the vector of orthogonality conditions
available for Model j (j=1,2,3), the symmetrically normalized

estimators that we consider are the optimal GMM estimators based on

the restrictions E[wj(yl,a)/(1+a2)1’2]=o, For example, the SNM

estimator of a for Model 1 is given by

b;ANbo
= — (3.12)
b’Ab - A
1N 1

R >

SNM, 1

=1 ’ = -1 ’ = -1 ’ - ~» -1
where  beNTL Z'Ay, b=NTL Zay ., A=(NTLL Z'avAviz)T,

A=min eigen(B ANB], B=(bo,b1), Ayl=(Ay13...Ale) ,

Ay i\ )’ and Z is a (T-2)x(T-2)(T-1)/2 Dblock

(8y L (T-1) i

(1-1) 2"

diagonal matrix whose sth block is given by yf.
All three models can also be estimated by minimum distance (MD)

or by pseudo maximum likelihood (PML) on the basis of the matrix of

-

-1 T T .
sample second-order moments Q=N Xf_pqyl’, and the representations as
covariance structures discussed above.

Optimal MD estimators minimize a criterion of the form
c,(8) = m(8)'V''m(e) (3.13)
where
m(e) = Vech[é - Q(e)] = © - w(e)

and

AAn

-1
V =N wwW - e
N Xf=1 11
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with w1=vech(yfyf’) and w=vech(Q).
These estimators have the same asymptotic distribution as the

corresponding GMM and SNM estimators. To see this for Model 1, notice

that
-1 _ _ _ ~ _ .
N lewl(yl,a) = b, - ab =H(a)[w - w(6)]

where Hy(a) is a (T-1)(T-2)/2 x T(T+1)/2 selection matrix that depends
on «. Hl(a) eliminates (2T-1) moments which depend on the 2T
parameters contained in 6. Taking into account that the limiting
distribution of optimal MD estimators is invariant to transformations
and to the addition of |unrestricted moments, the asymptotic
equivalence between GMM and MD follows.

Turning to PML estimators, one possibility, and the one that we

simulate, is to minimize the criterion
c (8) = log det Q(6) + trio t(e)Ql (3.14)

subject to Q(8)>0.9 The first-order conditions for this PMLE are given

by:

dw(e)|’

S (2 (e)eq () 1K[w - w(8)] = 0

where K is a 0-1 matrix such that K vech(Q)=vec(Q). It turns out that
this PMLE is asymptotically equivalent to the MD estimator that uses

K’ ('@ 1)K as the weighting matrix. Under our Monte Carlo design
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plim[K’ (§-1®§-1JK-V:] = 0. However, in other environments, such as
non-normal or noncentred data, this PMLE would be strictly less
efficient asymptotically that the optimal MDE.

An alternative PMLE which is always asymptotically equivalent to

the optimal MDE, minimizes
c;(eJ = log det(N_IZ:LI[w1 - w(eJ][w1 - w(0)]’) (3.15)

Since the minimizer of c;(eJ is equivalent to the iterated MD and it
can be expected to be very similar to the MD, it was not included in

the simulations.

Monte Carlo Results

We are particularly interested to analyze the behaviour of the
estimators in relation with the quality of the instruments. In Model 1
the quality of the instruments basically depends on the values of «
and r=oz/02. To illustrate the situation, notice that wunder

stationarity the correlation between Ayt_1 and Yo is given by

p=-01-a)l2(1 - a + (1 + a)r)1"?
which produces the values
p a = 0.5 a = 0.8
r =20 -0.50 -0.32
r =0.2 -0.39 -0.19
r =1 -0.25 -0.10
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For this reason, we exclude from the simulations models with small
values of «, which can be expected to perform relatively well. We
consider cases with «=0.5, 0.8, 0z=0. 0.2, 1, T=4, 7 and N=100. The
variance of the random error o is kept equal to unity for all cases.
For each experiment we generated 1000 samples of N independent

observations of (y11' ey le) from the process

-1/2
v
i1

<
"

-1 2
“ (1-a) n, + (1-°)

y., = ay * +v (t=2,...,T)

it i(t-1) it

: - _— . 2, .
with v, = (v11""’v1T) N(0,I) and n, N(O,on) independent of v,

Table 1 reports sample medians, percentage biases, interquartile
ranges and median absolute errors for pseudo maximum likelihood (ML),
minimumldistance (MD), two-step GMM and symmetrically normalized two-
step GMM (SNM) estimators for Model 1.1° The weighting matrices of GMM
and SNM are based on optimal one-step GMM residuals as described in
Arellano and Bond (1991). In almost every case, SNM is the estimator
with the smallest bias and the largest dispersion. When 02=0 all
estimators perform very well, although ML and MD have a smaller
interquartile range than GMM and SNM, a difference which is specially
noticeable for T=4 (with 03=0 and «=0.8 the interquartile range of ML
or MD is about three times smaller than that of the ordinary or the
symmetrically normalized GMM estimators). When oz=0.2 or 1, the
differences in the distributions of GMM and SNM become apparent: the
higher oz or o, the larger the negative bias of GMM for a given T,

whereas SNM remains essentially median unbiased. SNM always has a

27



larger interquartile range than GMM, but the differences are small
except in the almost unidentified cases (with «=0.8 and T=4). The
median absclute errors of GMM and SNM estimates are of a very similar
magnitude, although those for GMM tend to be smaller than those for

SNM with T=4 and larger with T=7. With T=7, Table 1 clearly indicates

. that when N=100 there is information in the data to estimate « with.

sufficient precision but that, contrary to SNM, GMM estimatés may
still be substantially biased. As far as median bias is concerned, ML
and MD are practically unbiased when «=0.5, but exhibit some
worryingly large biases when o; is not zero and a=0.8.

