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The navigation problem involves how to reach a goal avoiding obstacles in dynamic

environments. This problem can be faced considering reactions and sequences of

actions. Classi® er systems (CSs) have proven their ability of continuous learning,

however, they have some problems in reactive systems. A modi® ed CS, namely a

reactive classi® er system (RCS), is proposed to overcome those problems. Two special
mechanisms are included in the RCS: the non-existence of internal cycles inside the CS

(no internal cycles) and the fusion of environmental message with the messages posted

to the message list in the previous instant (generation list through fusion). These

mechanisms allow the learning of both reactions and sequences of actions. This learning

process involves two main tasks: ® rst, discriminate between rules and, second, the
discovery of new rules to obtain a successful operation in dynamic environments.

DiVerent experiments have been carried out using a mini-robot Khepera to ® nd a

generalized solution. The results show the ability of the system for continuous learning

and adaptation to new situations.

1. Introduction

A wide range of robotic systems applied in industry are

autonomous mobile robots. Sometimes the working

environment is stationary, that is automatic ¯ oor-

cleaning, automatic assembly, transporting parts in a

factory, etc. Other problems involve interactions with

dynamic environments, where robots have to be able

to deal with unexpected events. The successful operation

in such environments depends on the ability of adapta-

tion to the changes.

A fundamental requirement for autonomous mobile

robots is navigation. This task moves the robot from

place to place with safety and no damage. Approaches

based on the classical paradigms (abstraction, planning,

heuristic search, etc.) were not completely suitable for

unpredictable and dynamic environments. Other

approaches consider reaction as the new paradigm to

built intelligent systems. One classical instance of this

kind of architecture is the subsumption architecture

which was proposed by Brooks (1991) and has been

successfully implemented on several robots at the

Massachusetts Institute of Technology and other insti-

tutes. The base of the subsumption architecture is `be-

haviour’ . Each behaviour reacts in a situation and the

global control is a composition of behaviours. DiŒerent

systems, from ® nite-state machines to fuzzy controllers,

have been used for the implementation of these be-

haviours. The rules of these behaviours could be

designed by a human expert, designed ad hoc for the

problem, or learned using diŒerent arti® cial intelligence

techniques (Schultz and Grefenstette 1990, Schultz

1991).

Machine learning has been applied to shape the be-

haviour of autonomous agents in this kind of environ-

ment. Some of these techniques become inapplicable to

the learning reactive behaviour problem because they

require more information than the problem constraints

allow. Thus, it would seem reasonable to use an auto-

matic system that gradually builds up a control system

of an autonomous agent by exploiting the changing

interactions between the environment and the agent

itself. Some approaches use genetic algorithms (GAs)

to evolve fuzzy controllers (Lee and Takagi 1993,

MatellaÂ n et al. 1998), evolution strategies to evolve

connection weights in a Braitenberg approach (Isasi et
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al. 1997, Molina et al. 1997) or neural networks to learn

behaviours (Mondada and Franzi 1993).

The above-mentioned learning systems evaluate the

complete behaviour without discriminating between

diŒerent internal parts, that is, if the behaviour is

composed of a set of rules, the evaluation does not dis-

criminate between rules. However, for discovering new

rules in isolation, some kind of measure of the accuracy

of each rule is needed.

Classi® er systems (CSs) (Brooker et al. 1989) are well

suited to learn multiple (diŒerent) concepts incremen-

tally under pay-oŒ. These systems have been widely

implemented and tested for a large number of theor-

etical problems, (Brooker 1982, Dorigo 1995, Holland

1975, 1995, Sanchis et al. 1996a, b), but there are not

many cases in which they are included in real systems

(Colombetti and Dorigo 1993, Dorigo 1995, Wilson

1987).

To survive in a dynamic environment, a system has to

possess associations between environmental signals and

actions that will satisfy its needs. In a CS, these associa-

tions are represented by condition± action rules.

Conditions match both environment and internal state,

and actions modify the internal state or execute an

external action. In general, the learning process in CS

shows two main problems (Westerdale 1987).

(1) Decision time. In order to produce elaborate sol-

utions, where the rules are interrelated, the decision

ought to be taken in several internal cycles. This

problem becomes stronger when CSs are applied

to problems in which a quick response is needed.

(2) Rules chain. CSs are able not only to learn rules but

also to make a chain of previously learned rules.

Rules belonging to a chain make no sense in isola-

tion. Then, the loss of a rule in the chain could imply

the loss of all the knowledge, owing to the high

degree of interrelationships between rules.

The principal problem of CSs when they are applied

to reactive problems, as Wilson (1985) and Grefenstette

(1988) detected, is that during several CS internal cycles,

the system becomes blind to environmental changes and,

furthermore, in dynamic systems these changes happen

repeatedly. The solution proposed by these workers does

not allow the chaining of rules; thus, each time that an

environmental input arrives an output is produced by a

rule in isolation. The solution outlined by Wilson and by

Grefenstette is too restrictive, which produces poor

results. Therefore, the use of a CS was abandoned, in

this type of problem, until the work of Dorigo and

Sirtori (1991) and Dorigo (1995). In these papers,

several designs are introduced in order to speed up the

response of the CS. The new CS proposed by Dorigo

(1995) is based on parallelism, a distributed architecture

and a special training process. The perspective adopted

by Dorigo to solve the reactive problem is the division of

the problem into several levels, building a hierarchical

architecture, where a set of CSs learns to co-operate.

Thus, the r̀eactivity’ is based on `parallelism’ : diŒerent

levels of CS are executed in diŒerent machines and, also,

diŒerent CSs take charge of diŒerent tasks. Using these
ideas, the response time becomes smaller. However, the

system continues to be blind to environmental changes

during internal cycles.

Another interesting approach by Weib (1994)
employs what he calls hierarchical `chunking’ to the

application of CSs in reactive systems. The basic idea

of this work is as follows: two rules are related when

both are executed consecutively. A new aggregated rule

C is created by two related rules A and B. In this way,

the condition of C is the condition of A, and the conse-
quence of C is the response of both in sequences A and

B. However, when an aggregated rule is executed,

without considering new environmental information,

the system becomes blind in the same way as in

Dorigo’ s work.

The capacity of the system to facilitate a quick
response not only should be approached from tech-

niques that attempt to increase the speed of the process

but also can be approached from a diŒerent perspective:

the introduction of data from the environment at the

same time that the CS takes intermediate decisions. In
this sense, a modi® cation of the philosophy of the CS is

proposed, allowing reactions without losing the poss-

ibility of rules sequencing. The new CS integrates the

environmental input with the internal state of previous

input, in order to take a new decision. This CS is called a

reactive classi® er system (RCS) and modi® es the general
process in order to allow reactions without losing the

possibility of a chain of rules. The new process inte-

grates the environmental input with the internal state

of the previous input. Then, from the input, the RCS

gives directly an action and, at the same time, modi® es
the internal state. When the next input arrives, the mess-

age is fused with the previous internal state to allow a

new reaction or an action that is in a chain with the

previous action.

In the proposed learning process, the only previous

information is about the number of inputs (robot sen-
sors), the range of the sensors, the number of outputs

(number of robot motors) and its description. The RCS

robot controller starts without information about the

right associations between sensor inputs and motor

velocities. From this situation the robot is able to
learn through experience to reach the highest adapt-

ability grade to the sensors’ information. The robot

has to use its experience to discover an eŒective set of

rules. The system should not use all its storage capacity

for raw experience; so it must be able to extract relevant
2



information from each situation when it occurs. In this

way, the system learns incrementally through pay-oŒ;

past experience is implicitly represented by the evolved

rules. In order to ® t the environmental pay-oŒ, several

simulations have been carried out. As a result, the
reward is built considering four positive payment con-

tributions when there are no collisions and/or distance

to the goal is decreased and/or angle to the goal is

decreased and/or the distance to an obstacle is increased.

