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“The creature that wins against its environment destroys itself.”

– Gregory Bateson1

1Gregory Bateson. English anthropologist, social scientist, linguist, visual anthropologist,
semiotician, and cyberneticist. Quote extracted from the book ’Steps to an Ecology of Mind’.

i



TO my parents, Maite and Pepe, for giving life back to my soul, experiences and an

education based on effort, learning, freedom and love to nature. To my sisters,

Maite and Clara, for dealing with my internal conflicts. To Esteban Moro for

believing in me, encouraging me to give my full potential, making me grow as a

person and allowing me to learn at the highest level with the best, among them

Manuel García-Herranz, Manuel Cebrián, Nick Obradovich, Alberto Aleta, Yamir

Moreno, Alex Vespignani and Alex Pentland. To all my family, friends and

acquaintances who express emotional detachment and unconditional love towards

me. To nature for working the miracle of my existence and the rest of the living

beings in the universe. We are nobody without the whole.

ii



A mis padres, Maite y Pepe, por dar de nuevo la vida a mi alma, experiencias

y una educación basada en el esfuerzo, el aprendizaje, la libertad y el amor a la

naturaleza. A mis hermanas, Maite y Clara, por soportar mis conflictos internos. A

Esteban Moro por creer en mí, alentarme a dar todo mi potencial, hacerme crecer

como persona y permitirme aprender al más alto nivel con los mejores, entre ellos

Manuel García-Herranz, Manuel Cebrián, Nick Obradovich, Alberto Aleta, Yamir

Moreno, Alex Vespignani y Alex Pentland. A todos mis familiares, amigos y

conocidos que expresan desapego emocional y amor incondicional hacia mí. A la

naturaleza por obrar el milagro de mi existencia y del resto de seres vivos en el

universo. No somos nadie sin el todo.

iii



Abstract

HUMAN behavior and epidemics are intricately interconnected and this

PhD thesis aims to enhance current mathematical epidemiological models by

integrating human behavior through digital traces, leading to a more comprehensive

understanding and prediction of viral epidemic spread. It addresses the limitations of

existing models in capturing dynamic human behavior and proposes a novel

approach that leverages alternative data sources, including social media and mobility

data, as crucial variables in epidemic modeling.

Firstly, the thesis begins by providing an overview of communicable diseases,

their interactions with human behavior, and the potential threats posed by human

behaviors in the emergence of pandemics. It delves into the history of epidemiology,

emphasizing the role of social networks in comprehending information

dissemination and interventions targeting human behavior. Additionally, the thesis

reviews the current state of computational and digital epidemiology, exploring novel

data streams and advanced mathematical models for better understanding and

prevention of epidemics.

Subsequently, the thesis addresses the limitations of existing Early warning

epidemiological systems (EWES) based on official data and presents a novel approach

that utilizes social media data to indirectly observe human behaviors and detect early

outbreaks of Influenza-like Illness (ILI) using highly connected individuals. Through

statistical machine learning models, behavioral insights are extracted from millions of

Twitter posts, identifying highly connected nodes as effective sensors for early

warnings. This approach could significantly improve the detection of ILI and

COVID-19 outbreaks at scale while respecting privacy considerations.

Moreover, the thesis advances mathematical epidemiological modeling by

incorporating real-world mobility data to construct social contact matrices, capturing
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the intricate patterns of human contact. By utilizing GPS data, a data-driven

approach is presented to simulate human mobility patterns and social interactions on

a larger scale. The methodology is applied to understand the effects of different

lockdown strategies during the second COVID-19 wave and to investigate the

dynamics of infections and the impact of control measures in a metropolitan area like

Boston.

In addition, the thesis extends the previous methodology by introducing a

temporal component and constructing daily-level contact matrices, enabling the

observation of feedback loops between social behaviors, infections, and the impact of

Non-Pharmaceutical Interventions (NPIs) over time. This approach facilitates a

granular understanding of viral spread, its spatial and temporal characteristics,

detection of Super-spreading events (SSE) and evaluates the effectiveness of NPIs in

controlling COVID-19 in various metropolitan areas across the United States.

In conclusion, this thesis presents the findings and discusses their implications for

epidemic modeling. It also identifies future research directions derived from this

work, emphasizing the potential for further advancements in modeling epidemics by

incorporating human behavior through digital traces.



Resumen

LA conducta humana y las epidemias están intrincadamente interconectadas

y esta tesis doctoral tiene como objetivo mejorar los modelos epidemiológicos

matemáticos actuales mediante la integración de la conducta humana a través de

rastros digitales, ayudando a una comprensión y predicción mejor de la propagación

de epidemias virales. Se abordab las limitaciones de los modelos existentes en la

captura de la conducta humana y propone un enfoque novedoso que aprovecha

fuentes de datos alternativas, como las redes sociales y los datos de movilidad, como

variables cruciales en la modelización de epidemias.

En primer lugar, la tesis comienza proporcionando una visión general de las

enfermedades transmisibles, sus interacciones con la conducta humana y las

amenazas potenciales que plantean los comportamientos humanos en la aparición de

pandemias. Se adentra en la historia de la epidemiología, haciendo hincapié en el

papel de las estructuras sociales en la comprensión de la difusión de información y

las intervenciones dirigidas a la conducta humana. Además, la tesis revisa el estado

actual de la epidemiología computacional y digital, explorando nuevas fuentes de

datos y modelos matemáticos avanzados para un mejor entendimiento y prevención

de las epidemias.

Seguidamente, la tesis aborda las limitaciones de los sistemas de alerta temprana

epidemiológica (EWES) existentes basados en datos oficiales y presenta un enfoque

novedoso que utiliza datos de redes sociales para observar indirectamente los

comportamientos humanos y detectar brotes tempranos de la gripe (ILI) utilizando

sensores altamente conectados socialmente. A través de modelos estadísticos de

aprendizaje automático, se extraen percepciones conductuales de millones de

publicaciones de Twitter, identificando usuarios altamente conectados como sensores

efectivos para alertas tempranas. Este enfoque podría mejorar significativamente la
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detección de brotes de ILI y COVID-19 a gran escala, al tiempo que respeta las

consideraciones de privacidad.

Además, la tesis avanza en la modelización epidemiológica matemática mediante

la incorporación de datos reales de movilidad para construir matrices de contactos

sociales, capturando los patrones intrincados del contacto humano. Utilizando datos

de GPS, se presenta un enfoque basado en datos para simular los patrones de

movilidad humana e interacciones sociales a gran escala. La metodología se aplica

para comprender los efectos de diferentes estrategias de confinamiento durante la

segunda ola de COVID-19 e investigar la dinámica de las infecciones y el impacto de

las medidas de control en áreas metropolitanas, en este caso Boston.

Finalmente, la tesis amplía la metodología anterior al introducir un componente

temporal y construir matrices de contacto a nivel diario, permitiendo la observación

de los bucles de retroalimentación entre los comportamientos sociales, las infecciones

y el impacto de las intervenciones no farmacéuticas (NPIs) a lo largo del tiempo. Este

enfoque facilita una comprensión detallada de la propagación viral, sus

características espacio-temporales, la detección de eventos de super dispersión (SSE)

y evalúa la efectividad de las NPIs en el control de COVID-19 en diversas áreas

metropolitanas de Estados Unidos.

En conclusión, esta tesis presenta los hallazgos y discute sus implicaciones para la

modelización de epidemias. También identifica futuras direcciones de investigación

derivadas de este trabajo, enfatizando el potencial de nuevos avances en la

modelización de epidemias al incorporar la conducta humana a través de rastros

digitales.
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Introduction

"The epidemiological methods may be scientific, but its objectives are often

thoroughly human."

– Alex Broadbent1

THE spread of viral agents is significantly influenced by human behavior, making

it essential to develop improved epidemiological systems that can effectively

understand and predict the spread of epidemics. To achieve this, it is crucial to

incorporate human behavior by leveraging digital traces, which provide valuable

insights into how individuals interact and perceive their own health status and react

accordingly. By integrating these behavioral aspects, we can enhance the

effectiveness of detection systems for future epidemics.

However, current mathematical epidemiological models predominantly utilize

static and over simplified frameworks that inadequately capture the dynamic nature

of human behavior. These models often overlook the availability of data sources that

can capture the variability in people’s movements, perceived symptoms, and

responses to public health measures. Moreover, they commonly employ simplistic

analytical approaches, assuming unrestricted interactions between individuals, or

rely on static mobility data to approximate behavioral interactions across different

groups and regions. Furthermore, these models often solely rely on official and

hospital data, limiting their ability to capture real-time dynamics and the underlying

contact network structure that drives virus transmission. As a result, these models
1Alex Broadbent. South African philosopher. Quote extracted from the epidemiological magazine

’The Epi Monitor’.

1
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fail to provide timely and accurate insights into the trajectory of epidemics.

In this thesis, we present a novel approach that harnesses alternative data sources,

including social media and GPS digital traces, to access real-time information on

symptoms and social contacts for millions of individuals. By incorporating these data

sources, we demonstrate how human behavior can be integrated as a crucial variable

in the mathematical modeling of viral epidemics. This innovative methodology

provides a more comprehensive understanding of epidemic dynamics and offers

valuable insights for effective epidemic control and management. The main focus of

our research revolves around the hypothesis that incorporating novel data sources

that capture human behaviors can significantly enhance mathematical

epidemiological models.

In this introduction, we begin by providing a comprehensive overview of the

fundamental knowledge and conceptual framework required to grasp the

significance of communicable diseases and their interactions with human behaviors.

We delve into the ways in which our own behaviors as humans can pose a threat to

society, potentially resulting in the emergence of new pandemics. Additionally, we

outline our understanding of human behavior in the context of epidemics, shedding

light on the factors that influence the transmission and impact of infectious diseases

on human health. We emphasize the critical importance of studying these intricate

relationships from both public health and economic perspectives.

Secondly, we briefly review the history of ancient and modern epidemiology.

How social networks play a crucial role in epidemiology, helping us understand how

information spreads within a complex contact network system. Some social-driven

interventions aim to change human behaviors and interactions to reduce the spread

of information. Third, we present the current state of the art in the computational and

digital epidemiology field, covering everything from novel data streams to advanced

mathematical epidemiological models that could help us understand, assess, and

prevent future epidemics at scale. Furthermore, we present the research purpose and

questions as guidelines for this thesis. Finally, at the end of this chapter, we provide a

concise introduction to the subsequent chapters that comprise this thesis.
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1.1 The recurrent problem between humans and viral

epidemics

1.1.1 Humans and pathogens

Across the annals of history, humanity has confronted a multitude of viral epidemics,

including very fearful plagues with millions of deaths, caused by pathogens, like

viruses and bacteria, such as influenza, smallpox, measles, salmonella, malaria,

yellow fever, typhus, and cholera. The first known epidemic dates back to 1,200 B.C.

in Babylon, which may have been caused by the influenza virus [8]. Over time, many

more influenza pandemics have occurred, with the virus exhibiting increased

virulence due to genetic mutations [9]. Smallpox is another disease that has plagued

humanity for centuries, with evidence of its existence dating back to the 3rd century

B.C. in Egypt [10]. Smallpox is caused by the bacteria Yersinia pestis and has been

responsible for numerous deadly plagues throughout history, claiming hundreds of

millions of lives over thousands of years [11].

Over the past few decades, numerous new infectious diseases have emerged,

including HIV infections [12], SARS [13], Lyme disease [14], Escherichia coli O157:H7

(E. coli) [15], hantavirus [16], dengue fever [17], West Nile virus [18], chikungunya

virus [19], Ebola virus [20], Zika virus [21], and SARS-CoV-2 [22]. Additionally, there

are diseases that have reemerged after experiencing a significant decline, like

measles [23] or monkeypox [24]. The reemergence of diseases can be attributed to the

emergence of new strains of known diseases or changes in human behaviour. Some

examples of reemerging diseases include malaria, tuberculosis, cholera, pertussis,

influenza, pneumococcal disease, and gonorrhoea. Globalisation and climate change

have increased the likelihood of the emergence and spread of infectious diseases on a

global scale. The COVID-19 pandemic has served as a warning of the potential

threats that humanity may face in the future.

The severity of viral epidemics has been influenced by a diverse array of factors.

Among these, several common factors emerge as crucial determinants shaping the

spread and impact of these epidemics. These factors include the characteristics of the

viral agent, its transmission dynamics, the susceptibility of a population to the viral

agent, population density and mobility, the socioeconomic and cultural factors of the
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population, Non-Pharmaceutical Interventions (NPIs), and finally, viral epidemics are

influenced by global factors, including international travel, globalization of trade and

commerce, connectivity, and coordination among countries for surveillance.

In addition to previous factors, our current civilization has influenced and

transformed the environment, resulting in their destruction or loss of environmental

equilibrium [25]. The impact has been so significant that there is a more than 95%

probability that human activities in the last 50 years have altered the equilibrium of

the planet, contributing to changes in ecosystems and all the sentient beings within

them [26, 27].

The consequences of altering the equilibrium of our ecosystems are difficult to

predict. However, changes in temperature and precipitation patterns are leading to a

higher number of extreme weather events, such as droughts, floods, and extreme

temperatures [28]. These events can have significant impacts on higher probabilities

of global pandemics from zoonotic emergent pathogens [29].

Studies have shown that zoonotic risks are higher in forested tropical regions

undergoing land-use changes, where wildlife biodiversity is high [30]. Changes in

land use have also resulted in increased interactions between people, livestock, and

wildlife reservoirs of zoonotic diseases [31]. In addition, a reduction of 1.4% in the

Amazonian forest area has been estimated to increase the incidence of malaria by

1% [32]. Furthermore, Ebola outbreaks located on the fringes of the rainforest biome

have been significantly associated with forest losses in the previous two years [33].

The combined impact of globalization and loss of equilibrium within ecosystems

has only made matters worse, contributing to the rise in the distribution and

prevalence of infectious diseases [34, 35], more severe influenza seasons [36, 37] and

increase the risk of zoonotic pandemics such as COVID-19 [29]. An additional social

threat is that pandemics also cause fear, political turmoil and the rise of

authoritarianism [38].

Hence, there exists an urgent requirement for better mathematical models of

epidemic spreading and improved Early warning epidemiological systems (EWES) to

mitigate the risks posed by infectious diseases and gain deeper insights into the

underlying factors driving viral outbreaks. By exploring the potential of human

behavioral data in comprehending and mitigating the impact of viral epidemics, this

thesis seeks to make significant contributions towards fostering more resilient
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societies.

1.1.2 Health-related behaviours

Human health is determined by various factors, including biological, behavioral,

sociocultural, economic, and ecological factors [39, 40]. For instance, several

infectious diseases heavily rely on human behaviors for their transmission.

Sexually transmitted infections such as HIV/AIDS, syphilis, gonorrhea, and

chlamydia are primarily spread through unsafe sexual practices, including

unprotected sex and having multiple partners. Respiratory diseases like influenza,

the common cold, and COVID-19 spread through respiratory droplets, and close

contact in crowded spaces without proper hygiene practices increases the risk of

transmission. Foodborne and waterborne illnesses such as salmonella, E. coli,

norovirus, and hepatitis A result from consuming contaminated food or water due to

inadequate hygiene during preparation and storage. Vector-borne diseases like

malaria, dengue fever, Zika virus, and Lyme disease depend on human behavior in

terms of exposure to vector habitats and the use of preventive measures such as

mosquito nets and tick bite prevention. Nosocomial infections acquired in healthcare

settings, including healthcare-associated infections and antibiotic-resistant bacteria,

are influenced by poor hand hygiene, insufficient sterilization of equipment, and

inappropriate prescription of antibiotics among medical practitioners.

Gaining a comprehensive understanding of the role of human behavior, such as

mobility, sexual practices, and hygiene, in the transmission of infectious diseases is

paramount. This understanding is essential for comprehending the patterns and

mechanisms of pathogen spread [41, 42], as well as for devising and implementing

effective NPIs. However, most of mathematical models to understand the

transmission of infectious diseases are based on simple mathematical equations that

have strong assumptions about how humans behave in a given population. For

example, the fact that transmission is equally probable or homogeneous across

different groups in the same geographical settings [43, 44].

These models are referred to as compartmental models, categorizing the

population into different compartments. One fundamental example is the SIR model,

consisting of three key compartments, S, I , and R, representing Susceptible,

Infectious, and Recovered individuals, respectively. The model operates as follows:



1. Introduction 6

- S represents the count of susceptible individuals. When a susceptible individual

comes into contact with an infectious individual, they contract the disease and

transition to the infectious compartment (I).

- I represents the number of infectious individuals. These are people who have

been infected and can transmit the disease to susceptible individuals.

- R represents the count of removed individuals. This includes those who have

recovered from the disease and moved to the recovered compartment, as well as those

who have died. The assumption is made that the number of deaths is negligible in

comparison to the total population.

The SIR model is built upon strong assumptions, assuming that every individual

interacts with the entire population. The differential equations that dictate the

dynamics of this nonlinear viral process are as follows:

dS

dt
= −βIS

N
(1.1)

dI

dt
=
βIS

N
− γI (1.2)

dR

dt
= γI (1.3)

Equation 1.1 represents the rate of change of susceptible individuals over time. It

depends on the transmission rate (β), which signifies how easily the disease spreads

from infectious to susceptible individuals, the number of infectious individuals (I) and

the number of susceptible individuals (S), divided by the constancy of the population

(N ). As infectious individuals come into contact with susceptible ones, the disease

spreads, reducing the number of susceptible individuals.

Equation 1.2 describes the rate of change of infectious individuals. The first term

represents new infections as susceptible individuals become infected (βIS), divided

by the population size (N ), and the second term represents the rate at which infected

individuals recover or die (γI), indicating how quickly infected individuals recover or

exit the infectious state.

Equation 1.3 governs the rate of change of recovered individuals. It is solely

influenced by the recovery rate (γ) multiplied by the number of infectious individuals

(I) transitioning to the recovered state.

Compartmental models, such as the SIR model, provide valuable average insights
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into disease transmission within a population. However, their assumptions regarding

human behaviors remain notably simplistic. For instance, they assume that the rate of

contact between individuals and the probability of transmission are constant. This

simplification is primarily due to the lack of fine-grain real-world behavioral data

available at the time these models were developed. They also assume that all

individuals in the susceptible state are exposed to those in the infected compartment

(well-mixed hypothesis). However, this exposure is, again, mediated by how humans

encounter and interact in real time, creating a heterogeneous and dynamic mixing

that depends on human behavior.

In the current era, characterized by exponential growth in user-generated data

due to the digital revolution, an unprecedented opportunity has emerged to observe

and quantify human behavior on a large scale. The rise of web searches,

micro-blogging posts, and geolocated data sources has enabled the measurement of

human behavior and its impacts on public health. In this thesis, we harness these

novel data streams to quantify human behavior, categorizing our observation

methods into two groups: indirect and direct. For instance, posting content on a

social network about personal health symptoms carries implicit information about

one’s health status. Similarly, individuals socializing in a restaurant, along with their

digital footprints of mobility patterns before and after the encounter, provide insights

into the potential for viral disease transmission.

In chapter 2, we make indirect observations of human behavior trough social media

fingerprints to build proxies from ILI-related posts that highly correlate with health-

related behaviors and health effects. In chapter 3 and chapter 4, we directly observe

human behavior through real-world mobility data from GPS signals to build contact

matrices, derive the effects of human activity on the overall health of the population

and the healthcare system.

1.1.3 Burden of infectious diseases

Top infectious diseases in order of disability-adjusted life-years per 100,000

inhabitants, according to the 2019 Global Burden of Diseases, are neonatal disorders,

lower respiratory infections, diarrheal diseases, HIV/AIDS, Tuberculosis and

Malaria. Infectious diseases have experienced a decrease of 55.94% between 1990 and

2019, with 131.74 deaths per 100,000 in 2019 [45]. However, six infectious diseases
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were among the top ten causes of burden in children [45] and the COVID-19

pandemic has imposed a significant global burden, leading to substantial

health-related consequences and a loss in the value of life, particularly within

developed economies [46]. Furthermore, the interaction between non-communicable

diseases (Non-Communicable Diseases (NCDs)) and infectious illnesses, which are

not transmitted directly from person to person, is gaining recognition as a significant

factor amplifying the burden. The role of NCDs in exacerbating viral epidemics is

substantial. These diseases heighten individual susceptibility, contribute to the

development of comorbidities, trigger immune dysfunctions, and give rise to

syndemics. This, in turn, widens the pool of individuals vulnerable to infections and

exacerbates the strain on healthcare systems, as was evident during the COVID-19

pandemic.

In terms of economic burden, infectious diseases’ economic impact is hard to

measure. It affects so broadly to the economy that it is not fully possible to measure

the impact. However, the COVID-19 epidemic has affected so broadly and globally

that we have been able to measure its economic impact worldwide, by country and

by industry. For instance, let us see some examples of financial impacts due to

zoonotic infectious disease events beyond the public health sector. From 2013 to 2014,

Gross Domestic Product (GDP) growth in Liberia decreased from 8.7% to 0.7%, due

to Ebola and lowering commodity prices, and GDP growth in Sierra Leone decreased

from 5.3% to 0.8% [47]. GDP growth in Guinea in 2015, predicted at 4%, fell to

0.1%. [47]. In Mexico, the H1N1 outbreak in 2009 affected tourism by US $ 2.8

billion [48]. In Somalia, RVF 1998–2002 outbreak impacted livestock export losses by

US$ 435 million [49]. In Malaysia during the 1998–1999 Nipah epidemic, there was a

loss of tax revenue of about US $105 million [50]. In Ghana, Liberia, and Sierra Leone,

the 2013–2015 Ebola epidemic created a loss of investors’ confidence of nearly US

$600 million [47]. A final example is the 2003 SARS global epidemic, which created to

airline companies a loss of more than US $7 billion+ [51].

However, in 2020 the coronavirus pandemic reached almost every country around

the world, with a major impact on our economies, from governments, businesses and

citizens. Let us see some examples of the early impact of a global pandemic like

COVID-19. The FTSE dropped 14.3% in 2020 [52], its worst performance since 2008.

Most of the countries entered into recession. For example, the International Monetary
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Fund estimated that the global growth contraction for 2020 was nearly -3.5% [53], the

worst since the Great Depression of the 1930s. Unemployment rates increased across

major economies [53]. According to the accountancy giant EY, consumer behaviours

changed significantly. Making that 67% customers were not willing to travel more

than 5 kilometres for shopping [54]. It is a fact that a global pandemic has major

impacts on our health and economies, and we are the only ones responsible for this

situation. Without understanding the behavioral entanglement between health, jobs,

NPIs and public health policies, it is impossible to devise better policies that

minimize the impact of the disease while alleviating the effect in our society and

economy of those policies.

1.2 Epidemiology and human health-related behaviours

Many definitions about epidemiology have been proposed, but there is a definition

that captures the spirit and principles of this scientific field:

Epidemiology is the study of the distribution and determinants of health-related

states or events in specified populations, and the application of this study to the control

of health problems [55].

Based on the previous definition. Epidemiology is a scientific, systematic and data-

driven discipline looking for unbiased collection, analysis and interpretation of data.

Epidemiology is also concerned with the distribution, frequency and patterns of health

states or events in a population by defining time, place, risk factors and individuals.

Epidemiology also searches for determinants, the causes and effects of health-related

events. This links with the main purpose of this thesis, to highlight the importance of

human behaviours and their digital traces in epidemiology.

Nowadays epidemiology requires more interdisciplinary teams to provide the full

potential of our current technological advances to move forward the boundaries of

our knowledge and start building or updating epidemiological systems based on big

data approaches. The main drivers are two. Firstly, the availability of vast amounts of

behavioral and social data generated by our modern society provides a valuable

resource for analysis. Secondly, recent advancements in data storage, processing,

computing, and extraction techniques serve as essential tools for extracting insights

from these novel data streams. Together, these factors enable public health
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decision-makers to gain a deeper understanding of epidemics, facilitate explanation

and prediction of their spread, and ultimately aid in the development of effective

preventive measures.

1.2.1 Origins of epidemiology

Epidemiology’s roots are nearly 2500 years old. Hippocrates, the Greek physician, is

known as the father of medicine [56], was the first to attempt to explain disease

events from a rational rather than a supernatural viewpoint, examining the

relationship between the occurrence of a disease, the environment and host factors

such as behaviours [57]. He was also the first to make the distinction between

"epidemic" and "endemic" [58]. Diseases that are "visited upon" a population, are

epidemic, contrary to those that "reside within" a population, which are endemic.

However, the word epidemiology was not used to describe the study of disease

epidemics until 1802 by the Spanish historian and physician Joaquín de Villalba y

Guitarte in his book ”Epidemiología Española” [58].

In the early years of epidemiology, pioneers such as John Graunt, Daniel

Bernoulli, and William Farr made significant contributions to the field. Graunt, in

1662, conducted the first study quantifying birth, death, and disease patterns, noting

disparities between genders, urban-rural differences, and seasonal variations [59].

Bernoulli, in 1766, developed the first mathematical model in epidemiology, linking

susceptibility to endemic diseases with the force of infection and life expectancy [60].

Farr, often referred to as the modern father of medical statistics and epidemiological

surveillance, systematically collected and analyzed mortality statistics in Britain,

including studying smallpox epidemics and demonstrating the bell-shaped curve for

disease outbreaks [61].

During the early 1900s, further advancements in mathematical epidemiology

occurred. Ronald Ross discovered the transmission of malaria through

mosquitoes [62], while Anderson Gray McKendrick and William Ogilvy Kermack

developed the Kermack-McKendrick theory [63], a general epidemic model,

constructed using ordinary differential equations described in equations 1.1, 1.2, and

1.3. This theory established the foundation for Susceptible-infected-recovered (SIR)

models, which classify populations into susceptible, infected, and recovered

individuals, as discussed earlier in subsection 1.1.2. These mathematical models
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marked the beginning of modern mathematical epidemiology, although they relied

on estimations and approximations due to limited granular behavioral health data at

the time.