The evidence from Table 1 suggests that Hillier’s basic results
for ordinary and symmetrically normalized 2SLS estimators may have a
wider applicability. In effect, GMM and SNM, unlike 2SLS, are not only
functions of the second moments of the data but also of the fourth
order moments that enter the weighting matrix of the moment
conditions.

Model 1 1is the leading case from the point of view that
instrumental-variable estimators of structural equations with
predetermined instruments tend to rely on orthogonality conditions
that are similar to those in Model 1.

Table 2 reports some results for Model 2 that exploits the (T-3)
quadratic restrictions given in (3.6) in addition to the linear ones
in (3.3). GMM and SNM are asymptotically efficient two-step GMM
estimates whose weighting matrix has been calculated using one-step
GMM residuals based on the same orthogonality conditions but weighted
by an identity matrix. We found that the results are sensitive to the

choice of residuals used by the two-step estimates. Unfortunately, in
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this case, in contrast with the situation for Model 1, there does not
seem to be a "natural" choice of one-step GMM estimator that would be
asymptotically efficient under classical errors. Another préblem is
that now GMM is not a linear IV estimator, so that the justification
for an estimator based on the downweighted restrictions

El(1+a2)7 12

wJ(yl,a)]=O becomes dubious. We also tried a version of
SNM that only applied the symmetric normalization to the linear
orthogonality conditions with very similar results.

In Table 2, ML is, except in two cases, the estimator with the
smallest interquartile range and often the one with the smallest bias,
with MD trailing ML fairly closely. In drawing comparisons among the
estimators, it should be taken into account that the simulated data is
normally distributed, so that ML 1is implicitly using optimally
weighted moments with less sampl;ng variability than the methods that
rely on higher order moments. On the other hand, ML and MD are subject
to the inequality restriction |«|<1 while GMM and SNM are not. We
experimented with versions of GMM and SNM subject to |a«|<1 but this
did not alter qualitatively the results. Turning to the comparison
between GMM and SNM, SNM always has a smaller median bias than GMM,
although SNM can also be substantially biased as in the experiment
with «=0.8, T=7 and 03=1. Nevertheless, we insist that these results
are sensitive to the choice of one-step residuals and further
investigation is required.

Table 3 presents the results for Model 3 which makes use of the
restrictions derived from Assumptions B and C. This model incorporates
the orthogonality conditions from Model 2. However, by adding the

stationarity restrictions the entire list of moment conditions admits
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a linear representation (c¢f. Ahn and Schmidt (1995)), so that GMM in
Table‘3 is a linear IV estimator (as proposed by Arellano and Bover
(1995)). All the estimators in this Table exhibit small median biases
and dispersions, although, as in Table 2, the comparisons favour ML
and MD. The differences between GMM and SNM are small in most cases
without a clear pattern in the relation, except for the fact that on
average SNM estimates are always higher than the GMM estimates.

Both GMM and SNM are two-step estimators based on one-step GMM
residuals that use all the orthogonality conditions from Model 3, and
the inverse of the second moments of the instruments as the weighting
matrix. This one-step estimator is not asymptotically efficient, not
even under classical errors. Moreover, the results for GMM and SNM in
Table 3 are also sensitive to the choice of one-step residuals. To
Illustrate the situation, Table 4 reports results for GMM and SNM
estimates based on both one-step GMM residuals from Model 1 and one-
step residuals from Model 3, but using an identity as the weighting
matrix. As an extreme example, the median absolute error of GMM or SNM
in Table 3 can be seen to be half of the size of that of GMMb or SNMb
in Table A.1 for «=0.8, T=4 and 0§=1. As one would expect, the impact
of using Model 1 residuals 1is more important when Model 1 estimates
are highly imprecise. These results suggest that an iterated GMM
estimator may often have very different finite sample properties
relative to a two-step estimator.

Finally, it is possible to make comparisons across tables. In
general, the interquartile ranges become smaller if we move from Table
1 to Table 2 and Table 3. The efficiency gains are particularly

important in the cases with «=0.8 and 0§=0.2 or 1. The gains from
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enforcing stationarity restrictions are always substantial for all the
estimators. A puzzling result is that for some experiments the ML and
MD estimates of Model 2 have a larger interquartile range than the
corresponding estimates for Model 1. However, this result may be
related to problems of nonconvergence that we experienced for some of
the replications for ML and MD in Model 2.

We have also investigated the finite sample distributions of the

standardized GMM and SNM "t-statistics" for Model 1 of the form

Y1 = Vo1 (@ - o) (3.16)
GMM, 1 GMM,1 GMM,1
_ A-1/2 _
tSNM,l " UsNM,1° SNM,1 o) (3.17)
where « is as defined in (3.12) and « has a similar
SNM, 1 GMM, 1

expression but with X replaced by zero. The estimated asymptotic

variances are given by:

~

v = 1/(b’A b )

GMM, 1 1N 1

v = 1/(b’A b -})

SNM, 1 1N 1

Both tmm’1 and tSNM’1 are asymptotically N(0,1). Since the usual

tests of Thypotheses and confidence intervals rely on this
approximation, it is useful to check the accuracy of the approximation
for the sample sizes and parameter values considered above.

Table 5 reports finite sample quantiles of the t-statistics based

on 10,000 replications. We use a larger number of replications because
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in this case the 0.9 and 0.95 quantiles in the upper tail of the
aistribution are of special interest. The median shows that the
distributions of the GMM t-statistics are shifted to the left, with
the absolute value of the shift increasing with «, on and T. In
contrast, the distributions of the SNM t-statistics are centered at
values very close to zero. Turning to the 0.9 and 0.95 quantiles, when
T=4 the differences with fhe corresponding N(0,1) quantiles are always
smaller for the SNM t-statistics than for the GMM, sometimes by a wide
margin. When T=7, the normal approximation worsens for both
estimators. In that case, however, the upper-tail GMM quantiles tend
to be closer to the normal values than those from the SNM t-

statistics.

