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We propose tests of the null of spurious relationship against the alternative of
fractional cointegration among the components of a vector of fractionally inte-
grated time series. Our test statistics have an asymptotic chi-square distribution
under the null and rely on generalized least squares—type of corrections that con-
trol for the short-run correlation of the weak dependent components of the frac-
tionally integrated processes. We emphasize corrections based on nonparametric
modelization of the innovations’ autocorrelation, relaxing important conditions
that are standard in the literature and, in particular, being able to consider simul-
taneously (asymptotically) stationary or nonstationary processes. Relatively weak
conditions on the corresponding short-run and memory parameter estimates are
assumed. The new tests are consistent with a divergence rate that, in most of the
cases, as we show in a simple situation, depends on the cointegration degree.
Finite-sample properties of the tests are analyzed by means of a Monte Carlo
experiment.

1. INTRODUCTION

Inference problems on potentially cointegrated models involving fractionally
integrated time series have recently received much attention in the economet-
ric literature. Within this line of research, an important effort has been devoted
to analyzing properties of estimates of the cointegrating parameters (Kim and
Phillips, 2000; Robinson and Marinucci, 2001, 2003; Chen and Hurvich, 2003;
Robinson and Hualde, 2003; Robinson and Tacone, 2005), and testing for cointe-
gration or determination of the cointegrating rank (Robinson and Yajima, 2002;
Breitung and Hassler, 2002; Chen and Hurvich, 2003; Hassler and Breitung,
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2006; Marmol and Velasco, 2004 [MV hereafter]). All these problems have
been tackled satisfactorily in the standard cointegrating setup with unit root
levels and weakly dependent cointegrating errors (emphasized since Engle and
Granger, 1987), but in the more general setting of fractional cointegration many
difficulties arise, especially when no restrictions are imposed on the integra-
tion orders of the observables and/or possible cointegrating errors. In addi-
tion, although it is assumed that fractional cointegration describes a situation
where a linear combination of the components of a (fractionally) integrated
vector has reduced memory in some sense, there is no agreement about the
precise specification of this idea. For example, Robinson and Yajima (2002)
(RY hereinafter) present several definitions already proposed in the literature
(Johansen, 1996; Flores and Szafarz, 1996; Robinson and Marinucci, 2003)
and offer a new one. Although it is true that all these definitions are identical
if all the observables share the same integration order, there are important dis-
crepancies among them when the vector of observables is composed of series
with different integration orders. Furthermore, in a fractional cointegration
framework, the real nature of the integration orders entails additional difficul-
ties, because it seems unrealistic to assume knowledge of their precise values.
Note that this is a distinctive feature from the traditional framework referred
to earlier, where the knowledge of the integer degree of integration of the
observables permits a variety of cointegration tests (see, e.g., Johansen, 1988;
Phillips and Ouliaris, 1990).

In the general fractional cointegration setting there are relatively few propos-
als of testing for cointegration, and these are based on different testing strat-
egies. Marinucci and Robinson (2001) proposed a Hausman-type procedure
comparing different estimates of the memory of the observables, and recently
Robinson (2005b) provided rigorous theoretical support to this idea. RY based
their test on the analysis of the rank of a generalized long-run variance matrix
of the weakly dependent error vector generating the fractionally integrated
observables. They also developed a specific-to-general procedure for testing
the necessary condition for cointegration of equality of at least some integra-
tion orders of the observables, and their cointegration testing procedure is able
to determine the cointegrating rank (for a related approach, see also Chen and
Hurvich, 2003). Breitung and Hassler (2002) proposed a test that extends
Johansen (1988) and allows determination of the cointegrating rank of a vector
of fractionally integrated processes. Hassler and Breitung (2006) test for the
null of no cointegration by applying a modified Lagrange multiplier (LM) test
to single equation regression residuals. Their statistic corrects for the endo-
geneity caused by the regressors and enjoys standard asymptotic properties.
Lasak (2005) extends the likelihood ratio tests proposed by Johansen (1988)
allowing for unknown cointegration order. But perhaps the closest idea to the
test we propose in the present paper is the methodology designed by MV, which
checks for the absence of cointegration comparing the ordinary least squares
(OLS) and a generalized least squares (GLS) estimate of the cointegrating
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vector. These estimates enjoy opposite asymptotic properties under the null of
spurious relationship and the alternative of cointegration. Their slope estimates
are based in turn on memory estimates, which, as exploited in Marinucci and
Robinson (2001), may be consistent only under one of such hypotheses or alter-
natively, may serve as a basis for comparing the memory of the levels and a
possible cointegrating relationship. The estimation of memory parameters of
the observables and cointegrating error is a feature also employed by Hualde
and Robinson (2004, 2005, 2007) and Robinson and Hualde (2003) (RH here-
inafter), who designed GLS-type estimates of the cointegrating parameter with
standard asymptotic distribution (normal or mixed normal), leading to Wald-
type test statistics with chi-squared null limiting distribution.

Based on these ideas, we concentrate in this paper on the problem of devis-
ing a general cointegration testing procedure with standard asymptotics valid
for a general class of fractionally integrated processes. Thus, using a prelimi-
nary estimate of an appropriate projection vector obtained from the short-run
structure of the fractionally integrated observables and differencing these series
properly, we can recover the same type of standard asymptotics of the previ-
ously mentioned references under the null of no cointegration. This leads to a
distribution-free test, hence avoiding the null nonstandard limit distribution of
MV’s test. Under the alternative of cointegration, the same reasoning of MV
guarantees consistency of the test when cointegration induces consistency of
OLS or narrow band (NB) regression and therefore of OLS or NB residual-
based memory estimates.

We emphasize the use of test statistics based on semiparametric assump-
tions, although we will also comment on the precise circumstances in which
parametric test statistics (which could enjoy better finite-sample properties),
could be adequate. The semiparametric approach allows for a great deal of flex-
ibility, accommodating situations with fractional processes of arbitrary positive
memory (including simultaneous analysis of the stationary range, not covered
by MV and the nonstationary one, not covered by RY) and dealing effectively
with a vector series with components with different integration orders (which
is not covered by MV; RY; Breitung and Hassler, 2002; or Hassler and Brei-
tung, 2006). MV, who limited the maximum integration order allowed in their
work to 3/2, indicate in their Remark 2 that their assumption of equal memory
for all series is not critical, and they give some hints on how to proceed if this
assumption is not satisfied. However, the practical implementation of their test
statistic when this condition does not hold could be very difficult, because the
null limiting distribution of their test statistic in this case would depend on all
the different orders involved in the vector of observables. Also, calculation of
the critical values from several integration order estimates could introduce impor-
tant noise in the procedure. On the contrary, our method is not designed to
check for the cointegrating rank (as does RY), being only valid for assessing
statistically for the existence or not of cointegration. However, we expect sim-
ilar consistency results in higher order rank cointegrated systems as in MV.
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Therefore, although our test procedure is limited, we believe that given the pre-
viously mentioned improvements and extensions in some directions over exist-
ing works in the literature, it fills some relevant gaps.

The rest of the paper is organized as follows. In the next section we analyze
a model for a vector of fractionally integrated time series that could potentially
lead to fractional cointegration. Section 3 presents a simple (parametric) set-
ting where the main ideas of our testing strategy are introduced. Section 4 deals
with the general model mainly from a semiparametric perspective, comment-
ing also about the plausibility of a parametric version of the proposed test sta-
tistics. Section 5 presents our assumptions and the asymptotic properties of these
tests. Finally, Section 6 shows the finite-sample behavior of our test proce-
dures. All proofs are relegated to the Appendix.

2. A POTENTIALLY FRACTIONALLY COINTEGRATED MODEL

Throughout the paper we consider the p X 1 vector of fractionally integrated
time series z, given by

z, = A, (){u,1(t > 0)}, 1)

where 1(-) denotes the indicator function, A,(8) = diag{A%,A%,..., A%}, p =
[ + 1, with

0p= max 0;>0, ~min §; =0; 2)

the fractional difference operator A ¢ is defined in terms of A =1 — L, where
L is the lag operator, and the formal series,

. P ; B I'(j+a)
(1-2) _%“ﬂ"(“)z’ e = TG+ 1)

for any real @« # — 1,—2,..., where T is the gamma function and ' (0)/T (0) = 1.
The process u, is a multivariate weakly dependent (perhaps only asymptoti-
cally) covariance stationary process for which specific regularity conditions will
be given in Section 4. The truncation in (1) is necessary when §; = 0.5, because
the weights a;(8;) are not square summable in this case, but it leads to nonsta-
tionary series for all §; # 0, though asymptotically stationary for §; < 0.5. The
same type of model has been used by Robinson and Marinucci (2001) and RH,
among others, to study the properties of parameter estimates in fractionally
cointegrated systems. Other works on fractional cointegration have used an alter-
native definition of fractional nonstationarity built on long-memory stationary
increments. In this case the levels are constructed as partial sums of such incre-
ments and are denoted Type I nonstationary processes by Marinucci and Rob-
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inson (1999), whereas z, is termed Type II. We will refer to the ith component
of z, as an I(8;) process.

Condition (2) has several implications. First, we do not deal with antipersis-
tent observables, which are processes with negative memory. These are rare in
practice, and although cointegration involving this type of processes is possible
in the strict sense, it does not have empirical appeal. For similar reasons we set
max; 8; > 0, and so we deliberately avoid cointegration among 7(0) exclu-
sively. More importantly, the first component of z, is assumed to have the high-
est integration order. As will be seen later, the identification of the component
with the highest integration degree is one of the key requirements of our pro-
cedure. This is certainly slightly restrictive, but it seems unavoidable in view
of the great generality that our framework permits. Note that this requirement
does not cause any difficulty in the traditional framework where cointegration
among processes with the same integration order is considered, and in practical
terms, it is always possible to base the choice of the particular component with
highest memory on consistent estimates of the individual integration orders of
the observables.

We adopt the following definition of cointegration given by Flores and Sza-
farz (1996).