It is worth noting that these early models followed a top-down approach, assuming

uniform behavior within the population due to the lack of detailed individual-level

data. However, they set the stage for future advancements that would incorporate

more nuanced and individual-specific factors to enhance the accuracy and granularity

of epidemiological models.

After World War II, epidemiology started to focus on NCDs and saw an explosion

in research of methods and theoretical aspects of epidemiology. These methods were

used to identify links between health-related events and behaviours, environment

and even attitudes. Two studies are worth mentioning that used epidemiological

methods to chronic diseases like the linking between lung cancer and smoking [64],

and the Framingham study, which characterized cardiovascular diseases and many

others until our days [65]. For instance, a 2007 study used sophisticated social

network methods to model obesity as an infectious disease. This study comprises

data from over 32 years. Christakis and Fowler [66] were able to model the spread of

obesity within households and the community, thanks to their longitudinal and very

detailed data. In the late XX century, public health decision-makers applied

epidemiological methods to eliminate smallpox outbreaks worldwide [67].

To tackle all these problems, the latest approach in epidemiology is the usage of

behavioural data at scale from big data sources. Health systems and health

organizations initiatives, like the Global Outbreak Alert and Response Network

(GOARN) [68] from WHO that is composed of 250 technical institutions and

networks globally and projects like the Integrated Outbreak Analytics (IOA) [69], the

Epidemic Intelligence from Open Sources (EIOS) [70] and the Epi-Brain [71] that

respond to acute public health events. This network is already moving in a double

direction of incorporating early warnings from big data, social sciences techniques

and behavioural data into epidemic response systems [72] to control outbreaks and

public health emergencies across the globe and have a holistic understanding of

outbreak dynamics.

In the following section, we are going to introduce the field of computational

social science, which is the leading field in analysing human behaviours at scale
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using social networks. As we have stated in this introduction, human health has a

crucial component attached to individual and social behaviours. We believe in a

bottom-up approach. We can incorporate behavioural data to advance

epidemiological models and treat each individual within a social complex system as

an independent agent contributing to the spreading information within a viral

process. We still have the same hypothesis as Hippocrates, to understand the

relationship between human behaviours, the environmental conditions and the

human health. Despite we are using novel data streams and advanced computational

models that Hippocrates never dreamt of.

1.2.2 Computational social science

The study of how our behaviors influence potential contacts and subsequent social

interactions has changed dramatically with digital tools. Social behaviors encompass

all interactions that occur among individuals, whether they are strangers, relatives,

members of the same or opposite sex, or different generations. Together, these

interactions form a complex social network that drives the social dynamics of the

agents involved. This social network is comprised of nodes connected by dyadic ties

that are based on homophily or affiliation, resulting in a sophisticated social structure

that includes both offline and online interactions. During each interaction, energy

and information - such as ideas, opinions, behaviors, viruses, or material transactions

- are exchanged or transmitted.

The concept of social networks was first mentioned in the late 1890s in the early

theories of social groups [73, 74]. In the 1900s, Simmel was the first to describe the

nature of networks and their impact on social interactions in small groups [75].

During the 1930s, there was a surge in research and applications of social networks

across multiple fields such as psychology, sociology, anthropology, and

mathematics [76, 77], laying the groundwork for social network theory as the first

social and psychological theories based on quantitative analysis of social interactions

and community networks. It is worth mentioning the work of Jacob L. Moreno, who

developed a systematic recording and analysis of social interactions in schools and

companies, creating the first visualizations of social networks based on human

interactions called sociograms [78]. Throughout this thesis, we will refer to

sociograms as contact matrices.
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During the 1960s and 1970s, the field of social network analysis began to shift its

focus towards political and community networks, social movements, and more

in-depth social network analysis [73]. Notably, Stanley Milgram conducted

groundbreaking experiments that linked human behavior with social networks. His

small-world experiment [79] showed that human social networks exhibit a

small-world structure, where nodes have sparse connections that enable them to

reach nearly every other node in the network with just a few steps. This property

makes ties in small-world networks non-local, which has important implications for

the spread of information over social networks. Therefore, network characterization

is critical for understanding how information spreads over social networks.

The explosion of data and computational power during the 1990s and 2000s

brought significant advancements in social network analysis and its applications.

New mathematical models and methods emerged to analyze the vast amounts of

online data, known as digital traces, generated by the internet’s growth. These

advancements enabled researchers to observe human behavior and social interactions

at a macro-level scale. This period of research yielded important discoveries about

the properties and dynamics of large-scale complex networks [80, 81] and provided

insights into how they behave as macro-organisms, offering a better understanding of

the social complexity of our universe, environment, and society.

In 2009, the interdisciplinary field of Computational social science (CSS) was

officially established, based on the premise that we live our lives as agents in a

network [82]. This new scientific field aimed to provide a solid framework for

leveraging the capacity to collect and analyze data at scale to analyze our society [82].

Thanks to vast amounts of data, more computational power, new mathematical

methods in network analysis, agent-based models, and statistical learning models, it

has become possible to simulate, measure, understand, and predict individual and

group behaviors like never before. The field has found applications in areas ranging

from social inequality to the spread of infectious diseases, making it a highly relevant

area of research.

Over the past decade, the field of CSS has witnessed an explosion of publications,

thanks to new observational data on human behavior, experimental designs, and

large-scale simulations that were previously impossible to research. This expansion

of knowledge has greatly surpassed the expectations of the scientific community [83].
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However, during this period, studies on how to influence human behavior,

particularly in the areas of voting [84–86], emotional-personality [87, 88], and

information virality [89, 90], have raised concerns about the ethical implications of

CSS, data sovereignty, and the impact of socio-technical systems on individuals and

society. In 2020, a paper by prominent scientists discussed the obstacles and

opportunities facing CSS after a decade of progress. They emphasized the need for

better data-sharing paradigms and improved research ethics to address legal and

social implications [83].

CSS is a rapidly evolving field that has already shown promise in improving

human health outcomes. However, several obstacles still impede its progress, such as

data privacy concerns and the reluctance of private organizations to share data. In

this thesis, we aim to contribute to the field by addressing some of these challenges

and expanding the number of health applications aimed at preventing epidemics.

We recognize that two critical determinants of human health are human behaviors

and the environment, and we focus on analyzing social networks from the

perspective of CSS to gather information about the system and viral agents spreading

within social environments. Our goal is to develop better mathematical methods for

quantifying, explaining, forecasting, and defining public health policies that can

maximize the health of populations.

1.2.3 The new data-driven behavioural epidemiology

The field of epidemiology has not been immune to the effects of the digital revolution

that has taken place over the last few decades. There are two main reasons for this

disruption. Firstly, the vast amounts of user-generated data that can now be stored at

low costs, allowing epidemiologists to incorporate novel data streams such as search

queries [91], microblogging [92–94], forums [95] and mobility data [96], which are

collectively known as novel data streams. Secondly, new mathematical and

computational models, such as statistical machine learning or agent-based models,

have been developed and have proven to be effective in detecting outbreaks,

simulating epidemic dynamics, evaluating the impact of travel on the transmission of

global pandemics, monitoring the use of pharmaceuticals, and exploring links

between higher temperatures and emotions, among many other use cases that we

will delve into in the next section.
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Two new branches of epidemiology, digital epidemiology and computational

epidemiology, have emerged as a result of the aforementioned advances. Digital

epidemiology, as described by Salathe et al. [97], focuses more on novel data streams,

whereas computational epidemiology, as described by Marathe et al. [98], focuses

more on the computational side. The main objective of both digital epidemiology and

computational epidemiology is to explain and predict the patterns of diseases, health

dynamics, and their causes, just like traditional epidemiology. However, what sets

these new fields apart from traditional epidemiology is the data and methods used.

They are simply new tools that have been developed to tackle the same old problems.

The use of novel data streams and computer models helps to gain a better

understanding of the spatiotemporal diffusion of diseases through

populations [97, 98].

The COVID-19 pandemic has highlighted the significant potential of utilizing

human behavioral data from digital sources within the field of epidemiology. This

data can be effectively harnessed to comprehend and mitigate the spread of

infections [41, 99]. In the subsequent sections, we will delve into several compelling

examples that exemplify the practical application of this approach. While the

discussion encompasses a broad range of aspects, our primary focus centers on three

key components: the collection and analysis of human behavioral data, the

integration of this data into models to enhance the description of human interactions,

and the utilization of mathematical epidemiological models to simulate the spread of

infections.

Digital traces as proxies of human health-related behaviors

The digital revolution has brought about spectacular advances in natural science,

fueled by the vast amounts of user- and sensor-generated data available. In recent

decades, the widespread adoption of communication and information technologies

has resulted in nearly every person on Earth owning a mobile phone that generates

data. As a result, almost everything we do and say leaves behind a digital trace that

can be stored and analyzed. This abundance of data has led to a growing recognition

of the importance of behavioral data in modeling tools for the healthcare

system [100–103], as human behavior is a significant factor in determining human

health.
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Data generated from novel data streams contain epidemiologically relevant

information about human behaviors, beliefs, and health status, which can be used to

extract meaningful information and potentially understand and prevent disease

dynamics at scale. These novel data streams come in various forms and sizes, and

processing them can be a challenge. However, some potential use cases have already

been proven, such as observing spatiotemporal human behaviors during an

outbreak [104], detecting unusual respiratory diseases in remote areas [105],

estimating near real-time influenza cases [91], and assessing the population’s

response to a vaccination campaign [106]. These early promising applications led to

the founding of the field of digital epidemiology [97]. Furthermore, several articles

highlight the need for behavioral data [100–103] to improve modeling tools in the

healthcare system, as human behavior plays a significant role in human health.

The earliest and most famous example of a data-driven epidemiological model is

the Google Flu Trends (GFT). It leveraged symptomatic user-generated search queries

to predict and track Influenza-like Illness (ILI) [91]. However, this novel concept

faced several problems, as discussed in articles such as [107–109]. The main issue was

the private ownership of the underlying data used by GFT, which prevented

independent replication and assessment of the epidemiological models [110]. This

highlighted the need for open access to data to enable transparency and

reproducibility in data-driven epidemiology research.

Indirect observation of the human health-related behaviours

When direct observation data is not available, researchers must look for indirect

observations of the phenomena they aim to measure. Non-traditional data sources,

such as web search queries and visits [91, 111–114], weather data [115], social

media [92–94], or the monitoring of multiple digital traces simultaneously [116], have

proven to be complementary and sometimes advantageous to traditional health

monitoring systems. Online user activity offers benefits such as a wider spatial and

demographic reach, as well as the ability to monitor populations with limited access

to health services [114].

However, these data streams usually require preprocessing to make them ready for

analysis since they deal with unstructured data. The preprocessing stages can range

from simple keyword searching based on dictionaries with target keywords that are
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signals of the phenomena in question to more advanced Natural language processing

(NLP) and machine learning techniques to extract more detailed information. We will

delve into the specifics in the following section.

As we stated above, the earliest and most famous example of a data-driven

epidemiological model is GFT, which leveraged symptomatic user-generated search

queries to predict and track ILI [91]. Social media traces from micro-blogging

platforms, such as Twitter, have also proven to be good indirect observations of flu

epidemics [92, 117, 118]. Our proposed EWES in chapter 2 utilizes advanced NLP and

machine learning techniques to process indirectly observed unstructured data from

the micro-blogging site Twitter and transform it into validated ILI-related

behavioural posts from users.

Direct observation of human health-related behaviours

Along with the emergence of GFT, several other online-based epidemiological

applications were developed in different countries, such as "Flutracking" [119],

"Influweb" [120], "Flu Near ou" [95], "Influenzanet" [121], and "Grippenet" [122].

These applications were the first to use internet-based participatory syndromic

surveillance of ILI developed by the academic sector. Syndromic surveillance

involves gathering medical signs and symptoms of a syndrome, as well as

individuals’ perceived health. The purpose of these applications was to collect

perceived health information from online users actively. They tested the feasibility of

such systems and their ability to detect risk factors based on web-based data mining,

which had a revolutionary impact in many areas. These applications could greatly

impact how we monitor global health outcomes and human behaviours [97].

Furthermore, mobile phone data provides a significant and novel data stream that

offers direct and objective observations of human behavior, including mobility and

social interactions in the physical world [96]. This data can be collected in the form of

call data records (CDRs) or global positioning system (GPS) data. CDRs contain

information about the location of the mobile tower used to connect to the mobile

network, while GPS data contains more detailed information about an individual’s

position based on latitude and longitude coordinates on the globe [123]. Both forms

of mobile data provide spatiotemporal information about an individual’s location.

However, CDRs lack the granularity of GPS data, which can pinpoint an individual’s
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exact position in time, with an error of just a few meters.

Numerous use cases have demonstrated the reliability of mobile phone data in

creating more detailed and objective models of human mobility [96]. Additionally,

mobile phone data has been used to monitor and model outbreaks of infectious

diseases [124–127]. During the COVID-19 epidemic, the applications of mobile phone

data have expanded rapidly to include building contact networks [2, 3], see chapter 3,

and understanding its spread [4, 128–131], see chapter 4.

The importance of social networks in health problems

As evidenced by a wide range of studies, social networks have been shown to play a

crucial role in the spread of ideas, opinions, behaviors, and infectious diseases. In the

early 2000s, social network analysis gained significant attention following research on

preventing the HIV pandemic and other sexually transmitted or blood-borne

infections. The idea of assessing risk-potential in human health through social

network analysis gained traction due to a growing awareness of the

interconnectedness of people and their health [132, 133].

However, the most notable work in this area has been done by Fowler and

Christakis. They analyzed multiple and diverse datasets to study the impact of

interpersonal influence on human health and the spread of various phenomena, such

as obesity, smoking, alcohol consumption, loneliness, drug use, depression, sexuality

and sexual orientation, cooperation behavior, happiness, and influenza [134]. They

categorized these phenomena into three categories: behaviors, affective states, and

germs. Additionally, they demonstrated that current network statistics methods are

suitable for analyzing human behavior phenomena.

Albert-Lázló Barabási also applied network science methods to health to

understand how symptoms, diseases, and genes interact [135–137]. He showed that a

network-based approach to understanding human diseases’ complexity and

interconnection is feasible and enriching.

One intriguing sociological paradox that is relevant to this thesis is the friendship

paradox, which can assist in monitoring disease outbreaks. This paradox refers to

the phenomenon where most people have fewer friends than their friends have on

average. Mathematically, it means that the mean number of friends of friends is always

greater than the mean number of friends of individuals [138]. This phenomenon has
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also been observed on social media platforms such as Twitter, giving rise to a related

paradox called the virality paradox. The virality paradox states that, on average, your

friends receive more viral content than you do [139]. This paradox can be useful in

detecting outbreaks of viral information processes in social structures both online and

offline.

If we select random individuals in a network who tell us their best friends, they

will likely have more friends and be closer to the center of the network. During a viral

outbreak, those closer to the center of the network are more likely to get infected earlier

than those in the periphery due to a higher centrality. This strategy has been used to

select human sensors in a social network and detect early outbreaks of a biological

epidemic, such as ILI, before the peak [140]. Similarly, using friends as sensors has

been shown to be effective in detecting early signs of informational outbreaks on social

media platforms like Twitter [141]. This approach has several advantages, including

computational feasibility and greater respect for data privacy, as it does not require

monitoring the entire population of a network.

Despite the fact that online social networks mirror offline social networks [142–

144], and that Twitter can be used to monitor and predict the seasonal ILI epidemic

[92–94], the link between informational epidemics in an online social network and

a biological epidemic in the physical environment has not been fully explored until

now [1], chapter 2.

As highlighted throughout the introduction of this thesis, any information-based

reaction-diffusion process occurs over a network. Whether it is encoded information

containing an idea, opinion, behaviour, or a chain of RNA that a virus spreads, it is

crucial to model such phenomena and understand their dynamics. Thus, the link

between social networks and epidemiology is strong and complementary. One of the

earliest models that measured the spread of a disease using social network analysis

was in response to the AIDS epidemic in the early 1990s [145]. This work

demonstrated the importance of assortative structured mixing, which is the tendency

of nodes with the same attributes to link to each other, in detecting significant

features of an epidemic. In the 2000s, several research groups started working on

modeling the spread of a disease over social networks more realistically [146–148].
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Data-driven contact structures as proxies of human social dynamics and interactions

Building on those initial approaches to incorporate real contact networks in the

spreading of information, we propose a novel approach for building static and

temporal contact structure datasets that enable the realistic modeling of the

diffusion-reaction of COVID-19. Novel digital streams provide us with the ability to

actively and passively collect data from complex networks, allowing us to observe

and measure human dynamics and interactions at an unprecedented scale. The

spread of viral diseases occurs within these complex networks, making them a key

piece of the puzzle for realistically modelling the dynamics of a viral epidemic.

Without them, it would be impossible to feed advanced epidemiological models.

Thus, the construction of contact matrices, as a directed graph, is one of the primary

tasks in representing human interactions. While advances in network science have

allowed for the modelling of the spread of communicable diseases in greater detail

over the last two decades, many models still lack a detailed representation of

network heterogeneity and its features. Therefore, detailed heterogeneity within

contact structures has been shown to be effective in modelling the impact of epidemic

outbreaks [149, 150]. The first approaches to contact matrices were used during the

1980s and 1990s to study sexually transmitted diseases [132, 151].

The complexity of social mixing can vary from simple to more realistic, leading to

several approaches to modelling the contact patterns of a population. The choice of

approach depends on the availability of data. When only the average number of

contacts per individual is known, a homogeneous mixing assumption can be

made [152]. Group interaction mixing can be implemented when the average number

of contacts per age group is available. If the full contact distribution for each

individual is known, contact networks between individuals can be constructed [153].

However, this approach may not be feasible for an entire population due to data

scarcity [153]. In such cases, multilayer networks can be used to model heterogeneity

and mixing patterns between different social groups more effectively [153]. This

provides a comprehensive representation of the social contact system and a better

understanding of where the pathogen is spreading, such as schools, households,

communities, and workplaces.

Infectious disease models have traditionally relied on a priori contact

assumptions, which often lack empirical basis. Initial attempts to improve contact
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pattern modelling involved indirect observations through surveys, which provided

insights into contact patterns [152]. This approach enabled us to start building more

sophisticated contact models using multilayer networks [153] to evaluate

interventions. Despite these advancements, limitations still exist when access to all

necessary information about connectivity between age groups and populations is

unavailable.

Our first study to rely on direct observation through GPS data was conducted

during the first wave of COVID-19 [2], using detailed mobility and sociodemographic

data from Cuebiq and the US Census, respectively. These data allowed researchers to

model a subpopulation of approximately 100,000 individuals in the Boston area using

a multilayer network that captured social interaction patterns within different layers

(i.e., community, households, and schools) to feed a data-driven Susceptible, exposed,

infected and recovered (SEIR) model with an Agent-Based Model (ABM). The adult

population was based on mobility data, while the children population was generated

synthetically based on census data to infer the structure of social contacts [44].

Synthetic populations are commonly used in ABM when sociodemographic data is

scarce [44, 154]. The current trend towards privacy makes it impossible to obtain data

from an entire population, so census data is used to build synthetic populations along

with real-world mobility data to create high-resolution contact matrices for ABM

simulations of COVID-19 infection dynamics at metropolitan levels [3, 4].

This approach enables researchers to define and measure NPIs to prevent the

healthcare system from becoming overwhelmed [3], chapter 3, or to quantify where

infections are occurring based on policies and human behavior [4], chapter 4.

Computational epidemiological modelling

Recent advances in computing have created exciting new opportunities for

combining computational thinking and traditional epidemiology. Computational

models are used to understand the space-time dynamics of epidemics and assess

intervention strategies, ranging from pharmaceutical interventions such as

vaccination campaigns and anti-virals to NPIs such as social distancing and

non-essential closures. Additionally, there is a complex interplay between human

behavior, public policies, the economy, and epidemics, which can be understood

using computational techniques and models. Therefore, computational modeling
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provides a potent tool to gain insights into the workings of such complex systems.

Computational techniques and models offer a wide range of possibilities to study

the dynamics of epidemics. They can range from simple descriptive analyses derived

from large databases [136, 155] to more complex generative models, such as ABM,

which simulate the spread of disease via social interactions on a complex social

network [156–158]. These models can be used not only to study infectious diseases

but also other phenomena where information is transmitted, such as behaviors, ideas,

or internet memes, or even the diffusion of innovation [159]. Moreover, the

populations of interest can vary depending on the disease, including humans,

animals, plants [160–162], and even computers [163]. The interactions that are

modelled depend on the infectious agent and the population of interest, and they

may range from physical proximity for aerosol-borne diseases, sexual contact for

sexually transmitted infections, to insect patterns for vector-borne diseases [98].

The Reed-Frost model, developed in 1930 [164], was the first stochastic epidemic

model. It is a simple chain binomial and iterative model that predicts how an epidemic

will behave over time until no infected individuals remain. This model only requires a

set of initial parameters, such as the population size, the number of individuals already

immune, the initial number of cases, and the probability of contact, which correspond

to the basic reproduction number,R0, which is the expected number of cases generated

by one case. The first numerical implementation of this model was in 1952 [165]. By the

end of the 20th century, we began to understand how epidemics spread in scale-free

networks [163, 166], and large-scale agent-based models were developed to simulate

the diffusion of HIV [167] and incorporate behavioral data [100] in the first decade of

the 21st century. These models allow us to run millions of simulations, understand the

diffusion and reaction of a pathogen in greater detail, and create "what-if" scenarios to

mitigate the spread of the disease. During the second decade of the 21st century, ABMs

were tested operationally and proved to be effective during the COVID-19 pandemic

in 2020. ABMs can now represent entire populations with real-world mobility and

census data, creating "what-if" scenarios to test feasible strategies to reopen society

and the economy without overwhelming the healthcare system [2, 3].

To improve the accuracy and robustness of epidemiological models, it is crucial to

integrate all available data sources. When dealing with limited data, generative

ABMs are useful, but in the healthcare industry, there is a wealth of data that is often
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fragmented across different systems. The adoption of big data and machine learning

techniques has enabled the integration of this data, leading to impactful use cases in

healthcare [168]. This transformational process allows for access to data from entire

populations and its application in epidemiological models and studies [169, 170].

However, to build even better, more accurate, and robust EWES, it is necessary to

incorporate novel data streams generated outside the healthcare system. The

COVID-19 epidemic has accelerated this shift towards improving EWES.

Machine learning techniques are increasingly being used in epidemiology for two

purposes. First, to automate data processing pipelines and structure data from

various sources such as social media [171, 172], medical records, and

images [173–175]. Natural language and image processing models are common tools

in digital and computational epidemiology [176]. Second, with the large amount of

current data and advances in deep learning techniques, new use cases are emerging,

such as predicting the probability of having cancer or other health conditions based

on proxies and biomarkers [177, 178]. Therefore, automated processing pipelines

based on machine learning techniques are essential for effective early warning

systems. These pipelines allow data to be harvested from multiple sources in a

standardized manner, with minimal human intervention to reduce errors. This is

crucial because the processed and structured data will feed domain-specific

epidemiological models that explain and predict health outcomes at individual and

population levels. Data-driven and computational epidemiological methods are

valuable for building early warning systems that are sensitive to detect real health

events, specific enough to avoid false positives, representative by accurately

observing health events over time, timely in reporting health events, simple in

reporting outcomes, flexible in reporting new health events, and acceptable to

healthcare stakeholders and decision makers [179].

In chapter 2, we applied machine learning techniques to automate the data

processing pipeline of unstructured micro-blogging data. Moreover, we used

statistical learning techniques to explain and predict sensor data based on mobility,

network, and content traits. To validate our results, we developed a simple

mathematical agent-based model. In chapter 3 and chapter 4, we focused on

acquiring the necessary data to feed agent-based models with real-world human

mobility data.
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1.3 The research purpose of this thesis

The relationship between humans and epidemics is an age-old one, influenced by

human behaviors that modify the environment and, in turn, impact human health. It

is a two-way relationship that requires constant monitoring to prevent human

epidemics. Epidemiology has always relied on data to achieve this goal. However,

the advent of user-generated data provides an opportunity to observe human

behaviors at an unprecedented scale. Against static or homogeneous approaches to

incorporate human behavior to understand epidemic spreading, we can now have

the possibility to understand spreading using real-time data-driven mathematical

models that include the feedback between epidemics and behavior. This, in turn, can

help update the epidemiologist’s toolbox of data sources and methods to better

model and quantify epidemics at scale. By leveraging novel data streams and

advanced social network methods, we can reduce health risks and healthcare costs

for taxpayers more effectively. With this in mind, the following research questions

will guide this thesis:

• How can novel data streams be utilized to observe human health-related

behaviors with greater accuracy and scale?

• To what extent can novel data sources that observe human health-related

behaviors enhance the modeling and quantification of epidemics?

• How well do social sensors from digital platforms capture biological processes

in the environment, and how can they be optimized for this purpose?

• How reliable is mobility data as a proxy for human social interactions that drive

viral biological processes in the environment, and how can it be better integrated

into epidemiological models?

• What are the mechanisms through which human behaviors influence the course

of viral biological processes, and how can these mechanisms be incorporated into

modeling frameworks?

• How can the integration of human behavioral data into mathematical modeling

methods enable more granular and accurate predictions of disease transmission

dynamics?
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Given the novelty, applicability and timely character of our research, we hope this

thesis contributes to data-driven behavioural epidemiology, building on the

foundational work of giants from multiple disciplines, including medicine, network

science, psychology, sociology and computer science. Our research focuses on the

interplay between infectious agents in the environment, human behavior, and its

impact on the health of millions of individuals. We use novel passive data streams

outside of the healthcare system to make direct and indirect observations of these

phenomena. Furthermore, we apply advanced computational modeling techniques

and social network methods to explain, simulate, nowcast, and predict the complex

interaction between the environment, human behavior, and human health.

In 2009, a Science editorial [180] highlighted the need for real-time epidemiology

and social science research. We believe that this thesis could expand the field and

contribute to improving real-time and behavioral epidemiology, particularly in light

of the COVID-19 pandemic.