4. Empirical Illustrations

Our first illustration of the previous methods proceeds by re-
estimating the employment equations presented by Arellano and Bond
(1991) using symmetrically normalized and indirect GMM estimators.

The Arellano-Bond dataset consists on an unbalanced panel of 140
quoted companies from the UK, whose main activity is manufacturing and
for which seven, eight or nine continuous annual observations are
available for the period 1976-1984.

The models are all log-linear relationships between the number of
employees, the average real wage, the stock of capital, a measure of
industry output, lagged values of the previous variables, time dummies
and company effects. The reader is referred to the Arellano and Bond
article for a detailed description of the models and the data.

The first two panels of Table 6 contain the results for two
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different models estimated in first differences using instrumental
variables. Model A 1includes contemporaneous wage and capital
variables, which are treated as endogenous along with the first lag of
employment. In this model lagged sales and stocks are used as outside
instrdments in addition to lags of the endogenous variables included
in the equation. Model B only includes lagged values of wages and
capital and it could be interpreted as an approximated Euler equation
for employment with quadratic adjustment costs. Columns labeled GMM
reproduce some of the results obtained by Arellano and Bond. The SNM
estimates are calculated as described in Section 2, and for Model A
there is an additional column containing indirect GMM estimates that
were obtained by normalizing to unity the coefficient of
contemporaneous wages. Finally, the third panel of Table 6 presents
GMM and SNM estimates of some simple second-order autoregressive
models for employment with and without the inclusion of lagged wages.

As Table 6 shows, SNM and indirect GMM estimates are far apart
from the direct GMM estimates. These results uncover the fact that the
GMM estimates from the dataset of UK firms are probably much less
reliable than what their estimated asymptotic standard errors would
suggest. Interestingly, the SNM estimates of Model B are more
compatible with the Euler equation interpretation than the GMM
estimates. For example, in the Euler equation discussed by Arellano
and Bond the coefficient on D, is given by (2+r) where r is the real
discount rate.

Our second empirical illustration is based on a similar but
larger balanced panel of 738 Spanish manufacturing companies, for

which there are available annual observations for the period 1983-1990
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(see the Appendix for a description of these data). We consider a
bivariate VAR model for the logarithms of‘employment and wages. The
employment equation contains both lagged employment and lagged wages,
while the wage equation only includes its own lags. This model can be
regarded as the reduced form of an intertemporal model of employment
determination under rational expectations (see Sargent (1978)). To
obtain the reduced form, an AR(2) process for log wages is assumed,
and the Euler equation in the log of employment for the optimum
contingency plans is solved.

Table 7 presents GMM and SNM estimates of the two equations,
firstly using only lagged variables in levels as instruments for
equations in first-differences (the basic set of moment conditions
that we called "Model 1"), and secondly adding lagged variables in
first-differences as instruments for equations in levels (that is,
including the stationarity restrictions of "Model 3"). For Model 1 we
also report estimates of a univariate AR(2) process for employment.

In addition to asymptotic confidence intervals, we calculated 95
percent semiparametric bootstrap confidence intervals based on 1000
replications from the empirical distribution function of the data
subject to the moment restrictions (cf. Back and Brown (1993)).
Following Brown and Newey (1992) we drew the bootstrap samples from
the mass-point distribution that estimated the probability of the i-th

observation as
p, = 1/(1+£’w(y1,9))N

i

where
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2 = argmin % ZT=llog[1+£’¢(yl,8)]2
4
and ¢(Y1»8) is the vector of orthogonality conditions for observation
1 evaluated at the appropriate parameter estimates.

Table 7 contains some interesting results. GMM.and SNM estimates
of Model 1 are still different from each other but by a smaller margin
than the corresponding estimates for the UK panel. The difference
becomes even smaller for the univariate employment estimates that are
based on half the number of moments used for the estimates in the
first two columns. On the other hand, the estimates of Model 3 appear
to be more precise, presumably because the additional orthogonality
conditions are highly informative. In this case, GMM and SNM estimates
provide very similar results. However, the Sargan statistics indicate
a clear rejection of the stationarity restrictions in both the
employment and the wage equations. It is also noticeable that although
bootstrap confidence intervals are always larger than the asymptotic
confidence intervals, the differences between the two are generally
small.

We re-estimated Model 1 with a random subsample of 200 firms,
which is similar to the size of the UK sample. Interestingly, the
results (reported in Table 8) are closer to the UK results for similar
specifications than those based on the full Spanish sample. In
particular, the SNM estimates of the AR(2) model for employment are
remarkably stable over the three datasets while standard GMM estimates
would be seriously downward biased in the smaller samples. Moreover,

the discrepancies Dbetween asymptotic and ©bootstrap confidence
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intervals in the random subsample were greater than in the full
sample. 1l

Finally, we simulated data as close as possible to the AR(2)
employment equation, to see if the findings that we obtained with the
subsample of 200 companies were substantiated in the Monte Carlo
simulations. Random errors and individual effects were generated from
independent normal distributions with variances equal to the values
estimated from the SNM residuals of the full Spanish sample. Since the
estimated time effects showed very little variability, the constant
was set to a common value for all periods given by the average
estimated time effect in levels, although the estimates 1in the
simulations included time dummies. As a consequence the model was
stationary, and we generated (and discarded) 100 preliminary
observations for each individual to minimize the impact of initial
conditions. The results are reported in Table 9, and confirm the
impression conveyed by the real data. The SNM estimates are almost
median unbiased, but GMM shows large downward biases, specially when
N=200. A comparison in terms of median absolute errors also favours
SNM for both sample sizes and parameter estimates. Lastly, looking at
the quantiles of the t-ratios shown in the lower panel of Table 9, it
appears that the N(0,1) approximation is reasonable for the SNM t-

ratios but not for the GMM t-ratios.
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5. Conclusions