2. De® nition of a classi® er system

CSs are a specialized form of production system that

have been designed to be amenable to the use of GAs
(Goldberg 1989). These systems were developed by

Holland and Reitman (1978), and later re® ned and

modelled by Holland (1986a). CSs are machine learning

systems that learn syntactically simple string rules
(called classi® ers) to guide their performance in an

arbitrary environment (Goldberg 1989).

2.1. Architecture

A schematic representation of a CS is showed in ® gure

1. In these systems, three activity levels can be distin-
guished.

(1) Performance (also called the rule and message

system). It interacts with the environment, gathering

information through the input interface and produ-

cing the output through the output interface; it also
receives the pay-oŒ. Structurally, the performance

level consists of

(A) a ® nite population of ® xed length condition±

action rules

(B) a message list,

(C) an input interface consisting of a set of environ-

mental feature detectors and

(D) an output interface for acting in the environ-
ment.

These are also shown in ® gure 1.

(2) Credit assignment. It causes rules to be established

(® tting a rate of rules) on the basis of their observed

utility to the systems goal.

(3) Discovery. It employs a GA as a discovery operator

that automatically generates new rules.

In a CS, rules are composed of two parts: condition

and message. They are codi® ed as strings; each con-

dition is a string of ® xed length k over the alphabet

f0; 1; #} (the don’ t care’ symbols `#’, match both 0 as

1) and each message is another string of ® xed length k

over the alphabet f0; 1g.

2.2. Sequence of operations

In the performance level, when a codi® ed message

arrives from the environment (through the input inter-

face), the message is set in the message list. The message

list is compared with all the classi® ers and those that

match with some message are ® red. The ® red rules
post their messages into the message list. Several rules

could be activated in parallel by a message. Before rules

post messages, the message list ought to be cleaned.

Activation of rules is repeated for n cycles; a typical

value of n is usually four (Goldberg 1989). Finally, a
message is chosen to give the output through the corre-

spondent interface. The sequence of operations is sum-

marized in table 1.

In the credit assignment level, a reinforcement algor-

ithm (called the bucket brigade (BB) (Holland 1986b)) is

used to solve the credit assignment problem: how to

GENETIC
OPERATORS

(3) Discovery
Condition Message

(1) Performance

Message list

(i) (ii)

Input Interface Output Interface

from the
environment
(Detectors)

to the
environment

(Efectors)

Condition Message

Bucket
Brigade

Reorganization

(2) Credit Assignment
(A)

(B)(C) (D)

 

Figure 1. Representation of a CS. (i) All messages are tested with all classi® ers. (ii) Winning classi® ers post their messages to the

message list.
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reinforce individual rules in a multistep chain when the

external reward is given only at the chain conclusion.

This algorithm also allows selection among incompa-

tible or contradictory solutions. BB assigns to each
rule a value, called the strength, which indicates the

rule usefulness to the systems goal. When a classi® er is

matched, it is quali® ed to participate in an activation

auction. To participate in the auction, a classi® er

makes a bid, proportional to its strength and its speci® -

city (this value is concerned with the number of `don’ t
care’ symbols in the rule). Winning classi® ers pay a

portion of their strength (their bid) to the classi® er

responsible for their activation, and their messages are

posted to the message list.

A GA is used in level (3) to generate new, and possibly
better, rules into the system. From a CS, a set of rules

with higher strength values is selected, genetic operators

are applied and the new rules obtained are set into the

new CS. After this, the BB will reorganize the rule’s

strength.

3. De® nition of a reactive classi® er system

In order to develop a CS able to react, the necessities of

a reactive controller must be analysed. A reactive system

obtains a new output for each new environmental infor-

mation sending by the sensors. In this way, a decision

cycle in a generic robot could be de® ned as is shown in
table 2.

This process ® xed the time range of reacting to en-

vironmental changes. The sequence of operations in a

traditional CS only consider a new message, as shown in

step 1 of table 1; from this point all the decisions are

taken internally without new environmental informa-
tion. The necessity of reacting leads the search for a

new mechanism in CSs that allows us to include new

environmental codi® ed message in each internal cycle

of the performance level.

The application of a CS to solve the navigation prob-

lem needs both actions and reactions. Therefore, a CS

able to react (considering only the sensorial input infor-

mation) and to provide a chain of actions (considering

information of the sensorial input and the previous state
of the CS) ought to be developed. The existence of

internal cycles in CS (see table 1) makes the learning

process of a reactive controller di� cult. On the other

hand, internal cycles are necessary to develop more com-

plex action sequences. The designed RCS, proposed in
this work, modi® es the performance level to include the

possibility of both actions and reactions. In } 3.1, this

new architecture is described. The special mechanisms,

included in this architecture, modify the sequence of

operations of a traditional CS (see } 2.2). This new

sequence is presented in } 3.2.

3.1. Architecture

Following the architecture presented in } 2.1, the per-

formance level has been modi® ed to learn reaction and
actions. The performance level is composed of con-

ditions and messages in the same way as a general CS

except for two main diŒerences: ® rstly, the condition±

message length k is longer than the environmental mess-

age length m (k > m) and, secondly, both conditions and
messages are divided in three blocks. Each block con-

tains diŒerent kind of information (® gure 2):

(1) environmental information;

(2) information related to rules ® red in a previous

instant (internal conditions);

(3) Information about the decisions.

As can be seen in ® gure 2, rules in a RCS are

composed of two parts: condition and message. They

are divided into three blocks. Each condition block is

a string over the alphabet f0; 1; #g (as in a tradi-
tional CS). The ® rst message block is a string over the

alphabet {#} because this block overlaps environ-

mental information in each cycle. Then, the ® rst

block of the message, namely the environmental

Table 1. Representation of a sequence of operations in a CS.

Step Operation

1. A codi® ed message of length k arrives from the

environment through the input interface

2. Clear the message list

3. The message is set in the message list

4. All the classi® ers that match some message of the

message list are ® red. Several rules could be activated

in parallel by a message

5. When a condition is satis® ed, the message is posted to

the message list

6. Steps 4 and 5 are repeated for n internal cycles

7. Finally, a message is chosen to give the output through

the correspondent interface

Table 2. Sequence of operations of a decision cycle in a

reactive system.

Step Action

1. Read the sensors

2. Codify the sensors’ information to obtain inputs for

the system

3. Apply the rules over the inputs to obtain a new output

4. Decodify the output in numerical values

5. Write the numerical values over the actuators

6. Go to step 1
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block, is empty and is used to fuse the environmental

message with messages of previous activated rules.

The rest of message blocks (two and three) are strings

over the alphabet f0; 1g.

The complete sequence of operations will be explained

in more detail in } 3.2. This fusion mechanism allows the

controller to learn complex actions, composed of a

sequence of actions. Besides fused messages, another

message with only the ® rst block of message, namely

the environmental part, is posted to the message list.

This mechanism allows learning reactions, breaking

the chain of rules.

In ® gure 3 the performance level of the RCS and the

information ¯ ow are shown. In order to deal with this

new architecture, it is necessary to de® ne a new sequence

of operations.

3.2. Sequence of operations

When a codi® ed message of length m arrives from the

environment through the input interface, the message is

fused with messages of previously activated rules. A

message composed of the environmental message and

`don’ t care’ symbols is posted to the message list. All

the classi® ers that match with some message of the mess-

age list are ® red. A message is chosen from these ® red

rules. The list is kept to the next decision cycle. These

operations do not contain the repetition of the matching

process of the general CS because the chain of rules

needs the information from the next environmental

input. The rule chain is over diŒerent inputs, using

internal conditions and message fusion, allowing it to

learn the reactions and actions sequence. The sequence

of operations is summarized in table 3 and ® gure 4.