DEFINITION 1. We say that z, is cointegrated if there exists a p X 1 vector
a # 0 such that a'z, ~ I(y) with y < 8, and at least a nonzero scalar compo-
nent of a multiplies one component of z, with integration order equal to 8.

Obviously this definition implies that for z, to be cointegrated it is necessary
that at least one observable apart from the first one have integration order J.
Note that this definition could miss some cointegrating relations (for a good
example, see, e.g., RY) where variables 1(§,) are not present. However, we do
not find this worrying, because in those particular cases the I(8,) variables
would not be involved in any relation of cointegration, and so they could be
removed from the model and we could interpret the new vector of observables
without these variables in terms of Definition 1. Note that the test statistics that
will be presented in subsequent sections test for the null of no cointegration
against the alternative of cointegration. Thus, the purpose of introducing Defi-
nition 1 here is to identify the precise type of cointegrating relations our test is
able to assess. Of course, our test will be able to detect more restrictive ver-
sions of cointegration (e.g., Marinucci and Robinson, 2001, where y < min; §;).

If f£(\) represents the spectral density matrix of u, (or of its covariance sta-
tionary approximation if u, is only asymptotically stationary; see the discus-
sion that follows for a definition), a necessary and sufficient condition for the
existence of cointegration among the elements of z, is that f(0) be singular. If,
on the contrary, f(0) is full rank, we say that z, is spuriously related, because
any nontrivial linear combination with a nonzero component multiplying an
1(8,) element of z, is also I(8,). This discussion makes apparent that the weak
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dependence structure of the innovation u, is essential to design any inferential
procedure on the existence of cointegration. When dealing with multivariate
fractionally integrated processes like z,, the weakly dependent error input pro-
cess u, is usually viewed as depending only on a vector of short-memory param-
eters. However, in a cointegrating framework it usually depends also on memory
parameters, this dependence possibly vanishing if there is no cointegration in
the model. These ideas are nicely captured by the following structure. First,
we partition the basic vectors as z, = (y,,x/)’, u, = (u,,u,)’, x,, u, being
1 X 1 vectors, noting that y, ~ I(8,), the critical condition in (2) playing a role
here. Next, denoting for any scalar or vector sequence ¢,

{i(c) = A4, 1(e > 0)},

suppose that there exist a weakly dependent covariance stationary scalar pro-
cess vy, a real number 7y such that 0 = y = §), and an / X 1 vector 8 # 0 such
that

Uy = IB,xt(SO) + Uyr(50 - 7)- 3

Model (1) with (3) and y < 8, leads to a multivariate extension of the bivariate
cointegrated system involving Type II fractionally integrated processes consid-
ered in Hualde and Robinson (2007) and RH, which for this case is

Ve = B,xr + Uyt(_‘y)’ €))

X = A () u, 1(t > 0)}, €))

where A;(8) = diag{A®,...,A%}. Therefore, in view of Definition 1, testing
the hypothesis of no cointegration against that of cointegration in the previous
framework can be formulated in terms of the memory parameters, and so

Hy:00=7v vs. H;:6y>. (6)

Note that assuming that u,, is a covariance stationary 7(0) process and y < &,
under (3), u,, is only asymptotically stationary because of the truncation on
v,,(86 — 7). Other asymptotically stationary elements of the linear combination
forming u,, may arise if some of the components of x, have integration orders
strictly smaller than 6,. However, based on the following definition we could
easily obtain the covariance stationary approximation of u,,.

DEFINITION 2. Given a < 1, let &, be a covariance stationary 1(0) pro-
cess and

t

&= 2 aj(a)é:tfj-

Jj=0
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Then, we say that ¢, is the covariance stationary approximation of {, if
oo
&= 2 aj(a)ft—f @)
j=0
Note that setting the difference equation

A =&, ®)

both £,, Z,, are solutions of (8) (given certain initial conditions in the case of
,), but although £, is not stationary, ¢, is the stationary solution of (8), which
exists because Z;’io ajz(a) < oo for a < 3, and the process (7) is well defined.

For @ = 3, (8) does not have a stationary solution. The covariance stationary

approximation of u,, is given by
i, = B'{A%AT (8)}u,, + A0 Tv,,.

Here, it is interesting to analyze the connection between 8 in (4) and f(A), the
spectral density matrix of (i,,,u’,)". Partition f as

Jiy(A) fyx(/\)>
fo) fo(X)

and also let 8 = (8], 8})’, where B, and 8, are [; X 1 and [, X 1 vectors cor-
responding to components of x, with integration orders equal to &, or smaller
than &, respectively, with I, + I, = L. If y < &, £(0) is singular, and if §; = &,
foralli =1,...,/, and there is no cointegration among the elements of x,, B is
the fundamental vector (cf. Park, Ouliaris, and Choi, 1988)

[ (0)£,(0) = B.
If on the contrary [; < [,

[ (0)f,(0) = (B1,07,)",

-

where 0, is a ¢ X 1 vector of zeros.

3. THE TEST PROCEDURE IN THE WHITE NOISE CASE

We find it convenient to present the basic ideas behind our test strategy in a
simple setting, which will be generalized in several dimensions in Section 4. In
particular, throughout this section we will consider the case where all the observ-
ables share the same integration order, denoted by 8. This condition is certainly
restrictive, but it is also introduced by Breitung and Hassler (2002), Hassler
and Breitung (2006), and MV and effectively also by RY, which only tests for
cointegration among subsets of variables with the same integration order. Also,
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we will focus on the case where in (3) the p X 1 vector w, = (v,,,u’,)" is inde-
pendent and identically distributed (i.i.d.) with zero mean and nonsingular covari-
ance matrix

Q _ ((l)yy w;c)’ >’

wxy Qxx
where we assume that ), is also positive definite. Furthermore, the i.i.d. con-
dition of w, will be taken as known, and so the procedure described in this
section is parametric. For these reasons, this section could be considered of
reduced empirical relevance, but, on the contrary, we find it very informative

for grasping the intuition behind our test methodology.

Using (3) we find that (i,,, u’,)" has spectral density matrix

1 (a)yylh()ol?+2ﬁ’wxyRe{h(A)}+ﬁ'nmﬁ w;yh(A)ﬂs'%)
F = 27 w, h(—1) + Q. B Q. ’

where h(A) = (1 — ¢™)°77. Then, when y = 8, (u,,u,,) = (i,,u,) is a
white noise sequence with nonsingular constant spectral density matrix, (1) =
f(0), which does not depend on 7y or § because h(0) = 1 in this case. How-
ever, when y < 8, we find that f(0) is singular because then 2(0) = 0, so that
z, 1s cointegrated.

In view of (6), estimates of & and y can be useful to derive hypothesis tests
of the null of no cointegration. Although the values of the nuisance parameters
0 and B are in general unknown, these could be estimated from data, and from
these estimates, in turn, we may be able to estimate vy consistently from resid-
uals, as is discussed later. However, following the route of MV, we use such
estimates through a procedure that takes advantage of the divergence of the
sample moments of z,, which, for example, also leads to nonstandard asymp-
totic properties of usual statistics, such as OLS coefficients. Note that the esti-
mation of y from residuals is inherent to our approach, and so our test, although
nonstandard, could be regarded as a “residual-based regression test.”

We define the projection vector

1 = fu ' (0)£,(0), )
noting that
n=0.'w,+p, underH,,

=P, under H,.

Letting ¢, h, be any possible value or estimate of the parameters y, 1, define
also the fractionally differenced residuals

U,(C, h) = yt(c) - h’x,(c),
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which are one of the key elements of our first approximation to the cointegra-
tion test problem. Under H,, it is evident that v,(y,n) is a white noise with
variance

o, = 27f, (0)(1 = p;,), (10)

where pf_x is the squared coefficient of multiple correlation between u,, and u,,
given by

Py.x (1)
' £»(0)

More importantly, under H,,

E(x,v,(y,m)) =0, (12)

for all #, whereas, noting that for any / X 1 vector ¢,
v(y,4) = (m—'x,(y) +o,,

we have that under H;, v,(y,{) is I(8 — ) and correlated with x, when ¢ # 7.
Thus, it appears that a sensible strategy for testing (6) is to base our procedure
on an appropriately normalized version of the sample counterpart of (12) using
consistent estimates of v and n under the null. Under the alternative, however,
inconsistent estimation of 7 guarantees that (12) fails and the residuals v, are
no longer 1(0).

Thus, setting

7,(c,h) = D x,_,v,(c, h) (13)
=1

(we explain later in this section why x,_; replaces the “more natural” x, in (13)),
it can be shown that under additional regularity conditions (to be detailed in
the next section),

n 21, (y,m) =, N0, 0, E(%,%))), 1
if § < 1, where

it = 2 aj(é)ux,t—j'
j=0

By contrast, denoting by = convergence in the Skorohod topology on the appro-
priate metric space,

1
n=°r,(y,m) = f W (r;6) dW, (r), 5)
0
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when 8 > 1. Here the (Type II, Marinucci and Robinson, 1999) fractional Brown-
ian motion (fBm) W, (r;8) is defined as

W, (r;8) =T(8)"" fr(r — ) 1 dW,(s)

in terms of the last / components of the p X 1 vector Brownian motion (Bm)
W(r) = (W,(r),W/(r))" with covariance matrix 277f(0), and the univariate Bm

W, (r) = W,(r) = W{(r)n

is independent of W,. The right side of (15) is a mixed normal distribution, and
so in view of this result and also (14), it is expected that an appropriately nor-
malized statistic based on 7,(7,7) has a y? limiting distribution irrespective of
whether 8 < 3 or 8 > 1. In fact, defining for b # 0 the statistic

n —1
Té(C,h)(EX,_IX;]> 7,(c, h)
=1

2, (b,c,h) = - ,
( ) b

it is straightforward to show that

2. (0, ,7.m) =4 X7 under H,.