It has long been established that the lack of finite sample bias
is an important advantage of LIML estimators of structural equations
over 2SLS, which by contrast have thinner tails than LIML. The bias of
2SLS towards OLS can be specially worrying when the instruments are
“poor" and/or the degree of overidentification is large. In practice,
this means that while LIML is invariant to normalization, often a 2SLS
regression of y on X provides results that are fairly different from
those of the (inverted) 2SLS regression of x on y, despite being
asymptotically equivalent estimators. However, LIML has not been used
much in applications. The reasons for this include a computational
disadvantage over 2SLS, concerns with outliers, the fact that 25LS can
be more easily accommodated into the GMM framework, and we suspect
that sometimes the use of an implicit prior that favored closeness to
OLS when structural coefficients were poorly identified.

There has recently been a renewed interest in the finite sample
properties of GMM estimators in various time series and cross-
sectional contexts. Several papers have emphasized the role of
estimated weighting matrices for the properties of the estimators in
small samples, and a number of alternative methods have been
considered (eg. Altonji and Segal (1994), Hansen, Heaton and Yaron
(1995), Angrist, Imbens and Krueger (1995) or Imbens (1995)). In
contrast, in this paper we have focused on the role of normalization
rules for the finite sample properties of GMM estimators that make use
of standard two-step weighting matrices. Our work is motivated by the
results in Hillier (1990), who argued that the alternative

normalization rules adopted by LIML and 2SLS are at the basis of their
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different sampling behaviour. Hilller showed that a symmetrically
normalized 2SLS has similar finite sample properties to those of LIML.
This result is interesting because, unlike LIML, SN-2SLS is a GMM
estimator based on structural form moment conditions and therefore it
can be easily extended to distribution free environments and robust
statistics.

In particular, SN-2SLS 1is well suited for application to the
nonstandard IV situations that arise in panel data models with
predetermined variables, which are the models of interest in this
paper. These models are typically estimated in first-differences using
all the available lags as instruments. Usually, there is a large
number of instruments available, but of poor quality since they tend
to be only weakly correlated with the first-differenced endogenous
variables that appear in the equation.

In this paper we have presented SN-GMM estimators for dynamic
panel data models that are asymptotically equivalent to ordinary
optimal GMM estimators. We have also showed how a byproduct of the
estimation is a test statistic of overidentifying restrictions, based
on a minimum eigenvalue calculation.

We have reported Monte Carlo evidence on the performance of GMM
and SN-GMM estimates for a first-order autoregressive model with
individual effects. For this model we have considered three
alternative sets of moment conditions as discussed by Arellano and
Bond (1991), Ahn and Schmidt (1995), and Arellano and Bover (1995).
Since for these models, the IV restrictions can be expressed as
straightforward structures on the data covariance matrix, using these

representations we have also calculated MD and QML estimates for
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comparisons with the IV estimates. Our findings suggest that Hillier’s
basic results may have a wider applicability. In most cases, SN-GMM is
the estimator with the smallest median bias, and the one with the
largest interquartile range. However, the differences in dispersion
with ordinary GMM are small except in the almost unidentified cases.
Finally, as an empirical illustration, we have feported estimates
of employment and wage equations from UK and Spanish firm panels. The
results show that GMM estimates from the (smaller) UK panel can be
very unreliable when the degree of overidentification is large. The
results from the (larger) Spanish panel produce a closer agreement
between ordinary and symmetrically normalized GMM estimates, although
there 1is evidence that there can still be serious biases in GMM
estimates. Some of these results are confirmed by simulating data as
close as possible to the empirical data. Moment restricted bootstrap
confidence intervals show that asymptotic confidénce intervals are
often over-optimistic, and Sargan tests consistently reject the

restrictions implied by the stationarity of initial conditions.
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Footnotes

1. Split sample or jackknife IV estimators, however, are also
consistent when the number of Iinstruments tends to infinity (cf.
Angrist and Krueger (1995) and Angrist, Imbens and Krueger (1995)).

2. Empirical likelihood estimators of the type considered by Qin and
Lawless (1994) and 1Imbens (1995) will also be invariant to
normalization due to the invariance property of ML estimators.

3. Notice that 1if the only explahatory exogenous varliable in the

equation 1is a constant term, 6SNH coincides with the orthogonal

regression on the fitted values Y (cf. Malinvaud (1970) and Anderson
(1976)). :

4. Meaning that the density of &« = b/(b’b)'”? defined on the unit
circle is symmetric about the true points ta=tb/ (b’ b)1"? having modes

at *a«.

5. This problem does not arise in the autoregressive panel data models
discussed below, since in that case the SN-GMM estimator is invariant
to units and to normalization.

6. If no columns of X* are perfectly predictable from Z, or if the
entire vector of coefficients is normalized to unity, then A = I and

A=min eigen(W*’M*W*), with W* = (y*,X*).

7. However, they are not the only restrictions available since (3.2)
also implies that nonlinear functions of y?e are uncorrelated with
Avlt. The semiparametric efficiency bound for this model can be

obtained from the results in Chamberlain (1992). One reason why
estimators based on (3.3) may not be fully efficient asymptotically is

that the dependence between L and yf may be nonlinear. Another reason

would be unaccounted conditional heteroskedasticity.
8. Notice that the (T-2) restrictions in (3.10) can also be written as

Jay 1=0 (t=3,...,T)

Elly,; - ay 1(t-1)

1(T-1)
For example, we have the identity

E(u Ay ) = E[Au Ay ) + E(

iT 1 (T-2) iT ~1(T-2) ul(T-l)Ay

l(T—Z))

where u =y -« .
iT le yl(T-l)
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9. In all cases, optimization with respect to a was conducted over the
range |a|<1. This was achleved wusing the reparameterization

a=2p/(1+p2).
10. Means and standard deviations are not reported since the

symmetrically normalized estimators, in common with LIML, can be
expected to have infinite moments.