Environmental
Conditions

Internal
Conditions

Decision Velocity
Conditions ### Internal

Conditions
Decision Velocity

Messages

Condition Message

allows the rule chaining in the
RCS.

part  for GLTF
mechanism

 

Figure 2. Composition of conditions and messages.
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E nvi ronm e nta l
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C ond i ti ons
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In te rna l
C ond it ions

D e c is ion  V e loc i ty
M ess ages

R C S

#
In te rna l

C ond it ions
D ecis io n V e loc ity
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R O B O T

1

M essage  L is t

I n te rna l
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e n vir o n m e n t

M e ssa g e
fr o m  th e

e n vir o n m e n t

. .. ..
. .. .

O ne  is  c hose n

 

Figure 3. Developed CS and information interchange between the robot and the CS.
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These sequences of operations are related to the per-

formance level. The credit assignment level will be the

level that decides what activated rules win in the com-

petition, in the same way as in the traditional CS. This

sequence presents two main diŒerences from the tradi-

tional CS.

(1) Generation of message list through fusion (GLTF).

Steps 2 and 3 in the traditional CS, `clear the mess-

age list’ and t̀he codi® ed environmental message is

posted to the message list’ are translated into two

new operations in an RCS: step 2, f̀usion of the new

message with previous messages’ , and step 3, `post a

new message’ .

(2) No internal cycles (NICs). Step 6 in the traditional

CS, t̀he repetition of steps 4 and 5 for n internal

cycles’ , is not necessary because chaining of the

rules is performed in each cycle of the performance

level.

The loss of the internal cycles (NIC) breaks the rules

sequence so characteristic of the traditional CS. To

permit chaining of the rules the codi® cation of the

rules in the RCS has been modi® ed. Additional informa-

tion related to the rules ® red in the previous instant has

been included. This new information is called internal

tags (ITs).

In this way, chaining of the actions is obtained, taking

into account two special mechanisms in conditions and

messages: the environmental message is fused with the

previously posted messages (GLTF) and internal con-

ditions are added to evolve a chain strategy. This

strategy allows a chain of rules to be activated by the

environmental message with previous activated rules. In

addition to the environmental message fusion, the RCS

Table 3. Representation of a sequence of operations in a

reactive classi® er system.

Step Operation

1. A codi® ed message arrives from the environment

through the input interface

2. The environmental message is fused with messages of

previously activated rules

3. The environmental message without fusion is also

posted to the message list

4. All the classi® ers that match some message of the

message list are ® red

5. All the messages of ® red classi® ers are posted to the

message list

6. A message is chosen among the rules that satis® ed the

conditions

Condition Message

Message list

Input Interface

Output Interface

from the
environment
(Detectors)

to the
environment

(Efectors)

Time t-1

Time t
Step 1

Step 2. GLTF

Step 3

Step 4

Step 

Message list

Message list

Step 6

NIC

NIC

GLTF

 
Figure 4. Sequence of operations in a decision cycle in an RCS graphically including GLTF and NICs mechanisms. See text for

explanation of the GLTF and NIC mechanisms.
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requires the inclusion of internal conditions that provide

evolution of a chain strategy. Fusion is the method that

allows a chain of rules and the internal conditions sup-

port knowledge about the relationship between rules.

The evolution process over the internal conditions pro-
vided by the GA leads to learning sequences of rules

through time.

Although all the messages in the message list are com-

posed by fusion, there is always one message with only

the environment block ® lled with the environmental

message (don’ t care’ symbols # ® lling the other two
blocks, see ® gure 3). The matching process considers

environmental conditions only and the system is able

to break the chain of rules and to react to the environ-

ment. In this way, reactions are obtained when a mess-

age, with the environmental information only, is posted
to the message list.

These mechanisms allow the generation of more com-

plex rules needed for the ® nal solution of the problem.

An example of condition± action rules that could evolve

is as follows:

IF External_Signal IS <type x> AND

Last_Rule_Fired IS <type y> AND

Decision_Velocity_Part IS <Vi, Vj>

THEN Send_Message <001...>

The reaction mechanism, on the other hand, allows

the evolution of traditional reaction rules as follows:

IF External_Signal IS <type x>

THEN Send_Message <001. . .>

4. Experimental environment

4.1. Robot description

The codi® cation of information in the CS (the design

of environmental and output messages) is based on the

particular problem where the CS will be applied. In this

work, the RCS is used as a controller of an autonomous

robot named Khepera (Mondada and Franzi 1993). The
mini-robot Khepera is a commercial robot developed at

LAMI (Ecole Polytechnique FeÂ deÂ rale de Lausanne,

Switzerland). The robot characteristics as follows: a cir-

cular shape of 5.5 cm diameter, 3 cm height and 70 g

mass. The sensory inputs come in from eight infrared
proximity sensors. These sensors are composed of two

devices: an infrared emitter and a receiver. The emitter

and the receiver are independent, therefore it is possible

to use the receiver to measure the re¯ ected light (with

the emitter active) or to measure the environmental light

(without emission). The re¯ ected light measurement can
give some information about the obstacles. In fact, this

measurement is a function not only of the distance to an

object in front of the emitter but also of the environ-

mental light and the object nature (colour and texture).

So the value of distance is modi® ed by the measurement

of the ambient light and the object nature, the light used

is constant and all the obstacles used have the same

colour and texture. The robot has two wheels controlled

by two independent dc motors with incremental encoder

that allow any type of movement. Each wheel velocity

could be read by a speedometer.

Using the ambient sensors it is possible to measure the

distance and the angle to a light source. The distribution

of the amount of light coming into the eight sensors is

used to evaluate the distance and the angle to the source

(® gure 5). The amount of light received in the sensor

depends on the distance of the light source. The

response curve of each real sensor is described by a

sigmoidal function (Mondada and Franzi 1993). When

the robot is placed near a light source (® gure 5), each

sensor gives a value of light intensity based on the sig-

moidal function. In ® gure 5, an example of the diŒerent

values in each sensor is represented. In this case, sensor 6

returns the minimum value from all sensors, the value is

used to obtain the distance and the sensor number (6 in

this case) to obtain the angle to the light source.

The domain of real values returned by the sensors is

(0, 1023); in this work a linear transformation function

has been used to rede® ne the domain to (0, 40) for proxi-

mity sensors and (0, 500) for the distance to the light

source. The desired angle is obtained by considering

the sensor number with the minimum intensity value

of the ambient sensors (table 4).

The sensors (proximity, ambient and speedometer)

supply three kinds of incoming information: proximity

to the obstacles, ambient light and velocity. Instead of

using the eight infrared sensors individually, they have

been grouped to give a unique value, obtaining the

average from two sensor-input values (® gure 6 (a)),

and reducing the amount of information received by

Mini-Robot Khepera
Ambient Sensors

1

2

3 4

5

6

78

Light Source

7 81 2 3 4 5 6  

Figure 5. Incoming light distribution in the sensors.

Table 4. Desired angles for sensors.

Sensor number 1 2 3 4 5 6 7 8

Angle (degrees) 90 45 15 345 315 270 190 170
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the RCS. Representing the goal by a light source, the

ambient information lets the robot know the angle (the
angle position in the robot of the ambient sensor

receiving more light) and the distance (the amount of

light in the sensor) to this goal (® gure 6 (b)).

The input to the CS consists of three proximity sen-
sors, the angle and goal distance (given by ambient sen-

sors) and velocity values obtained by the speedometer.