Now, that we have made a deep introduction to the background problem and the

state of the art, let see a brief introduction to the coming chapters. In chapter 2, we

address the issue of existing EWES being based solely on official data or other limited

sources, failing to consider the varying roles played by different individuals in the

spread of information. To overcome this limitation, we propose a novel approach that

indirectly observes human behaviors through the analysis of real-world social media

data using mathematical models. Specifically, we leverage highly connected users,

particularly those with high out-degrees on Twitter, to detect early outbreaks of ILI in

the physical world, thereby eliminating the need to monitor the entire population. In

addition, we showcase the utilization of statistical machine learning models to extract

behavioral ILI-related insights from millions of Twitter posts. Through our research,

we have identified which high out-degree users are most likely to serve as effective

sensors for obtaining early warnings before random users on Twitter or official

ILI-related cases in Spain. This approach not only enhances operational efficiency but

also respects privacy, as it does not require the collection of extensive amounts of

personal data. By incorporating our findings, current EWES for ILI or COVID-19 can

be significantly improved and updated, even with limited resources, while ensuring

the protection of citizens’ data privacy.

In chapter 3, we advance the current state of the art in epidemiological modeling
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by incorporating real-world mobility data to construct behavioral contact matrices

that enhance both the traditional "well-mixed" approach of spreading within

populations. Traditionally, epidemiological models have relied on simplistic

assumptions of homogeneous mixing, assuming that individuals interact uniformly

within the entire population. However, this fails to capture the complex patterns of

human contact and potential variations in disease transmission dynamics. We detail

our research on directly observing human behaviors to model and quantify viral

biological processes in the environment through the use of real-world GPS data

sources. We present a novel approach that utilizes massive datasets of human

mobility data from mobile GPSs to construct data-driven contact matrices along with

census data, which are then integrated into mathematical models through an ABM.

The uniqueness of our approach stems from the utilization of spatiotemporal digital

traces obtained from GPS, enabling us to accurately simulate human mobility

patterns and capture social interactions at scale through contact matrices.

While the initial primary objective of this study was to demonstrate the validity of

our approach and provide real-world contact matrices to feed ABMs to study

epidemic spreading, our research happened during the first COVID-19 wave, and we

applied our methodology to understand the effects of those initial and future

lockdowns in the different waves. We fine-tuned a previous ABM that we were using

to understand the spread of influenza across different social stratifications. We

integrated our know-how, data, and novel approaches to work within an

international scientific collaboration to address the challenge of reconnecting our

societies after the lockdown without overburdening hospitalization systems.

Additionally, we explored the forensic capabilities of our approach for understanding

the dynamics of COVID-19 infections at a granular level, such as where and how they

occur. Our data and mathematical models also allowed us to investigate potential

effects of lockdowns and contract tracing strategies in the second wave. Through our

research, we demonstrate the efficacy of our approach in enhancing the accuracy and

realism of epidemiological modeling.

In chapter 4, we extend the methodology proposed in chapter 3 by introducing

the temporal component and build contact matrices at daily level. These matrices

allow us to observe the feedback loops between social behaviors and infections, as

well as the impact of NPIs on social behaviours and infections over time. The
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methodology uses temporal mobility data to construct social contact matrices, which

incorporate behaviour changes in a population in an ABM that simulates the spread

of an infectious disease in the environment. Our approach offers a granular

understanding of the spread of viral agents, such as COVID-19, by incorporating a

dynamic temporal component that empowers us to identify physical Points of

interest (POI) with high probability of Super-spreading events (SSE). Additionally,

we evaluate the actual effectiveness of NPIs in controlling the spread of diseases and

assess their impact in various metropolitan areas, such as the New York and Seattle

Metropolitan areas.

In the conclusions, chapter 5, we present our findings and discuss the implications

of our work in this thesis. Furthermore, we identify potential avenues for future

research that can be derived from our study. Additionally, we provide an epilogue,

chapter 6, with some failed projects that are not in this thesis and personal reflections

on the invaluable learning experiences gained throughout the journey of this PhD

thesis, that was heavily shifted during the times of war against the COVID-19

epidemic.



2

Epidemic Social Sensors: Harnessing

Early Signals for Infectious Disease

Outbreak Detection through Social

Media Data

"Everything is interaction and reciprocal."

– Alexander Von Handbult1

2.1 Introduction

INDIRECT observations of human health-related behaviors through novel data

sources, such as microblogging sites, offer valuable insights into modeling and

quantifying biological processes, including seasonal Influenza-like Illness (ILI).

Detecting early signs of viral outbreaks poses a challenging yet critical task for public

health, given the exponential nature of their spread. Social media data streams reflect

real-world human behaviors, making them a promising resource for obtaining early

warning signals of viral outbreaks. Social networks can provide two different aspects

of human behavior relevant to disease spreading. On one hand, they provide

real-time, society-wide alerts of how people feel, react, or anticipate the spreading of

1Alexander Von Handbult. German Polymath, Geographer and Naturalist. Quote extracted from
the book ’Kosmos’.
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the illness. At the same time, it can give use some intuition about the offline social

network structure in which infections occur. Specifically, central nodes within social

networks have been utilized as social sensors in both biological and informational

diffusion processes, contributing to the early detection of contagious outbreaks. Yet,

the effectiveness and value of social sensors derived from an information-biological

viral process as early warning signals of viral outbreaks, particularly seasonal ILI,

have not been sufficiently established.

In this chapter, we employ machine learning methods to process a comprehensive

dataset covering three years of social media activity in Spain. We demonstrate the

feasibility of extracting human health-related behaviors associated to ILI-related

mentions and using highly central users, particularly those with a high out-degree on

Twitter, as sensors to detect early warning outbreaks of ILI in the physical world,

without the need to monitor the entire population. Furthermore, we explore

additional behavioral and content features that differentiate these early sensors on

social media, moving beyond centrality as the sole criterion.

While high centrality on Twitter emerges as the most distinctive characteristic of

these sensors, we also find that they are more likely to engage in discussions related

to local news, language, politics, and government compared to other users. Our

novel approach enables the detection of a smaller and more efficient set of social

sensors for epidemic outbreaks, ensuring operational efficiency and respecting

privacy by minimizing the need for extensive data collection.

For the first time, we demonstrate that indirect observation of social sensors from

an information-biological viral process, specifically individuals posting ILI-related

first-person tweets, aids in the early detection of viral outbreaks. We propose a new

approach to explain and predict a biological epidemic, such as the flu, by utilizing the

informational epidemic on Twitter and leveraging the network’s topology to identify

super-sensors in the network that can be used to monitor biological viral processes in

the environment.

In the following sections, you will find an updated version of the article Social

Media Sensors to Detect Early Warnings of Influenza at Scale [1], where we provide further

details on our methodology and present our findings.
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2.2 Background & Hypotheses

For many viral diseases, the early detection of when and where an outbreak will

appear is critical. Public administrations responsible for public health management

face public health risks such as the Avian flu [181], Zika [21], SARS [182, 183],

Ebola [184, 185] or the latest SARS-COV-2 [186, 187] that can cause millions of deaths

in a short period of time at global scale [163]. Traditional health surveillance systems

require monitoring and detecting symptoms or case incidence in populations.

However, their precision sometimes needs to be improved by the size and delayed

testing methods on those populations. Combining those data sources with others

about people’s mobility, the spatial spreading structure of the disease, and even other

data sources seem like a promising venue to establish appropriate warning models in

the early epidemic stage [116]. Novel data streams like related web search queries

and web visits [91, 111–114], weather data [115] or monitoring multiple digital traces

at the same time [116] have proven to be complementary and even advantageous to

traditional health monitoring systems. In the same way, social media traces have

been demonstrated to be a good proxy for digital epidemiological forecasting models

of ILI [92–94]. Online user activity exhibits some benefits like broader spatial and

demographic reach or monitoring populations that have no easy access to health

services [114].

Since some viruses are transmitted by contact on face-to-face social networks,

epidemiological methods that exploit the network structure are more effective in

detecting, monitoring, and forecasting contagious outbreaks [188, 189], since they

allow to anticipate more accurately the transmission dynamics. Furthermore, these

methods can help public health decision-makers to enhance the adoption of public

health interventions [190] like social distancing, vaccination, or behavior change

campaigns, identifying those individuals most likely to get infected and spread an

infectious disease or behavior (e.g., super-spreaders), or which places are more likely

to be visited by those individuals [4]. This allows more efficient vaccination

campaigns [191] when the vaccination of an entire population is not possible or

recommended.

The key idea behind using high-connected individuals to monitor epidemic

spreading is that they are more likely to be reached by the infection. In general,

human social sensing, when carefully selected, can help predict and explain social
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dynamics better [142, 192, 193]. In the absence of complete detailed data about contact

networks, simple approaches like the friendship paradox [139] can be used to identify

more connected and central individuals (sensors) in the network that can give early

signals and anticipate the spreading of information, behavior or disease before it

reaches a significant fraction of the population. In particular, the friendship paradox

has already been found advantageous to identify sensors for detecting

influenza [140, 194, 195] or COVID-19 [196]. In social media, a previous study

demonstrated the detection of global-scale viral outbreaks of information

diffusion [141] by monitoring high-degree users on Twitter.

In this chapter, we address the question of how we can use sensors for

information propagation in online social media to get better early warning signals of

a biological epidemic. We hypothesize that social media connectivity and activity are

a proxy of social interactions in the real world. Thus, highly-connected users in social

media (online sensors) also mirror highly-connected individuals (offline sensors) in

the physical contact network. This hypothesis is based on the wealth of literature

showing that online networks mimic offline contacts’ connections, similarity, and

spatial organization [142–144]. Furthermore, we study if it is possible to identify

better social media sensors automatically based on their centrality (degree) and

mobility, and content behavior. We found that social media sensors can serve as early

warning predictors of the exponential growth of an epidemic several weeks before

the peak. The current global pandemic threads make it vital to improve the efficiency

of Early Warning Epidemiological Systems (EWES) by using operationally efficient

methods to anticipate the exponential growth of a virus in a community, region, or

country without compromising the citizens’ privacy. Our method provides such a

system in a fully privacy-preserving framework.

2.3 Data & Methods

Data collection

We extracted Twitter data through their streaming API [197] that allowed us to collect

data programmatically on the Spanish mainland. The official ILI rate data was

extracted through a web crawler built ad-hoc for the web of the Institute Carlos III of
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Health since there was no access to the raw data from an open data portal or a

programmatic interface.

ILI-related keywords based search and tweets classification

To get ILI-related mentions from users in the social media platform, we first filtered

tweets by keeping those that mentioned simple terms like “flu“ or other ILI-related

words (See Appendix A). After that, we only kept first-person ILI related mentions to

exclude general or not directly-related posts like ’The Spanish flu was an unusually

deadly influenza pandemic’. This was done using Natural Language Processing

methods. We applied a text classifier, using a scikit-learn implementation [198].

We handpicked and labelled a set of 7836 tweets to train our classifier, containing

3918 for true positive (first-person) tweets and 3918 for true negative tweets. Using

that labelled data our classifier achieved an accuracy of (∼ 0.94). We then applied our

classifier to identify first-person mentions the remaining tweets (See Appendix A,

section 1, for more details about our pipeline). After this process we ended up with

N = 19696 users and 23975 tweets classified as first-person ILI-related post.

ILI-related post time series

We added up and normalized the number of weekly users mentioning the flu by the

number of the total number of users in the system, we followed equation

x̂users,t =
xILI Users,t

xTotal Users,t

, (2.1)

where t is the week. This time series is shown in Figure 2.1, together with the

prevalence of ILI cases.

Centrality features

Each tweet has information about the out-degree (followees), dout,i, and in-degree

(followers), din,i, for each Twitter user i posting it. We used them as proxies of the

network centrality for each user. We tested out several aggregated centrality features

for the selection of sensors. We calculated the weekly total, mean, median, maximum

and minimum out-degree of individuals before and after the peak making
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first-person ILI related mentions to test which centrality metric had more explanatory

power. We found that the weekly total out-degree was the best centrality metric to

apply (See Appendix A, section 2 for further details). The weekly total out-degree is

defined by

DT,t =
∑
i∈Ωt

dout,i,t (2.2)

where Ωt is the set of users that made a ILI-related mention at week t.

Sensors are selected as the group of users with dout,i > 1, 000. For that group we

also define the time series of their centrality as

DS,t =
∑
i∈Ω∗t

dout,i,t (2.3)

where Ω∗t is the set of users in the sensor group that made a ILI-related mention at

week t.

Linear autoregressive model

The following equation represents a linear autoregressive model for explaining and

nowcasting the dependent variable, It, being the Official ILI rate for each week. DT,t

are total weekly out-degree for the whole twitter population, andDS,t, are total weekly

out-degree for the whole sensor population. We followed

It = β0 + β1It−1 +
∑
δ≥0

(αδDT,t−δ + γδDS,t−δ) + εt. (2.4)

Agent-based model of ILI disease and information diffusion

To understand our empirical findings, we compare them with the simulations of

epidemic spreading on a physical and online network through an agent-based model

(ABM). We model the offline (physical) contacts using a random heavy-tailed

network. Specifically, we created a synthetic population of N = 150k agents with are

connected through a scale-free network with degree distribution P (k) ∼ k−3 obtained

through the Barabasi-Albert model. [199]. The network was built using the R package

igraph [200].

At the same time, we supposed that each of the agents participates in a social media
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platform. Our hypothesis is that the online degree of the agents is related to the offline

degree in the complex network. To account for some variability, we assumed that the

degree in the social media platform was modified by a random uniform distributed

number (See Appendix A, section 4 for more details). Thus, the degree in the social

media platform is given by dTwitter
out,i = dOffline

out,i (1 + νi), where νi is a random number

uniformly distributed between 0 and 1. This way we account for potential variability

between offline and online degrees.

We simulate the ILI spreading using a simple Susceptible-Infected-Recovered (SIR)

epidemic model. In particular, at each time-step t, the infectious (I) agents can transmit

the disease to their susceptible (S) neighbors in the contact network with probability

β, see Equations (1.1)-(1.3). If the transmission is successful, the susceptible node will

move to the (I) state. An individual will move independently to the recovery (R) state

with a probability α. We initialized the model with two initial infected seeds. After

getting infected, we assumed that the agent immediately posted an ILI-related tweet

on the social media platform. In our model, we considered a user to be sensors if

she has an out-degree in the platform higher than four times the average degree in

the Barabasi-Albert model. We also calibrated the time unit in this model so that the

epidemic curves have a similar time scale as the real ILI rate (See Appendix A, section

4 for further details on the simulation’s parameters).

User traits

To characterize the different traits of Twitter users, we analyzed the tweets of each

user during a time window of 30 days before the initial event. For the sensor group,

we selected individuals with an out-degree dout,i ≥ 1000 and that made at least a ILI-

related mention during the weeks −15 ≤ t ≤ −2 before the peak of the epidemic. The

initial event is their first post with the ILI-related mention. For the control group, we

picked individuals that made an ILI-related mention after the −15 ≤ t ≤ −2, then we

picked a random post of them as initial event in weeks −15 ≤ t ≤ −2, before the peak

of the epidemic. Using that 30 days period we computed different Mobility, Content,

and Network traits to characterize each user
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Mobility traits

We worked out the mobility pattern from a user by looking at geolocations from

tweets. To characterize their mobility we used the radius of gyration [201] which

measures the size of the area covered while moving around:

Ri
g =

√√√√ 1

N

N∑
i=1

(ri − rmean). (2.5)

Content topics

We extracted topics from users tweets’ texts. To this end, we use the TextRazor

classifier trained against the IPTC newscodes [202] which classify each tweet into

approximately 1400 high-level categories organized into a three-level tree hierarchy.

Each tweet is give a probability to contain such topic. Thus each user is characterized

by a content vector of n topics

Ci = {Ci
1, C

i
2, . . . , C

i
n} (2.6)

where the components C1
m are the aggregated probability of topic m in all her tweets.

Network traits

Apart from the out-degree for each user i we also took into account the total user

activity in the social network platform, by computing the number of tweets generated

during the period of observation, this variable is called number of posts.

Linear logistic regression model

The following equation represents a linear logistic regression model for explaining

the probability of an individual being a sensor by different features, where {M i} are

the mobility features (we only consider the radius of gyration variable, Rg), {N i} the

group of network variables, out-degree, dout,i, and number of posts, and {Ci} is the

group of content variables for each individual i. Our model is

Pr(i ∈ Ω∗) = logit−1[β0 +
∑
l

αlM
i
l +

∑
n

βnN
i
n +

∑
m

γmC
i
m] (2.7)
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where Ω∗ is the set of users defined as sensors, and logit−1(x) = ex/(1 + ex). In the

model, each individual variables in the different groups is standardized to have zero

mean and unit variance.

2.4 Results

We used social media traces obtained from the micro-blogging site Twitter, where we

collected more than 250 million tweets from December 2012 to April 2015 on Spain’s

mainland. Using Natural Language processing techniques, we only included first-

person ILI-related posts, summing up a population of 19696 users with at least one

first-person ILI-related mention, which comprised a total of 23975 tweets (Appendix A,

section 1 discusses our methodology). We also made use of official ILI cases from

the surveillance system for influenza in Spain (ScVGE) [203] managed by the Instituto

Carlos III de Salud [203]. This system reported weekly ILI cases in Spain for each

province with two weeks of delay in the state of the seasonal flu epidemic based on the

current European Union proposal that regulates ILI surveillance [204]. Our dataset of

official ILI cases ranges from December 2012 to April 2015 and includes three different

seasons of influenza outbreaks in Spain.

Figure 2.1 shows a generalized ILI season from the average of ILI cases and

ILI-related mentions for the three seasons. ILI cases and ILI-related mentions time

series have a Pearson correlation of 0.87 (CI [0.79, 0.93] and pvalue < 0.001). Since

different outbreaks happen at different times of the year, we have shifted each

influenza outbreak to the time of its peak. We can see that ILI-related mentions

precede the official ILI cases at the beginning of the growth stages before the peak.

Previous studies have proved this [92–94]. Mentions of the outbreak in social media

seem to precede the exponential growth in the total population. ILI-related posts

peak at -15 weeks could be related to the start of the cold season and users mixing ILI

symptoms with cold symptoms, stating that they are suffering from ILI. We found a

similar pattern in Google trends data.

Validating high-degree individuals as sensors

However, here, we want to go a step further. Can we subset the users posting

ILI-related posts to get better earlier warnings about the outbreak than monitoring
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Figure 2.1: Average ILI season. An average ILI season centered to the peak for Spain
mainland from December 2012 to April 2015. Horizontal axis is the temporal axis
that measures weeks since peak. Primary vertical axis (left) is the Official ILI rate
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mentions prevalence, mentions per 100k users. Lines are average weekly incidences
for Official ILI rates (Blue) from Instituto Carlos III de Salud and first-person ILI-
related mentions rate (Green) from Twitter. Bands are their confidence intervals.
Figure reproduced from [1].

the whole social network platform? Similarly to [140], and [141], high-degree users

could be better than the average individual on the platform. To test whether high

centrality or degree correlates with early signals, we measure the total weekly

out-degree, Dt, of users having social ILI-related mentions before and after the peak.

Figure 2.2 shows distributions for Dt before the peak, after the peak and for the

whole season. There is a statistically significant difference in the mean (pvalue < 0.01).

The average total weekly out-degree is 31108 (Confidence Interval, CI

[21539.03, 40677.32]) before the peak, while it is only 14373 (CI [11202.94, 18455.78])

after the peak. The difference is also present in extreme values. We modelled large

values of Dt as power laws with an exponent of 2.56 (CI [2.51, 2.62]) for the whole

period. For the weeks before the peak, it follows an exponent of 2.10 (CI [1.91, 2.29]).

Finally, for the weeks after the peak, it follows an exponent of 2.86 (CI [2.48, 3.25]).

Thus, on the aggregated level, we indeed see that the users in social media that have

ILI mentions before the peak have more social connections than after the peak. This

result signals the possibility of using high-connected users as potential early sensors.
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This result is robust against other aggregated degree centrality variables (see

Appendix A, section 2). For selecting sensors, we selected each individual with an

out-degree greater that 1000 (see Appendix A, section 3).

Figure 2.3.A compares Twitter’s cumulative ILI-related mentions of our control

and sensor groups against the official ILI-related cases. As we said before, the activity

in social media for both the control and sensor groups anticipates the cumulative
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incidence of ILI cases by one or two weeks. For each user i we define tposti as the time

in which she has an ILI-related post on social media. Figure 2.3.B shows confidence

intervals for ILI-related posting times for each group and ILI season, relative to the

peak tposti − tpeak. For all ILI seasons, the control group has an average ILI-related

posting time of ∆tC = 〈tposti − tpeak〉i∈C = -5.35 (CI [−5.54,−5.17]) weeks before the

peak. The sensor group has an average ILI-related posting time of

∆tS = 〈tposti − tpeak〉i∈S = -6.72 (CI [−7.42,−6.02]) weeks before the peak. This yields

that sensors are posting on average ∆tS − ∆tC = −1.37 (CI [−2.08,−0.64] and

pvalue < 0.01) weeks before the control group, during the exponential growth phase,

between 8 to 4 weeks for all seasons. In more detail, the 2012-2013 season has a

∆tS − ∆tC = −0.62 (CI [−1.58,−0.84] and pvalue > 0.1) weeks, the 2013-2014 season

has a ∆tS − ∆tC = −2.46 (CI [−3.45,−0.36] and pvalue < 0.01) weeks, and the

2014-2015 season has a ∆tS −∆tC = −1.54 (CI [−2.45,−0.63] and pvalue < 0.01) weeks.

As we can see, the ILI-related mentions of sensors could anticipate the epidemic’s

growth by 1 or 2 weeks with respect to other users in the platform.

Autoregressive models with sensors and its theoretical validation

To quantify statistically how valid our sensors in social media could be in a potential

EWES model, we built an autoregressive model that considered different

epidemiological and social media features (see Methods section). The models

considered different combinations of the total number of weekly ILI cases at time t, It,

the total weekly out-degree of all users from the social media platform (DT,t) that

posted ILI-related mentions, and the total weekly out-degree of the subset of those

users in the sensor group (DS,t). We have also considered different temporal week

lags, t − δ, for each variable to test their potential role as early warning signals. As a

baseline, we have considered a model that only incorporates the ILI cases and their

autoregressive power at t − 1. As we see in Table 2.1, that simple model is already

quite accurate in explaining the evolution of the weekly ILI rate. On top of that

baseline model, we built four others, including the degree centrality of all users and

the sensor group at different lags. For each model, we predict the It number of

ILI-related cases using the information of the It−1 cases and the total out-degree of all

users and sensors with ILI-related mentions at time t and t − δ. We ran all models

using a step-wise approach to keep only statistically significant regressors for
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Figure2.3: CumulativeincidencebetweenrealILI,allTwitter,andonlyTwitter

sensors.EmpiricalcumulativedistributiondifferencesinofficialILIcases(Yellow),

controlILI-relatedmentionsonTwitter(Purple),andsensorILI-relatedmentionson

Twitter(Green). HorizontalaxismeasuresweekssincethepeakonILIcases.Top-
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weeklyincidenceforILIcases,controlILI-relatedmentionsandsensorILI-related

mentionsonTwitter.Figurereproducedfrom[1].

δ=1,2,3,4. Duetomulticollinearityproblemsbetweenvariables,wealsomonitor

thevarianceinflationfactor(VIF)foreachtochoosethebestδ.ResultsinTable2.1

andFigure2.4Aquantitativelyshowtheimportanceofsocial mediaILI-related

mentions,especiallythosefromthesensorgroup. Aswecansee,thepredicting

power(adjustedR2)onnextweek’sofficialILIrateafterincorporatingsocialmedia

mentionsincreasessignificantly(and wealsoreducedcollinearity),especiallyat

three-orfour-weeklags.Inallthosecases,thetotaldegreeofsensorsattimeTand

timet−δhasasignificantregressioncoefficientandrole(inR2)intheprediction.

Thatis,socialsensorscanhelpanticipateofficialILIcasesthreetofourweeksbefore,

aresultconsistentwithprevioussimilaranalysesofILIcontagiousoutbreaksinsmall

settings[140]orofinformationspreadinginsocialmedia[141]. Wealsonotethatthe

signsofthevariablesofallusersandsensorshavedifferenteffects.Forexample,a
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Official weekly ILI rate, It

I I+T+S I+T+S I+T+S I+T+ S
δ = t− 1 δ = t− 2 δ = t− 3 δ = t− 4

(1) (2) (3) (4) (5)

It−1 0.924∗∗∗ 0.789∗∗∗ 0.856∗∗∗ 0.849∗∗∗ 0.800∗∗∗

(0.041) (0.047) (0.049) (0.045) (0.044)
DT,t 0.717∗∗∗ 0.634∗∗∗ 0.580∗∗∗ 0.561∗∗∗

(0.0003) (0.0002) (0.0002) (0.0002)
DT,t−1 −0.281∗∗∗

(0.0003)
DT,t−2 −0.344∗∗∗

(0.0003)
DT,t−3 −0.313∗∗∗

(0.0002)
DT,t−4 −0.217∗∗∗

(0.0002)
DS,t −0.443∗∗∗ −0.393∗∗∗ −0.348∗∗∗ −0.339∗∗∗

(0.0004) (0.0003) (0.0003) (0.0003)
DS,t−1 0.211∗∗∗

(0.0005)
DS,t−2 0.227∗∗∗

(0.0004)
DS,t−3 0.186∗∗∗

(0.0003)
DS,t−4 0.132∗∗∗

(0.0003)
Constant 0.000 0.000 0.000 0.000 0.000

(4.627) (4.093) (4.071) (4.123) (4.516)

Observations 87 87 86 85 84
R2 0.854 0.925 0.932 0.935 0.929
Adjusted R2 0.852 0.920 0.928 0.931 0.924
Maximum VIF NA 15.16 9.36 6.77 5.28
Residual Std. Error 34.092 25.042 23.951 23.529 24.741
F Statistic 497.040∗∗∗ 199.556∗∗∗ 218.885∗∗∗ 226.755∗∗∗ 203.163∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 2.1: Empirical ILI regression models. Regression table with normalized beta
coefficients for each group of variables, Official (I)LI, (T)witter and (S)ensors, where
Xt are weekly ILI related variables for each group. DT,t and DS,t are weekly total out-
degree variables from Twitter (T) and Sensors (S). Table reproduced from [1].

higher total degree of sensors at times t − δ predicts more ILI-related cases (positive

coefficient) at time t for δ > 0, but a smaller number of cases (negative coefficient) for

δ = 0. As we will see below, this apparent contradiction comes from the high

auto-correlation of the time series of ILI-related cases and the total degree of users.
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We investigated the predicting power of high-degree sensors in a synthetic model

to validate that sensors anticipate ILI cases because social media connectivity mirrors

social connections in the real world. Specifically, we built a base agent-based

susceptible-infected-recovery (SIR) epidemic spreading on a random network

mimicking real (face-to-face) social contacts between people (see Methods for details

about the network and simulations details). Apart from their physical contacts, we

also assumed that each person has acted on a social media platform and that the

degree in both the real and online networks are correlated moderately. Assuming that

agents post on social media when they are infected, we also constructed the time

series D̂T,t and D̂S,t for the model and their autoregressive fits as in Table 2.1. Our

results once again show that high-degree agents (sensors) carry some predicting

power on the epidemic spreading.

