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NON-GAUSSIAN LOG-PERIODOGRAM
REGRESSION

CARLOS VELASCO
Universidad Carlos Ill de Madrid

We show the consistency of the log-periodogram regression estimate of the long
memory parameter for long range dependent lineatrnecessarily Gaussigime

series when we make a pooling of periodogram ordindthen we study the as-
ymptotic behavior of the tapered periodogram of long range dependent time series
for frequencies near the origiand we obtain the asymptotic distribution of the
log-periodogram estimate for possibly non-Gaussian observation when the tapered
periodogram is use@or these results we rely on higher order asymptotic properties
of avector of periodogram ordinates of the linear innovatiéimglly, we assess the
validity of the asymptotic results for finite samples via Monte Carlo simulation

1. INTRODUCTION

Long memory or long range dependent observations have been found in many
fields of researcke.g., Robinson1994¢ Beran 1994). In this paper we consider
semiparametric statistical inference for long range stationary dependent time se-
ries In particular we concentrate on the estimate of the memory parameter based
on the regression on the logarithm of the periodogram at Fourier frequencies
close to the originThis estimateproposed initially by Geweke and Porter-
Hudak(1983, has been very popular among practitioners because of its intuitive
and computational appedt the same timgproperties of maximum likelihood
methods have been analyzed extensively for parametric models of long range
dependence Gaussian and linear proces®es.g., Fox and Taqqul986 Dahl-
haus 1989 Giraitis and Surgailis1990, obtaining equivalent efficiency results
to the weak dependence situatidiowever this approach involves a complete
specification of the dynamics of the proceard if we are only interested in the
estimation of long range dependence characterjssiemiparametric and non-
parametric setups can be robust against any misspecification of the short run
behavior of the time series

Semiparametric models for long memory focus on some properties of the auto-
covariance sequencébyperbolic decayor of the spectral densitigingularity at
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the zero frequengy They are semiparametric because they do not make explicit
assumptions on the behavior of the autocovariances at short lags or on the spec-
tral density apart from the origitWe set our conditions in the frequency domain

in terms of the spectral density since they are much neater and cover a broader
range of possibilitiesWe assume that the spectral density satisfies

f(A) ~Crx 24 asA — 07, (1)

whered € (0,3) is the self-similarity parameter that governs the degree of strong
dependence of the seriékhis is the interval of values af for which the series
exhibits long range dependence and is statiaffdmy basis for the log-periodogram
regression estimate is the least squares estimation of the linear relationship im-
plicitin expressior(1) between the spectral density and the frequency in log-log
coordinates with slope-2d when the spectral density is estimated by the peri-
odogram at Fourier frequencies close to the origin
Robinson(19943 1995319950 and Lobato and Robinsdii996 have used
similar assumptions to the ones we employ here to study the asymptotic behavior
of several semiparametric estimatesioRobinson(19954 justified a modified
version of the procedure proposed by Geweke and Porter-HU&88, includ-
ing multivariate and pooled periodogram versioHg proved the consistency
and asymptotic normality of this estimate for Gaussian vector time seriésh
may seem very restrictive in view of the weak distribution assumptions under
which the other estimates were investigatiedhis paper we extend his consis-
tency results for linear processes not necessarily GauSiasbtain an asymp-
totically normal estimate we need to taper the data to reduce the leakage in the
periodogram ordinates from the zero frequency paled we need to pool the
contribution for several adjacent frequencies to obtain better behaved regressors
The paper is organized as followls the next section we present our main
assumptions and definitiondiscuss related referengemd obtain the consis-
tency of the log-periodogram estimatedfThe effects of tapering are discussed
in Section 3Section 4 is dedicated to the asymptotic nhormality of the estimate of
d when we use the tapered periodogra&imally, we report the results of a brief
simulation exercise centered on the tapering and pooling techniques analyzed
under different distributional settingll the proofs and some technical Lemmas
are given in the Appendix

2. CONSISTENCY OF THE LOG-PERIODOGRAM
REGRESSION ESTIMATE

Let{X;,t =1,2,...} be a covariance stationary process with spectral density sat-
isfying (1). Given an observable sequenXgt =1,...,N, we introduce the dis-
crete Fourier transform at the frequengy= 2#j/N, j integer

N
W(Aj) = (2mN) V2 > X e,

t=1
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and the periodogram i A;) = \W()\j)|2. Define forJ=1,2,..., fixed, and some
positive integerd andm (assumingm — ¢)/J to be an integer

J
Yk(J)=|Og<E|()‘k+iJ)>’ k=€¢+J€+2J,....m.

=1

The estimate of the memory paramedazonsidered in Robinsof19953 is
d= (2 Ari)il > A,
k k

whereA, =z, — 2, z.= —2 log A, andz = {J/(m— €)} > z.. Heremis an integer
smaller tharN and{ is a user-chosen trimming numbér the asymptotics both
numbers tend to infinity with the sample silkidout more slowlyWe suppress in
the notation reference 9 or J.