4.2. Environmental Description

Experiments require a long time with continuous

functioning of the hardware. In order to prove the
diŒerent con® gurations of CSs, both traditional CSs

and RCSs, a simulator developed in previous work

(Sommaruga et al. 1996) has been used: SimDAI. In

the simulator, the characteristics of the turtle robot

model (McKerrow 1991) and the physical restrictions

of the Khepera robot have been considered. SimDAI
is a working prototype of a mobile robot’ s simulation

environment for experimenting with robot navigation

and control algorithms. Each mobile robot is completely

independent, can navigate and interacts with other

robots in a two-dimensional simulated world of obsta-
cles, which is separately monitored. This simulator has

been used in many other studies (Sanchis et al. 1996a, b,

Isasi et al. 1997, Molina et al. 1997, MatellaÂ n et al.

1998).

The simulation world consists of a rectangular map of
user-de® ned dimensions where particular objects are

located. In this world it is possible to de® ne a ® nal

position for the robot. In this case the robot is repre-

sented with three proximity sensors and two special sen-

sors to measure the distance and the angle to the goal

(® gure 7).
DiŒerent simulated worlds which resembles the real

world have been de® ned in order to tune the pay-oŒ

from the environment before being implemented in the

real world. An example of these environments can be

seen in ® gures 7 and 8. The system developed is the

same in both cases (simulated and real) except for the

diŒerences in the treatment of the sensors, by the trans-

formation function.

Ambient Sensors

Proximity Sensors

Grouped
Sensors

(a)    VELOCITIES

V1 V2

Robot
sense

Distance to
the objective

Angle to the
goal

S1

S2
S3

Grouped Proximity
Sensors

Grouped Ambient
 Sensors

·  Light Amount

·  Angular Position of the sensor with more Ligh

Light source

(b)  
 

Figure 6. (a) Sensors considered in the real robot. (b) Input information to the system.

Initial Position

Final Position

Trajectory

Obstacles

GOAL

 Figure 7. SimDAI simulator (example of one simulated

environment).

 

Figure 8. Example of a real experimental environment.
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4.3. Environmental and output messages

The conditions and messages of the RCS described in

the previous section are divided into three parts. The
environmental part of conditions and the decision velo-

city part of messages concerns the robot state.

The environmental part should be matched to the

environmental message arriving from the robot and it

is de® ned by codi® ed sensor values. The environmental
message includes all the codi® ed sensors, composed as in

® gure 9 (a). The ® rst part of the message is composed by

the proximity sensors to describe the near environment

surrounding the robot. The second part corresponds to

the goal description using the angle and distance infor-
mation. The last part of the message deals with the

actual velocity to consider the diŒerence between the

real and the last decision velocity.

The decision velocity is codi® ed in the output mess-

age. The velocity values are decodi® ed and applied to

each wheel in the robot (® gure 9 (b)).

4.4. Codi® cation

As has been explained previously, the distance

domain of a real robot has been transformed, trans-

lating it into a simpler domain to codify the values.

This transformation allows both the CS and the robot
to be independent. So the CS could be developed for any

robot by changing the transformation function. The

input domain has been partitioned into four crisp sets

with the same width. The maximum distance value s̀een’

by one sensor is 40 units and is divided into ranges as

shown in ® gure 10.

The angle sets are of diŒerent sizes to allow ® ne ® tting
of the trajectory, avoiding large oscillations when the

robot follows the correct direction. The sets near 0

and 2º are smaller than the `< º’ and the `> º’ sets.

This de® nition allows better navigation properties,
adjusting the robot sense right up to the objective,

avoiding oscillations. The input domain partitions are

presented in ® gure 11.

To keep the independence of the robot and CS, the

distance values are translated from the real sensor values

to a domain de® ned from 0 to 1. The input domain has

been partitioned in four crisp sets as is shown in ® gure

12. These sets are de® ned considering the distance over

200 as very far from the objective and partitioning the

distance between 0 and 200 into three sets. The second

set is 50% of 200 (from 200 to 100) and it is de® ned as

far. The third set is de® ned from 100 to 25, to represent

that the robot is near the objective and the last set

represents that the robot has reached the objective.

Velocity values ¯ ow as the input to the classi® er

system and as the decision from the CS to the robot.

Sensor 1 Sensor 2 Sensor 3 Angle Distance Velocity 1 Velocity 2

Near environment
description.

(AVOID)
Goal description.

(FOLLOW) Internal robot situation
description.(a)

 
 

Velocity 1 Velocity 2

Classifier decission (output)(b)  
 Figure 9. (a) Composition of the environmental message.

(b) Decision velocities in the output message.

S1

S2
S3

0 10 20 30 40

00 01 1011

00
01

10
11

Obstacle

10
20
30

 
Figure 10. Codi® cation and partition of the proximity

information.

Angle to the
goal

0 p 2 p

00 01 1011

10

11

00
01

Desired Direc ion

Figure 11. Codi® cation and partition of the angle information.

Distance to
the objective

0 25 100 200 ¥

00 01 1011

00
01

10

11

Goal

25
100

200

 

Figure 12. Codi® cation and partition of the distance

information.
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The values are de® ned by the maximum and minimum

velocities (10, ¡10). This range is divided into four equal

sets as is shown in ® gure 13.

The sets should be codi® ed to build the message from

the environment. Two binary digits are needed to repre-
sent each set. The codi® ed inputs to the robot are also

displayed in ® gures 10± 13.

5. Experimental results

Learning reactions in a real robot by means of a CS
involve two main tasks: ® rst, to discriminate the better

rules from a set of rules and second to discover new rules

to face new situations or to improve its performance. In

order to test the performance of the RCS, diŒerent types

of experiments have been carried out.

(1) The ® rst is related to adjusting the environmental

pay-oŒ.

(2) The second is related to the validation of BB algor-

ithm in the RCS. In this way, a discrimination

experiment between rules, without the addition of

new rules, has been carried out. So an RCS with a

constant set of ad hoc rules and a complex environ-

ment where most types of situation could be found
has been used.

(3) The third measures the improvements produced by
this new approach (RCS) compared with the tradi-

tional perspective (CS). The experiment has been

carried out with and without background knowl-

edge and it has been executed in the simulator

because of the long time of functioning needed. In
order to compare the two systems, the traditional

CS and RCS have been started with random rules.

5.1. Payment function adjustment

To estimate the function, the objective factors that
can give an idea of whether an action has been correct

or incorrect has been considered. In a navigation prob-

lem to a goal through an environment with obstacles,

those actions that permit the robot not to collide will be

considered as positive. This is the case, for example,

when increasing the distance to some obstacle or when

approaching the goal. The alignment of the robot in the

goal direction is another positive action. Negative

actions are those that remove it from the goal, for ex-
ample the increase in the distance travelled by the robot,

or that cause it to approach obstacles, for example that

may have produced some collision. So, the considered

factors to calculate the payment are the increase in the

distance to an obstacle, the approximation to the objec-

tive and the alignment or drift towards the objective.
If the three previous situations occur, payment would

be positive but, in most cases, ful® lment of these points

implies non-ful® lment of others; therefore these factors

will have to be weighted. The function chosen to calcu-

late the payment is given by which will constitute the
® nal payment through

Ps ˆ P1 £ coef1 ‡ P2 £ coef2 ‡ P3 £ coef 3; …1†

PT ˆ PsKs; …2†

where P1 corresponds to the approximation to the

objective. Its value is determined by the diŒerence

between the distance in the previous execution cycle
and the current distance. Coef1 is a constant applied

to P1. P2 corresponds to the alignment towards the

objective. Its value determines the diŒerence between

the angle in the previous cycle and the current angle,

in radians; it is positive if turns towards the objective
and negative otherwise. Coef2 is a constant applied to

P2. P3 corresponds to the distance to objects. It is cal-

culated by evaluating the values for the left sensor S2

and the right sensor S3. If the value for S2 is less than

for S3, it is paid by turning to the right and, if it is the

opposite, it is paid by turning to the left. If the turn is
wrong, it is penalized in the same quantity. If the values

for S2 and S3 are equal, neither is paid nor is penalized.