Furthermore, the coefficients for the different models show the same regression

structure as the empirical models in 2.1, see Figure 2.4A. We can see that both

coefficient structures are nearly the same, including their magnitude and signs.

Although this is not direct proof of our hypothesis that the online and offline

centrality of real users is similar, it shows that under that assumption, we not only get

that the effect of sensors is the same as we found in our empirical analysis, but even

the structure of coefficients (magnitude and sign) is similar. These results support the

idea that sensors in an informational epidemic that mirrors a biological epidemic are

also sensors of a biological epidemic, like ILI, that we can trace on Twitter.

Identification of sensors beyond out-degree

So far, we have seen that high out-degree users in social media can be early sensors of

ILI cases. However, can we identify a better group of sensors beyond high degrees by

looking at other traits? Are individuals that signal the epidemic’s early stages defined

just by their centrality degree, or do they have other behavioral or content traits? To

do that, we define a sensor functionally as every user who posts an ILI-related tweet

from fifteen weeks to two weeks before the epidemic’s peak (−15 ≤ t ≤ −2). On the

other hand, a control user was a random user who did not talk about ILI during the

same period. (see Methods contextual features for more details).

To characterize users’ content, behavior, and network traits in both groups, we

analyzed every tweet they posted 30 days before their first ILI-related tweet (sensors)
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Figure 2.4: Results for the Empirical and Theoretical ILI auto-regression models.
(A) Normalized coefficients for the different autoregressive models for It, see Eq. (2.4)
for different time lags δ. Model regressors for each δ are the number of cases one week
in the past It−1, the total out-degree at time t, DT,t, the total out-degree at time t − δ,
DT,t−δ, and the total out degree of sensors at time t, DS,t and at time t − δ, DS,t−δ.
We show the normalized coefficient and their confidence intervals (shaded area). (B)
Same as in (A) but for the agent-based model of ILI disease and information diffusion.
Figure reproduced from [1].

or a randomly chosen tweet (control). Specifically, we identify three groups of traits

for each user. Firstly, we extract the content of each user’s tweets and classify them

into topics like sports, politics, entertainment and many other categories using the

TextRazor classifier (see Methods). Secondly, since our tweets are geolocalized, we

extract the mobility features of each user, in particular, the radius of gyration, which

measures the size of the area covered while moving around [201]. The radius of

gyration could proxy the number of different and diverse people the user is in daily

contact. Thus it might serve to estimate potential exposure to infected people [205].

Lastly, we also use their activity (number of posts) and, as before, their out-degree in

the social network.
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Figure 2.5: Super-sensors prediction models. (A) Normalized beta coefficients from
logistic models for each factor for explaining sensors by content topics they posted
(yellow), their network features (green), their mobility by the radius of gyration (blue)
and all group variables together (purple). Horizontal axis measures the normalized
coefficients from the logistic regression models. Vertical axis labels are variables.
(B) Accuracy metrics for each group of variables: topics (yellow), network (green),
mobility (blue) and all variables (purple). Vertical axis measures models accuracy.
Horizontal axis represents each group variable model. Figure reproduced from [1].

To test how relevant those groups of traits are to define a sensor, we developed a

straightforward logistic regression model (see Methods) to classify users into the

sensor or control groups using different variables. As we can see in Figure 2.5, the

accuracy of our models is above the primary level (0.5). While Network and Content

groups independently achieve similar accuracies (∼ 0.61) than the Mobility group

(∼ 0.62), we get better accuracy, including all types of traits (∼ 0.64). This result

signals that even different traits carry complementary information about who could

be sensors in the social media platform. To understand this further, we looked into

each trait’s (normalized) coefficients in our model. As shown in Figure 2.4.A, the

most crucial variable to predict a user in the sensor group is still the out-degree in the
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social network, even after controlling for the number of posts. This is important

because it shows that our simple method of using high-connected Twitter users as

sensors works much better than other traits. We also see a small but significant effect

on the radius of gyration, meaning, all things equal, users that move further are more

likely to be sensors. Regarding the content, we see a structure of topics that users in

the sensor group are more likely to discuss, like National, Language, Politics, and

Government. On the contrary, users that talk about Sports, Popular topics, or

Entertainment are less likely to be in the sensor group. This finding could signal and

be related to other unobserved user traits like income or educational attainment level,

which also are known to be related to the activity in social media [206] and amount of

real offline contacts [207].

2.5 Discussion

Early warning epidemiological systems (EWES) detect outbreaks weeks in advance to

help public health decision-makers make more efficient allocations of public

resources to avoid or minimize an overflood of contagious in the healthcare system.

EWES are undergoing significant investments and changes due to the COVID-19

disruption. However, most of them harvest vast amounts of data and do not exploit

the explanatory and predictive power of the network heterogeneity where a

disease-informational epidemic is spreading.

In this study, we demonstrated that social media traces, like Twitter, could be used

as a source of social-behavioral data to monitor disease-informational epidemics that

mirror offline biological contagious disease epidemics, like ILI, by exploiting the

network heterogeneity whenever social centrality measures of the network are

available. By having a simple centrality metric, such as the out-degree, we can define

suitable sensors for the disease-informational epidemic in the network. When

aggregated correctly, we can use sensors to feed autoregressive models that could

yield signals of an outbreak up to four weeks in advance. Although previous studies

showed the advantage of using social network metrics to detect, monitor, and

forecast contagious outbreaks [188, 189]. The usage of sensors in a network to detect

early warnings of an outbreak in a biological disease contagious epidemic [140, 194],

or informational epidemics [141], our study is the first to combine the use of sensors
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in social media to anticipate epidemics in real life. Our results are based on the

hypothesis that social media networks are related to offline contact networks, which

has been validated directly in other works [142–144]. Our empirical and theoretical

results show that instead of harvesting large amounts of data and metrics from social

networks [94], we can track and anticipate early outbreaks of a disease-informational

epidemic by inexpensively looking at a small set of specific users (sensors).

We also demonstrated that sensors could be profiled and detected automatically

from social media raw data by using their topological network properties and based on

the content posted by individuals and their mobility patterns. Explicitly, we found that

sensors talk more about some topics like National, Politics, and Government and less

about Sports and Entertainment. The fact that those topics could also be related to their

income, educational attainment [206], but also to other traits like more extroversion

personality traits [208] opens the possibility to investigate the potential overlapping

reasons why sensors not only are more prone to get infected earlier but also that they

would like to post about it on social media. For instance, Music topic requires further

investigation, previous literature suggests individual differences in personality in the

way we use and experience music [209], possible having a social component.

Finally, our method uses the out-degree in the social media platform as a proxy

for centrality. Better knowledge of the network structure could yield more optimized

methods to detect highly-central users. Our approach also has other limitations. For

example, our data corresponded only to a given epidemic in a given country and were

not tested against more global epidemics like the COVID-19 pandemic. However,

given that our findings rely on the collective behavior of people in social media and

the observed relationship between offline and online networks [210,211], we think that

our findings could be extrapolated to other epidemiological situations. We hope our

research can help study the role of sensors in other pandemics, specially COVID-19,

where more information about real-world offline contact networks exists due to better

mobility data [3] or contact tracing applications.

In summary, this study proposes a feasible approach to exploit the network

heterogeneity underneath social media sites, like Twitter, to detect more efficiently

and earlier outbreaks from a disease-informational epidemic that mirror a biological

disease contagious epidemic, like ILI. Furthermore, the sensors approach we used to

detect early outbreaks within informational epidemics and biological contagious
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disease epidemics, but this is the first time in a disease-informational epidemic as we

have done in this study. Finally, novel epidemiological systems have been developed

for other pathogens such as Zika, SAR, or COVID-19, among others, in addition to

influenza, using conventional and non-conventional data sources such as the official

public cases, online searches, or health forums. For instance, for the COVID-19

pandemic, some studies used social media traces to try to predict the dynamics of the

pandemic [212, 213]. Such approaches, along with our findings about the power of

the network structure, could improve the results of their predictions.

Also, health systems and health organizations initiatives, like the Global Outbreak

Alert and Response Network (GOARN) [68] from WHO that is composed of 250

technical institutions and networks globally and projects like the Integrated Outbreak

Analytics (IOA) [69], Epidemic Intelligence from Open Sources (EIOS) [70], and

Epi-Brain [71] that respond to acute public health events. This network is already

moving in a double direction of incorporating early warnings from Big Data, social

sciences techniques and behavioral data into epidemic response systems [72] to

control outbreaks and public health emergencies across the globe. Also, syndromic

surveillance platforms like InfluenzaNet could ask for twitter profiles or number of

people an individual interacted with in the last week. Our innovative approach

might help detect early outbreaks without having to monitor and harvest data from a

whole population, making EWES more accurate in time prediction of an outbreak,

more efficient in resources and more respectful regarding citizens’ data privacy.

Additionally, in this chapter, we introduce a novel approach for monitoring network

sensors derived from social media traces and their mirror power, enabling indirect

observations of human health-related behaviors for the purpose of modeling and

quantifying social epidemics, contributing to more effective and respectful approach

with users data.



3

Data-Driven Contact Networks:

Modeling and Quantifying Infectious

Epidemics through Real Human

Mobility Data

"The observer, when seems to himself to be observing a stone, is really, if physics is

to be believed, observing the effects of the stone upon himself."

– Bertrand Russel1

3.1 Introduction

HUMAN behaviors can now be observed more effectively than ever before, thanks

to the availability of novel data streams. One such stream, behavioral mobility

data, has emerged as a reliable proxy for understanding human behavior in

geographical spaces [96, 123]. To gain a more accurate and insightful assessment of

disease transmission dynamics during an epidemic, it is imperative to possess a

comprehensive understanding of people’s mobility behaviors, focusing on their

locations and durations of stay, rather than solely relying on homogeneous mixing

models. Homogeneous mixing models, while useful in certain contexts, oversimplify

1Bertrand Russell. British Mathematician and Philosopher. Quote extracted from the book ’An
Inquiry Into Meaning and Truth’
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the intricate complexities of human interactions and movement patterns. In contrast,

by integrating data on individuals’ locations and duration of stays, we can capture

the true heterogeneity of their behaviors and socialcontacts. This approach

acknowledges that people exhibit diverse travel habits, interact with varying

frequencies, and cluster in specific geographic areas, all of which significantly

influence the spread of infectious diseases.

Effectively processing and analyzing behavioral mobility data can yield valuable

insights for modeling and quantifying viral epidemics. Identifying high-traffic

regions, gathering places, and travel hotspots provide essential information for

pinpointing potential transmission hubs. Additionally, it enables us to evaluate the

effectiveness of interventions and forecast the course of an epidemic with greater

accuracy. For instance, the COVID-19 pandemic highlighted the effectiveness of

stringent social distancing measures in slowing down the virus’s spread. However, as

restrictions were gradually eased, changes in human mobility posed the potential for

second-wave scenarios to emerge. Only by understanding how humans change and

adapt their mobility we can anticipate and manage potential new epidemics or new

waves within them.

To address this concern, we integrated anonymized, geo-localized mobility data

with census and demographic data to feed a detailed agent-based model (ABM) of

SARS-CoV-2 transmission, specifically in the Boston metropolitan area. This

utilization of data allowed for obtaining granular and detailed information on the

virus’s spread across real contact matrices, without relying on compartmentalizing

the population in broad groups or assuming homogeneous mixing contact matrices

as traditional SIR differential equation models or ABM do.

Furthermore, our approach enables the exploration of various what-if and

counterfactual scenarios, providing crucial insights to health decision-makers

regarding the potential effects of different social distancing policies on the healthcare

system. Our research findings indicated that a period of strict social distancing,

followed by a comprehensive combination of testing, contact tracing, and household

quarantine measures, could effectively manage the disease within the healthcare

system’s capacity while allowing for the gradual reopening of economic activities.

Notably, our results emphasized the significant role that an enhanced testing and

contact tracing response system could play in easing social distancing interventions,
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particularly in the absence of herd immunity against SARS-CoV-2.

By harnessing these novel mobility data streams and employing an ABM

framework, we significantly enhanced our understanding of viral agent spread in the

environment. Our approach not only improved modeling accuracy but also

empowered health decision-makers with valuable information for guiding policy

choices related to social distancing measures and healthcare planning. Therefore, in

this chapter, we present a comprehensive demonstration of how to process mobility

data to construct social contact matrices, which can be incorporated into a SIR ABM

using real-world data. As far as we know, we were the first research group to pioneer

the use of real mobility data to build social contact matrices to study epidemics. Our

research was done during the daunting times of the first wave of COVID-19 and

contributed to the discussion of what measures could be implemented after the first

wave to prevent subsequent waves.

In the following sections, an updated version of the article Modelling the impact

of testing, contact tracing, and household quarantine on second waves of COVID-19 [3] is

provided, offering further insights into our methodology and findings.

3.2 Background & Hypotheses

The first report of a new infectious disease, later coined COVID-19, appeared on 31

December 2019 [214]. As of 15 July 2020, when we finished writing this research, the

virus spread to 188 countries with more than 13.3 million confirmed cases

worldwide, and killed more than 579,500 people [215]. As the number of confirmed

COVID-19 cases increased and the expansion of the disease entered into a global

exponential growth phase, a large number of affected countries were forced to adopt

non-pharmaceutical interventions at an unprecedented scale. Given the absence of

specific antiviral prophylaxis, therapeutics, or a vaccine, non-pharmaceutical

interventions ranging from case isolation and quarantine of contacts to the lock-down

of entire populations were implemented with the aim of suppressing/mitigating the

epidemic before it could overwhelm the healthcare system. Although these

aggressive measures appeared to be successful in reducing the number of deaths and

hospitalizations [131, 216], and in reducing the transmission of the SARS-CoV-2 virus,

the absence of herd immunity after the first wave of the epidemic pointed to a large
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risk of a resurgence when interventions were relaxed and societies went back to a

“business as usual” lifestyle [217–219]. It was therefore of paramount importance to

analyze different mitigation and containment strategies aimed at minimizing the risk

of potential additional waves of the COVID-19 epidemic while providing an

acceptable trade-off between economic and public health objectives.

In the present work, through the integration of anonymized and

privacy-enhanced data from mobile devices and census data, we built a detailed

sample of the synthetic population of the Boston metropolitan area in the United

States (see Figure 3.1). This synthetic population (Figure 3.1.a) was used to define a

data-driven agent-based model of SARS-CoV-2 transmission and to provide a

quantitative analysis of the evolution of the epidemic and the effectiveness of social

distancing interventions. The model allowed us to explore strategies concerning the

lifting of social distancing interventions in conjunction with testing and isolation of

cases and tracing and quarantine of exposed contacts. Our results indicated that after

the abatement of the epidemic through the “stay at home” orders and halt to all

nonessential activities, a proactive policy of testing, contact tracing, and contacts’

household quarantine could allow the gradual reopening of economic activities and

workplaces, with a low COVID-19 incidence in the population and a manageable

impact on the health care system.

Modeling COVID-19 using real human mobility data and ABM models

To provide a quantitative estimate of the contact patterns for the population of agents

and to build the synthetic population of the Boston Metropolitan Area (BMA), we

used detailed mobility and socio-demographic data and generated a network that

encodes the contact patterns of about 85,000 agents in the area during a period of six

months (see section 3.3 for more details). Agents were chosen to be representative of

the different census areas in the Boston area following the methodology used in

Ref. [220]. This defines a weighted multilayer network consisting of three layers

representing the network of social interactions at (1) workplace/community level

(W+C), (2) households, and (3) schools, as shown in Figure 3.1.a. Connections

between two agents in the W+C layer were estimated from the data by the

probability of both being present in a specific place (e.g. restaurant, workplace,

shopping) weighted according to the time they spent in the same place. A second
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Figure 3.1: Multilayer network and synthetic population. Panel a is a schematic
illustration of the weighted multilayer synthetic population built from mobility data in
the metropolitan area of Boston. The agent-based system is made up by around 64000
adults and 21000 children, whose geographical distributions are shown in panel b.
Nodes are connected by more than 5 million weighted edges. Community layers (that
include workplaces), are further classified into categories according to Foursquare’s
taxonomy of places. Figure reproduced from [3].

layer represented the households of each anonymous individual. Using the home

census block group of each anonymous user we associated each individual to a

specific household profile based on socio-demographic data at US census block

group level [221]. Families were generated by randomly mixing nodes from the

community living in the same census block group, following the statistical features of

family types and sizes. Finally, a third layer represented the contacts in the schools

(i.e., every node represents one synthetic student and has contacts only with other

individuals attending the same school).

To study the evolving dynamics of the infection, we implemented a stochastic,

discrete-time compartmental model in which individuals transition from one state to

the other according to key time-to-event intervals (e.g., incubation period, serial

interval, and time from symptom onset to hospital admission) as from available data

on SARS-CoV-2 transmission. The natural history of the disease was captured by the

epidemiological model represented in Figure 3.4, where we also showed the
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transition rates among compartments [187, 220, 222, 223]. The model considered that

susceptible individuals (S) become infected through contact with any of the infectious

categories (infectious symptomatic (IS), infectious asymptomatic (IA) and

pre-symptomatic (PS)), transitioning to latent compartments (LS) and (LA), where

they were infected but not infectious yet. Latent individuals branched out in two

paths according to whether the infection was symptomatic or not. We also considered

that symptomatic individuals experience a pre-symptomatic phase and that once

they developed symptoms, they could experience diverse degrees of illness severity,

from mild symptoms to being hospitalized (H) or in need of an intensive care unit

(ICU) [224]. Finally, individuals transitioned in the removed compartment

(identifying recovered or dead individuals). The model assumed a basic reproductive

number R0 = 2.5, which is the number of cases directly generated by one case, which

together with the rest of the parameters yields a generation time Tg = 6.6 days, which

is the time interval between the infections of the infector and infectee in a

transmission chain. We considered a 25% fraction of asymptomatic individuals. We

report the full set of parameters used in the model in Appendix B, Figure B.1. For an

extensive sensitivity analysis of the ABM model, which is out of the scope of this

thesis, see the original Supplementary Materials of the article [3]. The model was not

calibrated to account for the specific evolution of the COVID-19 epidemic in Boston

as it was aimed at showing the effect of different NPIs rather than providing a

forensic analysis of the outbreak in the BMA.

3.3 Data & Methods

In this section we detail how we constructed the contact patterns from mobility data,

points of interest (POIs) and socio-demographic data from the Boston metropolitan

area. We also explain the epidemic ABM model used, and how we implemented the

social distancing strategies using the contact matrices defined from the mobility data.

Mobility data

The mobility data was obtained from Cuebiq, a location intelligence and

measurement company. The dataset consists of anonymized records of GPS locations

from users that opted-in to share the data anonymously in the Boston metropolitan
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Figure 3.2: Mobility data and population representativeness. The correlation
between the population for each county subdivision and the number of devices in
our dataset. Figure reproduced from [3].

area over a period of 6 months, from October 2016 to March 2017. Data was shared in

2017 under a strict contract with Cuebiq through their Data for Good program where

they provide access to de-identified and privacy-enhanced mobility data for

academic research and humanitarian initiatives only. All researchers were

contractually obligated to not share data further or to attempt to de-identify data.

Mobility data was derived from users who opted in to share their data anonymously

through a General Data Protection Regulation (GDPR) and California Consumer

Privacy Act (CCPA) compliant framework. Our sample from devices was very

representative of the population in the Boston area. As we can see in Figure 3.2,

population and number of anonymous devices detected in the real data by census

area are highly correlated: ρ = 0.80 (Pearson correlation) with a CI between 0.77 and

0.82 for county subdivisions.
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Points of Interest

We used a dataset of 86k POIs in the BMA collected using the Foursquare API. Those

POIs were categorized using the Foursquare taxonomy of places which has ten main

categories. We used the following eight principal categories: Art & Entertainment

(4.4%), Colleges & Universities (4.8%), Food (16.7%), Nightlife Spots (3.9%), Outdoors

& Recreation (10.6%), Workplaces (23.7%), Shops & Services (29.1%) and Travel &

Transport (6.4%) (Table 3.1). There are also 638 subcategories, see [225] for a complete

list of them.

Stays

From the combination of the mobility data and the POIs we extracted the “stays”, as

the unique places where anonymous users stayed (stopped) for at least 5 minutes.

Each device frequently broadcasts its location to a central server by sending its

latitude, longitude, device ID, and the exact date and time of the event. When a

person spent significant time at a single location, measurement uncertainty caused a

number of events to be scattered around the actual location. To map these events to a

single stay with an accurate time and location, we used the Infostop algorithm [226].

First, to extract the locations of stays, the algorithm clusters consecutive events

together if the locations are less than 25 meters apart. The location of this cluster is

computed by taking the median of the latitudes and longitudes. Moreover, to better

estimate the location of places that were visited frequently by the same user, the

algorithm also checks whether different clusters appear within 25 meters of each

other and assigns a single consistent location to all connected clusters by recomputing

the median latitude and longitude. Finally, a stay is registered whenever at least two

subsequent events were registered at one of these locations where the first and last

event, respectively, mark the start and end time of the stay. The minimum duration of

a stay was set to 5 minutes to make sure we were only including actual contact

between people instead of people that, for example, pass each other at an intersection.

For privacy reasons, our data was obfuscated around home and workplaces to the

level of Census Block Groups (CBGs). Thus the attribution between the mobility data

and home and workplaces happened at the level of CBGs and not specific POIs. We

estimated the home CBG of the anonymous users as the one in which they were more

likely located during nighttime. This resulted in a dataset of the places people stayed
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including the POIs in the community layer, the CBG of their workplaces that

anonymous users visited, and the most likely CBG of where the device owner lived.

Network structure

Agents. Our population consisted of two different sub-populations, adults and

children. Adults were sampled from anonymous individuals in the mobility data

collected by Cuebiq, each adult was associated with a home location assigned to a US

CBG which was provided by our location data provider. We used those anonymous

individuals to construct synthetic populations by assigning them different

socio-demographics using highly detail macro (census) and micro (survey) data. We

used this procedure to create synthetic representative households and demographic

traits as documented in [227]. With this data we designed a population building

pipeline that consisted of three steps.

• First step, we built synthetically a set of households, their size and the presence

of children based on our adult population and the US Census [221] tables B11016

(Household Type by Household Size) and B11003 (Family Type by Presence and

Age of Own Children)

• Second step, we assigned adults to households and in case of presence of

children we generated them up to reach the size of the household assigned in

the first step.

• And final step, we assigned ages to nodes using table B01001 (Ages by Sex) of

age distribution within the CBG.

This process generated our synthetic population consisting of 85k agents (2% of

the population in the Boston Metropolitan Area), 64k (75%) of them are adults and

21k (25%) are children. Age groups are distributed as follows: 6,027 (7%) agents for

the age group between zero and five years old, 16,250 (18.9%) agents for the age

group between six and eighteen years old, 36,207 (42,2%) agents for the age group

between nineteen and fifty years old, 13,176 (15,4%) agents for the age group between

fifty one and sixty five years old, and final group, 13,945 (16,2%) agents for the age

group between sixty six and older. All of agents together formed 43,167 households

distributed as follows: 23,293 (53.9%) households with only one agent, 7,886 (18.2%)
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Figure 3.3: Synthetic population representativeness. Age groups and households
demographics compared against US Census data. (a) Age groups distribution. (b)
Households size distribution. Figure reproduced from [3].

with two agents, 4,959 (11.4%) with three agents, 4,486 (10.4%) with four agents, 1,784

(4.1%) with five agents, 514 (1.2%) with six agents, and finally, 245 (0.5%) with seven

agents. In Figure 3.3 we can see the comparison of our synthetic population against

census data.

Contacts. Visits to different POIs were used to estimate the contacts between

anonymous users. Although the mobility dataset we used was large, co-location

events between individuals were quite sparse. Because of this sparsity, and to protect

individual privacy in our analysis, we adopted a probabilistic approach to measure

co-presence (and probability of transmission) in all locations mapped in the dataset.
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Our objective was to build the contact matrix ωij between individuals i and j using

those estimations of co-presence in the different layers where those contacts were

possible, Home, Schools, Workplace, and Community.

In order to explain better our approach let us consider the homogeneous mixing

approach in a contact network perspective. We assume to have N individuals who

are homogeneously mixed. This implies that each individual is potentially in contact

with anybody else. Thus, we have a connection ωij = 1, among each pair of nodes that

belong to the same group, neighborhood or city. This implies that the rate of contacts

ci for the individual i is ci =
∑

jmωij = m(N − 1), where m is an appropriate factor

ensuring that the number of average effective contacts per individual unit time in the

system is equal to κ. This implies that

κ = N−1
∑
i

ci = N−1
∑
i,j

mωi,j (3.1)

yielding

m =
κ

N−1
∑

ij ωij
=

κ

N − 1
(3.2)

This finally provides the usual expression for the rate of contact ωij = κ/(N − 1), that

is multiplied by the transmissibility per contact α to give the rate (or probability) of

infection per contact. This finally leads to the force of infection of a susceptible as

PS→I = 1− (1− ακ

N − 1
)I = 1− (1− β

N − 1
)I ' βI

N
, (3.3)

where β = ακ is the transmissibility used in homogeneous model and the last

approximations is valid for very large N . This expression is the traditional

homogeneous-mixing result that appear in simple SIR traditional models.