11. Bootstrap standard errors for the UK unbalanced panel were not

calculated, since they would depend on a nontrivial specification of
the empirical distribution function for the unbalanced observations.
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Data Appendix

The Spanish dataset 1is a balanced panel of 738 manufacturing
companies recorded in the database of the Bank of Spain’s Central
Balance Sheet Office from 1983 to 1990. This survey contains information
on firm’s balance sheets and other complementary information, including
data on employment and total wage bill. This survey started in 1982 with
the collection of data from large companies with a tendency 1in
subsequent years towards the addition of smaller companies. The database
includes both quoted and non quoted firms. The manufacturing firms
included in this data set represent more than 40% of the Spanish value
added in manufacturing in 198S.

We selected firms reporting information during the whole period
1983-1990 that fulfilled several coherency conditions. All companies
with negative values for net worth, capital stock, accumulated
depreciation, accounting depreciation, labour costs, employment, sales,
output or those whose book value of capital stock jumped by a factor
greater than 3 from one year to the next, were dropped from the sample.
Finally, we concentrated on non-energy, manufacturing companies with a
public share lower than 50 percent.

Variable construction
Employment

Number of employees 1is dissagregated into permanent employees
(those with long-term contracts) and temporary employees (those with
short-term contracts). Total employment is calculated as the number of
permanent employees, plus the average annual number of temporary
employees (number of temporary employees during the year times the
average number of weeks worked by temporary employees divided by 52).

Real wage

The measure of the firm’s annual average labour costs per employee
is computed as the ratio of total wages and salaries (in million Spanish
pesetas) to total number of employees. This measure was deflated using
Retail Price Indices for each of the subsectors of the manufacturing
industry. (Source: Spain’s Institute of National Statistics.)

Descriptive statistics

Mean Median Std. deviation Minimum Maximum
Employment 310.4 124.0 702.4 10.0 11004.0
Real Wage 1.86 1.75 0.67 0.32 6.66
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Table 1
Model 1: Linear restrictions

o=105 oa=4038
ML MD GMM SNM ML MD GMM SNM

T=4
G0 | |
median 050 051 049 0.50 079 080 076 0.80
% bias 0.1 2.1 2.1 0.2 1.5 0.0 5.0 0.3
igr 011 012 019 0.19 0.10 0.10 0.28 0.30
ig80 022 023 036 0.38 020 021 057 0.61
mae 005 006 009 009 0.05 005 015 0.15
=02
median 050 051 047 049 - 069 0.71 065 076
%bias 0.1 1.3 6.4 1.8 137 113 187 4.5
igr 019 020 024 025 028 028 047 0.55
ig80 036 039 047 0.50 054 058 094 130
02 me 009 010 012 013 012 0.11 027 0.27
" median 047 049 04 047 065 0.65 046 0.65
% bias 5.5 22 128 53 19.1 191 426 18.1
igr 032 032 035 038 047 048 0.68 099
ig80 054 056 072 0.80 090 094 136 2.59
me 015 016 018 0.19 0.18 0.18 043 0.51
T=7
G0
median 050 051 048 0.50 080 081 075 079
% bias 0.2 2.0 4.1 0.1 0.5 1.4 5.7 0.8
igr 008 009 010 010 008 0.10 0.13 0.13
ig80 0.14 0.17 019 019 015 0.17 024 0.25
me 004 004 005 0.05 004 005 007 0.07
c=0.2
" median 050 050 047 0.50 074 074 0.69 0.79
% bias 0.3 0.1 6.2 0.5 7.7 7.8 13.7 1.7
igr 010 012 012 0.12 014 017 020 0.20
ig80 0.19 023 023 023 027 034 039 041
mae 005 006 006 0.06 008 0.09 0.13 0.10
=1

median 0.50 050 045 049 072 071 059 077
% bias 06 02 938 1.4 106 111 259 39
igr 014 015 014 0.5 019 022 027 028
ig8 026 029 028 030 037 046 053 059
mae 0.07 008 0.08 0.07 0.10 0.11 021 0.15

1,000 replications. N=100, c,>=1. ) o ) _
% bias gives the percentage median bias for all estimates; iqr is the 75th-25th interquartile range;
iq80 is the 90th-10th interquantile range; mae denotes the median absolute error.



[able 2
Model 2: Linear and quadratic restrictions

a=05 a=0.8
ML MD GMM SNM ML MD GMM SNM
T=4
=0
median 050 051 049 050 073 074 075 0.80
%bias 04 L1 30 06 85 72 67 01
igr 018 019 017 018 019 019 024 027
i80 033 034 034 036 035 037 050 0.53
mae 009 010 009 009 010 010 013 0.13
=02 |
median 049 050 048 051 070 072 071 078
%bias 14 03 33 14 120 103 108 29
ir 022 022 020 023 02 02 027 033
i80 039 041 041 046 040 041 056 0.63
mae 011 010 010 011 012 013 016 016
=1
" median 048 049 048 052 072 073 063 07
%bias 43 17 44 34 103 92 212 112
iqr 023 024 024 027 024 025 033 039
i80 046 046 049 057 044 045 067 071
mae 012 012 012 013 014 013 022 021
T=7
=0
median 050 050 047 049 079 080 074 0.78
%bias 02 10 50 16 16 01 113 29
igr 008 010 009 009 011 013 012 0.3
i80 016 020 017 0.8 020 024 023 024
mae 004 005 005 005 006 006 008 007
=02
median 050 050 047 049 078 078 068 0.72
%bias 03 06 65 26 20 24 148 104
igr 009 011 010 010 011 013 015 016
i8 016 021 019 020 022 025 032 035
mae 004 005 006 005 006 007 013 011
=1
" median 050 051 045 047 078 078 055 059
%bias 01 14 109 69 28 24 307 268
igr 008 011 011 011 012 015 023 024
i80 017 022 022 024 023 026 047 048
mae 004 005 007 007 006 007 025 022

See Notes to Table 1.