Coef3 is a constant applied to P3. Ps collects the result of

previous payments. Ks is a constant applied to Ps. PT is

the ® nal payment. DiŒerent constants are employed to
obtain the appropriate in¯ uence of each of the factors

without distorting the strengths.

A collision with an object is not included in the pre-

vious function. In this case, a punishment greater than

any other case is applied, with a ® xed value of Ps since,
as there is no movement, there is no evaluation, nor

turns, nor approximations.

Fitting and correct selection of this function will

determine the success of this kind of system; so the

steps that have enabled the result of the selected func-

tion to be proved valid will be described. A set of ad hoc
elected classi® ers is used and no calls to the GA are

accomplished; so the discovery phase of the RCS is

annulled in order to study the relationship between the

action and reassignment of credit levels. Besides no calls

V1 V2

-5-10 5 7,5 10

00 011011

VELOCITIES

·  11 : Backward
·  10 : Stop
·  00 : Slow Forward
·  01 : Fast Forward

 

Figure 13. Codi® cation and partition of the velocity

information.
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to the GA, the value of the percentage of payment

between rules, the bids in the credits reassignment algor-

ithm, has to be reduced to ensure that payment among

rules does not hide the payment function eŒect. In this

way, the growth or decrement of classi® ers strength will

be, fundamentally, due to external pay, which it is

required to adjust.

It is necessary to include in an RCS all classi® ers,

containing all possible conditions and all possible

actions (messages) for each condition. Thus, for each

possible condition 16, diŒerent messages are generated

(the speed of each wheel is codi® ed with 2 bits, and then

24). Once all the possibilities have been taken into

account, when executing the RCS, the strengths of

better classi® ers would have to increase and reduce the

values of the worse classi® ers. This happens until each of

the classi® ers obtains a strength that re¯ ects, in a real

way, their usefulness in the system.

An important problem, related to the number of clas-

si® ers necessary to reproduce all the possible situations,

appears. This number is calculated considering the

number of bits involved in each possibility. It will

be n, the total number of necessary classi® ers:

n ˆ comb-S1S2S3 £ comb-AngDist £ comb-V1V2dec,

with comb-S1S2S3 ˆ 26; comb-AngDist ˆ 24 and

comb-V1V2dec ˆ 24. This produces n ˆ 214 ˆ 16 384

diŒerent classi® ers. This is an excessively high number

of rules that would be impossible to handle, even in the

most potent machines of today, which makes necessary

to utilize to some other system.

The proposed solution is to divide the classi® ers of the

RCS into two groups: one for following rules and the

other for avoiding rules. Thus, classi® ers of the fol-

lowing group will have in their conditions combinations

corresponding to the following part and the rest with the

symbols #, and classi® es of the avoiding group will

have the same but with the avoiding conditions. Thus

the number of rules of the RCS would be

n ˆ …comb-S1S2S3 ‡ comb-AngDist†£comb-V1V2dec.

This corresponds to 1280 diŒerent classi® ers and is also

an excessively high number of classi® ers; therefore it has

been decided to eliminate those classi® ers whose con-

ditions will be redundant. For example, if one of the

sensors perceives that there is an obstacle very near, 00

in the corresponding position, values for the other sen-

sors, distance and angle lose importance since the results

are necessary to turn in opposite sense and can be

removed from the object. Thus, three conditions

appear (table 5).

In this way, 544 classi® ers are eliminated. Sensors S2

and S3 detect the presence of obstacles by the left and

right respectively of the robot; if some obstacle apears in

those positions, it is necessary to avoid the obstacle,

independently of the rest of the values. Thus, the con-

ditions in table 6 remain. This reduces the number of

classi® ers by 192.

With respect to the following part in the conditions, it

is only possible to reduce the part that considers the

minimal distance to the objective, without considering

the angle, since it is considered that the objective has

already been reached. In a ® rst approximation this

seems to say that, when the robot is at a very small

distance to the objective, without considering the direc-

tion, the navigation problem will have been solved.

Evidently, with the existing rules that previously

will have caused the robot alignment towards the

objective, when the robot is very near the objective,

the direction is therefore irrelevant. Thus the

conditions in table 7 remain. This reduces the number

of classi® ers by 48. Finally, classi® er number will be

n ˆ 1280 ¡ 544 ¡ 192 ¡ 48 ˆ 496.

It is not possible to reduce the number of classi® ers

more; however, 496 is still an excessively high number

for an RCS applied to a reactive problem. So, four RCS,

each containing 124 classi® ers, are going to be used and

a competition between them is going to be held. It is

necessary to ensure that, for each possible classi® er con-

dition, all the possible movements of the wheels are

represented. Thus, for each condition the actions given

in table 8 are ® xed.

Finally, in trying to obtain a generalized solution, 15

executions are accomplished over each RCS, with three

diŒerent initial situations of the robots. First the robot

in position 1 is considered, second that in position 2 and

third that in position 3; the process is repeated ® ve

times, to obtain 15 executions. Initial values of the

three robots are given in table 9.

The competition between all possibilities is held in

order to adjust the function. Some initial RCSs have

been de® ned that contain rules groups and, through

each execution, new RCSs have been generated con-

taining better rules than the previous rules. The compe-

Table 5. Conditions of rules considering 00 information in the sensors.

S1 S2 S3 Angle Distance V1 V2 CI V1dec V2dec

00 ## ## ## ## ## ## ## ## ##

## 00 ## ## ## ## ## ## ## ##

## ## 00 ## ## ## ## ## ## ##
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tition process is de® ned in the following way: once

RCS1, RCS2, RCS3 and RCS4 have undergone 15

executions (® ve of each for three diŒerent initial situa-

tions of the robot), better actions for each condition of

each RCS are chosen (those with higher values of

strength). Thus, starting from four RCSs, two will be

obtained, named RCS5 and RCS6. Repeating the pro-

cess with these two new RCSs, ® nally, RCS7 is obtained,

Table 6. Conditions of rules considering 01 or 10 information in the sensors.

S1 S2 S3 Angle Distance V1 V2 CI V1dec V2dec

## 01 ## ## ## ## ## ## ## ##

## ## 01 ## ## ## ## ## ## ##

## 01 01 ## ## ## ## ## ## ##

01 10 10 ## ## ## ## ## ## ##

01 10 11 ## ## ## ## ## ## ##

01 11 10 ## ## ## ## ## ## ##

01 11 11 ## ## ## ## ## ## ##

10 10 10 ## ## ## ## ## ## ##

10 10 11 ## ## ## ## ## ## ##

10 11 10 ## ## ## ## ## ## ##

10 11 11 ## ## ## ## ## ## ##

11 10 10 ## ## ## ## ## ## ##

11 10 11 ## ## ## ## ## ## ##

11 11 10 ## ## ## ## ## ## ##

11 11 11 ## ## ## ## ## ## ##

Table 7. Conditions of rules considering information about the angle and the distance in the sensors.

S1 S2 S3 Angle Distance V1 V2 CI V1dec V2dec

## ## ## ## 00 ## ## ## ## ##

## ## ## 00 01 ## ## ## ## ##

## ## ## 01 01 ## ## ## ## ##

## ## ## 10 01 ## ## ## ## ##

## ## ## 11 01 ## ## ## ## ##

## ## ## 00 10 ## ## ## ## ##

## ## ## 01 10 ## ## ## ## ##

## ## ## 10 10 ## ## ## ## ##

## ## ## 11 10 ## ## ## ## ##

## ## ## 00 11 ## ## ## ## ##

## ## ## 01 11 ## ## ## ## ##

## ## ## 10 11 ## ## ## ## ##

## ## ## 11 11 ## ## ## ## ##

Table 8. Fixed actions for RCS1, RCS2, RCS3 and RCS4.