In order to go beyond the homogeneous assumption, from our data we can

consider that individuals who were never visiting the same places were never in

contact. This is additional information of which we were certain. So for each

individual we can list each of the places p that they visit and assume that we can have

a link between two individuals if they have the same place in their list ωpij = δi,pδj,p,

where δi,p = 1 if the place p is on the list of visited places of individual i and zero

otherwise. This step improved on the homogeneous assumption as it ruled out

possible contacts among individuals that could never meet. Furthermore, we can
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consider that the potential contacts among individuals are larger for individuals that

can meet in more than one place. We can then define ωi,j =
∑

p ω
p
i,j , thus considering

that some individuals have more potential contacts. It is worth remarking that we are

still considering that each potential contact has the same weight as in the

homogeneous assumption. In order to define properly the contact rate/probability

per unit time we need to use Eq. (3.1) thus defining

m =
κ

N−1
∑

i,j ωij
=

κ

〈ωij〉
(3.4)

where we defined 〈ωi,j〉 as the average weighted contacts among individuals. This

yields the effective rate of contact among individuals i and j as

ω′ij =
κ
∑

p δi,pδj,p

〈ωij〉
(3.5)

In order to improve further on this approach we can consider that places are not visited

in a probabilistic way. This implies that each individual has a probability to visit a

specific place that is 1/ni,p, where ni,p is the number of places visited by the individual

i in a given period. We can therefore define

ωij =
∑
p

1

ni,p

1

nj,p
. (3.6)

This approach still considers potential contacts only among individuals however with

a weight that depends on the variability of places of each individual. As before the

rate/probability of contact would be:

ω′ij =
κ
∑

p n
−1
i,pn

−1
j,p

〈ωij〉
(3.7)

So far we did not consider at all the time spent in each location. We can therefore

improve on the probability to be in a place by weighting the number of places ni,p by

the time spent on average in each place. This finally leads to the expression:

ωij =
∑
p

Ti,p
Ti

Tj,p
Tj

(3.8)



3. Data-Driven Contact Networks: Modeling and Quantifying Infectious
Epidemics through Real Human Mobility Data 60

where Ti,p is the time spent by individual i at location p and Ti is equal to the sum

of all time spent in places in the community by individual i. In this case the rate of

interaction will be:

ω′ij =
κ
∑

p
Ti,p
Ti

Tj,p
Tj

〈ωij〉
. (3.9)

This is the expression we used in our work. It is important to stress that this expression

improves on the homogeneous assumption as it considers that effective contacts can

occur only in places visited by both individuals, and considers that each contact is

weighted by the probability for each individual to be in that place. The approach

however did not account for concurrency of visits. In this respect it is still adopting

an homogeneous perspective in that all places visited at any time corresponds in a

potential contact. For this reason we decided to work with the approach of Eq. (3.9), for

which all the assumptions can be clearly stated and provided an obvious improvement

with respect to the fully homogeneous assumption.

The next steps to improve on this approach would be indeed to consider

concurrency of visits. It is thus tempting to consider that each contact is weighted by

Ti,p/T , where T would be the specific amount of time of the day. One could assume

the 8 hours of the working time or the 24 hours cycle of the day. This is a tempting

solution but introduces a number of issues. For instance the time that should be

considered in the normalization depends on the places and restaurants have specific

bracket of times during the day, and concurrency should be evaluated on specific

hours of the day and specific days (for instance the week-end). The same was for

places like movie theatres, museums etc. Furthermore, during the lockdown the

concurrency normalization was re-evaluated to be consistent in their definition as the

number of hours in the community of the population drastically changed. In other

words, we were not sure if the simple normalization by a fixed number of hours

although trying to capture the concurrency of contacts was actually introducing

unwanted and uncontrolled biases. For this reason we decided to work with the

approach of Eq. (3.9), for which all the assumptions can be clearly stated and

provided an obvious improvement with respect to the fully homogeneous

assumption.

Using our probabilistic approach to detect contacts, we built our contact network

in each of the layers:
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1) Community weighted contact network. The community network was based on

estimation of co-presence of two devices in POIs visited by the anonymous users. We

had approximately 6 months of data observation in the Boston area from anonymized

users. In this layer each agent in our synthetic population represented an anonymous

individual of the real population. The data allowed us to understand how infection

could propagate in each layer by estimating co-location of two individuals in the same

setting. Specifically, the weight , ωCij
, of a link between individuals i and j within the

workplace plus community layer was computed according to the expression:

ωCij =
n∑
p

Tip
Ti

Tjp
Tj
, ∀i, j (3.10)

where Tip is the total time that individual i was observed at place p and Ti is the total

time that individual i was observed at any place set within the workplace plus

community layer. Since agents were representative of the different census areas and

groups of the Boston area, our probabilistic approach was a good proxy for the real

probability of co-presence between those groups/areas when networks were scaled

up to the total population of the Boston area, that was approximately 4,628,910

inhabitants. Finally, for robustness and computational reasons, we included only

links for which ωCij > 0.01.

2) Household weighted contact network. We first identified individuals’

approximate home place as their most likely visited census block group at night.

Then we assigned a synthetic representative household and demographic traits as

documented before in Section 3.3. To assign weights, we assumed that the probability

of interaction within a household was proportional to the number of people living in

the same household (well-mixing). Therefore, the weight, ωHij , of a link between

individuals i and j within the same household is given by:

ωHij =
1

(nh − 1)
(3.11)

where nh is the number of household members. This fraction was assumed to be the

same for all individuals in the population.

3) School weighted contact network. To calculate the weights of the links at the

school layer, we mixed together all children that lived in the same census tract.
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Interactions were considered well-mixed, hence, the probability of interaction at a

school is proportional to the number of children at the same school. Therefore, the

weight, ωSij , of a link between children i and j within the same school is given by:

ωSij =
1

(ns − 1)
(3.12)

where ns is the number of school members.

This process yielded a network with a total number of 5,029,888 unique daily

contacts, 3,924,694 (78%) of them in the community layer obtained using the mobility

data, 160,748 (3%) and 944,446 (19%) are synthetically built for the household and

school layers, respectively.

Calibration of intra-layer links. Within each connected component of the network

in each layer (e.g., a household, a school), the links between nodes were weighted to

account for the effective daily number of contacts. For example, if we consider a

school, while a student can potentially contact all her/his schoolmates, she/he only

meet a relatively small fraction of them on a daily basis as estimated in empirical

studies on mixing patterns [228, 229]. To account for this, we calibrated the weight of

the links in each layer of the synthetic network [230] so that the mean number of

daily contacts matches the estimation provided in Mistry et al. [231] (see Appendix B,

section B.1 for more details). Based on the analysis of contact survey data from 9

countries [228, 229, 232, 233], these studies estimated the mean number of daily

contacts at 10.86, 4.11 and 11.41 in the community+workplace, household and school

layers, respectively.

Stochastic simulations of the COVID-19 dynamics. Using the contact network, we

simulated an ABM epidemic model for COVID-19. We described the SARS-CoV-2

transmission process using a discrete-time Susceptible-Latent-Infected-Removed

(SLIR) stochastic model, with some extra compartments to incorporate the special

characteristics of SARS-CoV-2 infection, Figure 3.4. In particular, at each time-step t (1

day), the infectious asymptomatic (IA), infectious symptomatic (IS) and

pre-symptomatic (PS) individuals could transmit the disease to susceptible (S)

subjects with probability rβ, β and βS , respectively. If the transmission is successful,

the susceptible node will move to the latent asymptomatic state (LA) with probability
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Figure 3.4: COVID-19 compartmental model. Panel displays the compartmental
model used to describe the natural history of the disease as well as the transition
rates between the different states. Specifically, we consider Susceptible (S), Latent
asymptomatic (LA), Latent symptomatic (LS), Pre-symptomatic (PS), Infectious
asymptomatic (IA), Infectious symptomatic (IS), Hospitalised (H), Hospitalized in
intensive care (ICU) and Recovered (R) individuals. More details of the model and the
transitions between compartments are provided in Appendix B. Figure reproduced [3]

p or to the latent symptomatic state (LS) with probability (1 − p). A latent

asymptomatic individual becomes infectious asymptomatic after a period (ε
′
)−1,

whereas latent symptomatic subjects transition, after a period ε−1, to the

pre-symptomatic (PS) compartment. The average period to develop the disease and

move to the infectious symptomatic state is γ−1. Infectious asymptomatic nodes will

be removed (R) after an average of µ steps. Conversely, infectious symptomatic nodes

can either recover after that period with probability (1 − α) or, with probability α,

these nodes will need hospitalization. It is considered that due to their symptoms

they will self-isolate at home after an average period of µ−1. Then, depending on the

severity of the symptoms, after a period δ−1 the individual will end in hospitalization

with probability (1 − χ) or require hospitalization and ICU care with probability χ.

Finally, individuals that are either hospitalized or at ICU become removed with

probability µH or µICU, respectively. We initialized the model in the city of Boston by

selecting an attack rate on the 17th of March of 1.5% (see Appendix B, section B.2 for

more details about the model parameters).
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Baseline Medium closure Non-essential closure
Layer Contacts %. Contacts % % Diff. Contacts % % Diff.

Community 3,924,694 78 1,378,054 27.4 -72.6 357,144 7.1 -92.9
Households 160,748 3.2 160,748 3.2 0 160,748 3.2 0
Schools 944,446 18.8 0 0 -100 0 0 -100

Total 5,029,888 100 1,538,802 30.6 -69.4 517,892 10.3 -89.7

Table 3.1: Social distancing network structure. Number of daily contacts by layer
and social distancing policy. Figure reproduced from [3]

Social distancing strategies. To simulate social distancing measures, we modified

the synthetic population such that:

• School closures were simulated by removing all the schools from the system

simultaneously.

• Partial "stay at home" assumed that all places were open except from

restaurants, nightlife and cultural places. Closures of these places were

simulated by removing the interactions that occurred in any place that falled

into that category according to Foursquare’s taxonomy of places. This was the

situation after the first reopening.

• Full lock-down and confinement assumed that schools and all non-essential

workplaces were closed. Here we closed all workplaces except from essential

ones and removed interactions that occured at them. Essential workplaces

were: Hospitals, Salons, Barbershops, Grocery Stores, Dispensaries,

Supermarkets, Pet Stores, Pharmacies, Urgent Care Centers, Dry Cleaners,

Drugstores, Maternity Clinics, Medical Supplies and Gas Stations.

We simulated two different scenarios for social distancing policies. This produced

three contact networks: i) baseline, ii) medium closure, and iii) non-essential closure, as

we see it in more detail in Table 3.1. Schools were closed in the medium and

non-essential closure, but both policies differ in the number of places kept open in the

community layer. In Table 3.2 we can see the distribution of POIs, by main

Foursquare category, that remained open during each social distancing policy. In the

baseline scenario, we kept all the categories and thus the average number of contacts



3. Data-Driven Contact Networks: Modeling and Quantifying Infectious
Epidemics through Real Human Mobility Data 65

Baseline Medium closure Non-essential closure
POIs categories Open %. Open % % Diff. Open % % Diff.

Arts & Entmt. 3,692 4.44 0 0 -100 0 0 -100
Colleges & Univs. 4,016 4.83 4,016 4.83 0 0 0 -100
Restaurants 13,860 16.7 0 0 -100 0 0 -100
Nightlife Spots 3,288 3.95 0 0 -100 0 0 -100
Outdoors & Recr. 8,840 10.64 8,840 10.64 0 229 0.27 -97.4
Workplaces 19,692 23.71 19,692 23.71 0 415 0.5 -97.8
Shops & Services 24,310 29.27 24,310 29.27 0 5,139 6.19 -78.8
Travel & Transp. 5,370 6.46 5,370 6.46 0 0 0 -100
Total 83,608 100 62,228 74.91 -25.6 5,783 6.96 -93.1

Table 3.2: POIs closures by social distancing. Number of POIs open in the
Community layer by the different social distancing measures and full non-essential
closure. Percentages are calculated with respect to the total number of POIs in the
baseline. Table reproduced from [3].

in the community layer was 63 (median 47, [15-150] 90% confidence interval), with

few anonymous individuals having a large number of contacts (that could eventually

lead to super-spreading events). In the medium closure scenario, POIs in the Art &

Entertainment, Restaurants and Nightlife categories were closed; this drastically

reduced the average number of contacts to 27 (median 15, [0-92] 90%CI). Lastly, when

all non-essential places were closed, we only kept open the following subcategories:

Hospital, Salon / Barbershop, Grocery Store, Dispensary, Supermarket, Pet Store,

Pharmacy, Urgent Care Center, Dry Cleaner, Drugstore, Maternity Clinic, Medical

Supply, and Gas Station. In this situation, the average number of contacts was

reduced to 6 (median 0, [0-29] 90%CI). The distribution for the number of contacts in

the community layer in these three scenarios is shown in Figure 3.5.

3.4 Results

To provide a baseline of the COVID-19 impact in the BMA, we first investigated an

unmitigated scenario in which no interventions were implemented. Figure 3.6.a

shows the evolution of the estimated number of new severely affected patients who

require hospitalization and admission into ICUs. At the peak of the unmitigated
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Figure 3.5: Degree distribution by social distancing policy. Degree distribution in
the community layer under normal conditions, soft social distancing measures and
full non-essential closure. Figure reproduced from [3].

epidemic, the number of ICU beds needed exceeds by far the available capacity

(dashed horizontal line in Figure 3.6.a) by more than a factor of 10, thus indicating

that the health care system would suffer large service disruptions, resulting in

additional deaths due to hospitals overcrowded with patients with COVID-19 [234].

It is worth noting that estimated fatality rates at the beginning of the pandemic

considered the general availability of ICU beds and critical care capacity. If this

would not be possible, the fatality rate may increase dramatically. We did not report

fatality estimates as it went beyond the scope of our analysis and should have

considered specific data on the BMA, as well as changing medical treatment and

therapeutics the over course of the pandemic.

To avoid the harmful effects of an unmitigated COVID-19 epidemic, governments

and policy makers across the world relied on the introduction of aggressive social

distancing measures. In the United States, as of April 15 2020, it was estimated that

more than 95% of the population was under a “stay at home” or “shelter in place”

order [235, 236]. To model the social distancing policies implemented in the whole

BMA, we considered March 17, 2020 as the average starting date of social distancing

policies that included school closures, the shut down of all non-essential work

activities as well as mobility restrictions. This scenario mimicked the social

distancing intervention implemented in most of the high income countries, in Europe

and across states in the US. Such extreme social distancing policies came with very

large economic costs and social disruption effects [237], thus prompting the question

of what exit strategy could be devised to restart economic activities and normal
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Figure 3.6: Impact on the Boston health care system. Estimated number of
individuals per 1,000 inhabitants that would need hospitalization (H), and intensive
care (ICU) for each of the three scenarios considered in Figure B.2. Panel a corresponds
to the unmitigated situation, whereas results for the LIFT and LET strategies are
shown in panels b and c, respectively. The horizontal dotted-dashed lines represent
the ICU basal capacity of the Boston health care system. The dotted line in panel c
indicates 30% of the ICU basal capacity. Figure reproduced from [3].

societal functions [238]. For this reason, we explored two different scenarios for

lifting social distancing interventions:

• Lift scenario (LIFT): the “stay at home” order was lifted after 8 weeks by

re-opening all work and community places, except for mass-gathering locations

such as restaurants, theaters, and similar locations (see Table 3.2). The latter

partial re-opening was enforced for another 4 weeks, which was followed by a

full lifting of all the restrictions that remained. We considered that schools will

remain closed given the impending summer break in July and August, 2020. In

fact, some school systems, like the Boston Public schools remained closed

through the 2019-2020 school year.

• Lift and enhanced tracing (LET) scenario: The “stay at home” order was lifted

as in the previous scenario. Once partial reopening was implemented, we

assumed that 50% of symptomatic COVID-19 cases could be identified for

SARS-CoV-2 infection, on average, within 2 days after the onset of symptoms

and that they were isolated at home and their household members were

quarantined successfully for 2 weeks (a sensitivity analysis for lower rate of

isolation and quarantine was presented in the original Supplementary

Materials [3]). Although COVID-19 tests were highly specific, 50% detection

accounted also for imperfect testing. We also assumed that a fraction of the
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non-household contacts (we show results for 20% and 40%) of the symptomatic

infections could be traced and quarantined along with their household as well

− note that we considered that the contacts were identified with a rate

proportional to the time duration of the interaction with the symptomatic

individual.

The above scenarios were mechanistically simulated on the multilayer network of

Figure 3.1.a, by allowing different interactions (between effective contacts) according

to the simulated strategy. As a result, the average number of interactions in the W+C

layer went from 10.86 (95% C.I.:1.51-42.39) under the unmitigated scenario, to 4.10

(95% C.I.:0-23.79) for the partial lock-down and only 0.89 (95% C.I.: 0-8.39) contacts

for the stay at home policy (see Figure 3.5). This result were in agreement with

previously published work [239] and reports in the New York City area [240]. It is

worth remarking that the fluctuations in the number of contacts in the stay at home

order were due to a large extent to contacts that take place in grocery stores and other

public venues.

The numerical results showed that the LIFT scenario, while able to temporally

abate the epidemic incidence, did not prevent the resurgence of the epidemic and a

second COVID-19 wave when the social distancing measures were going to be

relaxed. Indeed, at the time of lifting the social distancing intervention the population

had not achieved the level of herd immunity that would protect it from the

resurgence of the epidemic. It is important to stress that here we did not consider

additional mitigation measures such as behavioral changes in the population, mask

wearing, etc (see Appendix B SARS-CoV-2 transmission model section B.2). We also

estimated that a second wave of the epidemic still had the potential to infect a large

fraction of the population and to overwhelm the health care systems, as shown in

Figure 3.6.b. The number of ICU beds needed, although half the unmitigated

scenario, was still exceeding by far the estimated availability, as pointed out in

similar scenario analysis [217–219, 241]. This suggested that lifting social distancing

without the support of additional containment strategies was not a viable option.

In the case of the LET scenario, the lifting of the social distancing intervention

wanted along with a significant amount of contact tracing and precautionary

quarantine of potentially exposed individuals. The quarantine was not limited to the

contacts of the identified symptomatic COVID-19 case, but extended to their
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Scenario Hospitalization ICU People traced
Unmitigated 4.57 (4.10-5.03) 2.56 (2.21-2.91) -
LIFT 3.22 (2.80-3.67) 1.87 (1.55-2.20) -
3*LET 3*Detect 30% No Tracing 2.70 (2.29-3.12) 1.58 (1.27-1.88) -

Tracing 20% 0.86 (0.65-1.10) 0.55 (0.39-0.72) 0.52 (0.36-0.69)
Tracing 60% 0.35 (0.21-0.50) 0.22 (0.12-0.34) 0.17 (0.08-0.27)

3*LET 3*Detect 50% No Tracing 2.35 (1.97-2.75) 1.39 (1.11-1.68) -
Tracing 20% 0.44 (0.28-0.62) 0.28 (0.16-0.42) 0.39 (0.23-0.55)
Tracing 40% 0.29 (0.18-0.43) 0.15 (0.08-0.26) 0.14 (0.05-0.23)

Table 3.3: Social distancing strategies effectiveness. Mean and 95% C.I. of
the number of normal hospitalizations, ICU hospitalizations and symptomatic
individuals identified/traced (when applicable) at the peak of the epidemic per 1000
people. The estimated availability of ICU beds is 0.21 beds per 1000 people. Table
reproduced from [3].

households. This strategy amounted to a simplified tracing of contacts of contacts,

that would not require extensive investigations. In other words, this strategy did not

require the tracking of a large number of single contacts but leverage on the contacts’

households as the basic unit [242]. Households could be monitored though, with

daily calls or messages to ascertain the onset of symptomatic infections, and provide

medical support as needed.

When 40% or more of the contacts of the detected symptomatic infections were

traced and they and their households quarantined, the ensuing reduction in

transmission leaded to a noticeable flattening of the epidemic curve and appeared to

limit the possible resurgence of a second epidemic wave effectively. It is also worth

noticing that we assumed the absence of other additional and minimally disruptive

social distancing policies such as crowd control, smart working, wearing of masks,

etc., that could lead to a further reduction of the transmissibility of the virus with

respect to our estimates. It is important to stress that the contact tracing proposed

here worked at the level of household unit, simplifying also the monitoring and

follow up process, by contacting only one member of the household to monitor the

onset of symptoms among all members. Figure 3.6.c and Table 3.3 show the burden in

hospitalization and ICU demand in the unmitigated situation and the two mitigation

scenarios. The LET scenario allowed relaxation of the social distancing interventions

while maintaining the hospital and ICU demand at levels close to the health-care
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availability and surge capacity.

3.5 Discussion

The efforts in the suppression and mitigation of COVID-19 were pursuing the

objectives of preserving the health care system from disruptive failures due to

overwhelming stress imposed by the large number of severe cases, and of

minimizing the morbidity and mortality related to the epidemic. The aggressive

social distancing interventions implemented by many countries in response to the

COVID-19 pandemic appear to have achieved the interruption of transmission and

the abatement of the epidemic, although at the price of huge societal disruption and

economic costs. In such a context, the identification of “exit strategies" that allowed

restarting economic and social activities while still protecting the healthcare systems

and minimizing the burden of the epidemic is of primary importance. Several

modeling studies already pointed out that resuming economic activities and social

life was likely to lead to a resurgence of the COVID-19 epidemic, and combined social

distancing interventions of different degrees and intensity had been proposed to

substantially delay and mitigate the epidemic [237, 241]. These interventions generate

economic loss and widespread disruption to social life. In this chapter we show how

testing, contact tracing strategies at scale, based on home isolation of symptomatic

COVID-19 cases and the quarantine of a fraction of their households’ contacts, had

the potential to provide a viable course of action to manage and mitigate the

epidemic when social distancing interventions were progressive lifted [243, 244].

These strategies presented us with logistic challenges that included large-scale and

rapid diagnostic capacity, and a large surge in the number of contact tracers. We

investigated what fraction of the population would be isolated/quarantined under

the proposed contact tracing and isolation strategy. Figure 3.7.a shows the fraction of

households that needs to be quarantined. Assuming the identification of 50% of the

symptomatic infections, and tracing of 40% of their contacts and households, only

about 9% of the population would be quarantined at any time. While this is certainly

a relevant fraction of the population, it was a much better option if compared with

massive social distancing policies affecting the entire population that last for months.

In Table 3.3, we reported the number of symptomatic infections for which the
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Figure 3.7: Affordability of the best way-out scenario. LET strategy with 50%
detection and 40% tracing. (a) Fraction of the population that needs to be put under
quarantine as a function of time and percentage of contact tracing. (b) Health status
of the individuals that are quarantined for a contact tracing level of 40%. Note that
only symptomatic individuals are tested, which implies that a large fraction of the
quarantined population is of unknown status. This fraction of individuals quarantined
with unknown health condition could be reduced if the capacity to do more tests
increases. As it is shown, the pandemic might span over several months depending
on the level of contact tracing. (c) Number of individuals whose contacts are traced
each day per 1,000 persons. Relevant intervention actions are signaled by the vertical
dashed lines in all panels. Figure reproduced from [3].

contact tracing investigation should have been performed in the basic scenarios. This

number provided an estimate of the contact tracers per 1,000 individuals. It is

important to note that the more effective the contact tracing starting from each

individual, the smaller the number of generally traced households because the

epidemic had lower incidence rates. In addition, as illustrated in Figure 3.7.b, the

health status of the vast majority of quarantined individuals was unknown as contact

tracing did not imply testing. The curves in Figure 3.7.a constitute the upper bounds

for each simulated case. If we assumed that the capacity to do massive testing would

have likely ramped up, then it was expected that the actual number of people in

quarantine could be significantly lowered by testing the quarantined household. This

would have also alleviated the burden on household members that could not go to

work and increase compliance with quarantine for positive cases. It is also worth

remarking that many of the logistic challenges faced with massive contact tracing

could possibly be eased by digital technologies that were investigated across the

world following the examples of COVID-19 response in Asian countries [244]. Also,

it was difficult to quarantine the entire household of individuals who were
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potentially exposed, since this is a hardship suffered with great uncertainty about

their risk of infection. Offering other logistic quarantine solutions (quarantine

centers, hotel rooms) could significantly raise the rate of compliance.

These results were obtained under several assumptions at the beginning of the

pandemic. There were very large uncertainties around the transmission of

SARS-CoV-2, in particular, the fraction of sub-clinical and asymptomatic cases and

their transmission. Estimates of age-specific severity are informed from the analysis

on individual-level data from China and other countries, and were subject to change

as more US data become available. We also did not include specific co-morbidities or

pre-existing conditions of the specific BMA population. For this reason, in the

Supplementary Materials of the article [3] we performed an extensive sensitivity

analysis showing that the modeling results discussed here are robust to the plausible

range of parameter values for the key time-to-event intervals of COVID-19 (e.g.,

incubation period, serial interval, and time from symptom onset to hospital

admission, etc.) as well as the fraction of presymtpomatic and asymptomatic

transmission. We were also not considering here potential changes to the virus

transmissibility due to environmental factors, in particular, seasonal drivers such as

temperature and humidity. The modeling does not consider possible reintroduction

of SARS-CoV-2 in the population from infected travelers. Strategies based on testing,

isolation and contact tracing might be hampered by the importation through travel of

a large number of infections, thus travel restrictions and screening may need to be

introduced to/from places that show sustained local transmission. Finally, we also

reported in the original Supplementary Materials of the article [3] the effect of the

widespread use in the population of masks or other personal protective equipment

that lead to a reduction of the transmissibility of SARS-Cov-2 during 2020. These

active protection measures improved the effectiveness of the exit strategies modeled

here.