As mentioned before, one of the key elements of this test procedure is the
residual v,(y,n), which is constructed from the differenced processes y,(y)
and x,(7y). Note that under H,, the observables y,, x,, are filtered by their inte-
gration order because y = §, whereas under H, they are underdifferenced and
will not deliver 7(0) residuals if 7 is not estimated consistently. An argument
against this strategy could be that differencing in possibly cointegrated frame-
works is usually not appropriate and could imply a loss of power. However,
Hualde and Robinson (2007) and RH have found that “proper” differencing
in cointegrated models leads to estimates of the cointegrating vector with opti-
mal asymptotic properties. This is precisely the type of filtering we propose
in our cointegration tests, although of course it is not obvious that optimal
properties in estimation would automatically be translated into testing situa-
tions, and, undoubtedly, further research would be needed to explore this
connection.

These results can serve as a basis for a distribution-free test of the null of no
cointegration based on rejecting H, for large values of =, compared with a y7
distribution, once consistent estimates of the unknown v, 7, and w, , are found.
As will be seen in the next section, under correlated 7(0) innovations we should
replace the basic OLS-type fluctuations 7, by those of alternative statistics that
preserve a similar orthogonality property to that achieved by v,(vy,n) with x,
by accounting for such weak dependence in a general framework.
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Obviously, En(a)y_x,'y, m) is an infeasible statistic because, in general, both
the elements of f(0) and y are unknown. However, given an estimate & of &,
we can easily estimate the elements of f(0) by

R 1 n R R 1 n R R

0 = o — 3 528), [0 = — 3 x,(8),(5),
TN =1 2mn =

N 1z R .

fxx(o) = 2_ zxt(a)xz’(S)’ (16)
TN =1

and then from (9)—(11) obtain easily corresponding estimates of 1 and w, ,,
respectively. The 6 term could be recovered from levels y, or x, or from (asymp-
totically) stationary increments Ay, or Ax,, with a rate of convergence

§=8+0,(n ), k>0. 17)

Most analyses of usual parametric and semiparametric memory estimates use
the alternative Type I definition of nonstationary processes, but they can be
shown to have the same properties under (1) using the techniques of Robinson
(2005a) and Velasco (2004). Thus, under (17), building on the results of RH, it
is not difficult to show that the estimates @, ., 7 of w, , and 1 based on (16) are
\/; -consistent because of their parametric nature.

To obtain consistent estimates of v we can use the OLS or NB residuals

to get
y=v+0,(n™), k>0,

under both hypotheses. If H, is true, then y = 0, and because B is inconsistent
for 3, then o, is a linear combination (with stochastic coefficients) of 7(8) pro-
cesses in a noncointegrating direction, so that ¥ is expected to be a consistent
estimate of 6. We give a richer justification of this fact in the following section.
On the contrary, under H;, v < , we have that ,[;’ is consistent (note that the
OLS could be inconsistent if § < 1, but the NB suffices), and so residuals 9,
are approximately /() and can be used to estimate consistently y < &. See,
e.g., Velasco (2003) and Hassler, Marmol, and Velasco (2006), which justified
residual semiparametric memory estimation under weak assumptions for Type I
fractional processes.

Then, proceeding as in RH, given \/;-consistent estimates 1), @, ., the rate
in (17) is sufficient to show that under H,,

En(d)y.x’ ')A/’ ﬁ) - En(wy.x’ Y TI) = Op(l)’
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so that our feasible test statistics share the same (first-order) asymptotic prop-
erties as the infeasible ones,

Ll A A A 2
E,(d, ,7,M) =4 x; under H,,

for both 8 < 3 and 6 > 3. When & < 3, the effect of the estimation of 7 is
negligible thanks to the utilization of the regressor x,_; in 7, instead of other
alternatives, such as x,. However in a general parametric framework a similar
strategy seems not to be possible; see Remark 4 in Section 5. On the contrary,
when & > 1 it is indifferent to use x, or x,_; in (13).

Finally, to conclude the analysis of the white noise situation we present a
brief justification of the different sources of power of the test. These ideas are
again better described in this simple setting, although similar reasoning would
apply to the general test procedures we present in Section 4. First, under H,,
v,(y,m) is still an 1(0) process uncorrelated to x,_;, but, as mentioned before,
for any £ # n, v,(y,{) is I(8 — y) and correlated with x,_ ;. Thus, following the
Robinson and Marinucci (2001) results, we can obtain the following sharp rates
for 7,(y,{) under H;:

n—m 207, (y,0) = 0,(n'?),  8<3,
=0,(n'"?), 5> 1, 26—y <1,
= 0,(n'"?logn), 5> 14 26 —y =1,
=0,(n°™), 5> 4 26—y > 1,

all diverging with n, in contrast with (14) and (15) under the null. Thus, the
key is to employ an estimate of 7 consistent under the null but inconsistent
under the alternative. Following MV’s ideas, there are ways to increase these
divergence rates under H,, for example, by proposing consistent estimates
of n under H, that diverge under the alternative. For our simple model, this
could be

7= (E x,<$)x,’($>>_ PIRACOACON (18)

=1
for which the following sharp rates can be derived:
1=0,1), o6-y<y,
= 0,(logn), d—y=14,

=0, ), s-y>14,
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so that, in case 8 — y = 1, the divergence rate of the feasible 7, under H, can
be improved upon by using 7 instead of 7). Note that under H,, it is asymptot-
ically equivalent to use 7 or 7, as both are \/; -consistent estimates of 7.

The second source of power is due to the fact that p7, = 1 under H;, so
that provided one can get \/; -consistent estimates of pf_xvunder Hy, pi.—1=
0,(n""?), and noting the denominator of E,(&,.,,7,7), this rate also adds to
previously reported divergence rates under H,. Thus, in this case, the exact
divergence rates of the test statistic under H, are

En(é)y.x’ ')A/’ ﬁ) = Op(n3/2), o< %,
= 0,(n¥22), 5> 1, 26—y <1,
= 0,(n%* 2 log? n), 5> 1, 26—y =1,

=0,(? ) §>1 28—y>1, §—y<4,

= 0,(n2" V2 Jogp),

>
V
|=
>
I
\{
I
M

=0,(n* v s> 1 §—y>

4. THE GENERAL COINTEGRATION TEST

The arguments used to construct the test in the previous section are only valid
when, under H,,, the weakly dependent vector u, is an i.i.d. process, and, more-
over, this circumstance is known to the researcher, so the procedure was essen-
tially parametric. This case was adequate to illustrate the idea behind our test
procedure but undoubtedly is very restrictive. Thus, throughout this section we
will work under a condition that imposes some regularity on the dynamics of
u, (see also Assumptions A-E in MV), while keeping, as in the white noise
situation, the modelization proposed in (1). The main distinctive feature of our
approach now will be that under correlated 7(0) innovations we replace the basic
OLS-type fluctuations 7, by those of alternative statistics that preserve a simi-
lar orthogonality property to that achieved by v,(y,n) with x, (cf. (12)), by
accounting for such weak dependence in a general framework. As will be seen,
there are different ways of achieving this, but we will emphasize the use of
semiparametric procedures over parametric ones. There are three important rea-
sons that drive this choice. First, a parametric procedure requires knowledge,
up to a finite vector of unknown parameters, of the model generating u,. Here,
even if ways of testing for this have been proposed in the literature, this knowl-
edge could be difficult to justify especially when the dimensionality of u, is
high. In practice, the researcher could take the approach of fitting to u, a rela-
tively large vector autoregressive moving average (VARMA) process, but esti-
mation of a large number of parameters could entail difficulties. Furthermore,
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corresponding asymptotic theory developed in the next section holds in a fully
parametric approach only if all the observables are purely nonstationary. Some-
times this requirement is not very strong, because it is widely assumed that
nonstationary processes have a very important role in economics, but undoubt-
edly it introduces an additional limitation. Finally, from a practical point of
view, it seems that the identification of the parametric structure of u, is only
feasible if all the observables share the same integration order (see the discus-
sion that follows for an explanation of this point).

Thus, a semiparametric approach that, although still stressing the fraction-
ally integrated nature of z,, does not assume any parametric model for u, could
be certainly preferable. Fortunately, this approach allows us to propose test sta-
tistics that are valid for any nonnegative value of §;, i = 0, .../, excluding 3,
and so basically no a priori knowledge of the type discussed before is needed
to apply the following techniques.

Denote by I, the k X k identity matrix, denote by |- | the euclidean norm, and
consider that a function g(x) (defined on an interval I) satisfies a Lipschitz
condition of order « (g € Lip(a)) if there exist two positive constants M, «,
such that [g(x) — g(y)| = M|x — y|* for all x,y € I. We set the following
condition that will characterize the short-run dynamics of u,.

Assumption 1. For 0 = y = §,, there exists an / X 1 vector 8 # 0 such that
(3) holds and the process w, = (v,,,u’,)’, t = 0,£1,... has representation

Wt = A(L)gt’

where

A(s)=1,+ X A;s/

j=1
and the A; are p X p matrices such that
(a)
det{A(s)} # 0, |s| = 1;

(b) A(e™) is differentiable in A with derivative in Lip(¢), € > 3;
(c) the g, are i.i.d. vectors with mean zero, positive definite covariance matrix
Q, and E|g[? < c0,qg =4, g >2/(2min; 5/, 8; — 1).

Assumption 1 is sufficient to apply the functional limit theorem of Marinucci
and Robinson (2000), which will be needed to obtain the asymptotic null dis-
tribution of our test statistics. The conditions on the process w; set by this assump-
tion are identical to those in Assumption 1 of RH and hold for stationary and
invertible autoregressive moving average (ARMA) processes. Under Hy,
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WL @) (1 ﬂﬁﬂf@j
u, = C(L)w,, C(L) = )
t t Ol Il
so that in general the spectral density of u, depends on memory parameters. In
the important case where 8; = §, for all i € {1,...,[}, this dependence disap-
pears, and C(L) reduces to

1 p
cr=c= (01 Iz).

In this particular case f(A) inherits the smoothness properties of A(e™), but, if
the equality of the orders of the observables does not hold, the presence of
components like (1 — ¢™)“ for some a > 0 in f(A) affects severely the smooth-
ness of f, and this could have important effects on the properties of the esti-
mate of f, which is required to obtain our feasible test statistics.