RCS1 RCS 2 RCS 3 RCS 4

V1 V2 V1 V2 V1 V2 V1 V2

0.5 0 0.5 ¡1 0.5 0.5 0.5 1

1 0.5 1 1 1 ¡1 1 0

0 ¡1 0 0 0 1 0 0.5

¡1 1 ¡1 0.5 ¡1 0 ¡1 ¡1

Table 9. Initial values of the three robots.

Robot X Y Sense

Robot 1 50 400 0

Robot 2 300 450 180

Robot 3 50 150 0

12



which contains better classi® ers of the total. Repeating

the RCS7 execution and choosing the better two classi-

® ers for each possible condition, RCS8 has been

obtained, which contains 62 classi® ers. In ® gure 14 a

scheme for the selection process of RCSs for the adjust-
ment of the payment function is shown.

The empirically obtained payment function is

described in equations (1) and (2). DiŒerent contribu-

tions are as follows: contribution 1 referred to the

approximation to the objective, contribution 2 is related

to the angle between the robot and the objective, and
contribution 3 is related to the distance to the obstacles.

Through experiments, it has been determined that con-

tributions 1 and 3 depend on the situations of the robot.

Therefore the values of the Coef1 and Coef3 in equation

(1) depend on each situation and will be divided into two
constants: one ® xed and other dependent of the situa-

tion. With this consideration, the selected function for

the payment calculation is given by the following equa-

tion (the ® nal payment will be calculated using equation

(2)):

Ps ˆ P1K1C1 ‡ P2K2 ‡ P3K3C3; …3†

where P1; P2; P3 and Ps are the previously described par-

ameters. K1 is a ® xed value applied to P1. C1 is a vari-

able value applied to P1, a function of the nearness to
the objective. Its values are 4 if the robot is very near to

the objective, 2 in the intermediate case and 1 if it is far

from the objective. K2 is a ® xed value applied to P2. K3

is a ® xed value applied to P3. C3 is a ® xed value applied

to P3, whose value depends on the distance to objects.
Its value is 8 if it is very near to the object to avoid, 4 in

the following distances section and 1 in the rest.

The values obtained for the function constants are

given in table 10. Despite the fact that these parameter

values have been calculated empirically, they re¯ ect the

corresponding importance of each of the contributions.

Thus, a higher and, therefore, more important value has
to deal with the withdrawal of the obstacles; this value is

tenfold greater than the corresponding factor for the

contribution from being aligned with the objective.

Although the approximation factor to the objective

could seem to be smaller, the angle magnitudes are less
than those of the travelled distance. Furthermore, this

diŒerence in magnitude is taken into consideration

through the constant C1, according to where the robot

is found. Thus, when the robot is near the objective, this

constant causes the coe� cient for the approximation,
Coef1, to be equal to the alignment coe� cient, Coef2

while, when it is far away from the objective, both coef-

® cients are speci® ed by K1 and K2, maintaining a mag-

nitude relationship.

5.2. Validation of the bucket bridgade algorithm for the
`generation of message list through fusion’

mechanism in a reactive classi® er system

The system learns from an initial situation using the

payment function, namely the BB algorithm (to distrib-

ute the rule strength when a rule is activated by another

rule). A function that ensures that the strength of the

not-® red rules decreases to diŒerentiate them from the

® red rules, commonly used in CSs (Dorigo 1995,
Holland 1986a), is also used in this work. This decrease

in rule strength is called a tax.

Experimental results show a learning behaviour where

the strengths of the best rules for the problem increase

while the strengths of the other rules decrease versus
cycles in the execution. The set of rules for the CS is

collected in table 11.

These rules could be clustered into three groups (table

11). The ® rst group a is related to situations in which

there is collision danger. With these rules, the robot
turns in the correct direction in the presence of obsta-

cles. The second group (b) corresponds to situations in

which there are no obstacles near; in this case, the robot

will modify its trajectory in order to avoid obstacles

when there is no collision danger. This set of rules

allows the robot to wander around the experimental
environment without taking into account the goal. The

last group c consist of rules that, independently of

obstacle position, change the trajectory of the robot

facing the goal.

 

Figure 14. RCS selection process scheme.

Table 10. Values obtained for the function constants.

K1 K2 K3 Ks Ps

0.3 1 3 0.02 ¡10 (if collision happens)
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An example of a rule in the three cases is shown in

® gure 15.

In more detail, the meaning of rule (1) in ® gure 15 is

explained. If there is an obstacle in front of the robot at

a distance between 0 and 10 (S1 ˆ 00, very near),

another obstacle on the left at a distance between 20

and 30 (S2 ˆ 11, far), another on the right at a distance
between 10 and 20 (S3 ˆ 01, near), and the last message

sent is type 10 (internal ˆ 10), then send a message type

10 to turn abruptly to the left (vel1 ˆ ¡5; vel2 ˆ 5).

The essential rules for solving the problem belong to
groups a and c. Group b rules are super¯ uous because

they allow the robot to avoid obstacles when they are far

(which is not very useful) and they are not able to follow

the goal. The most e� cient strategy is to follow the goal

except when there is collision danger. This is accom-

plished by the rules of groups a and c, in an e� cient
way when the appropriate rules from these groups are

selected.

The CS with 52 rules has been applied to the real

robot, with diŒerent initial strengths (table 12). The

CS shows the capability of discriminating between the

three groups of rules. It has been experimentally tested
that rules belonging to groups a and c have an average

strength above the rules of group b.

In ® gure 16 the rule strength evolution (over 900

cycles of running) of a rule belonging to every group is

shown. The CS has also showed the ability to discrimi-
nate between rules inside each set. Some rules of the set

are better (more useful) than others because they wait

until objects are near or turn less abruptly. The CS is

able to select (giving higher strength values) the more

convenient rules of each set and to provide a chain of

rules for diŒerent sets. Rules that have the ability to
solve a great part of the problem by themselves in

some special environmental con® guration (e.g. when

there are no obstacles to the goal) have their strength

increased. This increase in strength takes place in a short

number of cycles as can be seen in ® gure 16(a). The
meaning of evolution of strength is that, while the spe-

cial conditions for these rules to be useful are not yet

reached, their strength is decreased as an eŒect of the tax

mechanism. On the other hand, when they are ® red (or

could be ® red), and because they can solve a great part

of the problem, they will be ® red once and so on, to
increase in strength quickly. If the rules are ® red as a

part of a chain in execution, their strengths are kept

constant, more or less, as a result of composing the

growth for ® ring and the loss for taxes. When the

robot faces a complex situation, any rule tries to solve
the problem in isolation. In this case, the strength of

good rules increases or decreases depending on whether

it takes part or not in the chain that is being executed

and that execution ends with a positive or negative pay-

oŒ(® gure 16(c)). Finally, all rules have a tendency to

Table 11. Rules of the CS: group a, avoiding when obstacles

are near; group b, avoiding when obstacles are far; group c,

following.

Condition Message

Group a

##0000########10#### ##############111111

##00##########10#### ##############111011

####00########10#### ##############111110

000101########10#### ##############111111

001101########10#### ##############111100

001001########10#### ##############111100

000111########10#### ##############110011

001111########10#### ##############111111

001011########10#### ##############111000

000110########10#### ##############110011

001110########10#### ##############110010

001010########10#### ##############111111

Group b

010101########1##### ##############001111

011101########1##### ##############001000

011001########1##### ##############001000

010111########1##### ##############000010

011111########1##### ##############000000

011011########1##### ##############000001

010110########1##### ##############000010

011110########1##### ##############000100

011010########1##### ##############000000

110101########1##### ##############000000

111101########1##### ##############001000

110111########1##### ##############000010

111111########1##### ##############000000

111011########1##### ##############000001

110110########1##### ##############000010

111110########1##### ##############000100

111010########1##### ##############000101

100101########1##### ##############000000

101101########1##### ##############001000

101001########1##### ##############000001

100111########1##### ##############000010

101111########1##### ##############000001

100110########1##### ##############000100

101110########1##### ##############000100

101010########1##### ##############000101

Group c

########00####11#### ##############111010

######0101####11#### ##############110011

######1101####11#### ##############111100

######0001####11#### ##############110010

######1001####11#### ##############111000

######0111####11#### ##############110011

######1111####11#### ##############111100

######0011####11#### ##############110010

######1011####11#### ##############111000

######0110####11#### ##############110010

######1110####11#### ##############111000

######0010####11#### ##############110100

######1010####11#### ##############110001
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decrease their strength as an eŒect of the taxes. This is

more evident when there are no necessary rules (® gure

16(b)).