The modeling of the impact of testing, contact tracing, and isolation on

second-wave scenarios of the COVID-19 epidemic played a crucial role in shaping

public health response planning for national and international agencies. Our research

demonstrated the effectiveness of contact tracing and household quarantine at scale,

even under the assumption of a complete lifting of social distancing measures.

However, decisions regarding the timing and duration of policy relaxations were
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marred by chaos and inadequate information for several reasons. Firstly, the absence,

antiquity or delayed development of large-scale epidemiological monitoring systems

during the epidemic impeded the timely collection and analysis of critical data,

leading to decision-making challenges [245, 246]. Secondly, public resistance to

adhering to policies due to perceived threats to individual freedoms complicated

efforts to implement effective containment measures [247, 248]. Moreover, resources

constraints and political interests further complicated the relaxation of policies,

creating inconsistencies and inefficiencies in the public health response [249]. On the

one hand, encouraging smart working from home for individuals capable of

adhering to it without significant disruptions proved successful and was adopted by

millions of people [250, 251]. On the other hand, contact tracing apps faced

limitations in adoption and effectiveness due to privacy concerns, limited

interoperability, technology limitations, and low adherence by individuals [252].

Based on our results, we found that with just 40% adoption of contact tracing apps,

they could have effectively contained second-wave epidemic peaks. Lastly, in this

chapter, we introduce a novel probabilistic approach for constructing contact

networks using mobility data. This method enables direct observations of human

health-related behaviors, elevating the modeling and quantification of viral

epidemics. By leveraging this approach, we contribute to a deeper understanding of

epidemic dynamics and their broader impacts. This research is a significant step

forward in advancing our knowledge of infectious disease spread, informing

evidence-based public health policies, and empowering agencies to make informed

decisions in future public health emergencies.



4

Temporal Contact Networks: Unveiling

the Spread of Viral Agents and

Detecting Super-Spreading Events

through Mobility Data

"Time crumbles things; everything grows old under the power of Time and is

forgotten through the lapse of Time."

– Aristotle1

4.1 Introduction

SOCIAL interactions are dynamic over time and exert a significant influence on

the transmission dynamics of infectious diseases among human populations. In

recent years, epidemiological contact network models have emerged as valuable tools

for comprehending and predicting pathogen transmission, including that of

SARS-CoV-2. However, given the rapid feedback between the evolution of the

epidemic and the behavior of people, we need to have better temporal, almost

real-time models of how those contact networks evolve in time. By leveraging

longitudinal mobility data from real-world sources, we can construct temporal

1Aristotle. Greek philosopher and polymath. Quote extracted from the book ’Physics, IV, 12’
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contact networks that enable more realistic simulations of disease spread.

Additionally, these temporal contact networks are important in an viral epidemic,

like COVID-19, because they offer valuable insights into how a population responds

and change their behaviours to Non-Pharmaceutical Interventions (NPIs) and the

flow of news about the epidemic, while also capturing realistic social interactions,

assessing transmission dynamics, identifying super-spreading events, and exploring

the impact of social distancing policies on bending the epidemic curve over time.

In this chapter, we build upon the methodology proposed in chapter 3, where we

knew how long individuals spent in different locations. Now, we introduce an

innovative approach to construct temporal social contact matrices at individual and

daily level. By utilizing temporal mobility data, we integrated changes in population

behavior into an agent-based model (ABM) that effectively simulated the spread of

infectious diseases within a given geographical area. We leveraged real-time,

privacy-enhanced mobility data from the New York City and Seattle metropolitan

areas, enabling us to develop a detailed ABM of SARS-CoV-2 infection and estimate

the location, timing, and magnitude of transmission events during the initial wave of

the COVID-19 pandemic.

Through our comprehensive analysis, we uncovered insightful findings. We

discovered that a mere 18% of individuals were responsible for a significant majority

(80%) of infections, with approximately 10% of events classified as super-spreading

events (SSEs). While large gatherings pose a considerable risk for SSEs, our research

demonstrated that the bulk of transmission occurs in smaller events within settings

such as workplaces, grocery stores, or food venues. Remarkably, the specific locations

driving transmission patterns evolved throughout the course of the pandemic and

exhibit variations between different cities, underscoring the profound influence of

behavioral factors.

This innovative approach grants us a granular understanding of viral spread

dynamics and provides real-time insights into the actual effectiveness of

non-pharmaceutical interventions (NPIs) in curbing transmission. By continuously

informing us about the efficacy of these interventions, we gained valuable knowledge

for effectively controlling the spread of viral agents. Our modeling approach,

coupled with case studies and epidemiological data, suggested that real-time

tracking of transmission events could inform the evaluation and formulation of
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targeted mitigation policies.

In the subsequent sections, we present an updated version of the article Building

temporal human contact networks from mobility data [4], where we delve into the details

of our methodology and present our key findings in greater depth.

4.2 Background & Hypotheses

Without effective pharmaceutical interventions, the COVID-19 pandemic triggered

the implementation of severe mobility restrictions and social distancing measures

worldwide aimed at slowing down the transmission of SARS-CoV-2. From shelter in

place orders to closing restaurants/shops or restricting travel, the rationale of those

measures is to reduce the number of social contacts, thus breaking transmission

chains. Though individuals may remain highly connected to household members or

close contacts, these measures reduced the connections in the general community

that allowed the virus to move through the network. Some venues may attract more

individuals from otherwise unconnected networks, or may attract individuals who

are more active and thus have greater exposure. Understanding how interventions

targeted at particular venues could impact transmission of SARS-CoV-2 could help us

devise better NPIs that pursue public health objectives while minimizing disruption

to the economy, the education system, and other facets of everyday life.

Although it is by now clear that NPIs have helped to mitigate the COVID-19

pandemic [131], most of the evidence is based on measuring the subsequent

reduction in the case growth rate or secondary reproductive number. For example,

econometric models were used to estimate the effect of the introduction of NPIs on

the secondary reproductive number [253, 254]. Other studies showed directly

(through correlations or statistical models [255]) or indirectly (through epidemic

simulations [256, 257]) the relationship between mobility or individuals’ activity and

number of cases. Unfortunately, most of the data used so far did not have the

granularity required to assess how social contacts and SARS-CoV-2 transmission

events were modified by NPIs [258].
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Analysing the Impact of NPIS and Detecting Super-Spreading Events using Human

Mobility Data and ABM models

This is especially important given the heterogeneous spreading of SARS-CoV-2.

Overdispersion in the number of secondary infections produced by a single

individual was an important characteristic of the 2003 SARS pandemic [259] and has

been similarly observed for SARS-CoV-2 [260]. Several drivers of super-spreading

events (SSEs) were proposed: biological, due to differences in individuals’

infectiousness; behavioral, caused by unusually large gatherings of contacts; and

environmental, in places where the surrounding conditions facilitate spread [261].

Transmissibility depends critically on the characteristics of the place where contacts

happen, with many SSEs documented in crowded, indoor events with poor

ventilation. A characteristic of this overdispersion is that most infections (around

80%) are due to a small number of people or places (20%), suggesting that better

targeted NPIs or cluster-based contact tracing strategies could be devised to control

the pandemic [262]. Although several studies provided insights on SSEs [258, 263],

given their outsized importance for SARS-CoV-2, we needed better information

about where, when, and to what extent these SSEs happen and how they could be

mitigated or amplified by NPIs.

We used individual-level mobility data of over half a million individuals

distributed in the New York and Seattle metropolitan areas during the months of

February 2020 to June 2020 to estimate the day and type of venues where people

interact. To do that we extracted from the mobility data the stays (stops) of people in

a large collection of around 440k settings. With this information we built two

synthetic populations, one for each metropolitan area, in which agents can interact in

different settings: workplaces, households, schools, and the community (points of

interest). We then explorec the transmission of SARS-CoV-2 using a compartmental

and stochastic epidemic model applied on top of this population, which allowed us

to track infections at the individual level.

The behavioral changes induced in the population by the introduction of several

NPIs were naturally encoded in this high resolution mobility data, allowing us to

characterize the effect of these interventions. We ran counterfactual simulations of

our stochastic epidemic model to understand that effect. Furthermore, the resolution

of this data allowed us to characterize the spreading through different types of
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venues at different stages of the epidemic, depicting a complex picture in which the

combination of both the characteristics of the place/setting and of the behavior of

individuals who visited it determine its risk.

Lastly, the information at the individual level allowed us to study the frequency

and characteristics of behavior-related super-spreading events (SSE). We studied the

likelihood of finding a SSE per setting as a a function of time by looking at the number

of infections produced by each individual in each location. A full description of the

materials and methods is provided in the following section.

4.3 Data & Methods

While this chapter’s methodology shares similarities with that of chapter 3, it also

incorporates several significant differences. Firstly, the mobility data collected was

specifically obtained from two different geographical regions, the New York and

Seattle metropolitan areas during the period of analysis, in contrast to section 3.3,

which was only for the Boston metropolitan area prior to the period of analysis.

Moreover, the taxonomy of POIs mentioned in section 3.3 was manually curated to a

more suitable version for this study. Additionally, the contact matrices in this chapter

possess a temporal component, making them dynamic and longitudinal in nature,

embedding social real distancing strategies in the mobility behaviors of observed

individuals, and there is no need for simulating social distancing strategies.

Furthermore, these contact matrices exhibit significantly larger sizes in terms of

nodes and edges, setting them apart from the static and smaller contact matrices

discussed in section 3.3. Finally, the Workplace & Community layer from chapter 3

was split into two more layers, the Workplace layer and the Community layer, and a

different normalization of the data was built to approximate better the synthetic

populations to the US census households size statistics. Consequently, in this chapter,

we provide a comprehensive overview of the methodology once again, placing

particular emphasis on the differences and crucial modifications made to

accommodate the inclusion of temporal data.

Here we use a longitudinal database of detailed mobility and socio-demographic

data to generate the daily contacts of 565k individuals in the New York metropolitan

area and 106k individuals in the Seattle metropolitan area, during the period from
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Figure 4.1: Network components, New York and Seattle metropolitan areas
population and social contacts dynamics at the community layer over time. Panel a
is a schematic illustration of the weighted multilayer and temporal network for our
synthetic population built from mobility data. There are four different layers; the
school and household layers are static over time, and the combined workplace and
community layers have a daily temporal component. Panel b shows the geographic
penetration of mobile devices from our mobility data compared to the total population
for the New York and Seattle metropolitan areas. Panel c represents the average
daily number of contacts in the community layer for both metropolitan areas. Figure
reproduced from [4].
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February 17 to June 1 of 2020. Note that the metropolitan areas considered extend

beyond the city limits for both locations. We selected these areas because of their

large differences in COVID-19 epidemiology, population size and density. The NY

metro area has a population of 20 million people, while the Seattle metro area has 3.8

million inhabitants. Moreover, the NY metro area has a higher density (5,438 people

per km2, median by census tract) than Seattle (1,576 people per km2). Finally the

number of reported COVID-19 cases/deaths during the study period in the NY area

was very large (223 per 100,000) compared to that in the Seattle area (24 per 100,000).

Individuals were chosen to be representative of the different census areas (Census

Block Groups (CBGs), see Figure 4.1.b). Contacts between individuals were weighted

according to the likelihood of exposure between them in the different places around

the metro areas. This defined a weighted temporal network consisting of four layers

representing the physical/social interactions occurring in (1) the community, (2)

workplaces, (3) households, and (4) schools, see Figure 4.1.a. The community and

workplaces layers were generated using 4 months of data observed in the New York

and Seattle metropolitan areas from anonymized users who opted-in to provide

access to their location data, through a GDPR-compliant framework provided by

Cuebiq, the same we mentioned in section 3.3. In these layers, each individual in our

synthetic population represented an anonymous individual of the real population.

The data allowed us to understand how infection propagated in each layer by

estimating co-location of individuals in the same setting at any given time. Settings

were obtained from a large database of 375k locations in the New York and 70k in the

Seattle from the Foursquare public API, the same as in chapter 3. By measuring the

amount of time people were co-located in the different layers, we constructed the

time-varying network of interactions ωijt between individuals i and j on the same

day t in the education, community, work and household layers. Estimation of

co-location in the community layer was done by extracting stays of users to the

settings using different time and distance. Our results were independent of the

particular choice of minimal time (5 minutes or 15 minutes) and maximum distance

to the setting (10 meters or 50 meters), see Figure 4.1 and the following sections. Our

model covered all possible interactions in urban areas and not just foot traffic to

commercial locations that people visit [258], something especially important given

the relevant role of households, schools or workplaces in the transmission of the
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SARS-CoV-2. On the other hand, it is important to note that the underlying data did

not provide a direct measurement of contacts between individuals and the nature of

these contacts (masked/unmasked, with conversation). Rather, data were used to

extrapolate the locations visited by each subject and the amount of time they spent

there, in order to relax the homogeneous mixing assumption commonly used in

mathematical modeling approaches, as we stated in chapter 3.

Geographic areas

Our sample dataset achieved broad geographic representation for our two

populations, in the New York and Seattle metropolitan areas, defined as the Core

Based Statistical Areas (CBSA) by the US Census [264]. This provided a

self-contained metropolitan area in which people move for work, leisure or other

activities. Some of the CBSAs we considered span several states, as opposed from

chapter 3 where we only used data from the same state. For instance, the New York

CBSA contains areas of the state of Connecticut, New Jersey, Philadelphia, and New

York. We filtered all anonymous devices which were not observed each month, in

order to make sure we had a stable population with enough granularity and

representativeness of agents over the whole period. The population and number of

anonymous devices detected in the real data by census area were highly correlated

for both census county subdivision regions, with a ρ = 0.796 (Pearson correlation)

with a CI between 0.783 and 0.807 for the New York region, and a ρ = 0.948 (Pearson

correlation) with a CI between 0.937 and 0.957 for the Seattle region. We built such

correlations between the population for each county subdivision and the number of

devices in our dataset. Despite these large correlations our mobility dataset had a

small income bias towards areas of higher income, specially in the NY metro area.

However, as shown in Appendix C.3, our results did not depend on that bias.

Points of Interests

We used a dataset of 375k Points of Interest (POI) in the New York metropolitan area

and 70k Points of Interest in Seattle metropolitan area collected using the public

Foursquare API. In section 3.3 we used the eight main categories from Foursquare

taxonomy, however, in this chapter we manually curated every subcategory in the

taxonomy to be reassigned to twelve new principal categories: Arts & Museums,
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College, Entertainment, Exercise, Food & Beverages, Grocery, Health, Other,

Outdoors, School Service, Shopping and Transportation. In our database the New

York metropolitan they were distributed as follow: Art & Museum (2.1%), College

(2.9%), Entertainment (7.6%), Exercise (2.8%), Food & Beverage (17.7%), Grocery

(2.6%), Health (7.5%), Other Places (13.1%), Outdoors (8.2%), School (2.3%), Service

(16.6%), Shopping (8.3%), Sport & Events (0.6%) and Transportation (6.9%). For the

Seattle metropolitan area POIs were distributed as follows: Art & Museum (2.7%),

College (2.3%), Entertainment (7.1%), Exercise (2.7%), Food & Beverage (14.5%),

Grocery (2.1%), Health (8.1%), Other Places (15.1%), Outdoors (7.8%), School (1.6%),

Service (18.2%), Shopping (8.3%), Sport & Events (0.8%) and Transportation (7.8%).

Despite our dataset contained many venues and places which were companies or

businesses, some evidence that our dataset covered most of the public places came by

comparing them to official statistics: for example, we had 2,155 art galleries in the NY

metro area compared to the 1,500 estimation for NY City only. On the other hand we

had 9,810 groceries in the NY metro area in our POI database which compares quite

well with the 11,791 grocery business reported by the U.S. Bureau of Labor Statistics

in their Quarterly Census of Employment and Wages in the NY Metro area [265].

Stays

For a detailed explanation of how we calculated stays and obfuscated data around

home and workplaces, please refer to the Data & Methods from chapter 3, section 3.3. In

this chapter, we expand upon our approach by conducting sensitivity analysis on

stays distance thresholds, considering that some stays occur within or in close

proximity to POIs. We attributed a stay to the closest POI up to a distance of 50

meters, otherwise that stay is discarded. We did not make this attribution if the

closest place is further than 50 meters (see Appendix C.3 for a sensitivity analysis with

other maximum distance to POIs). Although we used 50 meters as an upper bound,

in reality the average distance to the attributed POI is much smaller, 19.43 meters on

average in the metro areas of NY and Seattle, which is smaller than the average

distance between nearest POIs. In areas with large numbers of POIs like Manhattan,

the distance to the attributed closest POI is even smaller. Note that we attributed each

stay to a single POI and in turn, to a single category of place. We also checked that

our results did not depend significantly on the 50 meters threshold for the attribution
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Figure 4.2: Average number of stays. Evolution of the average number of stays in the
Community layer per observed person for New York and Seattle metropolitan areas.
Vertical red dashed line indicates when National Emergency (N.E.) is established.
Figure reproduced from [4].

of the stays (see Appendix C.3). Stays are then aggregated at POI level.

In Figure 4.2 we can see the daily evolution of the average number of stays per

observed person for New York and Seattle only in the community layer. Also in

Figure 4.3 we can see the total observed number of stays in our datasets. Two weeks

before we can see that Seattle started to see a small change in the mobility behaviour,

however, for New York City we can start to see that pattern one week before the

national emergency. The average number of daily stays per agent for New York

before the N.E. is 2.14 with a 95% CI [2.12, 2.17]. On the other hand, for Seattle is 2.05

with a 95% CI [2.02, 2.08]. After the national emergency there is an abrupt decrease

for both cities in the number of stays (see Figure 4.3). Two weeks after the national

emergency the average number of stays per person stabilized and starts to an slightly

and steady increase. Eleven weeks after the national emergency, the average number

of stays per person has recovered slightly, but it did not recover its basal state for

both cities. The average number of daily stays per observed agent for New York after

the N.E. is 1.83 with a 95% CI [1.81, 1.84]. On the other hand, for Seattle is 1.72 with a

95% CI [1.71, 1.74].

We can see in Figure 4.3 the daily evolution of the total number of stays to each

category and their fraction distribution. Figure 4.3 (a) for New York and (c) for Seattle

represent the total number of stays at the community layer, we can see a similar pattern



4. Temporal Contact Networks: Unveiling the Spread of Viral Agents and
Detecting Super-Spreading Events through Mobility Data 84

0 K

100 K

200 K

300 K

400 K

500 K

02/17 03/09 03/30 04/20 05/11 06/01

N
um

be
r o

f s
ta

ys
 in

 C

A

0

25

50

75

100

02/17 03/09 03/30 04/20 05/11 06/01

D
is

tr
. o

f s
ta

ys
 in

 C
 (%

)

B
New York

0 K

25 K

50 K

75 K

100 K

02/17 03/09 03/30 04/20 05/11 06/01

N
um

be
r o

f s
ta

ys
 in

 C

C

0

25

50

75

100

02/17 03/09 03/30 04/20 05/11 06/01

D
is

tr
. o

f s
ta

ys
 in

 C
 (%

)

D
Seattle

Arts / Museum
Entertainment
Exercise

Food/Beverages
Grocery
Health

Other Places
Outdoors
Service

Shopping
Sports/Events
Transportation

Figure 4.3: Total number of stays per POI category. The comparative evolution of the
number of stays (left) and distribution (right) of stays in the Community layer for the
different metropolitan areas, New York (top) and Seattle (right). Figure reproduced
from [4].

as in Figure 4.2 (a) before and after the national emergency. Figure 4.3 (b) for New York

and (d) for Seattle show normalized number of stays. We can see a reduction of non-

essential places after the national emergency due to the social distancing policies.

Finally, in Figure 4.4, we can see the comparison of the average time per stay for

each city and category before and after the national emergency. There is a significant

decrease in time spent per stay for nearly each category in both cities. However, the

grocery and the transportation categories are those with the smallest change in the

average time for both cities. Moreover, the shopping category does not barely change

in New York, but it does in Seattle. On the other hand the Food & Beverages category

decrease in New York, but it does not in Seattle.
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Network structure

Agents. In the same way as in section 3.3, our population consisted of two different

sub-populations, adults and children, assigned to US CBGs to create synthetic

representative households and demographic traits as documented in [227].

Following this process we generated two synthetic populations, one for the New

York metropolitan area and the other one for the Seattle metropolitan area. The New
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Figure 4.5: Synthetic and census population demographics. Age groups and
households demographics compared against the US Census data. (a) Age groups
distribution and (b) households size distribution for the New York Metropolitan
Area. (c) Age groups distribution and (d) households size distribution for the Seattle
Metropolitan Area. Figure reproduced from [4].

York synthetic population consisted of 565k agents (3.0% of the population in the

New York metropolitan area), 78.02% of them are adults and 21.98% are children.

Distribution of age groups are shown in Figure 4.5.a where we can see the that our

synthetic population age distribution compares well against the US census data. The

same happens for the household size distribution, where 31% of the households are

of size two, 29.5% of size one and the rest are of size three or bigger, see Figure 4.5.b.

The Seattle synthetic population consists of 106k agents (2.9% of the population in the

Seattle metropolitan area) with 76.7% of them adults and 23.3% are children. Age

groups are distributions can be found in Figure 4.5.c where we can see that they

compare well with the demographic distribution. Household size distribution is very

similar to the NY metro area, with 27.2% of size one, 34.8% of size one and the rest of

size three or bigger. In Figure 4.5.d we can see the comparison of our synthetic

households population distribution against the US census data.
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Contacts. We used our probabilistic approach to detect contacts as described in

section 3.3, adding the temporal dimension to it. By revisiting Eq. (3.9), we built our

contact network in each of the layers:

• Community weighted contact network. In the community layer Contacts were

built by estimating co-location of two individuals in the same POI. Eq. (4.1) is an

extended version of Eq. (3.10) for day t from chapter 3. Specifically, the weight,

ωCijt, of a link between individuals i and j within the community layer at day t is

computed according to the expression:

ωCijt =
n∑
p

Tipt
Tit

Tjpt
Tjt

, ∀i, j, t (4.1)

where Tipt is the total time that individual i was observed at place p in day t and

Tit is the total time that individual i has been observed at any place set within

the community layer that day t. The distribution of values of ωijt is very broad.

For example in NY ωijt as a mean of 0.395, a median of 0.279 and 25% and 75%

quantiles of 0.095 and 0.653, respectivelly.

Finally, for robustness and computational reasons, we included only links for

which ωCijt > 0.01, removing 2.88% of the original links. For other values of the

threshold like ωCijt > 0.005 and ωCijt > 0.02 we would remove 1.19% and 6.19%

of the links respectively. Note however that since those links have very small

weights, our results for the epidemic spreading did not depend significantly of

the threshold chosen provided that it is small.

• Workplace weighted contact network. As we mentioned, for privacy reasons,

our data was obfuscated around home and workplaces to the level of CBGs. To

get a proxy of contacts at the workplace, we assume that all workers in the same

CBGs have a probability to interact. To account for the potential number of

working places in that area, we weighted that probability by the number of

POIs at the same CBG. Therefore, the contact weight, ωWijt, of a link between

individuals i and j within the same workplace at day t is given by:

ωWijt =
∑

α∈CBG

∑
β∈POI(α)

δiαt
NPOI(α)

δjαt
NPOI(α)

=
∑

α∈CBG

δiαtδjαt
NPOI(α)

, ∀i, j, t (4.2)
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where POI(α) is the set of POIs in the CBG α, NPOI(α) is the number of POIs in

α, δiαt is the binary variable of observing or not an individual at her workplace

within CBG α at day t. As before, we included only links for which ωWijt > 0.01.

• Household weighted contact network. To calculate the weights of the links at

the household layer, we use Eq. (3.11) from chapter 3. We assumed this layer is

static throughout our period.

• School weighted contact network. To calculate the weights of the links at the

school layer, we use Eq. (3.12) from chapter 3. This layer is removed on March

16th 2020 in both metropolitan areas to account for the imposed school closure.

Calibration of intra-layer links. To calibrate the relative importance of each layer

in the spreading process we further multiply the weights by their corresponding κ.

In particular, with κ = 4.11 in the household layer, κ = 11.41 in the education layer,

κ = 8.07 in the workplace layer and κ = 2.79 in the community layer [227], see Eq.

(3.9)

SARS-CoV-2 transmission model

To model the natural history of the SARS-CoV-2 infection, we implemented a

stochastic discrete-time compartmental model on top of the contact network ωijt in

which individuals transition from one state to the other according to the distributions

of key time-to-event intervals (e.g., incubation period, serial interval, time from

symptom onset to hospital admission) as per available data on SARS-CoV-2

transmission model. In the infection transmission model, susceptible individuals (S)

become infected through contact with any of the infectious categories (infectious

symptomatic (IS), infectious asymptomatic (IA) and pre-symptomatic (PS)),

transitioning to the latent compartment (L), where they are infected but not infectious

yet. Latent individuals branch out in two paths according to whether the infection

will be symptomatic or not. We also consider that symptomatic individuals

experience a pre-symptomatic phase and that once they develop symptoms, they can

experience diverse degrees of illness severity, leading to recovery (R) or death (D).

The value of the basic reproduction number is calibrated to the weekly number of

deaths. For further details on the model, please refer to section 3.3 and for more
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detailed information on model parameters, the calibration process, model

specifications, and sensitivity analysis of our results, please refer to Appendix C.

4.4 Results

Impact of NPIs. Our data clearly shows how the contact networks in the two metro

areas changed due to the introduction of NPIs during the week of March 15th to March

22nd 2020, see Figure 4.1.c, A National Emergency was declared on March 13th 2020,

and the NY City School System announced the closure of schools in March 16th [266].

NY City Mayor issued a "shelter in place" order in the city on March 17 [267], and non-

essential business were ordered to close or suspend all in-person functions in New

York, New Jersey and Connecticut by March 22nd. As we can see in Figure 4.1.c the

individuals’ total number of contacts decreased dramatically from around 7 (in our

community layer) to below 2. In Seattle, the reduction of contacts started one week

earlier than in NY City, coinciding with earlier closing of some schools [268], and the

Seattle mayor issuing a proclamation of civil emergency on March 3rd [269].