As mentioned before, when short-run correlation is allowed in the basic 7(0)
input of the fractional processes, some sort of prewhitening or previous orthog-
onalization should be performed to maintain a test statistic with standard asymp-
totic distribution. With this purpose, we use the random fluctuations of GLS
type inspired by Hualde and Robinson (2005), controlling for the short-run cor-
relation of the weakly dependent u,. Thus, we propose frequency-domain test
statistics that we find more natural in our semiparametric setting. Defining, for
any sequences a,, b, (possibly identical to a,), the discrete Fourier transform
and (cross-)periodogram as

1 n
w,(A) = Qa2 t:El acexp(irt),  I,(A) = w(Mwy(=2),

1,(A) = L, (M),
and
p(N) ="f(N)7

where ¢ = (1,0))’, given any real function g(A), A € [—a, 7], we consider
statistics based on

7A-m(c’ (2, g) = Z Sj Re Wx(_Aj)g(Aj)Wz(e,J)(Aj)7

j=0

7A-r(r)l(c7d9 g) = 2 sj Re Wx(_AJ)g(O)Wz(z,g)(A/), (19)
Jj=0
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where A; = 2j/n are the Fourier frequencies, d = (d,,...,d;)", z,(c,d)
(v, (c), x1,(dy),...,x;(d;)), m is a sequence tending to infinite such that m =
n/2,and s; = 1,j = 0,n/2; 5; = 2, otherwise, and in all cases we will set

g =pN) = FN)7,

where f(A) is a nonparametric estimate of f(A) for which precise conditions
will be imposed later.

Denoting by [a] the integer part of a, note that because of the symmetry
properties of the Fourier transform, we have that, for example,

72[n/2](c’ d_aﬁ) = 2 WX(_)\j)ﬁ(Aj)WZ(L',J)(/\j)7
Jj=1

which, because of the presence of all the Fourier frequencies, could be referred
to as a full band statistic. When m/n — 0 as n — oo, 7,,(c,d, g) only considers
frequencies on a shrinking neighborhood around zero and for this reason is
usually referred to as an NB statistic. Some of the results that follow will also
apply to cases where m/n — K < i as n — oo, but these do not have much
intuitive appeal and are hardly stressed in the literature. The expression
#%(c,d, p) is related to what Hualde and Robinson (2005) denoted as a
“zero-frequency” statistic, because the weighting factor p is only evaluated at
zero frequency, so that, strictly speaking, the GLS weighting is not correct but
only approximate, noting that if fis smooth around 0 and m/n — 0 this approx-
imation should be appropriate. As we show subsequently, under certain con-
ditions on m, the statistic leads to the same asymptotic results as if the weighting
factors are evaluated at the different Fourier frequencies.

We now propose our semiparametric test statistics. Defining §(A) = ¢'f(A) !¢,

m m

by= > siReGANL(X,), b =4(0)> s5,1.(A)),
Jj=0 Jj=0

we will reject the null of no cointegration for large values of
Y, (c.d,g) = #,(c,d, )b, %,(c,d,g),
Y0(c,d, g) = 7Y (c,d, &) (bp) ' #0(c,d, g),

where the unknowns (c,d, g) are replaced by appropriate estimates of (v, 5, p).

Alternatively, considering the known function f(A;4), h € R¥, where for a
k X 1 vector 0 of unknown parameters f(A,0) = f(A), it is straightforward to
design a parametric version of our test statistics. To develop this extension, it is
important to take into account important aspects that differ from the semipara-
metric situation. First, although theoretically it is possible to carry out the analy-
sis of the parametric case allowing the integration orders of the components of
z, to differ, in practical terms this is not very relevant, because, if this is the
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case, it is not feasible to identify the parametric model driving u, under H,.
Although the model for u,, is identifiable from residuals based on fractional
differences of x, (from estimates of the respective integration orders of its com-
ponents), u,, is a linear combination of /(0) and overdifferenced x,’s under H,
if some integration orders are smaller than &,, which makes it practically infea-
sible to identify the parametric structure of the whole vector u, on which the
orthogonalization we need to apply is based. Fortunately, if all observables share
the integration order 8y, u,, is a linear combination of 7(0) processes, and its
parametric structure could be recovered. Note that assuming common memory
does not imply any loss of generality with respect to previous works but undoubt-
edly is a limitation of the approach.

Then, under the assumption of common memory, a natural parametric statis-
tic that exploits all the information contained in f and could be the basis of our
test procedure is

%,,(C, h) = Z Wx(_Aj)p(Aj;h)Wz(c)(Aj)’

where p(A;h) = £'f ' (A;h). The feasibility of the test now depends on esti-
mates of y and 6 to replace ¢ and h, respectively, in 7,(c, k). Finally, defining

b,(h) = X q(A; I (A),

our parametric test statistic is
Y,(c,h) = 7!(c,h)b, "(h)%,(c,h).

Given a consistent estimate of 7y, calculating the residual vector z,(y) it is
possible to identify the parametric model driving u,, and, building on the results
of RH, it is simple to show that parametric estimates of 6 based on z,(y) enjoy
the same asymptotic properties as those based on u,, for which \/Z -consistency
and asymptotic normality are fully developed in the multivariate framework
(see, e.g., Dunsmuir and Hannan, 1976; Dunsmuir, 1979). Here, methods that
estimate simultaneously short- and long-memory parameters could be also use-
ful. For example, inference in multivariate fractionally integrated vectors has
also been pursued recently by Gil-Alafia (2003), extending the work of Robin-
son (1994), and in (possibly) cointegrated systems by Dueker and Startz (1998)
and Hassler and Breitung (2006).

5. ASYMPTOTIC PROPERTIES OF COINTEGRATION TESTS

To derive the asymptotic properties of our test statistics we need first some
conditions on the estimates of the integration orders and f(A). Thus, we impose
the following condition.
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Assumption 2. Under the null and the alternative hypotheses, there exist a
K < oo and estimates ¥, 6 of vy, 6, respectively, such that

71+ 181 =K (20)
and k > 0 such that

J=y+0,™), 5§=5+0,(n"), 1)
where, as n — oo,

n ! Tmaxmingdy, ..., 8,1, 1/2) logm — 0. (22)

There are several important remarks related to this assumption. First, (20)
is not restrictive if our semiparametric estimates are optimizers of correspond-
ing loss functions over compact sets. Next, the likability of (21) and (22) for
¥, which was briefly described in Section 3, is definitely not a trivial issue.
Under H,, the residuals (e.g., OLS or NB) on which the estimation of y should
be based are a linear combination (with stochastic coefficients) of fractionally
integrated processes with dominant order §,. The presence of these stochastic
coefficients complicates matters substantially, and although a very detailed analy-
sis goes beyond the scope of the present paper, we offer a brief justification
of why (21) holds for a particular estimate of y, the Gaussian semiparamet-
ric, proposed by Kiinsch (1987) and analyzed by Robinson (1995a). First,
suppose that all observables share the same integration order 8, and for sim-
plicity let 3 < 8, < 3. Denote by ,8 the OLS or NB estimate of B Under H,,
it can be shown that B converges weakly, and so B=0 ,(1) and ||,8|| > 0 with
probability tending to one. Define b= (1,B)/Q,p )|| so that |5] = 1 and
0,(b) = b'z,. Clearly, under Assumption 1, the spectral density of Az, behaves
like

fa(A) ~ Gy, A2 ag A — 0,

for a certain p X p matrix G,_, which is positive definite under H,. Then, fol-
lowing the arguments in Chen and Hurvich (2006), replacing the true constant
of the spectral error sequence by the random quantity b' Ga, b, which is strictly
positive (with probability tending to one) by the positive definiteness of G,.,
all the results on consistency of y hold following the results of Robinson (1995a)
and Lobato (1999). It can also be obtained that ¥ — y = O,(m~'/?), where m
satisfies the usual restriction

1 m1+2p

—+
m n

log?m —0 asn— oo,

with p € (0,p"), where, as in Robinson (1995a), p* € (0,2] is the parameter
related to the smoothness of the spectral density of Az, around frequency zero.
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Thus, in the most favorable case the least strict bound for the convergence rate
of ¥ is n=?log"” n (if p* = 2).

When the integration orders of the observables are not all equal, the situa-
tion is much more complicated. In this case, those components of ﬁ corre-
sponding to processes with integration order smaller than &, are typically not
bounded in probability, invalidating in principle the estimation of y based on
the residuals y, — 'x,. For the sake of an easy exposition, collect those com-
ponents of B in an [* X 1 vector B*, where [* € {1,...,] — 1}, and corre-
spondingly let x;” be the vector of components of x, with integration order
strictly smaller than &,. To describe the procedure we propose in this situation
let ,é also be an NB estimate. Then, it can be easily shown that if 5, < % (see,
e.g., Robinson and Marinucci, 2003), the rate of divergence of B * can be made
arbitrarily small (up to a power rate) by letting the rate at which the NB band-
width increases be arbitrarily close to (but smaller than) n. Thus, letting the
bandwidth employed in the estimation of y grow more slowly than that used
in the NB estimation of 3, the contribution of ﬁ*’x,* to the spectral density of
the residuals y, — ﬁ’x, can be made negligible, and so the terms with 6, mem-
ory dominate. Note that this strategy is only valid if §, < 3, but if we suspect
that, for example, 5 < 8, < 3, the same reasoning applies if we estimate 8
from the NB regression of Ay, on Ax,, obtaining B, and then estimating 7y
from y, — B'x,. Higher 8,’s could be treated by estimating 3 from higher inte-
ger differences of the observables.