Table 3
Model 3: Linear and stationarity restrictions

a=05 a=0.8
ML MD GMM SNM ML MD GMM SNM
T=4
o’=0 »
median 050 051 050 0.51 080 081 079 081
% bias 0.1 12 08 21 01 07 09 1.5
igr 007 007 015 0.15 005 005 017 0.17
i 012 014 028 028 009 009 032 031
mae 003 003 007 007 0.02 002 008 0.08
o’=02 -
median 050 051 050 051 080 081 079 082
% bias 0.5 1.8 09 27 0.3 13 07 27
igr 016 019 017 017 019 021 020 0.19
ig8 030 033 031 032 035 036 037 036
mae 008 009 009 0.09 009 010 010 0.10
=1
! median 050 051 052 054 079 082 085 087
% bias 02 23 31 85 13 21 57 92
igr 020 021 019 020 021 022 019 018
ig8 036 039 036 037 040 040 038 038
me 010 011 009 0.10 009 010 011 0.11
T=7
o=0
median 050 051 049 050 080 080 078 0380
% bias 0.1 12 29 01 01 04 30 05
igr 005 006 0.08 0.08 003 004 009 0.08
ig8 009 011 015 015 006 008 017 0.16
mae 002 003 004 004 002 002 005 004
c=0.2
" median 050 050 049 050 080 081 078 0.80
% bias 03 06 26 09 02 1.1 24 05
igr 008 010 0.09 0.09 009 012 011 0.10
ig80 015 020 018 018 017 022 020 0.19
me 004 005 0.05 005 005 006 0.05 005
o=1
" median 050 050 050 0.51 080 081 083 0.85
% bias 02 04 07 29 0.1 1.8 35 57
igr 008 011 0.10 011 011 013 012 o011
ig8 016 022 019 020 020 025 022 021
mae 004 005 005 005 0.06 007 007 007

See Notes to Table 1.



Table 4

GMM and SNM estimates for Model 3 with altemative residuals

a=05 a=0.8

GMMa SNMa GMMb SNMb  GMMa SNMa GMMb SNMb

T=4
=0
median 049 051 049 0.51 077 081 079
% bias 2.1 1.1 1.2 1.8 32 1.4 1.2
igr 016 0.16 0.14 0.15 0.18 0.18 0.18
ig80 030 031 028 028 033 034 034
me 008 008 007 0.07 0.09 0.09 0.09
=02
median 049 051 049 051 079 0.83 075
% bias 1.2 2.6 2.1 1.1 1.3 4.4 6.7
igr  0.18 0.19 018 0.18 020 019 026
ig80 033 035 032 032 036 036 048
me 009 009 0.09 0.09 0.10 0.11 0.14
=1
" median 052 055 048 0.51 0.86 090 0.66
% bias 33 101 43 1.8 72 125 173
igr 021 022 021 022 0.17 0.16 041
ig80 038 039 039 039 034 034 0.6
me 011 012 0.11 0.11 010 012 022
T=17
=0 |
median 046 050 049 051 074 081 078
% bias 79 04 1.7 1.1 7.9 1.5 23
igr  0.10 0.11 008 0.08 0.11 011 0.09
ig0 019 021 0.15 0.15 021 021 0.17
me 006 005 004 004 0.07 0.06 0.05
=02
median 046 051 049 0.51 076 0.84 075
% bias 83 1.5 1.9 1.3 5.5 4.8 6.3
igr  0.11 0.12 009 0.09 012 012 0.13
ig80 021 022 0.17 018 023 023 024
mae 006 006 0.05 0.04 0.06 0.07 0.07
=1

median 049 054 048 050 0.83 090 0.68
% bias 2.7 86 39 03 40 123 155
igr 012 013 011 011 0.11 010 0.18
ig8 023 025 019 020 022 020 035
me 006 0.07 006 0.05 006 010 0.13

-0.81

14
0.17
0.33
0.09

0.78

2.1
0.26
0.47
0.13

0.73

9.1
042
0.85
0.21

0.80

0.0
0.09
0.16
0.04

0.78

3.1
0.13
0.23
0.06

0.70
12.6
0.18
0.34
0.11

See Notes to Table 1.
GMMa and SNMa use GMM residuals from Model 3 with welﬁmn% identity matrix.
GMMb and SNMb use optimal one-step GMM residuals from

i
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'able 5
Model 1: Linear restrictions