In Figure 4.6 we report numerical simulations of the epidemic curve that accurately

reproduce the evolution of the incidence of new COVID-19-related deaths in both NY

and Seattle metro areas, even though both cities were affected very differently by the

epidemic in the first wave. The analysis identifies the impact of the reduction in the

number of contacts due to the implemented NPIs: both in the NY and Seattle metro

areas, Rt dropped below 1 one week after NPIs were introduced. To estimate the

importance of timely implementations of NPIs in metropolitan areas, we generated

counterfactual scenarios in which the NPIs and the ensuing reduction in the number of

contacts could have happened one week earlier or later than the actual timeline [272].

The comparison between NY and Seattle is relevant, because we observed that the

reduction in contacts in Seattle started to happen exactly one week before that in NY.

To this end, we shifted in time the contact patterns around the week where NPIs were

introduced in both cities. The results for these scenarios are reported in Figure 4.6.d,

where we see that a one-week delay in introducing NPIs could have yielded a peak

in the number of deaths two times larger than the observed one (0.7 deaths per 1,000

people compared to the 0.35 per 1,000). This doubling in peak deaths following a one-

week delay is also observed in the Seattle metro area and in the cumulative infection
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Figure 4.6: Evolution of the first wave. (a) Weekly number of deaths in New
York (NY) and Seattle (ST) metro areas. The dots/triangles represent the reported
surveillance data used in the calibration of the models. The lines represent the median
of the model ensemble for each location and the shaded areas the 95% C.I. of the
calibrated model [270]. (b) Evolution of the effective reproduction number according
to the output of the simulation. The solid (dashed) line represents the median of
the model ensemble and the shaded areas the 95% C.I. of the model. (c) Estimated
prevalence in our model (median represented with solid/dashed lines and 95% C.I
with the shaded area) and values reported by the CDC (dots/triangles represent New
York and Seattle data respectively) [271]. (d) Estimated number of deaths if the NPIs
had been applied in New York one week earlier/later. Solid (dashed) lines represent
the median of the model ensemble and the shaded areas the 95% C.I. (e) Estimated
evolution of the effective reproduction number if the measures had been applied in
New York one week earlier/later. Solid (dashed) lines represent the median of the
model ensemble. (f) Estimated prevalence in New York (left) and Seattle (right) if the
NPIs had been applied in New York one week earlier/later and in Seattle one week
later. The height of the bars represents the median of the model ensemble, while the
vertical error bars represent the 95% C.I. The dot/triangle shows the value reported
by the CDC. Figure reproduced from [4].

prevalence in the metro area. Conversely, a one-week earlier implementation of the

NPIs timeline in the NY area could have reduced the death peak by more than a factor

of three, a result similar to that found using county-level simulations [272].
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Figure 4.7: Spatial spreading of the disease. The plots in the left column represent the
share of infections across layers in New York (a) and Seattle (d). In the middle column,
the estimated location where the infections took place for New York (b) and Seattle
(e) in the community layer. Note that the y-axis is 20 times smaller in Seattle. The
evolution has been smoothed using a rolling average of 7 days. In the right column,
the distributions are normalized over the total number of daily infections, showing
how infections were shared across categories in the community layer. The evolution
has been smoothed using a rolling average of 7 days. Figure reproduced from [4].

Taxonomy of transmission events. The high resolution of our dataset allowed us to

estimate the relevance of different settings and the effects of NPIs on the transmission

dynamic of SARS-CoV-2. People spent different time in each layer and place before

and after the introduction of NPIs (see Figure 4.4). As a result, the number of

infections varied significantly during the observed period. As we can see in Figure

4.7, before NPIs were introduced most infections took place in the community and

workplace layers. Once restrictions were implemented in both cities on March 16th

2020, as expected, the proportion of infections in the household layer greatly

increased, especially in the NY area. In Seattle, the number of infections in the

workplace and household layers were comparable, probably because the number of

cases overall was lower than in NY. We can further stratify data by venue type in the
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community layer as in Figure 4.7, by looking at the estimated top categories (see

section 4.3, Points of Interest for their definition) in terms of the number of total

infections throughout the whole period. Before the NPIs were introduced, our model

estimates that most of the infections in the community layer happened in

Food/Beverage, Shopping, and Exercise venues. Also a significant number of

infections happened in Art/Museums and Sport/Events venues. After the

introduction of NPIs, the number of infections in Exercise, Sport/Events or

Art/Museums venues decreases as expected. However, Food, Groceries and

Shopping venues became the main community setting for transmission in both cities.

Super-spreading events. Our agent-based simulations also allowed us to follow

specifically each individual and how many secondary infections she generated. In

Figure 4.8 we reported the distribution of the number of secondary infections

produced by each individual in the community layer only. As our model integrated

co-location data, this was driven by individual-level differences in activity and those

individuals they interacted with. The distribution is highly skewed and can be

modeled by a negative binomial distribution with dispersion parameters (k) of 0.16

(NY) and 0.23 (Seattle), in agreement with the evidence accumulated from

SARS-CoV-2 transmission data [260,261,273,274]. As a result, super-spreading events

(SSEs) are likely to be observed. We define a transmission event as a SSE if the

individual infects in a specific location category more than the 99-th percentile of a

Poisson distribution with average equal to R (see [259] and Appendix C for further

details), here corresponding to an infected individual infecting 8 or more others.

Interestingly, if we compare the distribution of secondary infections produced before

and after the introduction of NPIs, even though we see a clear reduction of SSEs, we

still find a heterogeneous distribution of secondary infections. Thus, the NPIs did not

prevent the formation of SSEs, but only significantly lowered their frequency.

Consistent with this pattern of over-dispersion in the number of transmission

events, we found that the majority of infections is produced by a minority of infected

people: ∼ 20% of infected people were responsible for more than ∼ 85% of the

infections in both metro areas (see Figure C.1 in Appendix C). However, note that a

critical driver here of this phenomenon is that a large majority of infected people

(85% in the community layer) did not infect any others in our simulations. Only a
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Figure 4.8: Behavioral super-spreading events. Distribution of the number of
infections produced by each individual in New York (a) and Seattle (b) up to the
declaration of National Emergency. The distribution is fitted to a negative binomial
distribution yielding a dispersion parameter of k = 0.163 [0.159 − 0.168] 95%CI and
k = 0.232 [0.224−0.241] 95%CI, respectively. In both plots the inset represents the same
distribution on the log-scale and distinguishing infections that took place before the
declaration of National Emergency on 03/13 and after that date. Figure reproduced
from [4].

small fraction of infection events (0.08%) were made of 8 (or more) secondary

infections.
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Transmission events and SSEs did not happen equally in different settings or

along time or geography. In Figure 4.9 we show the results of our simulations for the

total number of infections produced in each category and the share of those infections

that can be related to SSEs (see also Table C.2 in Appendix C). The combination of

those two features define a continuous risk map in which places can be at different

types of risk: (i) low contribution from SSEs and low contribution to the overall

infections, such as Outdoor places; (ii) larger contribution from SSEs but low

contribution to the overall infections, such as Sports/Events, Arts/Museum or

Entertainment before the introduction of NPIs; (iii) large contribution to the overall

infections but with low contribution from SSEs, such as Shopping or Food/Beverage

after the introduction of NPIs; and (iv) large number of infections and with large

contribution from SSEs, such as Grocery. This classification has important

implications from a public health perspective. For instance, venues in (ii) do not have

a major contribution to the overall infections but might represent a challenge for

contact tracing. Conversely, for categories in (iii) it might be easier to trace chains of

transmission but their total contribution is large. Note that this definition is not static,

but could change over time due to the NPIs imposed by authorities. Indeed, looking

at the weekly pattern of infections (see Figure 4.9) we observed how some categories

move to a different quadrant due to the behavior of individuals. Although we

estimated that SSEs and infections were more likely in Arts/Museum, Sport/Events

in NY, and Entertainment and Grocery in both cities, our simulations showed that

Grocery category still greatly contributes to the total number of infections, but did

not have as many SSEs after March 16 2020. On the other hand, we estimated that

SSEs were rare before March 9 2020 in Seattle, but their contribution doubled in the

week of March 9-15 - when many individuals probably went for supplies amid

preparation for the future introduction of NPIs. This observation included implicitly

a very important message: a place may not be inherently dangerous; rather, the risk is

a combination of both the characteristics of the place/setting and of the behavior of

individuals who visited it. This suggests revisiting studies that found that settings

could play always the same role in the evolution of the pandemic [258].
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4.5 Discussion

Our results emphasize the intertwined nature of human behavior, NPIs, and the

evolution of the COVID-19 pandemic in two major metropolitan areas. Specifically,

our results suggest that heterogeneous connectivity and behavioral patterns among

individuals lead naturally to differences in risk across settings and the generation of

SSEs. In particular, the implemented partial or full closures of different settings (e.g.,

sport venues, museums, workplaces) had a dramatic effect in shaping the mixing

patterns of the individuals outside the household [239, 275]. As a consequence, the

settings responsible for the majority of transmission events and SSEs varied over

time. In absolute terms, the food and beverage setting is estimated to have played a

key role both in determining the number of transmission events and SSEs in the early

epidemic phase; however, this setting was among the first targets of interventions

and thus its contribution become zero over time because of the introduced NPIs. On

the other hand, settings such as grocery stores, which consistently provided a low

absolute contribution to the overall transmission and SSEs, became, in relative terms,

a source of SSEs during the lockdown when most of other activities were simply not

available. These findings suggest that there is room for optimizing targeted measures

such as extending working time to dilute the number of contacts or the use of smart

working aimed at reducing the chance of SSEs. That could be especially relevant to

avoid local flare ups of cases when the reproduction number is slightly above or

below the epidemic threshold.

Although the overall picture emerging from studying Seattle and New York was

consistent, it is important to stress that each urban area might have specific

peculiarities due to local transportation, tourism, or other economic drivers

differentiating the cities’ life cycle. Our results suggest that a one-size-fits-all solution

to minimize the spread of SARS-CoV-2 had very different impact across cities.

Furthermore, the results presented may not be generalized to rural areas. Though

large parts of the Seattle metro area could be considered as rural, individual

connectivity patterns may be differently constrained by the generally lower

population density in some other parts of the country.

Our modeling analysis did not have the ambition to substitute field

investigations, which remained the primary source of evidence. Some of the reported

findings (e.g., the role of food and beverage venues or groceries) appear to be in



4. Temporal Contact Networks: Unveiling the Spread of Viral Agents and
Detecting Super-Spreading Events through Mobility Data 97

agreement with epidemiological investigations [258, 276–279]. Future empirical

analyses could provide further validation of our findings. Our modeling

investigation was based on real-time data on human mobility/activity that provides

an indirect proxy for infection transmission. One of the strengths of this approach is

that, differently from epidemiological investigations, the data can be retrieved in real

time and longitudinally, thus allowing to quickly capture possible changes in the

most relevant settings for transmission. Furthermore, our approach could help

minimize the noisy and biased data collection related to massive transmission

events [280]. Yet, the approach used here is far from capturing all the finest details of

human social contacts and thus the estimates on the contribution of different settings

to SARS-CoV-2 transmission entail an unavoidable uncertainty.

To properly interpret our results, it is important to acknowledge the limitations of

the assumptions included in our modeling exercise. First, we have considered a

decrease of the transmission probability in outdoors as compared to indoors settings

of 1/20 [281]. Although this choice is guided by empirical evidence and our results

were robust to this choice, further studies better quantifying the relative risk of

indoor vs. outdoor transmission were warranted. Second, our model neglected to

consider differences in the behavior that people follow when in contact with each

other. It is indeed possible that contacts between relatives and friends have a larger

chance of resulting in a transmission event as compared with interactions with

strangers [282]. Third, we did not model nursing homes, which were severely hit by

the COVID-19 pandemic across the globe. However, although they represented a key

setting to determine COVID-19 burden in terms of deaths and patients admitted to

hospitals and ICUs, they were possibly not central to capture the transmission

dynamics of SARS-CoV-2 at the population level, which is the aim of this section.

Although there was some co-location information from hospitals,but we did not

model them. Nonetheless, contact tracing studies from several countries revealed

that transmission within hospitals wasrelatively low, and hospital staff were more at

risk from interactions with their coworkers (e.g. in the breakroom) or out in their

communities [283, 284].

In conclusion, the majority of NPIs introduced in large urban areas in March 2020

were effective in dramatically slowing down the first wave of COVID-19 by greatly

reducing the number of effective contacts in the population. Closing down schools,
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businesses, workplaces, and social venues, however, took (and still does) an

enormous toll on our economy and society. Our results and methodology allow for a

real-time data-driven analysis that connects NPIs, human behavior and the

transmission dynamic of SARS-CoV-2 to provide quantitative information that can

aid in defining more targeted and less disruptive interventions not only at a local

level, but also to assess whether local restrictions could trigger undesired effects at

nearby locations not subject to the same limitations. Furthermore, we extend our

previously proposed probabilistic approach from chapter 3 to construct temporal

contact networks. This extension enables us to make direct observations of temporal

health-related behaviors, providing valuable insights for modeling and quantifying

social epidemics.



5

Conclusions

"Scientific research is based on the idea that everything that takes place is determined

by laws of nature, and therefore this holds for the action of people."

– Albert Einstein1

THE primary objective of this research was to explore the field of computational

and digital epidemiology and its application in modeling mathematically human

health-related behaviors to explain and predict biological viral epidemics. Specifically,

this research aimed to achieve the following objectives:

• Contextualize the importance of viral epidemics and human behaviours: In

chapter 1, we provided a comprehensive background on why viral epidemics

are a crucial and compelling issue to model mathematically. We discussed the

significance of social network approaches in epidemiology, the role of novel

data streams from social media and mobility in modeling epidemics, and the

latest advancements in data-driven epidemiological systems that include

human behavioral data.

• Understand the relationship between human behavior, viral agents, and

human health: We explored in chapter 1 the mechanisms that drive human

behavior and their implications for epidemic spread. By examining the impact

of changes in human behaviors on global infectious pandemics, we aimed to

1Albert Einstein. German-born theoretical physicist. Quote extracted from the book "Albert Einstein,
The Human Side: Glimpses from His Archives".
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uncover the underlying factors that make populations vulnerable to infectious

diseases.

• Utilize novel data streams for modeling epidemics: One of the main objectives

of this research was to explored the use of social media, chapter 2, and mobility

digital traces, chapter 3 and chapter 4, as proxies of complex human social

systems. By incorporating these data sources, we aimed to develop data-driven

epidemiological systems that could simulate, explain, and predict the

interaction between the environment, human behaviors, and the spread of

viruses in real-time.

• Develop methods for EWES: A key focus of this research was to develop

innovative approaches for early warning epidemiological systems. We

proposed advanced social network approaches to detect super-sensors in

informational epidemics on social media, enabling the prediction of seasonal

biological epidemics like ILI, chapter 2. Additionally, we focused on building

human contact matrices from real-world mobility data to map COVID-19

transmission, chapter 3 and chapter 4, at different spatiotemporal scales. These

methodologies aimed to enhance the ability to detect outbreaks earlier and

provide timely interventions.

• Contribute to the field and inspire further research: Throughout this thesis,

we aimed to make significant contributions to the field of computational and

digital epidemiology. By developing novel methodologies, exploring

data-driven approaches, and investigating the implications of my findings, we

sought to inspire further research in this area. Our goal was to contribute to the

development of new data-driven epidemiological systems that leverage digital

traces to improve health outcomes at scale.

Our work in this thesis has built upon new data streams encoding human

behaviours, utilizing traditional epidemiological and social network methods

alongside the latest advancements in computation and machine learning. This has

enabled us to develop real-time epidemiological systems that can simulate, explain,

and predict the interaction between the environment, human behaviors, and the

spread of viruses, enhancing our ability to tackle the most pressing health challenges

of our time. Let’s see them in more detail.
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In chapter 2, we presented a novel approach for building early warning

epidemiological systems when direct observational data about health-related

behavior is not available. We proposed an advanced social network approach to

detect super-sensors in an informational epidemic on social media to predict a

seasonal biological epidemic, such as ILI in Spain. By mirroring the informational

epidemic on social media with the biological epidemic and identifying super-sensors

based on content and centrality metrics, we can predict biological outbreaks in

advance of official and social media sources. Our approach utilizes machine learning

models to detect super-sensors, which can be used to build time series of the

informational epidemic that replicates the biological epidemic. This approach is

cost-efficient, sensitive, and respectful of citizens’ data because it does not require

monitoring and collecting data from the entire population, only a small subset of

individuals deemed super-sensors. Furthermore, this method enables public health

decision-makers to detect outbreaks earlier than traditional approaches, allowing

them to mobilize resources promptly.

In chapter 3 and chapter 4, we proposed methods for building human contact

matrices from real-world mobility data when direct observations of human

interactions are possible. In chapter 3, we detailed a novel model that integrated

anonymized real-time mobility data with census and demographic data to map

COVID-19 transmission in the Boston, Massachusetts area, by building static

spatiotemporal human contact matrices for the Boston metropolitan area. This study

provided insights into possible pitfalls and solutions as cities lifted restrictions that

were in place during the firsts COVID-19 lockdowns worldwide. In chapter 4, we

focused on expanding the methodology proposed in chapter 3 for building dynamic

spatiotemporal human contact matrices at a daily level. We used real-time mobility

data with census and demographic data to map COVID-19 transmission from the

New York metropolitan area, which included mobility data from New York, New

Jersey, and Connecticut states, and Seattle metropolitan area. The goal of this study

was to examine the forensic potential of such granular human contact matrices at

daily and POI (points of interest) levels of viral transmissions, to quantify

super-spreading events and their locations, and compare the impact of NPIs from the

two metropolitan areas. Finally, articles [2, 3] upon which chapter 3 is based, played a

crucial role in examining the second wave and attracting significant scientific and
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media attention internationally and locally, as seen in chapter .

To summarize, the computational and digital epidemiology field is vast, and we

have only touched upon a small fraction of it in this thesis. Our contribution has

been to explore the use of novel data streams and new methodological methods to

model mathematically biological epidemics and human health-related behaviors. We

developed data processing pipelines to construct human contact interaction matrices

and epidemiological time series, which were used to train agent-based, regression,

and machine learning models. Our hope is that these short studies will inspire further

exploration in the fields of computational and digital epidemiology and lead to the

development of new data-driven epidemiological systems that can leverage digital

traces to improve the health outcomes of millions of people worldwide.

5.1 Future work

The results presented in this thesis open up several potential paths for future

research. Our studies can be expanded upon to gain a deeper understanding of

specific issues or to utilize the proposed methodologies to push the boundaries of

knowledge and improve the effectiveness and accuracy of epidemiological systems.

Additionally, these findings could be applied to better anticipate and respond to new

and emerging epidemics.

In chapter 2, we utilized digital traces to indirectly observe human behaviors and

model viral biological processes like ILI, employing a behavioral and social network

approach. While our study focused on a specific epidemic in a particular country, we

believe that our results, based on collective behavior, have the potential to be

generalized to other epidemics, regions, and social platforms. Furthermore, our

findings can encourage further investigations into the personality and behavioral

traits of super-sensors.

In chapter 3 and chapter 4, we demonstrated how to make direct observations of

human behavior, model and quantify epidemics, and utilize real-world mobility and

census data to infer realistic synthetic populations and their social interactions,

represented by social contact matrices. The proposed methodology for feeding

agent-based models and simulating the dynamics of COVID-19 is robust and

granular, making our synthetic populations suitable for use in a macroeconomic
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model. This model could utilize the epidemiological model output from the contact

matrices to measure the economic impacts of different health and behavioral

interventions on both the epidemic and the economy.

In fact, we have already collaborated on such work which published in a

pre-print [5]. Future pandemics require an understanding of the complex interplay

between health and the economy. The synthetic populations and social interactions

we developed can also be used to explore disease spread between social groups and

their impact, shedding light on the correlation between infectious diseases and

economic income.
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Epilogue: Personal learning reflections

"The real scientist is ready to bear privation and, if need be, starvation rather than

let anyone dictate to him which direction his work must take."

– Albert Szent-Gyorgyi1

THIS thesis answered many inner questions of the writer, but it has left more doors

open than closed about the nature of the universe and its complexity. Hence,

further study is needed and I will keep exploring other avenues of the knowledge

hyper-spaces. Embarking on this research journey and undertaking the process of

conducting my study has been a transformative experience that has shaped my

growth and development as a researcher after many sleepless nights before and

during times of war against COVID-19. Throughout this thesis, I encountered

numerous challenges, unexpected discoveries, and valuable lessons that have greatly

enriched my understanding of how science works as a tool to foster innovation and

human evolution.

One of the key lessons I learned during this research journey was the importance

of interdisciplinary collaboration at the highest international level. The field of

computational and digital epidemiology bridges the domains of epidemiology, data

science, and social sciences. As I delved into the complexities of mathematically

modeling biological epidemics and human health-related behaviors, I realized the

immense value of collaborating with experts from different disciplines. Engaging in

interdisciplinary discussions and incorporating diverse perspectives enriched my

1Albert Szent-Györgyi. Hungarian biochemist. Quote extracted from the article ’Science needs
freedom’.
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research approach and allowed me to tackle complex problems from multiple angles.

Methodological insights gained during my research were invaluable in shaping

the direction of my study. I discovered that the integration of anonymized real-time

mobility data with census and demographic data offers a powerful means of

constructing human contact matrices and mapping COVID-19 transmissions. This

granular approach provided unique opportunities to explore viral transmission

patterns, super-spreading events, and the impact of non-pharmaceutical

interventions. The utilization of machine learning models to build time series of

informational epidemics proved to be an efficient and effective strategy for predicting

biological outbreaks, and detect super-sensors at scale. These methodological

insights opened up new avenues for future research and contributed to the

advancement of computational and digital epidemiology methodologies.

In a more theoretical framework, the application of complex systems and network

theory has been transformative, allowing me to perceive the universe as an

interconnected whole. Embracing these theoretical perspectives has provided me

with a profound understanding of the intricate relationships and interdependencies

that exist across various systems and entities. This holistic view has not only enriched

my academic pursuits but has also influenced the way I perceive and engage with the

world around me. Embracing the concepts of mathematical modeling, complex

systems and network theory has been a powerful lens through which I appreciate the

underlying unity and complexity inherent in the universe.

Along this research journey, I also encountered unexpected discoveries that

further expanded my understanding of the field. The exploration of novel data

streams, such as social media and mobility digital traces, revealed rich sources of

information for capturing human behaviors and modeling epidemics mathematically.

I was astonished by the depth and breadth of insights that could be gleaned from

these unconventional data sources. These unexpected discoveries highlighted the

potential of leveraging digital traces for early warning systems and the real-time

monitoring of infectious diseases. The realization that non-traditional data streams

could provide valuable insights and complement traditional epidemiological

approaches was a significant breakthrough.

Reflecting on my journey as a researcher, I have come to appreciate the

importance of adaptability and resilience in the face of challenges. Throughout the
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research process, I encountered various obstacles ranging from data collection and

analysis to methodological complexities. These challenges were further compounded

by unforeseen obstacles and the immense stress caused by the COVID-19 pandemic.

Despite the uncertainty and high levels of stress before and during the pandemic, I

felt a moral obligation to contribute my technical knowledge to the world, deeply

moved by my passion to humanity. However, navigating the rigorous and

demanding peer-review process of top journals served as a humbling experience and

taught me valuable lessons. Each challenge I encountered presented an opportunity

for personal and academic growth. Overcoming these obstacles required unwavering

persistence, problem-solving skills, and a willingness to explore alternative paths.

The iterative nature of the research process nurtured my adaptability and taught me

the significance of embracing uncertainty and adjusting my approach as needed.

For instance, one specific hypothesis we pursued in during this PhD thesis was

the potential to measure and nowcast the prevalence of headaches using social media

data from Twitter and environmental data, such as pollution, weather and even

Schumann resonance data. After conducting extensive analyses spanning several

years in collaboration with Nick Obradovich, expert in climate change and human

behaviour. We recognized the need to validate our findings against a reliable ground

truth. Consequently, I sought access to a public health database through the Spanish

Ministry of Health, but despite our efforts, we were unable to obtain the desired

results. Regrettably, we had to abandon this line of research due to the lack of

conclusive findings and we decided not to include the results in this thesis. While the

potential for groundbreaking discoveries was significant, the absence of results

prevented us from conducting what could have been the largest epidemiological

study on headaches worldwide.

Moreover, when the COVID-19 outbreak emerged, our research focus shifted from

studying the spread of influenza among various social statuses with the contact

matrices presented in chapter 3 and a first agent-based models coded by myself in

python that was very slow. I never coded high performance computing models in

python. As you have read in chapter 3, we promptly adapted our plans, modified our

data for different social distancing strategies, and refined our models to simulate the

spread of COVID-19 along with Alberto Aleta and Yamir Moreno. We had the

expertise to build contact matrices from real human mobility data and they had the
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expertise on building very efficient agent-based models to run millions of simulations

in minutes. Our initial collaboration began on March 13th, 2020. Remarkably, within

just nine sleepless days, we published our first preliminary report [2], and our efforts

culminated in a significant achievement when our work was published [3] in Nature

Human Behaviour journal on August 5th, 2022. Sustaining this fruitful collaboration

over several years, we had the privilege of working alongside esteemed researchers

in the field, including Alex Vespignani and his team.

Furthermore, this research journey has reinforced the importance of the scientific

community and the power of collaboration. Engaging with fellow researchers,

attending conferences, and participating in discussions have provided valuable

insights, feedback, and encouragement. The constructive criticism and support

received from my advisor and colleagues have been instrumental in shaping the

trajectory of my research and fostering an environment of continuous learning.

I had the invaluable opportunity to visit the Human Dynamics Labs at the MIT

Media Lab, where my thesis advisor, Esteban Moro, conducts groundbreaking

research. The lab, led by the esteemed Alex Pentland, is at the forefront of leveraging

big data to unravel the complexities of human behavior. Meeting Alex Pentland was

a remarkable experience, and I was privileged to collaborate with him as a coauthor

on a project. Visiting the MIT Media Lab was nothing short of heavenly for an

innovator like me, as it provided an environment that fostered creativity and

exploration at the intersection of data science and human behaviour. I have also

published in Nature Human Behaviour or PNAS journals, something that I would

have never imagined when I started this thesis as a part-time student at my early 30s.