Under Hy, if §, = 6, for all i € {1,...,1}, the first part of (21) is well known
for an estimate of y based on OLS or NB residuals (see, e.g., Velasco, 2003).
Here, OLS residuals are not a good proxy of the true cointegrating errors if
8o < % (so there is the so-called stationary cointegration), but NB residuals
suffice. When §; < §, for some i € {1,...,1}, if y < min, §;, our estimate of 3
(calculated from integer differences of the observables) will be consistent
(although its rate of convergence could be very slow), because taking integer
differences of the observables the cointegrating structure is preserved. Thus,
estimating y from y, — ,é’x, will lead to a consistent estimate of y under H,
and the test will gain power. If y < §, but y = §; for some i € {1,...,1}, some
of the components of B could diverge, but as under H,, this rate of divergence
could be made arbitrarily small, and similarly, the estimation of vy is not going
to be affected if we restrict the rate of growth of the bandwidth employed in
this estimation accordingly.

The conditions for & are satisfied for standard semiparametric estimates of 5,
based on the corresponding components of z,. Finally, (22) reflects a trade-off
between the rate of growth of m and the smoothness of f through the positive
relation between this smoothness and . Note however that even if k is very
small, (22) could be satisfied by constraining the rate of growth of m appropri-
ately. This is of primal importance, because, as mentioned before, depending
on the values of the memory parameters of the observables, the lack of smooth-
ness of f is a very realistic possibility. If m grows at the same rate as n and
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8y > %, almost \/;-consistent estimates of the orders might be necessary, and
so some bias-reduction estimation procedures might be required (see Hualde
and Robinson, 2004).

We impose on f either of the following conditions, which will be used for
#a(c,d, g) and #°(c,d, g), respectively.

Assumption 3. Uniformly in j, there exist x > 0, ¢ > 0, such that
F) = f() = 0,(n™),
FG) = F A1) = (FA) = f(4)) = 0,(n™%),
where, as n — oo,

n*xmlfmax{min{éil,...,51,1},1/2} N O, (23)

b2 max{min{sy....,8,.,131/2} _y o

Assumption 4. There exists » > 0 such that
f0) =1(0) = 0,(n™),
for which (23) is satisfied.

Both assumptions are unprimitive but Hualde and Robinson (2004) justified
them rigorously under general conditions for particular estimates of f. Note that
these estimates could be based on residuals z,(S), for a certain estimate of 0
consistent under both hypotheses, or alternatively on residuals z,(9,8), which
under H, behave similarly to z[(é) but under H, could lead to divergent esti-
mates of f, which could add power to the test. As for the estimates of the orders,
m could be restricted appropriately to deal with the lack of smoothness of f.

We do not consider the specific case where components of x, have an inte-
gration order equal to 3, for which we introduce the following condition.

Assumption 5. §; # 5 forall i = 0,...,1L

To get a neat asymptotic theory, without loss of generality, we reorder the
variables in x, according to

5, =8,= - =8,=0.

Thus, we set

6 =(8],85)", where, = (81,...,8,), 5, = (81,415---,01)s

with §; > 3,i=1,...,1;and §, < %, i =1, + 1,...,1, where [, = [ indicates
that all integration orders of the x’s are strictly larger than 3, /; = 0 meaning
that all the orders are smaller than 3.

Finally, we impose some conditions on the bandwidth m.
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Assumption 6. If [; < [, for € in Assumption 1,
mMaXiei 1, no;,—1/2 logl/Z n+ m3+25/n2+25 N O, as n — oo.
Assumption 7. Assumption 6 holds and if /; > 0
m/n™men. % — 0, asn — oo.

We introduce some additional notation. Let D(L) = C(L)A(L), W(r) be the
p X 1 Bm with covariance matrix (),

W(r) =2 (D)) Q™' W(r),

and define the [, X 1 column vector

o 1 g

W(r,0,) = [(O,if) —f (V—S)5"D(l)dW(S)] ;
! 77T(6;) Jo =1,

where i; is an [ X 1 vector of zeros except 1 in the jth position. Denoting by
f;;(A) the (i,)th element of f(A), let

_ 13;(0)
f2(0) = |: 1= =8 |li=ti+1,...0°
! S =j=n+1, l
finally set
A(n) = diag(n ™.~ o m 20000, L omV2A),

We next present the null limiting distribution of the statistic 7,,(7,5, p).

THEOREM 1. Under Assumptions 1-3, 5, 6 and H,, as n — oo,

JO] W(r;8,) dW(r)

Z

A(n) 3, (9,8, p) = , (24)

where Z is an (I — 1,) X 1 vector of random variables normally distributed with
E(Z) =0 and

1 _
Var(Z) = 5 q(0) f5,(0),

which for all r is independent from W(r;8,) and W(r). Under Assumptions 1,
2, 4,5, 7 and Hy, an identical result to (24) applies for #°(7,8, p).

The proof of Theorem 1 is given in the Appendix. Denoting by \A(fn any of the
Y,.(9.,5,p), YO (9,5, p), we have the following corollary, which is a straight-
forward consequence of Theorem 1.
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COROLLARY 1. Under the conditions of Theorem I and Hy, as n — oo,
Y5, = xi-
Remark 1. The distribution on the right of (24) is mixed normal because

W(r;8) and W(r) are not correlated; hence the corresponding test statistics have
chi square null asymptotic distribution.

Remark 2. In the most important case emphasized in the literature, that is,
when all the observables share the same integration order (see, e.g., RY; MV),
we could simplify our statistic substantially by replacing the process z,(7,8) by
simply z,(¥), where the same filtering is applied to all the observables. Note
that in this case z,(y) is a good proxy for u, under H,. However, if we allow
the integration orders to vary across the components of z,, z,(y) would have
some overdifferenced components under Hy, and the orthogonalization in (19)
with g(A) = p(A) would not be correct. This problem is avoided by consider-
ing z,(7,6) instead, noting that this modification should not imply any loss
of power because under H,, y,(¥) is underdifferenced, and so it is the leading
component in z,(9,5).

Remark 3. The “zero-frequency” statistic has a direct interpretation relative
to that proposed for the white noise situation. Clearly

n

_ 1 R R _
7/:[(31/2](7’ 6’ ﬁ) = 2 xt(yz(')/) _f;,x(O)f;;l(O)Al(S)xt),

yox 1=1

although, in view of our assumptions, this statistic enjoys nice properties only
when 6; >1,i=0,...,[, because otherwise the incorrect treatment of the short-
memory components by weighting only at frequency zero heavily distorts its
asymptotic behavior.

For the analysis of the parametric test we set the following conditions.
Assumption 8.

(a) Assumption 1 holds;

(b) f(A;h) satisfies the technical smoothness conditions imposed in Assump-
tion 2 of RH;

(c) there exist estimates 7, 6 of v, 0, respectively, for which Assumption 2
(for 7, without the need of (22)) holds and

6=10+0,0n");
(d) 6;=6foralli €{0,1,...,1}, where § > 1.

Thus, we have the following theorem, whose proof is given in the Appendix,
and a corollary, which is a straightforward consequence of Theorem 2.

THEOREM 2. Under Assumption 8 and Hy an equivalent result to (24) holds
for 7,(9,0).
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COROLLARY 2. Under the conditions of Theorem 2 and H, as n — oo,
Yn _>d X12

Remark 4. Theorem 2 uncovers another important limitation of the paramet-
ric setting, because the result is only given for the 8 > 4 case and so one should
know a priori the (purely) nonstationary condition of the observables. When
8 < 3, it can be shown that under our conditions n~'/?%,(y,0) is asymptoti-
cally normal, but even if  is \/;—consistent the asymptotic distribution of the
properly normalized statistic %,(y, ) differs from that of the infeasible one,
unlike in the semiparametric setting where feasible and infeasible statistics share
the same limiting distribution. Here, it should be possible to determine that
n12%,(9, 0) is asymptotically normal, but the asymptotic variance of the nor-
malized statistic is not the same as in the case where 6 is known and depends
on the particular form of 6. Dealing appropriately with the § < 3 case was the
precise reason why x,_; replaces (the more natural) x, in (13), but in our gen-
eral setting the problem of calculating the limiting distribution of the normal-
ized feasible statistic is complicated, because 6 is generally implicitly defined,
although letting u, be a finite vector autoregressive (VAR) process the task is
simpler (see Hualde and Robinson, 2007).

Remark 5. Theorem 2 uses results from RH, the main distinguishing feature
now being that the requirement on the estimate of the order § (under H,) is
much less stringent than in RH. In particular, RH derived a related result under
the condition (translated to our framework) that k > max (0,1 — &), and so
almost \/;-consistency of 9 was needed in case & were just above 3. This
assumption was unavoidable in RH’s framework, but exploiting our particular
orthogonalization, we manage to avoid this requirement in the present setting.
This relaxation is not trivial, because the theory for estimating parametrically
(hence obtaining \/; -consistent estimates) long- and short-memory parameters
simultaneously in a multivariate setting is only fully developed in the station-
ary case. More importantly, v necessarily needs to be estimated from a sort of
residual (like OLS residuals), and so it is unclear in which sense one can base
parametric estimates of vy on these residuals.

Remark 6. Note that in the semiparametric case we need some extra require-
ments (given in (22)) on the convergence rates of the estimates of the orders
apart from « > 0. This is due to the nonunique differencing applied to the
observables in the test statistics, an issue that also arises in Hualde and Robin-
son (2005).

6. MONTE CARLO EVIDENCE

To offer some evidence of the finite-sample behavior of these test procedures,
we present a small Monte Carlo experiment. There are two parts in our study,
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the first comparing the performance of semiparametric and parametric versions
of our test in the simple bivariate situation where the error input process w; is
white noise, and the second focusing on the semiparametric case with corre-
lated w, and with three observables whose orders could possibly differ. In the
first part of the study, we generated a univariate process x, of lengths n = 64,
128, 256, 512, 1,024, as in (5) for the different values of & = 0.3, 0.6, 1, 1.4,
and y, as in (4) (for the same lengths as x,) with 8 = 1 and vy taking four dif-
ferent values for each corresponding 6, which are

vy=206,6—02,0—04,56—0.6,

except for 6 = 0.3, where y = 0.3, 0.2, 0.1, 0, the first value representing in all
cases the situation of absence of cointegration. The error input process w, was
generated as a mean-zero bivariate Gaussian white noise with a covariance struc-
ture leading to a white noise u, with covariance matrix

with p = 0.5, noting that in view of the Monte Carlo results of Hualde and
Robinson (2004), the tests are expected to behave in a better (worse) way as
|p| decreases (increases), being relatively unaffected by the sign of p. The para-
metric test statistic was computed following these steps.