Quantiles of the t-statistics
T=4 T=7
a=10.5 a=10.8 a=05 a=0.38
GMM SNM  GMM SNM  GMM SNM  GMM SNM
o=
0.05 2.4 -1.94 =225 -2.07 -249 -2.20 274 -2.18
0.10 -1.61 -1.51 -1.80 -1.57 -201 -1.70 228 -1.74
0.25 -0.87 -0.77 -1.00 -0.78 -1.22 -0.89 -147 -092
0.50 -0.11 0.01 -022 0.02 -033 0.00 -0.57 -0.03
0.75 0.58 0.70 045 0.69 0.56 0.89 0.28 0.83
0.90 1.18 1.30 1.00 1.23 1.30 1.64 1.03 1.57
0.95 1.54  1.65 1.30 153 1.76  2.09 146 1.99
o, =0.2
0.05 2,15 204 -2.68 -2.44 -2.62 -2.25 -3.28 -2.34
0.10 -1.71 -1.58 -2.15 -1.87 2,11 -1.73 -2.73 -1.83
0.25 -093 -0.81 -1.28 -0.94 -1.30 -091 -1.88 -0.98
0.50 -0.17 -0.02 -043 -0.05 -041 -0.02 -097 -0.11
0.75 0.54 0.69 029 0.68 045 085 -0.05 0.76
0.90 1.13  1.28 077 1.16 1.24 1.63 0.70 1.50
0.95 144 1.60 098 142 1.69 2.08 .13 194
=
K 0.05 -236 -2.23 -3.17 -3.09 -2.76 -2.30 -3.82 -2.62
010 -1.83 -1.70 -2.58 -246 -2.27 -1.79 -3.26 -2.04
0.25 -1.09 -0.90 -1.68 -1.42 -144 -0.94 235 -1.13
0.50 -0.25 -0.05 -0.78 -0.28 -0.56 -0.05 -1.37 -0.17
0.75 046 0.68 0.01 0.8 032 0.84 -043 0.71
0.90 098 1.22 0.50 1.06 1.09 1.59 035 14
0.95 1.28 1.50 070 135 1.51 2.03 0.76 1.86

10,000 replications. N=100, G

The 5th, 10th, 25th, 50th, 75tf) 90th and 95th quantiles for the standard normal distribution are,

respectlvely, 21.64,-128,-0.67, 0, 0.67, 1.28 and 1.64.



Table 6 (continued)

Employment equations
SNM and GMM estimates from the UK sample

Dependent Sample period: 1979-1984 (140 companies)
variable: An,
AR(2) Models
Ind_ependent
variables GMM SNM GMM SNM
Ay 0.691 1.635 0.320 0.827
(0.051) (0.074) (0.053) (0.065)
Aoy -0.114 -0439 0.022 -0.094
(0.026) (0.039) (0.022) (0.032)
JA N 0.598 1.958
(0.070)  (0.095)
Awi(t_z) 0.01 3 "0.075
(0.036) (0.053)
Sargan test (df) 65.9 (50) 71.3 (50) 32.8 (25) 31.3 (25)
R2?'s for IVs:
JA's O 0.216 0.152
Notes to Table 6

(i) Time dummies are included in all equations.

(if) Asymptotic standard errors robust to heteroskedasticity are reported in parentheses.

(iii) All reported estimates are two step.

(iv) Model A treats An,,, , AW, Ay, and Ak, as endogenous. Model B treats Any., ,AW.y;, and
Ak, .y as endogenous.

(v)(Tf]e instrument set for Models A and B includes lags of employment dated (t-2) and earlier, lags
of wages and capital dated (t-2) and (t-3) and the levels and first differences of firm real sales and
firm real stocks dated (t-2). The instrument set for all the AR(2) models includes lags of employment
dated (t-2) and earlier, and for those in the first two columns also lags of wages dated (t-2) and
earlier.

(vi) The R? 's for the IVs denote the partial R? between the instruments and each endogenous
explanatory variable once the exogenous variables included in the equation have been partialled out.



Table 7

VAR estimates for employment and wage equations
from the Spanish sample

Sample period: 1986-1990 (738 companies)

"Model 1" restrictions

Independent

variables GMM SNM GMM SNM
M, Equation

M 0.842 1.087 0.748 0.812

(0.669;1.015) (0.894;1.280) (0.575;0.921) (0.636:0.988)
[0.470:1.004] [0.729:1.258] [0.503:0.989] [0.541:0.995]

Anye -0.003 -0.074 0.038 0.030
(-0.060;0.054) (-0.140;-0.008) (-0.005;0.081) (-0.015:0.075)
[0.030;0.137] [-0.110;0.067] [-0.012;0.113] [-0.015:0.113]

MW 0.078 0.222

_ (-0.086;0.242) (0.046;0.398)

[-0.299;0.199] [-0.183;0.377]

Awi(t_z) ‘0.053 '0.074
(-0.102;-0.004) (-0.127;-0.021)
[0.110;0.021] [-0.137;-0.003]

Sargan test (df) 369 (36) 372 (36) 144 (19) 135 (18)

R%'s for IVs:

Ay 0.033

Awi(t_l) 0.03 1

Aw,, Equation

MW, 0.178 0.228 0.178 0.228

(-0.042;0.398) (-0.008;0.464) (-0.042;0.398) (-0.008;0.464)
[-0.170;0.491] [-0.172:0.636] [-0.208;0.542] [-0.237:0.734]

MWy, -0.012 -0.002 -0.012 -0.002
(-0.081:0.049) (-0.066;0.062) (-0.081:0.049) (-0.066:0.062)
[-0.082:0.073] [-0.076:0.101] [-0.082;0.082] [-0.078:0.108]

Sargan test (dI) 127 (18) 129 (18) 12.7 (18) 129 (18)

R?'s for IVs:

AWy 0.019




[able 6

Employment equations
SNM and GMM estimates from the UK sample

Dependent Sample period: 1979-1984 (140 companies)
variable: An,
Model A Model B
Independent .
. Indirect
variables GMM SNM GMM'  GMM  SNM
1A P 0.800 1.596 1.214 0.825 2.186
‘ (0.048) (0.105) (0.056) (0.216)
Ay, 0116 -0384 -0282 0074 -0.455
(0.021)  (0.045) (0.020) (0.077)
Aw, -0.640 -1.897 -4.638
(0.054) (0.160)
AW 0.564  2.138  1.567 0431  2.841
(0.066) (0.142) (0.076) (0.312)
Ak, 0.219 0.238 0.604
(0.051)  (0.089)
A\ -0.077  -0.787
(0.045) (0.126)
Ays, 0.800 1747  3.105
(0.098) (0.204)
Aysie, -0.874 2897 -4.101 0115 2438
(0.105) (0.229) (0.100)  (0.358)
Aysi2) 0.095 1.511
(0.091)  (0.266)
Sargan test (df) 63.0 (50) 67.1 (50) 62.8 (50) 68.3 (51) 66.5 (51)
R2's for IVs:
My 0.271 0.269
Aw, 0.193
AWy 0.309 0.289
Ak, 0.108
A\ 0.158

'Dependent variable is Aw,.