I am confident that the lessons learned and the knowledge gained during this

research journey will continue to shape my future contributions to the field of science

and my professional career, and I am excited about the potential impact of

data-driven epidemiological systems powered by AI in improving global health

outcomes and what the universe will bring me.

In conclusion, my PhD research in mathematical engineering has been a deep

transformative and rewarding experience, personally and professionally. The

magnitude of my experiences has transformed me to such an extent that I am no

longer the same person, and I really mean it, my entire belief system has undergone a

profound and complete shift. The unexpected challenges, discoveries,
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methodological insights, and experiences gained have greatly influenced my growth

as a researcher. Lastly, I want to reiterate my heartfelt gratitude to my thesis advisor,

Esteban Moro, for his unwavering support, kind encouragement, and invaluable

constructive feedback throughout this journey. Two students learning together.
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Appendix A

Supplementary Materials: Social

Epidemic Sensors

A.1 Data processing

In Figure A.1 we can see our data processing pipeline is composed of three different

stages. First, data scrapping and storage of raw data both from the Twitter API and

the surveillance system for influenza in Spain (ScVGE) [203]. Second, data cleaning.

This stage has a ILI keyword-based filtering step, where we look for ILI-related

spanish words, such as "gripe", "gripazo", "trancazo", "catarro" and "constipado", and

a second step with a first person ILI-related posts text classifier. Then our pipeline is

divided in two branches. One for building autoregressive linear models for

explaining and predicting official weekly ILI cases, where is required a previous step

for grouping by weeks the transactional data, before feeding our linear models. The

second branch builds several logistic linear models at individual level for explaining

and predicting potential sensors from the network. Before feeding the models, we

create some behavioural variables, based on social activity, mobility and content

posting.

A.2 Centrality sensitivity analysis

Figure A.2 shows the time series of different centrality metrics of the users making

ILI-related posts compared with the total number of them. We show the average over
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variables 
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Figure A.1: Data processing pipeline schematic view. From left to right, raw data
scrappers and storage, data filtering, data enrichment, time series generator and
models. Figure reproduced from [1].

during the 2013, 2014, and 2015 seasons of ILI in Spain. Time series are centered

around their maximum peak within the season. For the centrality metrics, we show

the weekly total out-degree (DN,t in the main text) compared with the weekly average

out-degree (DN,t divided over the number of users making ILI-related posts) and the

weekly median of the out-degree of users making ILI-related posts. As we can see the

total out-degree clearly follows the number of ILI-related mentions and shows a large

spike weeks before the peak. That peak is also observed for the average degree.

However, it is not present in the median. These results show that high-connected

people have ILI-related posts in the social network at different times than the rest of

the people. And it only appears in the total or average degree, since those estimators

are more susceptible to large out-degree users than the median out-degree.

To make that difference more quantitative in Figure A.3 we show the difference on

the average of those centrality metrics 18 weeks before and after the peak. We applied

the statistical test t-test to see if there are differences between the groups. Figure A.3.

As we can see, the total out-degree is the one that shows clearly more difference before

and after the peak. For that reason, we choose it in the main paper.

A.3 Sensors selection analysis

To define sensors, Figure A.4 shows the out-degree distribution of all the users having

ILI mentions. Again, it follows a power-law distribution with an exponent of 2.56 (CI
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Figure A.2: Generalized ILI-related posts against weekly centrality statistics.
Horizontal axis measures weeks from the peak. Green solid lines show the average
incidence across seasons of weekly ILI-related posts (left Y-axis). Blue lines represent
different weekly centrality metrics from individuals posting a first-person ILI-related
post (right Y-axis). (A) is the weekly total out-degree, (B) is their average out-degree,
and (C) is the median out-degree of those individuals. Shaded area are the confidence
intervals over the different seasons. Figure reproduced from [1].

[2.51, 2.62]). Based on this distribution, we defined four out-degree thresholds to test

different groups of sensors. Out of the users making ILI-related mentions, we defined
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Figure A.3: Comparison of degree metrics before and after peak groups. Points
correspond to different weeks grouped by before and after the peak. We also show the
box-plot for each group, including their median (horizontal thick line) and mean (red
diamonds). Vertical axis are centrality metrics: (A) Total out-degree, (B) Median out-
degree and (C) Average out-degree. The p-value shows the t-test statistic comparing
the means for the groups before and after the peak. Figure reproduced from [1].

a sensor as a user with an out-degree greater than 100, 500, 1000, or 2000 (vertical

dashed lines in Figure A.4), and as control otherwise. Figures A.4B shows the results

for the cumulative incidence of the ILI-related mentions for each of the out-degree

sensor thresholds. As we can see, for an out-degree threshold greater than 1000, the

cumulative ILI-related mentions incidence for the sensor group is ahead and starts to

grow one or two weeks before the control group. Therefore, we selected the out-degree

threshold to be 1000 from now onward in our study.

A.4 Agent-based model of ILI disease and information

diffusion

The values of all the parameters used in our Agent-Based Model (ABM) simulating the

Susceptible-Infected-Recovery epidemic spreading on a complex network are given in

Table A.1. The synthetic network is generated by the Barabasi-Albert model using the

igraph R package [200]. We simulated different realizations of the epidemic model,

see Figure A.5, emulating different ILI seasons. To compare the temporal dynamics of

our ABM with the real ILI epidemics, we rescale the time in our model to mimic the

epidemic dynamics in the empirical data. As we can see in Figure A.5 equating four
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Figure A.4: Out-degree sensitivity analysis.(A) Users out-degree dout,i frequency
distribution. Vertical orange dashed lines define the thresholds selected with out-
degrees 100, 500, 1000, and 2000. (B) Empirical cumulative distribution differences in
ILI-related mentions on Twitter between the sensor and randomly chosen individuals
for each of the degree thresholds selected. The purple line correspond to the group
of randomly chosen individuals and the yellow line is sensor group selected with an
out-degree bigger than 100 (B1), 500 (B2), 1000 (B3) and 2000 (B4). Figure reproduced
from [1].

time units in our simulations to one week, the epidemic curves have the same shape

as the real ILI-related cases.

We also assume that each agent posts on a social media platform and that those

tweets are ILI-related when he gets infected. To incorporate our hypothesis that offline

and online networks degrees are correlated, we assume that

dTwitter
i = dOffline

i (1 + νi) (A.1)

where νi is a random number uniformly distributed between 0 and 1. This way we

account for potential variability between offline and online degrees, while still getting

a moderate correlation between them.

In this ABM model we assume that sensors in the social media platform are those

with dTwitteri ≥ χ, see Table A.1. Figure A.5.C shows the average total out degree for all
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Parameters Description Value
N Number of nodes in graph 150k
n Initial seeds 2
β Infection probability (S → I) 10% [285]
ε Latent period 3 days [285]
α Recovery probability (I → R) 1 / ε
χ Sensors degree threshold 12

Table A.1: SIR Agent-based model parameters. Baseline set of parameters. Table
reproduced from [1].

users and those in the sensor group compared with the number of infected agents. As

expected, users with larger degree get infected earlier and those in the sensor group

even a little bit earlier, as we saw in the real data.
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Figure A.5: Agent-based simulations of ILI disease and information diffusion. (A)
Shows the incidence curves for the spreading of the diseases for each simulation in our
original time scale. Time is centered around the peak for each simulation and we show
the relative incidence to its maximum (peak). (B) Same as in A), but with time steps
converted into weeks to compare with real ILI-cases. (C) Average total out-degree in
the social network for all agents (DT ) and those in the sensor group (DS) compared
with the incidence of the disease. Figure reproduced from [1].
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Dependent variable:
Sensor

Content Network Mobility All

(1) (2) (3) (4)

Association −0.263∗∗∗ (0.099)
Basketball −0.237∗∗ (0.098)
Christianity 0.116∗∗ (0.053) 0.082 (0.054)
Christmas 0.134∗∗ (0.060) 0.097 (0.061)
Easter −0.144∗∗ (0.066) −0.133∗∗ (0.067)
Entertainment −0.154∗ (0.093) −0.164∗ (0.094)
Folk −0.237∗∗∗ (0.080) −0.225∗∗∗ (0.081)
Government 0.125 (0.081) 0.189∗∗∗ (0.058)
Human 0.118∗∗ (0.058) 0.103∗ (0.058)
Language 0.218∗∗∗ (0.057) 0.156∗∗∗ (0.058)
Music 0.499∗∗∗ (0.127) 0.461∗∗∗ (0.129)
National 0.292∗∗∗ (0.113) 0.168∗ (0.093)
Organisations 0.156∗∗ (0.074) 0.109 (0.072)
Philosophical 0.090 (0.057)
Politics 0.133∗ (0.081)
Popular −0.160∗∗ (0.076) −0.154∗∗ (0.077)
Soccer −0.138 (0.087)
Out-degree 0.549∗∗ (0.233) 0.511∗∗ (0.228)
Number of posts 0.461∗∗∗ (0.073) 0.315∗∗∗ (0.074)
Radius of gyration 0.113∗∗ (0.053) 0.104∗ (0.056)
Constant −0.492∗∗∗ (0.056) −0.444∗∗∗ (0.055) −0.463∗∗∗ (0.054) −0.470∗∗∗ (0.057)

Observations 1,460 1,460 1,460 1,460
Accuracy 0.605 0.607 0.615 0.636
Accuracy CI (0.568, 0.632) (0.567, 0.645) (0.575, 0.653) (0.596, 0.673)
Log Likelihood −926.504 −941.322 −971.694 −913.783
Akaike Inf. Crit. 1,887.008 1,888.645 1,947.388 1,861.566

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.2: Sensor models. Logistic regression models for sensors characterization
based on content, network and mobility features. Table reproduced from [1].

A.5 Sensors logistic regression model

In table A.2 we can see the coefficients of the logistic regression models to explain and

identify a single node as a sensor. We used three group of variables, a categorization

of the content published, user’s mobility and user’s network features including their

out-degree and number of posts.
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A.6 Data and materials availability

All data needed to evaluate the conclusions in this study are present in chapter 2, this

appendix and the following repository. Access to the github repository.

https://github.com/dmartincc/sensors


Appendix B

Supplementary Materials: Data-Driven

Contact Networks

B.1 Calibration of intra-layer links

As described in the main text, we define ωij as the weight associated to the link

between node i and j.

In the community+workplace layer, we estimated the mean number of daily

effective contacts (ηC) by using ωCij
, which is based on the co-presence probability

estimation. ηC can thus be calculated as

ηC = 1/n
∑

i∈{1,...,n}

∑
j|j 6=i∧j∈{1,...,n}

ωCij
. (B.1)

By construction, the weights for the household layer were assigned as ωHij
= 1/(h−

1), where h is the number of household members so that ηH = 1. Analogously, by

construction, for schools, we have ηS = 1.

It is important to note that ηC,H,S refer to the mean number of daily effective

contacts in the synthetic (non-calibrated) network. Based on the analysis of contact

survey data from 9 countries [228, 229, 231–233], the estimated number of daily

effective contacts by social setting is 10.86 in community+workplace, 4.11 in

household, and 11.41 in school. To calibrate the weights of intra-layer links (ω̂l), we

associate to each layer a single rescaling factor wl such that the mean number of daily

effective contacts in that layer matches mean number of daily effective contacts in the

139
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Param. Description Age Value Ref.
r relative infectiousness of asymptomatic people - 50% †
ε−1 latent period - 3 days [286]
ε
′−1

latent period - 5 days [286]
p proportion of asymptomatic - 25% [287]
γ−1 pre-symptomatic period - 2 days [286]
µ−1 time to removed/home stay - 2.5 days ∗
α symptomatic case hospitalization ratio (%) 0-4 0.0 [224]

5-17 0.025
18-49 2.672
50-64 9.334
65+ 15.465

χ ICU % among hospitalized 0-4 5.0 [288]
5-17 5.0
18-49 5.38
50-64 17.10
65+ 44.71

δ−1 days from home stay to hospital admission - 2 [289]
µ−1
H days in hospital - 8 [224]
µ−1
ICU days in ICU - 13 [224]
k proportion of presymptomatic transmission - 15% [290]
R0 basic reproduction number - 2.5 †
β transmission for symptomatic and asymptomatic people - R0µ

pr+(1−p)/(1−k)
βS transmission for pre-symptomatic people - βγk

µ(1−k)

Table B.1: SARS-CoV-2 transmission model baseline set of parameters. †:
assumed;∗: calibrated to the generation time Tg. Table reproduced from [3].

corresponding social setting. Therefore, the calibrated mean number of daily effective

contacts in the community+workplace layer η̂C is

η̂C = 1/n
∑

i∈{1,...,n}

∑
j|j 6=i∧j∈{1,...,n}

ωCij
wC+W = 1/n

∑
i∈{1,...,n}

∑
j|j 6=i∧j∈{1,...,n}

ω̂Cij
(B.2)

where wC+W = 10.86/ηC . Analogously for household and school layers, we obtain

wH = 4.11/ηH and wS = 11.41/ηS .

B.2 SARS-CoV-2 transmission model

The values of all the disease parameters used for simulating the transmission

dynamics are given in table B.1. Figure B.1 shows the numerical distributions of these

parameters as resulting from simulations of the model.
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Figure B.1: Model’s parameters and distributions summary. Figure reproduced from
[3].

B.3 Epidemiological results of the COVID-19 What-if

scenarios

Results for the unmitigated scenario are shown in Figure B.2, panels a-c (see the last

page of this Appendix). A COVID-19 unmitigated epidemic would have a peak of

daily incidence of 25.2 (95% C.I: 23.8-26.4) newly infected individuals per 1,000

people. The epidemic follows a typical trajectory, namely, when the effective

reproduction number Rt as a function of time (panel c) becomes smaller than 1, the

transmission dynamics slow down and eventually vanish after having infected about

75% of the population (Figure B.2.b In Figure B.2.d, we show that following the lifting

of social distancing the infection incidence starts to increase again, and the effective

reproductive number, that dropped by circa 75% and reached values below 1 with the
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intervention, increases to values up to 2.05 (95%CI: 1.73-2.47) (see Figure B.2.f).

Figure B.2.g shows results obtained for different levels of tracing (no tracing, 20% and

40%) of the contacts of the symptomatic isolated COVID-19 cases. By comparing

Figure B.2.d with Figure B.2.g (for no tracing), we find that quarantining households

of symptomatic subjects alone is not enough to significantly change the course of the

epidemic and the conclusions reached for the first of these scenarios.

B.4 Data and materials availability

The data that support the findings of chapter 3 are available from Cuebiq through

their Data for Good program, but restrictions apply to the availability of these data,

which were used under licenses for the current study, and so are not publicly

available. Aggregated data used in the models are however available from the

authors upon reasonable request and permission of Cuebiq. Other data used comes

from the American Community Survey (5-year) from the Census, which is publicly

available.

The epidemiological model is out of the scope of this thesis, if interested in more

detailed information on the calibration process, model specifications, and sensitivity

analysis of our results, please refer to the original article [3] and its Supplementary

Materials. These resources provide in-depth insights that go beyond the scope of this

thesis.
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Figure B.2: Impact of COVID-19 under different scenarios. Evolution of the number
of new cases (a, d, g), the outbreak size (b, e, h), and the effective reproductive number
(c, f, i) as a function of time in each situation studied. Results of the SARS-CoV-2
transmission dynamics are shown for the unmitigated scenario (top panels a-c), and
the two social distancing interventions considered, LIFT (d-f) and LET scenarios (g-
h). In both cases, we considered the closure of schools and non-essential places for 8
weeks. This is the strictest lock-down period, which is followed by a partial lifting of
the stay-at-home policy whose duration is set to 4 weeks. During the partial lifting,
all places in the community layer are open except mass-gathering locations. Finally, a
full reopening takes place after the period of partial lifting ends (relevant events are
marked with vertical lines). Panels d-f consider that no other measures are adopted
concurrently to the lifting of the restrictions, whereas the results in panels g-i have
been obtained when the reopening is accompanied by an active policy consisting of
testing the symptomatic individuals, home isolating them, and quarantining their
household and the households of a fraction of their contacts, as indicated in the legend
of the bottom panels. Note that the vertical scales of panels a, d, and g are not the same
and that both the number of new cases and total cases are per 1,000 inhabitants. In all
panels the solid line represents the average over 10,000 simulations and the shaded
region the 95% C.I. Figure reproduced from [3].



Appendix C

Supplementary Materials: Temporal

Contact Networks

C.1 SARS-CoV-2 transmission model

The values of all the disease parameters used for simulating the transmission

dynamics are given in table C.1.

C.2 Superspreading events

In heterogeneous populations it is possible for an infected individual to produce an

usually large number of secondary cases. This is known as a super-spreading event

(SSE). To define a SSE we follow Lloyd-Smith et al [259]:

1. Estimate the effective reproduction number, R

2. Compute a Poisson distribution with mean R

3. Define a SSE as any infected individual who infects more than the 99-th

percentile of the Poisson distribution within a certain category of place.

In C.1 we test the hypothesis of the 20/80 rule according to which 20% of the

infected individuals produce 80% of the infections. Note that this does not imply that

said 20% of individuals are super-spreaders. In fact, the large majority of them do not

144
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Param. Description Age Value Ref.
r relative infectiousness of asymptomatic people - 50% †
k proportion of pre-symptomatic transmission - 50% [291]
ε−1 incubation period (gamma distributed) - shape = 2.08 [282]

rate = 0.33
p proportion of asymptomatic - 40% [291]
γ−1 pre-symptomatic period - 2 days [286]
µ−1 time to isolation - 2.5 days
δ−1 days from isolation to death - 12.5 [291]
IFR infection fatality ratio 0-9 0.00161% [224]‡

10-19 0.00695%
20-29 0.0309%
30-39 0.0844%
40-49 0.161%
50-59 0.595%
60-69 1.93%
70-79 4.28%
≥ 80 7.80%

Tn Notification of death - 7 days [291]
θ outdoor transmissibility - 0.05 [281]

Table C.1: SARS-CoV-2 transmission model baseline set of parameters. †: assumed
;∗: calibrated to the generation time Tg; ‡ Only applied to symptomatic individuals.
As such, a correction factor of 1/(1-p) is applied to all age groups. Table reproduced
from [4].

produce any secondary infections, inline with what has been observed in highly

detailed empirical studies [274].

In Table C.2 we report the probability of having a SSE within each category before

and after the declaration of the National Emergency. We observe a drastic reduction

of the probability after 03/13.

C.3 Behavioural sensitivity analysis

Distance to POIs

While constructing the network, we attributed a stay to a given POI if it was no further

than 50 meters from the POI center. In this section we test more strict conditions for

that attribution, i.e. a threshold of just 10 meters. Note that this more strict condition
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Figure C.1: Super-spread individuals distribution. Individuals are ranked according
to the number of infections they produce. The cumulative fraction of infections
found in both cities is compared with the one that would be obtained in a completely
homogeneous system. Figure reproduced from [4].

for attribution lowers the number of potential visitors to the POI but also lowers the

distance between people in the venue, making physical contact more likely. In Figure

C.2 we show the results for this scenario.

A more restrictive definition of stay yield a much sparser network in the

community layer, while it does not affect the rest of the layers. We can see that to

obtain the observed number of deaths under these conditions, the fraction of

infections attributed to the workplace layer is increased. Nevertheless, the

distribution of infections across settings is fairly similar, signaling that the results are

robust to this definition.

Behavioral changes

The aggregated change in behavior due to the evolution of the epidemic as well as the

introduction of non-pharmaceutical interventions is already contained in the mobility

data. This leads to the sudden drop in the number of contacts following the declaration
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Probability of a super-spreading event (%)
Category New York Seattle

Before 03/13 After 03/13 Before 03/13 After 03/13
Arts/Museum 7.30 [7.01-7.61] 0.52 [0.48-0.57] 0.31 [0.08-0.59] 0.00 [0.00-0.00]
Entertainment 2.42 [2.35-2.49] 0.14 [0.13-0.15] 2.16 [1.72-2.63] 0.21 [0.06-0.39]
Exercise 1.96 [1.91-2.03] 0.34 [0.32-0.36] 1.14 [0.88-1.43] 0.77 [0.51-1.06]
Food/Beverage 0.53 [0.51-0.55] 0.17 [0.17-0.18] 0.17 [0.11-0.23] 0.13 [0.10-0.17]
Grocery 2.18 [2.12-2.24] 1.31 [1.30-1.33] 0.58 [0.37-0.81] 0.93 [0.85-1.02]
Health 0.14 [0.12-0.16] 0.11 [0.11-0.12] 0.00 [0.00-0.00] 0.06 [0.02-0.10]
Other 1.61 [1.54-1.67] 0.10 [0.09-0.10] 0.40 [0.21-0.62] 0.04 [0.00-0.12]
Outdoors 0.03 [0.01-0.06] 0.00 [0.00-0.01] 0.00 [0.00-0.00] 0.00 [0.00-0.00]
Service 0.59 [0.56-0.62] 0.18 [0.17-0.18] 0.01 [0.00-0.02] 0.10 [0.07-0.13]
Shopping 1.43 [1.39-1.47] 0.84 [0.83-0.85] 0.14 [0.05-0.27] 0.09 [0.06-0.11]
Sports/Events 8.73 [8.32-9.14] 4.27 [3.90-4.66] 0.22 [0.00-0.56] 0.00 [0.00-0.00]
Transportation 0.26 [0.21-0.31] 0.04 [0.03-0.05] 0.00 [0.00-0.00] 0.00 [0.00-0.00]
All 1.73 [1.71-1.75] 0.71 [0.70-0.71] 0.93 [0.84-1.02] 0.34 [0.32-0.37]

Table C.2: Super-spreading events by POIs categories. Probability that an individual
will cause a super-spreading event as defined in [259]. We aggregate all the infections
produced by each individual within each category for the given period of time, and
compute the fraction of individuals who produce a super-spreading event out of the
total number of individuals infecting someone in that category. In brackets the 95% C.I.
computed using a bootstrap percentile method is shown. Table reproduced from [4].

of the National Emergency. However, at the individual level, it might be possible

that some individuals in the dataset lowered their contacts due to having developed

symptoms, even if in our simulations they do not get infected at all and vice versa. But

for anonymity reasons, it is not possible to relate the medical history of individuals

and our agents and, thus, we cannot know the reason why an individual might have

changed her behavior. From the point of view of the individual this observation is

important, but since we are working on aggregated metrics this observation does not

affect the results.

To demonstrate this, in Figure C.3, we show the results in which we completely

remove symptomatic transmission. This extreme scenario would represent a situation

in which every time an individual develops symptoms, she gets completely isolated.

As we can see, the overall results are close to the ones we have presented so far. The

reason is that our model is fitted to the number of deaths and, thus, the total number

of infections is fixed (as a function of IFR). If we remove one type of transmission, then
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Figure C.2: Infections by distance to POIs (10 meters). Results with a more restricted
definition of stay for the case of New York (10 meters): (a) estimated R0; (b) number
of deaths (fit); (c) estimated Rt; (d) prevalence; (e) distribution of infections; (f)
proportion of infections per layer; (g) infections per setting; (h) normalized infections
per setting. Figure reproduced from [4].

the transmissibility of the other types has to be increased to achieve the same number

of deaths, yielding similar results.

Economic and age bias

The complete sample of users is slightly biased towards higher income individuals.

Specifically, the penetration ratio (number of mobile phone users to adult population)

in each census tract is correlated with the median household income, ρ = 0.28 ± 0.02

in NY and ρ = 0.18 ± 0.02 in Seattle metro areas. However the correlation of the

penetration ratio with the number of people above 64 years old in each census tracts

is small ρ = 0.17± 0.04 in the NY area or not significant ρ = −0.06± 0.11 in the Seattle

area. To analyze the impact of this bias, we have investigated the dynamics of our

model in a different set of users obtained by downsampling each economic groups

(median income quartiles in each metro area) to have a better representation of them.

In C.4 we report the results obtained using this new sample of users. As we can see,

the results remain largely unaltered, signaling that the distribution of contacts per type

of venue is not affected by this bias.
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Figure C.3: Infections without symptomatic transmission. Main results in New York
without symptomatic transmission: (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt; (d) prevalence; (e) distribution of infections; (f) proportion of infections
per layer; (g) infections per setting; (h) normalized infections per setting. Figure
reproduced from [4].
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Figure C.4: Infections without economic and age bias. Results with a resampled
population to remove economic bias in New York: (a) estimated R0; (b) number
of deaths (fit); (c) estimated Rt; (d) prevalence; (e) distribution of infections; (f)
proportion of infections per layer; (g) infections per setting; (h) normalized infections
per setting. Figure reproduced from [4].
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Longer stays

We have tested the sensitivity of the results with a more strict definition of stay

(minimum 15 minutes instead of 5 minutes), Figure C.5. We observe a slight increase

in the Arts & Museums category before the declaration of the National Emergency,

and one in the Grocery category after the declaration. This indicates that individuals

tended to stay for longer in groceries in this period, but the rest of the results remain

largely unaffected.
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Figure C.5: Infections with longer stays. Results with stricter definition of stay in
New York (minimum 15 minutes): (a) estimated R0; (b) number of deaths (fit); (c)
estimated Rt; (d) prevalence; (e) distribution of infections; (f) proportion of infections
per layer; (g) infections per setting; (h) normalized infections per setting. Figure
reproduced from [4].

C.4 Data and materials availability

The original mobility database is not publicly available due to license restrictions, but

can be obtained from Cuebiq through their COVID-19 Data Collaborative. The

anonymized temporal contact matrices in each layer for each city and the code to

reproduce our results are publicly available on github. Access to the github

repository.

The epidemiological model is out of the scope of this thesis, if interested in more

https://github.com/aaleta/COVID19_NYST
https://github.com/aaleta/COVID19_NYST
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detailed information on the calibration process, model specifications, and sensitivity

analysis of our results, please refer to the original article [4] and its Supplementary

Materials. These resources provide in-depth insights that go beyond the scope of this

thesis.
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