1. Estimate § from the raw series x, as in Beran (1995), fixing the optimiz-
ing interval [§ — 1,8 + 1].

2. Compute the NB estimate for 83 (see, e.g., Robinson and Marinucci, 2001),
choosing bandwidths m = 25, 40, 65, 120, 220, for n = 64, 128, 256,
512, 1,024, respectively. Note that the OLS residuals are adequate to esti-
mate vy under H, if 6 > 0.5, but if § < 0.5, the OLS estimate is in general
inconsistent.

3. Estimate y with the NB residuals by the same procedure as in step 1,
optimizing over the interval [y — 1, + 1]. Note that both intervals are
infeasible but in practice their length could be adequate.

4. Compute @, , using corresponding estimates of components of the spec-
tral density matrix (at frequency zero) calculated as in (16), noting (10)
and (11), and estimate 1 by 7 (see (18)).

5. Compute the feasible test statistic Z,(®, ., ¥, 7).

We compare the behavior of =, with two semiparametric versions of the test,
one where the GLS weighting referred to before is evaluated at all Fourier fre-
quencies, the other weighting only frequency zero. Given that in the present
setting u, is a white noise process, both test statistics are expected to enjoy
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similar behavior, and this is corroborated by the results of our experiment. To
calculate the semiparametric statistics, we use the following steps.

1’

N

[O8]

Estimate 6 and vy by 5 and ¥, by the Robinson (1995b) versions of the log-
periodogram of Geweke and Porter-Hudak (1983) (with bandwidths m
given in step 2), without trimming or pooling applied to the series %,, 7,
where ¥, = x,1(6 < 1) + Ax,1(6 = 1), 0,=0,1(8 < 1) + Ap,1(6 = 1),
denoting by 0, the NB residuals and adding back one to the estimates of
the orders when the corresponding differenced series are employed.
Compute the unweighted estimate of f(A),

jtm

E ]z(S)()\A)

2m+1 k=j—m

f()\j) =

Note that we used here the same bandwidth as for the estimates of the
orders and m will be the corresponding bandwidths used for the semipara-
metric statistics.

Compute the following slightly modified versions of Y., Y?,,, which

exploit the bivariate framework and add power. The only modification
affects 7,,, '?,?, in (19), because instead of these statistics we compute

fia(A))
| Re {Iywn()‘j) 0Y) Ix@)x()\,-)}

FroOA) Far ()

’

(X)) — =
fll( j) fzz(/\j)
f2(0) }
Re{l, o (A;)— —— 1. 5. (A;
~o _ m ; e{)’(')/)x( _/) f22(0) X(’Y)X( _/)
" o S0 ’
' 10) — ————
fn© 122(0)

where f;-j is the (i,j)th element of f and

Jjt+m

Loy (Ar),
2m+ 1 k:jz—m .V('Y)X(Y)( k)

flz(/\j) =

which diverges under H,, this being the source of additional power.

Results of the proportion of rejections over 10,000 replications when
comparing the values of the statistic with the @ = 0.01, 0.05, 0.10 nominal
critical values of the y? distribution are reported in Tables 1-4 for the differ-
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TABLE 1. Proportion of rejections of 2, Y,,, Y&, bivariate case, 6 = 0.3

Y 0.3 0.2 0.1 0

n/a 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

I

n 64 0.015 0.059 0.113 0.030 0.087 0.149 0.073 0.162 0.245 0.141 0.263 0.357
128 0.012 0.056 0.108 0.032 0.109 0.184 0.098 0.245 0.355 0.190 0.373 0.484

256 0.011 0.052 0.103 0.065 0.191 0.290 0.242 0.470 0.595 0.347 0.552 0.652

512 0.012 0.055 0.104 0.166 0.362 0.487 0.594 0.804 0.879 0.614 0.767 0.826

1,024 0.009 0.053 0.101 0.396 0.642 0.754 0.931 0.981 0.993 0.843 0.907 0.932

64 0.036 0.051 0.068 0.090 0.118 0.141 0.191 0.237 0.269 0.331 0.382 0.417
128 0.037 0.060 0.083 0.128 0.173 0.208 0.304 0.371 0.412 0.542 0.607 0.648
256 0.043 0.076 0.111 0.196 0.257 0.304 0.490 0.567 0.611 0.790 0.839 0.863
512 0.030 0.063 0.099 0.223 0.306 0.364 0.653 0.730 0.769 0.943 0.960 0.969

1,024 0.029 0.066 0.109 0.295 0.398 0.465 0.856 0.899 0.920 0.996 0.998 0.999

Yo 64 0.039 0.056 0.072 0.097 0.130 0.154 0.207 0.257 0.290 0.352 0.410 0.446
128 0.046 0.073 0.099 0.152 0.204 0.238 0.344 0.416 0.464 0.591 0.660 0.696

256 0.058 0.100 0.140 0.232 0.301 0.354 0.548 0.623 0.666 0.839 0.879 0.901

512 0.044 0.085 0.133 0.276 0.366 0.425 0.721 0.788 0.820 0.964 0.977 0.982

1,024 0.044 0.096 0.151 0.375 0.477 0.542 0.900 0.934 0.951 0.998 0.999 0.999

&

Note: Proportion of rejections over 10,000 replications of Z,, Y Y?,, when compared with the critical value of a y7 distribution with nominal size . For y = § this is simulated size
and for y < & simulated power.
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TABLE 2. Proportion of rejections of Z,,, Ym, Y?n, bivariate case, 6 = 0.6

Y 0.6 0.4 0.2 0

n/a 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

I

n 64 0.035 0.098 0.159 0.111 0.205 0.284 0.379 0.488 0.564 0.691 0.754 0.789
128 0.028 0.085 0.142 0.120 0.274 0.380 0.468 0.591 0.660 0.855 0.886 0.905
256 0.022 0.070 0.124 0.246 0.469 0.594 0.565 0.661 0.714 0.956 0.966 0.971
512 0.018 0.067 0.118 0.550 0.766 0.846 0.643 0.719 0.765 0.996 0.997 0.997
1,024 0.015 0.061 0.113 0.889 0.964 0.981 0.757 0.809 0.835 1.00 1.00 1.00

64 0.051 0.088 0.130 0.198 0.242 0.286 0.540 0.589 0.623 0.844 0.874 0.887
128 0.050 0.092 0.137 0.277 0.338 0.390 0.780 0.816 0.837 0.981 0.986 0.988
256 0.051 0.100 0.149 0.407 0.477 0.523 0.949 0.961 0.968 1.00 1.00 1.00
512 0.034 0.082 0.132 0.496 0.575 0.625 0.997 0.998 0.999 1.00 1.00 1.00

1,024 0.028 0.078 0.133 0.649 0.728 0.769 1.00 1.00 1.00 1.00 1.00 1.00

Yo 64 0.053 0.092 0.136 0.205 0.252 0.293 0.555 0.607 0.638 0.859 0.885 0.900
128 0.056 0.103 0.150 0.296 0.360 0.410 0.801 0.833 0.855 0.985 0.989 0.991
256 0.057 0.112 0.163 0.431 0.502 0.551 0.957 0.968 0.974 1.00 1.00 1.00
512 0.039 0.093 0.143 0.526 0.605 0.654 0.998 0.999 0.999 1.00 1.00 1.00

1,024 0.033 0.088 0.147 0.684 0.755 0.792 1.00 1.00 1.00 1.00 1.00 1.00

&

Note: Proportion of rejections over 10,000 replications of Z,, Y Y?,, when compared with the critical value of a y7 distribution with nominal size . For y = § this is simulated size
and for y < & simulated power.
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TABLE 3. Proportion of rejections of Z,,, Ym, Y?n, bivariate case, § = 1

Y 1 0.8 0.6 0.4

n/a 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

I

n 64 0.052 0.118 0.188 0.099 0.175 0.245 0.374 0.463 0.528 0.752 0.795 0.826
128 0.037 0.094 0.159 0.071 0.169 0.253 0.402 0.501 0.576 0.885 0.908 0.921
256 0.023 0.077 0.137 0.077 0.206 0.301 0.447 0.549 0.616 0.970 0.977 0.981
512 0.019 0.069 0.124 0.121 0.287 0.403 0.520 0.612 0.670 0.998 0.999 0.999
1,024 0.014 0.061 0.114 0.210 0.418 0.543 0.633 0.712 0.747 1.00 1.00 1.00

64 0.048 0.103 0.152 0.179 0.245 0.304 0.498 0.548 0.586 0.842 0.866 0.879
128 0.042 0.094 0.147 0.181 0.245 0.304 0.663 0.707 0.735 0.971 0.980 0.984
256 0.038 0.089 0.138 0.204 0.271 0.327 0.840 0.869 0.885 0.999 0.999 0.999
512 0.029 0.076 0.129 0.181 0.255 0.316 0.953 0.965 0.971 1.00 1.00 1.00

1,024 0.025 0.075 0.127 0.176 0.260 0.331 0.995 0.997 0.998 1.00 1.00 1.00

Yo 64 0.049 0.102 0.152 0.182 0.247 0.307 0.500 0.554 0.593 0.849 0.870 0.884
128 0.043 0.095 0.146 0.184 0.249 0.311 0.668 0.713 0.739 0.973 0.982 0.985
256 0.038 0.090 0.139 0.208 0.276 0.333 0.844 0.872 0.888 0.999 0.999 0.999
512 0.029 0.077 0.131 0.183 0.260 0.322 0.954 0.965 0.971 1.00 1.00 1.00

1,024 0.024 0.074 0.128 0.178 0.265 0.336 0.995 0.997 0.998 1.00 1.00 1.00

&

Note: Proportion of rejections over 10,000 replications of Z,, Y Y?,, when compared with the critical value of a y7 distribution with nominal size . For y = § this is simulated size
and for y < & simulated power.
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TABLE 4. Proportion of rejections of Z,,, Ym, Y?n, bivariate case, 6 = 1.4