Table 7 (continued)

VAR estimates for employment and wage equations
from the Spanish sample

Sample period: 1986-1990 (738 companies)

"Model 3" restrictions

Independent

variables GMM SNM
M, Equation

Any ) 1.163 1.208

(1.112;1214)  (1.137;1.279)
[1.064:1222] [1.157:1.370]
Ay -0.135 -0.142
(-0.172;-0.098) (-0.185;-0.099)
[-0.166;-0.044] [-0.178:-0.033]
AW 0.121 - 0.116
(0.086;0.156)  (0.077:0.155)
[0.075:0.166]  [0.054:0.154]
AW -0.132 -0.151
(-0.171;0.093) (-0.194;-0.108)
[-0.180:-0.073] [-0.232;-0.113]

Sargan test (df) 80.1 (48) 69.1 (48)
Aw,, Equation

AW 0.854 0.873
(0.815:0.893) (0.834;0.912)
[0.790:0.888]  [0.828:0.926]

AW 0.152 0.138
(0.105:0.199)  (0.089;0.187)
[0.107:0.235]  [0.074:0.207]

Sargan test (d) 714 (24) 722 (23)

Notes to Table 7

(i) Time dummies are included in all equations.

(ii) All reported estimates are two step.

(ii1) The instrument set for all the employment equations under "Model 1" includes lags of employment dated
(t-2) and earlier, and for those in the first two columns also lags of wages dated (t-2) and earlier. The
instrument set for the wage equation under "Model 1" includes lags of wages dated (t-2) and earlier.

(iv) The R?'s for the IVs denote the partial R? between the instruments and each endogenous explanatory
variable once the exogenous variables included in the equation have been partialled out.

(v) 95% asymptotic confidence intervals based on heteroskedasticity-robust standard errors in parentheses;
95% moment-restricted bootstrap confidence intervals in brackets.

(vi) The bootstrap confidence intervals under "Model 1" for the equations in the first two columns are based
on a distribution that satisfies a larger set of moment conditions than those in the third and fourth columns.
The reason is that the former include lagged wages as instruments for the employment equation, which are
absent from the latter.

ll I



Table 8 -

VAR estimates for employment and wage equations
from the Spanish sample
Random sample containing 200 companies

Sample period: 1986-1990 (200 companies)

Independent

variables GMM SNM GMM SNM
M, Equation

At 0.788 1.160 0.441 0.815

(0.610;,0.966) (0.888;1.432) (0.167:0.715) (0.509;1.121)
[0.037;1.234] [0.365:1.657] [-0.609:0.812] [0.237:1.566]

Ay -0.042 -0.206 0.063 0.003
(-0.109;0.025) (-0.306;-0.106) (0.002;0.124) (-0.062;0.069)
[-0.101;0.235] [-0.370:0.138] [0.000:0.221] [-0.109:0.145]
AW 0.337 0.650
(0.151;0.523)  (0.371;0.929)
[-0.238;0.950] [0.090;1.759]
AWz 0.001 -0.040
(-0.065;0.067) (-0.120:0.040)
[-0.098:0.290] [-0.108;0.254]

Sargan test (df) 302 (36) 23.0 (36) 233 (18) 243 (18)

R2's for IVs:
Ali(l-l) 0064
MW 0.080
Aw,, Equation
AW -0.612 -1.198 0612 -1.198

(-0.984:-0.240) (-1.442;-0.953) (-0.984;-0.240) (-1.442;-0.953)
[-3.837:0.314] [4.183:-0.933] [-3.766;0.227] [-3.989:-0.893]
MW -0.120 -0.270 -0.120 -0.270

(-0.231:-0.009) (-0.349:-0.191) (-0.231;-0.009) (-0.349;-0.191)
[0.715;0.107] [-0.878:-0.183] [-0.840;0.067] [-0.958:-0.160]

Sargan test () 17.3 (18) 11.0 (18) 173 (18) 11.0 (18)

R?'s for IVs:

AW 0.023

See Notes to Table 7.




Table 9

Monte Carlo simulations for the AR(2) model for employment
0,=0.813, o, =0.03, ¥=0.777, *,=0.038, &°,=0.01

N =738 N =200
GMM SNM GMM SNM

Summary of
estimates
o
median 072 0.82 056 0.82
% bias 11.6 0.8 308 1.1
iqr 0.15 015 026 027
ig80 0.28 0.31 053 0.58
mae 0.11 0.08 025 0.14
0,
median 001 0.03 -0.02 0.02
% bias 577 59 1656 338
iqr 0.03 0.04 0.06 0.08
iq80 0.07 0.07 0.11 0.14
mae 0.02 0.02 0.05 0.04
Quantiles of
the t-ratios
o
0.10 241 -140 -343 -1.63
0.25 -1.75 071 266 -0.76
0.50 -098 006 -1.82 0.06
0.75 020 077 -096 0.85
0.90 047 140 -020 143
o'}

0.10 -2.13 -147 285 -1.87
0.25 -1.37 -080 -2.07 -1.13
0.50 -0.70 -0.07 -1.26 -0.23
0.75 005 071 -043 0.60
0.90 067 130 026 125

1,000 replications.

% bias gives the percentage median bias for all estimates; igr is the 75th-25th interquartile range;
iq80 is the 90th-10th interquantile range; mae denotes the median absolute error.

The 10th, 25th, 50th, 75th and 90th quantiles for the standard normal distribution are, respectively,
-1.28, -067 0, 0.67 and 1.28.