To check the robustness of the developed CS, some

experiments have been made on the real robot, consid-

ering diŒerent initial strength. A similar set of rules has

been discriminated. The CS selects the better rules; these

rules belong to the clusters a and c where they represent

the rules that avoid dangerous situations and follow the

correct path in the absence of obstacles. The ® nal eŒect

of this discrimination is that the robot is able to reach

the objective avoiding obstacles in an e� cient way.

Figure 17 shows the results of the experiment where

the initial assignation of strength has been done as fol-

lows: if the rule belongs to clusters a and c, it is set to

200 and to 600 otherwise (cluster b). In these conditions,

evolution of good rules is much more di� cult because

they have, initially, a third part of the strength.

It can be seen that a similar set of rules has been

discriminated, all of them belonging to groups a and c.

Also similar behaviours to those shown in ® gure 16 can

be seen. The system has proven, thus, to be insensitive to
the assignation of initial strength values.

5.3. Learning with genetic algorithms

Once it has been tested that the CS is able to discrimi-

nate good rules, a GA has been included to discover
new, and probably better, rules. Evaluation of the

system performance is based on a quantitative measure.

This measure does not take part in the evolution process

but it re¯ ects the system’ s global performance evolution.

To measure the system evolution, the following features
have been considered:

(1) The time needed to reach the goal (seconds in the

real robot and cycles in the simulator);

(2) The trajectory length (measured by means of the

velocity values of the motor wheels);

(3) The number of collisions (measured using the mini-

mum value of the proximity sensors).

The environment makes the RCSs adapt to the set of

rules that cooperate to achieve a common goal in order

to perform incrementally the r̀each-and-avoid’ behav-
iour with less time, fewer collisions and a straighter

trajectory to the goal.

There are several approaches for initializing rules in

CSs. The most common method is random initializa-
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Figure 15. Examples of rules.

Table 12. Average strength of groups a, b and c with diŒerent initial strengths.

Initial Strength Final Average Strength

Group a Group b Group c Group a Group b Group c

300 300 300 365 202 340

300 300 600 370 210 502

300 600 300 325 305 310

300 600 600 310 315 520

600 300 300 640 201 340

600 300 600 635 204 550

600 600 300 615 295 340

600 600 600 650 276 545

0

300

600

900

1 201 401 601 801
0

300

600

1 201 401 601 801

0

300

600

900

1 201 401 601 801

(a) (b)

(c)

cycles

cyclescycles

strength

strength strength

Figure 16. Evolution of the rules strength of (a) avoiding with

obstacles near, (b) no obstacles and (c) following rule.
15



tion. This represents the maximum challenge to the

learning algorithm but does not take into account the

previous acquired knowledge. As an alternative, a

method consisting in seeding the initial population

with previous learned knowledge can be used (Schultz

1991).

The ® rst experiment, where an RCS has been seeded

with previous domain knowledge, has been carried out

to prove the eŒect of the RCS as a method of selecting

and incorporating the necessary knowledge for solving

the problem. The initial population of the RCS is com-

posed of the ten better rules obtained in previous experi-

ments (the rules with higher average strength; see } 5.2)

and, for each rule, four random new rules have been

added; so 50 rules are obtained. The GA is utilized at

the end of an execution. The robot navigation in an

execution starts from an initial random point and it

ends when the goal is reached, or the time exceeds

some limit, or the number of collisions exceeds a maxi-

mum threshold. A problem of the Michigan approach

(Holland 1986a), which is the same as in a CS, is the

sensitivity of the rules. This is because the strength of

some rules depends on the strength of other rules. To

overcome this problem, a high degree of overlapping has

been used in such a way that the diŒerence between

generations is insigni® cant. The selected parameters of

the GA are a cross-over probability of 1 a mutation

probability of 0.02 and overlapping of 0.85. The eŒects

of removing some of the ad hoc rules (} 4.2) are re¯ ected

in the ability of the robot to reach the goal; thus is

achieved in an ine� cient way. Through evolution

some new good rules have been added, making the

robot follow a better trajectory without collisions.

On the other hand, it has been intended to prove also

the capacity of the system as a method for solving prob-

lems without domain knowledge. This second alterna-

tive is the most general for problems in which the ® nal

objective, namely the rules that govern the process or

both, is unknown. For this general case, the experiment

is intended to accomplish a comparison with the tradi-

tional perspective in order to evaluate performances.

In these experiments, the initial population of the

RCS is randomly generated. In this case, the ability

and improvement of the RCS to learn reactions com-

pared with the traditional approach can be probed. The

parameters of the CS (traditional and new) are the same:

(a) the GA which is utilized after 100 cycles of deci-

sions;

(b) a cross-over probability of 1;

(c) a mutation probability of 0.01;

(d) overlapping of 0.3.

The value of overlapping is lower than in previous

experiments to allow faster generation of new rules

because now the initial population is randomly gener-

ated. Four internal cycles in the performing level are

considered in the traditional CS.

The simulator executes the robot controller as in the

real world; so, while traditional and reactive CSs take a

decision, the robot is continuously working. The velo-

city of the robot in this period is the previously decided

velocity. This velocity is changed when the CS takes a

decision for the incoming environmental message. This

consideration is the main feature in a traditional CS

because it executes four internal cycles before taking a

decision.

Figure 18 shows the evolution of the evaluation par-

ameters for the two types of classi® er. In ® gure 18(c) a

function that linearly combines the two parameters is

shown, the function is 1:5 £ time ‡ distance.

Figure 18 shows the results of 50 experiments. In these

experiments, the seed required to create the populations

is changed in each generation, therefore, each experi-

ment has a diŒerent set of initial rules. On the x axis,

executions are represented. An execution is the naviga-

tion of the robot from the initial situation until the goal

is reached. On the y axis the average value over 50

experiments of the measured variable is represented

 
Figure 17. Evolution of the strength of the whole set of rules over 1000 cycles.

16



0

2000

4000

6000

8000

10000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Execution

Time RCS

Traditional CS

   

Distance

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

RCS

Traditional CS

Execution

  

0

5000

10000

15000

20000

25000

30000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Execution

Total
RCS

Traditional CS

 
 
 

Figure 18. (a) Time to reach the goal by the RCS and the traditional CS. (b) Distance to reach the goal by the RCS and the traditional

CS. (c) Global evaluation of the two systems.
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both for a CS and an RCS. The variance values of these

experiments are limited to 10% of the average value at

each point of the curves.

Figure 18(a) shows the time in ® nding the goal. It can

be seen how the rule learning process causes the robot to
® nd the goal more rapidly in both cases. However, while

the traditional CS causes a decrease of about 30% , the

RCS could reach a decrease of 70% . This is because the

RCS is able to learn rules that will be ® red just in time,

because of the lack of delay between a rule execution

and its reward from the environment. In ® gure 18(b) the
trajectory of the robot is represented. This value is

related to the previous value; so the two graphics are

expected to have the same shape. The learning of valid

chain rules makes the RCS move more rapidly and

straighter to the goal than the CS does.
The improvements in the RCS over the traditional CS

can be seen in ® gure 18(c), where the eŒects of the two

measurements are combined. The rules achieved in the

RCS improve the performance of the robot by 60%

compared with the rules obtained with the traditional
CS.