Y 1.4 1.2 1 0.8

n/a 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

I

n 64 0.046 0.106 0.176 0.070 0.118 0.174 0.288 0.350 0.409 0.660 0.697 0.729
128 0.030 0.087 0.150 0.037 0.086 0.149 0.287 0.350 0.404 0.779 0.805 0.825

256 0.020 0.072 0.134 0.026 0.085 0.140 0.309 0.370 0.423 0.889 0.907 0.916

512 0.018 0.065 0.125 0.030 0.099 0.163 0.346 0.412 0.465 0.970 0.975 0.979

1,024 0.014 0.057 0.109 0.052 0.138 0.208 0.407 0.471 0.512 0.995 0.996 0.996

64 0.052 0.113 0.164 0.080 0.124 0.174 0.278 0.325 0.368 0.771 0.798 0.816
128 0.041 0.092 0.142 0.084 0.126 0.174 0.404 0.452 0.490 0.898 0.913 0.924
256 0.031 0.078 0.131 0.091 0.145 0.196 0.556 0.606 0.642 0.973 0.978 0.980
512 0.024 0.074 0.121 0.079 0.135 0.190 0.677 0.721 0.746 0.996 0.997 0.998

1,024 0.022 0.071 0.123 0.075 0.138 0.197 0.780 0.813 0.835 1.00 1.00 1.00

Yo 64 0.053 0.113 0.165 0.080 0.124 0.175 0.278 0.327 0.370 0.772 0.799 0.818
128 0.041 0.091 0.141 0.084 0.126 0.176 0.404 0.451 0.491 0.898 0.914 0.924
256 0.030 0.079 0.131 0.092 0.145 0.199 0.554 0.607 0.640 0.973 0.977 0.980
512 0.024 0.073 0.121 0.080 0.137 0.192 0.675 0.722 0.748 0.995 0.996 0.997
1,024 0.022 0.070 0.122 0.075 0.139 0.199 0.779 0.814 0.835 1.00 1.00 1.00

&

Note: Proportion of rejections over 10,000 replications of Z,, Y Y?,, when compared with the critical value of a y7 distribution with nominal size . For y = § this is simulated size
and for y < & simulated power.
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ent values of 6. Overall all the three tests are oversized, but in almost all
cases sizes react appropriately as n increases. As expected, in terms of size,
the parametric test performs best, followed by Y,., with Y?n being worst,
although for cases 6 = 1, 1.4, its behavior is very similar to that of Ym. For
the parametric test, sizes are best for 6 = 0.3, and it also shows a better per-
formance for the mean-reverting case (6 = 0.6) than for the non-mean-reverting
ones (8 =1, 1.4), the case § = 1 being worst. The mean-reverting and (asymp-
totically) stationary cases also favor the semiparametric statistics in terms
of size when n is small, but here especially the proportions of rejections
corresponding to Y?n do not show a very clear convergence pattern to the
nominal sizes as n increases, unlike in the 6 = 1, 1.4 cases, where it appears
to be a monotonic convergence toward the nominal values. Clearly, the para-
metric test is most powerful for 6 = 0.6, with a very good performance
relative to other values of 6 for which the reduction of the order of the
observables under H, is just 0.2 (where indeed the increase of the propor-
tion of rejections as n increases could be very slow). This perhaps indicates
that the jump from nonstationary observables to (asymptotically) stationary
cointegrating errors (which does not appear for other combinations of 8, y =
6 — 0.2) is important. In terms of power, the semiparametric statistics are
comparable to the parametric one (although note that the proportions of rejec-
tions are not size corrected). Similarly to the parametric test, the semi-
parametric tests have also problems detecting the alternative when 6 =
1, 1.4 (but not when 8 = 0.6) and y = 6 — 0.2, the proportion of rejec-
tions being higher here than for the parametric test when »n is small, although
increasing at a slower rate as n increases. In almost all cases the proportions
of rejection react appropriately as n and the cointegrating gap (6 — )
increase.

In the second part of the experiment, we analyze the behavior of the semi-
parametric statistic Ym, in a multivariate framework (with three observables),
with possibly different integration orders. We generated &, (see Assumption 1)
as a trivariate zero-mean Gaussian white noise with covariance matrix

1.5 —-0.75 -0.75
Q=1 —-075 1 0.25
—0.75 0.25 1

’

noting that if A(L) = I in Assumption 1, this covariance structure leads to a
white noise u, with covariance matrix

1 05 0.5
=105 1 0.25
05 025 1

’
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and so the scenario is similar to that described in the first part of the experi-
ment. However, we introduced further short-memory structure to our design by
setting A™'(L) = I, — ®L, ® = diag(0.5, 0.5, 0.5) and generating w, accord-
ingly. Then, denoting x;, = (xy,,Xx5,)", tty; = (U1, 1, Ura,;) 5 X145 X2, are generated
from the input processes u,, ,, U2, ,, as fractionally integrated processes of orders
01, 0,, respectively, where 6, = 1.4, 1 and 6, = 8, 6; — 0.2, 6; — 0.4. Finally,
v, was generated as in (4) with 8 = (1,1)" and

y=28,,8 —0208 —04.

Note that in the present setting, especially when 6, < &, the covariance struc-
ture of u, is very distant from that of the white noise situation, and so the use
of Y,, instead of Yz seems more appropriate, although both statistics are, at
least to first-order properties, asymptotically equivalent. To compute the statis-
tic and the estimates of the nuisance parameters, we employed the set of band-
widths m = 12, 20, 31, 60, 110, for n = 64, 128, 256, 512, 1,024, respectively.
Note that these bandwidths are approximately half of the bandwidths used in
the first part of the experiment, and they were chosen on the observation that
when short-memory structure is present, smaller bandwidths than in the white
noise situation are warranted. The orders d, d;, 0, are estimated by S0, 8, 55,
which are calculated by the same procedure described in the first part of the
experiment, from the series y,, x,, X,, respectively. Also

1 jtm/2

2 11(5)(/\k),

m 41 iz

f()\j) =

where 5 = (30,31,32)'. Here, note that on the estimation of f we chose band-
width m/2, because, especially when 6, < 8, the estimation of f at a particular
frequency rapidly gets distorted when incorporating information from frequen-
cies that are relatively far from this particular frequency. As in any semipara-
metric procedure, the choice of bandwidth is fundamental, and although a more
extensive Monte Carlo experiment checking the sensitivity of the test to varia-
tions of all bandwidths (and indeed of the short-memory parameters) involved
is interesting, our proposed bandwidths give general hints to practitioners on
possible choices that behave relatively well.

As mentioned in Section 5, the main issue here is to estimate y. Following
the strategy described there, we compute the NB estimate from the regression
of Ay, on Ax, and estimate vy from residuals y, — B 'x, by the method described
in the first part of the experiment, finally obtaining Y,,. Our results are pre-
sented in Tables 5 and 6. As in the bivariate case, when n is small our test is
clearly oversized (especially for §; = 1.4), although as n increases size reacts
in the appropriate direction, and so they are very close to the nominal ones
when n = 1,024 (the statistic being in some cases undersized for large n). For
small n, a decrease in §, implies a decrease in size, this effect disappearing as n
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TABLE 5. Proportion of rejections of Ym, trivariate case, 6, = 1

y=1 y=0.8 y = 0.6
123 a =0.01 a = 0.05 a =0.10 a = 0.01 a = 0.05 a =0.10 a =0.01 a = 0.05 a=0.10
64 1 0.132 0.183 0.222 0.427 0.500 0.546 0.704 0.762 0.795
0.8 0.071 0.106 0.140 0.292 0.362 0.415 0.598 0.669 0.706
0.6 0.048 0.078 0.109 0.213 0.269 0.317 0.532 0.610 0.650
128 1 0.089 0.135 0.171 0.497 0.577 0.623 0.843 0.882 0.900
0.8 0.038 0.067 0.096 0.313 0.395 0.450 0.744 0.804 0.832
0.6 0.029 0.055 0.081 0.236 0.312 0.364 0.696 0.762 0.794
256 1 0.071 0.112 0.153 0.601 0.678 0.724 0.941 0.961 0.970
0.8 0.026 0.054 0.086 0.415 0.503 0.560 0.884 0.917 0.932
0.6 0.021 0.044 0.072 0.310 0.400 0.457 0.868 0.905 0.923
512 1 0.039 0.074 0.110 0.720 0.798 0.838 0.990 0.995 0.997
0.8 0.016 0.046 0.083 0.504 0.610 0.668 0.974 0.986 0.990
0.6 0.011 0.036 0.073 0.379 0.494 0.564 0.967 0.982 0.986
1,024 1 0.019 0.048 0.080 0.849 0.906 0.933 1.00 1.00 1.00
0.8 0.009 0.040 0.084 0.642 0.744 0.800 0.998 0.999 0.999
0.6 0.010 0.047 0.094 0.488 0.629 0.703 0.998 0.999 0.999