6. Testing a reactive classi® er system in dynamic

environments

6.1. Simulated experiments

The proposed RCS has learned to react and to pro-
vide a chain of actions to solve the navigation problem.

The learned CS has also been tested in dynamic envir-

onments. A subset of static environments from previous

experiments has been selected in order to compare with

the results over similar dynamic environments. The
dynamic experiments are de® ned in this way: the initial

point, the situation of the goal and the static objects are

equal to those in the static experiments but a circular

object wanders in the simulated world. The mobile

obstacle starts its movement from the position

(x ˆ 100; y ˆ 200; initial direction, 2008) with a
random trajectory that crosses in many cases the robot

path and avoid obstacles without a prede® ned goal.

When the robot ® nds an obstacle in its way, it is able

to react by avoiding the mobile obstacle without losing

the tendency to arrive at the goal.

The static environments are de® ned by the initial posi-

tion of the robot and the objects. Nine experiments have

been de® ned and 50 executions have been carried out in

order to obtain the average of the trajectory lengths,

collisions and times. Each experiment is de® ned by the

robot initial position (three diŒerent positions have been

used: robot 1, robot 2 and robot 3) and the number of

static obstacles (one, two or three). Static objects are the

same as in ® gure 7. Each robot is de® ned by coordinates

(x, y) and their initial direction:

robot 1: x ˆ 50; y ˆ 400; initial direction, 08;
robot 2: x ˆ 300; y ˆ 450; initial direction, 1808;
robot 3: x ˆ 50; y ˆ 150; initial direction, 08;

The average results of the CS with respect to time,

trajectory length and collisions are shown in table 13

from 50 experiments. Three selected examples of these

experiments are shown in ® gure 19.

In table 14, the numerical values obtained in these

dynamic experiments, with a mobile obstacle, are

shown. Figures 20(a), (b) and (c) show several trajec-

tories starting from the same point as in ® gures 19(a),

(b) and (c) respectively.

As can be seen in tables 13 and 14, the robot beha-

viours are similar in diŒerent environments. The naviga-

tion problem is solved from diŒerent initial positions

and with diŒerent con® gurations of objects (both static

and dynamic). Although the robot arrives at the goal in

any circumstance, the results are diŒerent in static envir-

onments from those in dynamic environments; there are

more collisions, and the time is larger and the distance

larger in dynamic environments because of the di� culty

of the mobile object. The results show that the learning

rate of the CS allows the navigation problem to be

solved in diŒerent environments, both static and

dynamic.

Table 13. Numerical results of static experiments.

Robot Environment Average time Average distance Average collisions

Robot 1 3 objects 91.80 678.10 0.7

Robot 1 2 objects 82.21 650.30 0.7

Robot 1 1 object 68.32 635.20 0.7

Robot 2 3 objects 86.70 583.10 0.8

Robot 2 2 objects 73.20 523.43 0.3

Robot 2 1 object 62.30 427.80 0

Robot 3 3 objects 69.80 461.50 0

Robot 3 2 objects 27.50 333.20 0

Robot 3 1 object 27.30 332.70 0
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6.2. Real robot experiments

Evolved RCSs have been used to control the real

robot in diŒerent environments. In ® gure 21, a real

experiment is shown; ® gure 21(a) represents the starting

point, ® gure 23(b) the intermediate state and ® gure 23(c)

the ® nal position.

The experiments accomplished resemble those in the

simulator, in order to compare the results obtained by

the same CS both in the simulator and in a real environ-

ment, with the robot Khepera. The environment consists

of several elements:

(a) a wood enclosure which is white in colour and

6.5 cm in height, with a perimeter of 70 cm £ 70 cm;

(b) a bulb at voltage 2.5 V, placed in a foam slab, and

fed by a continuous current generator;

 

   
 
 

(a) (b) (c)

Figure 19. Three static experiments: (a) robot 1; (b) robot 2; (c) robot 3.

   
 

(a) (b) (c)

Figure 20. Three dynamic experiments: (a) robot 1; (b) robot 2; (c) robot 3.

Table 14. Numerical results of dynamic experiments.

Robot Environment Average time Average distance Average collisions

Robot 1 3 objects 157.50 791.51 3

Robot 1 2 objects 158.17 743.34 1.5

Robot 1 1 object 132.08 654.73 1.5

Robot 2 3 objects 154.21 657.62 1.6

Robot 2 2 objects 80.12 580.23 1

Robot 2 1 object 74.14 473.79 0

Robot 3 3 objects 77.33 394.62 0

Robot 3 2 objects 50.67 343.09 0

Robot 3 1 object 51.50 320.70 0
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(c) the surface of the enclosure which is covered with

black cardboard, to assess the optimum behaviour

of the robot with respect to the source of light;

(d) three objects which have been placed in the enclo-

sure in a similar way to in the simulator world, and

which are white in colour, and 6 cm. in height, with

a perimeter of 10 cm £ 10 cm.

In ® gure 22 a plan of the real environment described is

shown. Three diŒerent starting positions of Khepera

appear. These positions are also similar to those used

in the simulator.

Twelve experiments have been accomplished, each

consisting of 20 consecutive robot executions. In the

experiments, the starting position and robot sense

change (positions 1, 2 and 3), and also objects A, B

and C, with their possible combinations (including elim-

inating an object). In each execution, three objective

parameters has been collected: the number of collisions

produced, the time elapsed until arriving at the objec-

tive, in seconds, and the distance travelled, in centi-

metres. Furthermore, for each experiment, the

maximum and minimum values, the average values

and the standard deviations have been calculated, for

each of these three parameters. In ® gure 23, some com-

parative tables are shown.

As can be observed in these obtained data, an ROCS

on a real robot operates almost without collisions in all

situations and reached the goal in relatively short times

    
 

 

Figure 21. Systems evolution examples in one real experimental environment: (a) starting position; (b) intermediate; (c) goal reached.
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Figure 22. Scheme of real robot experiments.

(a) (b)

(c)
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(a similar duration). These results of the ROCS demon-

strate that learned rules are useful for the navigation of a

real robot with a stable and ® xed functioning, so, the

behaviour of the ROCS on the real robot demonstrates
that the degree of learning of the CS is su� cient to carry

out the imposed task.

7. Conclusions

The proposed RCS has been developed to learn reac-

tions (decision is a function of the environmental infor-
mation) and actions (decision is a function of the

environmental information and previous internal infor-

mation). This modi® ed CS (namely an RCS) has proven

its ability to learn autonomous robot behaviours in

dynamic environments.
The fusion of each environmental message with infor-

mation from previous ® red rules (the GLTF mechanism)

and the inclusion of internal conditions (the IT

mechanism) allow the generation of a sequence of

actions, de® ned by a chain of rules over diŒerent
inputs. Sets of cooperative rules emerge from the evolu-

tion of the RCS. Co-operation is viewed in this case as a

chain of rules, where a rule is only meaningful if it

matches the environment and follows another speci® c

rule in time.

The inclusion of a message without other information
but the environmental input allows the evolution of

reactions.

Experiments carried out without generating new rules

proved the capabilities of our approach to discriminate

accurately between rules in a system that can provide a

chain of rules at the same time that it receives new

inputs.

The results obtained considering the generation of
new rules proved the capability of generating not only

new better rules but also the mechanisms for deter-

mining a chain of new and existing rules.

Another important aspect veri® ed in this work is the

possibility of continuously learning and adaptation to

new situations that allow the problem to be solved
even if there are mobile objects, more than one goal,

and dynamic goals that could appear and disappear or

move when the robot is navigating.
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