Note: Proportion of rejections over 10,000 replications of \A[,,,()A/,é, p) when compared with the critical value of a y? distribution with nominal size . For y = 8, this is simulated size
and for y < 8, simulated power.
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TABLE 6. Proportion of rejections of Ym, trivariate case, 6; = 1.4

y=14 y=12 y=1
1% a =0.01 a = 0.05 a =0.10 a = 0.01 a = 0.05 a =0.10 a =0.01 a = 0.05 a=0.10
64 1.4 0.168 0.226 0.271 0.464 0.534 0.579 0.738 0.789 0.816
1.2 0.122 0.176 0.219 0.341 0.405 0.450 0.644 0.704 0.740
1 0.101 0.149 0.190 0.270 0.337 0.387 0.585 0.650 0.692
128 1.4 0.113 0.163 0.204 0.509 0.583 0.627 0.850 0.889 0.906
1.2 0.073 0.118 0.157 0.339 0.420 0.467 0.750 0.805 0.833
1 0.070 0.114 0.151 0.276 0.353 0.405 0.704 0.764 0.796
256 1.4 0.085 0.135 0.179 0.589 0.661 0.705 0.927 0.950 0.960
1.2 0.058 0.100 0.146 0.397 0.478 0.534 0.863 0.899 0.917
1 0.048 0.089 0.130 0.326 0.408 0.468 0.836 0.878 0.899
512 1.4 0.046 0.086 0.124 0.650 0.727 0.769 0.963 0.973 0.980
1.2 0.034 0.068 0.108 0.434 0.526 0.583 0.924 0.949 0.960
1 0.031 0.067 0.103 0.369 0.465 0.523 0.910 0.939 0.952
1,024 1.4 0.023 0.053 0.085 0.741 0.807 0.843 0.979 0.986 0.989
1.2 0.017 0.047 0.079 0.497 0.599 0.654 0.957 0.970 0.978
1 0.016 0.048 0.083 0.416 0.522 0.586 0.953 0.968 0.975

Note: Proportion of rejections over 10,000 replications of \A[,,,()A/,é, p) when compared with the critical value of a y? distribution with nominal size . For y = 8, this is simulated size
and for y < 8, simulated power.
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increases. In terms of power, the test behaves in a very similar way for both the
0, =1 and &, = 1.4 cases. Power decreases with §, and reacts appropriately as
n increases. The test is able to detect the alternative y = 6; — 0.2 now, although,
especially when 6, = §; — 0.4, the increase in power as n increases is slow.
Overall, we find that the results in this second part of the experiment, which
describe a more realistic situation than the first one, are certainly encouraging,
noting that for simplicity we neither applied the provision made in Section 5
about the rate of growth of the bandwidth used in the estimation of y (in com-
parison to that used in the estimation of 8) nor used sophisticated estimates of
the nuisance parameters. In fact, estimation procedures of these parameters using
bias-reducing devices are readily available (see Hualde and Robinson, 2004),
and using them might lead to even better finite-sample results.
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APPENDIX

Proof of Theorem 1. The proof follows on showing that

Jl W(r;8,) dW(r)

An)7,(v,6,p) = 0 , (A.1)
Z
An)(7,(9,8,p) = #,,(7,8,p)) = 0,(1). (A.2)

First, (A.2) follows directly from Propositions 2 and 3 of Hualde and Robinson (2005).
Next, the proof of (A.1) follows from the application of the steps in the proof of Prop-
osition 1 of Hualde and Robinson (2005) to a somewhat different framework. Denoting
by x(l) the I; X 1 vector of the first /; components of x, (the purely nonstationary ones),
it can be easily shown that

—1

A(n)%,(y,8,p) = A(n)§)<x<”’p(o)1)(1)a,,e, 2 e el 2 c e ) +0,(1),

where fork € {I, +1,...,1}
1
ck=—g¢ E p*(A;)cos(1A;)
mn j=1
and
pk()\) — (1 _ e*iz\)*BkQ1/2Dr(ei/\)pr(A)iléD(e—i/\)Ql/z
+ (1 —e™)72%QY2D"(e™)i,p(—=A)D(e~™) Q2

Then, (A.1) holds as in Hualde and Robinson (2005) by analyzing the joint convergence
of the vector ¢(r) = (¢;(r),c,(r),c5(r))’, where

1 1 '
ci(r) = (n(sll/z Xl e oo non—1/2 xlu[ur])7

1 [l
e(r) =~ 2 p(0)D(D)s,,
=1

)‘é/l‘fl [nr] t—1 /\5/ [nr] t—1 !
C3(r) = ml/2 ! E e m\/? 2 21 Crlfusu .

t= v= =2 =
Thus, (A.1) follows by Marinucci and Robinson (2000), Brown (1971), and Kurtz and

Protter (1991), the independence between the components being due to the result that
the processes c¢(r), c2(r), ¢3(r) are uncorrelated. u
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Proof of Theorem 2. The proof follows on showing that
! A j—
7.(v.0) = f W(r;6) dW(r), (A3)
0

where

. 1 r
W(30) = (0.,1)D(1) 1 j (r— 551 aW(s),

W(r)=2x" (D)"Y Q'W(r)
and
7,(9,0) = 7,(7,0) = 0,(n®). (A4)

First, noting that under H,

n

7,(y,0) = E Wx(_Aj)p(Aj;g)Wu()‘j)y

Jj=1

(A.3) follows from a trivial multivariate extension of Propositions 1-3 of RH, the only
significant difference now being that the vector w,(—A;) replaces the discrete Fourier
transform of a filtered scalar process x, in RH, but this could be straightforwardly
accounted for.

Regarding (A.4), we only show

7,(7,0) = 7,(7,0) = 0,(n°), (A.5)

the rest of the proof following directly by Propositions 7 and 10 of RH. The result in
(A.5) corresponds to Proposition 9 in RH, but our present situation is more delicate
because we just require that y satisfy (21) with k > 0. Thus, our proof strategy is sub-
stantially different, and it is worth giving a detailed analysis.

The transpose of the left side of (A.5) is

1 n n t—1
2_ EP(AJ)E E am(S_‘}A/)"tt m E'x’ 7“/\
n j=1 =2 m=1

A n t—1

i 2 p() X X alO)u,_,e™ X xle ™ (A.6)
= s=1

=2 m=1

( 7,y)R n n -1 (r> B . n .
E W Z X @@= F)u,e™ X xje™™, (A7)

t=2m=1 s=1

where p(A) = p(A;0), a\”(c) = d"ay(c)/dc", and |y — 8| =< |9 — 8|. First, as in RH, the
second term in (A.7) can be shown to be of smaller order for R large enough. Next, we
show that the rth term in (A.6) is O,(n~“"n®*<) for any € > 0. First
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< Ep()‘ )2 E (r)(O)ut € el Exf —,5)\])

t=2m=1

7 n—1

=5 E p(A) | 2 a(0)e" D, (A; = p)

—m s=1

n—1

X X a,(8)e”™D, (= A)f(w)édp, (A-8)
=0
where D,(A) = X;_, ™ is the Dirichlet kernel. Noting that for any A, p(A)f(A)€ is
identically zero, by periodicity, (A.8) can be written as

m n—1

P EP()\ )| X a0 D, (—p)

—m s=1

n—1

X > a,(8)e ™D, (W[ f(p+ X)) — F(A)]édw,
=0
which, by summation by parts, is
m n—1

P EP(/\ )| X al0)eD, (—p)

—a s=1

X {anlel(:u')[f(M +A) = f(A)]€ :ioe”“/ du = [f(u+ X)) = f(A)]€

n—2 t
X 2 (@1 D, (p) —a,D,_, () E e M d,U«}, (A.9)
=0 h=0
where a, = a,(5). Because ,":_01 e "™ =p,j =0, mod n; = 0, otherwise, and f is

boundedly differentiable, the contribution of the first term in braces in (A.9) is bounded
in norm by

Kla, | 2|a<f)<o>|[ \l1D () di, (A.10)

where throughout K denotes a generic finite positive constant. Noting that for 0 < A < 77,
|D,(A)] < Kmin{|A| ", 1} (A.11)

(see Zygmund, 1977), it can be easily shown that, uniformly in s,

[ wiip, - cwdn = o,

so that by Lemma D.4 of RH, (A.10) is bounded by

rls

SIE

= 0(n° 'log"s).
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Regarding the second term in (A.9), noting that

a1 Dy (W) = a, D, (p) = (a1, = a,)D,,—y(p) — &' *ay, (A.12)
the contribution of the first term on the right of (A.12) to the second term of (A.9) is 0

for 6 = 1, as in this case a,+; = a,, t = 0,...,n — 2. For 6 # 1, this contribution is
bounded in modulus by

o3[
AL

n—1 2

> al”(0)e D, (—pm)

s=1

1/2
I f(u + )\j) _f(/\j)H d/_l,}

n—2

> (e —a)D, () (D,(=A;) + 1)

=0

2

1/2
I f (e + )‘_;‘) 7f()‘j)” dM} .

(A.13)

The term in the first set of braces is bounded uniformly in j by

T n—1n—1
K f lul 2 X a0)a” 0)e’ 4D, (~p)D, (1) du

s=1 =1

T n—1
<k [ 1ul'S @)D, (-l du = Klogn,

s=1

because by Zygmund (1977)

| 1wl du = 00108 m.

Next, the term in the second set of braces is bounded by
T n—2n—2
K[ 1SS @ =)D, (D, -1) +1)
—r =0 s=0

X (as+1 - as)Dnﬁsfl(_M)(Ds()‘j) + 1) dlu’

n 2
= 0<j’2n210gn<2 t5’2> >,
=1

by Lemma C.1 of RH and (A.11), which is O(j %n%lognl(é < 1) + j 2n?®
log n1(8 > 1)), implying that (A.13) is O(log?n1(6 < 1) + n® 'log?n1(é > 1)). Finally,
the contribution of the second term on the right of (A.12) to the second term of (A.9) is
bounded in modulus by

n T n—1 2
Jj=1 — s=1
| n—2 2 1/2
X f > e rg, (D, (=) + 1) d,u} ) (A.14)
—a | =0
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The first integral inside the braces is O(log?"n) by (A.11), whereas noting that
f e 1UTOR dy = 211, s=1; =0, otherwise,

the second is bounded by K X/_,a}|D,(A;)>, so that (A.14) is bounded by
Kn~'log"n 27_ {n?°*1j72}12 which is O(n®""?log""!' n), implying that the left of
(A.8)is O(n'?lognl(6 < 1) + n®"21og" ' n1(6 = 1)).

Next, by straightforward calculations and application of Lemma C.2 of RH

n t—1 n

R ) )
Vo 5 300 Bl 0 e 3 e ) = 00,
2mn j=1 : : X 1

=2j=1 5=

for any € > 0, which implies that the rth term of (A.6) is O,(n~*""*<), for any € > 0,
so that (A.5) holds for any k > 0 on choosing € < k, to conclude the proof. u