We could substitute thépooled periodogram by nonparametric smoothed
consistent estimates of the spectral density as was done in V&l for long
range dependent series oyé&m., Hassler(1993 for antipersistent serigsl < 0).
However when we consider id fixed averages of the periodogram the analysis
is much more complicated than in that situatiblere we have to deal with the
logarithm of a random variable that is not converging asymptotically to any con-
stant and that can take values arbitrarily close to zZemmlinear functiongthe
logarithm in particular of the periodogram of stationary sequences have been
considered under different setugee e.g., Hannan and NichollsL977 Tanigu-
chi, 1979 Chen and Hannan98Q von Sachs1994 Janas and von SagH993
Comte and Hardouinl995 and the references given in these sourc&hese
works assume Gaussianity to obtain the main reseksept Chen and Hannan
and Janas and von Saclis which the researchers work with linear process
conditions

These last two references use higher order properties of the asymptotic distri-
bution of the periodogramlanas and von Sachs mainly applied the results for
weakly dependent sequences of Gétze and K983, making it almost impos-
sible to relax their assumptions for long range dependence situatisteadthe
approach of Chen and Hannét980 is based on the factorization of the peri-
odogram of the observable sequence in the transfer function of the linear filter
times the periodogram of the independent and identically distribledl) in-
novations plus a stochastic error tetrthe magnitude of this error depends on
the smoothness of the spectral density and on the number of moments assumed
for the innovationsObviously the conditions they assumed| j | | «; | < oo, 6 >
1, see Assumption,3vhich follows), rule out any long memory behavior or any
singularity in the spectral density &§, but their results are based mainly on the
properties of the periodogram of thé.d. innovations sequencéor which we
assume the same set of conditions as in their Theor@@e2Assumption,4vhich
follows).
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Arelated approach was used by Comte and Hard@i885) in a long memory
environment but assuming Gaussianitie use one of their ideas to avoid a mod-
ification of the estimate ofl in the same spirit as the one proposed by Chen and
Hannan(1980 for a different statistic to account for valueslof; )/f (A;) that are
too small Herg instead of redefining the periodogram with a truncatiwa use
an average of periodogram ordinat€ken we can use their higher order asymp-
totic approach and the long range dependence results of Robih986h to
approximate the periodogram Xf by that of the linear.i.d. innovations times
the long memory transfer function

Tukey (1967) proposed tapering as an effective bias reduction technique for
spectral inference to avoid leakage from remote frequentirder additional
smoothness conditions on the behavior of the spectral density at the, avigyin
study the asymptotic effect of tapering the data prior to calculating the peri-
odogram We obtain the asymptotic normality of the estimat®ased on the
tapered periodogranvon Sachg(1994 and Janas and von Sac{i®993 also
used tapering for nonlinear functions of the periodogriut their results do not
apply to long memory time serieRobinson(1986), Dahlhauq1988), and Hur-
vich and Ray(1995, among othershave proposed this technique to reduce the
bias of several statistics when possibly nonstationary behaviors of the observed
time series are suspected

We now introduce some assumptions about the behavior of the spectral density
around the originfollowing Robinson(1995a 1995k, but do not consider neg-
ative values ofl. Later we strengthen these assumptions to obtain further results

Assumption 1 X, is covariance stationary and for some [0,3), « € (0,2]
and 0< G < oo,

f(A) = GA 24+ O(A«™29), asa — 0™
Assumption 2 In a neighborhood0,¢) of the origin f () is differentiable and

d
‘ o Iogf(/\)‘ =011, asA — 0™,

These conditions are standard in long memory research and are satisfied with
a = 2 by fractional ARIMA modelsfor which

2

2
F(A) = 2 |1- e[ 2
2m

a(ei/\)
R —m < A=,

b(e”‘)

whereo 2 > 0 anda andb are polynomials of finite degree having no zeros in or
on the unit circle and by the fractional Gaussian noise model with autocovariance
sequence given by

0
y(i)= T2+ 0t - 2l -1, =
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Instead of Gaussianity we introduce a fourth order stationary linear process con-
dition, with filter coefficients compatible with Assumptions 1 and 2

Assumption 3 X, satisfies
< S 2 d -1

X =2 aje, > af < oo, —a(A)| = 0(A Ha(A))),
i=o i=o dA

a(A) = > a;€l,
i=o

asA — 0Y, where thes, are ii.d. with E[e,] = 0, E[eZ] = 1, andE[¢f] < co.

We assume zero mean for the settgsvithout loss of generalifypbecause we
omit the periodogram at zero frequency in the definitiondoFour bounded
moments are enough for all our consistency resilts introduce the next as-
sumption following Chen and Hann&h980).

Assumption 4 ¢, has characteristic functio(6) = E[e? ] satisfying

sup|Q(0)| = 8(6p) <1, D6 >0, and f 1Q(0)[P df < oo,
|61=6o —o0

for some integep > 1.

The conditions of Assumption 4 are needed to prove the validity of an asymp-
totic approximation for the probability density of the discrete Fourier transform
of the innovationg; (see Lemma 2 in the AppendixThe first line is a Cramér
condition The second condition is used to approximate the probability density
and it would not be necessary to approximate the probability distribution func-
tion. It implies that the probability distribution aof, has a bounded continuous
density(seg e.g., Feller, 1971, Theorem 3p. 509).

We now proceed to show the consistency of the estirdatéhen finite av-
eragedfor J fixed) of the periodogram oK, are used under the linear process
condition of Assumption 3We approximate the logarithm of the periodogram
of X; by that of ¢, times the transfer functigrthe error depending on the
properties of the filtef;} and on the distribution of the linear innovatioans
but special care is needed because of the singularity of the logarithm function
at the origin However we are only able to deal with the cdse 3. The reason
for this limitation is the following To approximate the periodogram %f by
that ofe; we need to consider the inverse moments of the periodogramanf
certain Fourier frequencie$he average of periodogram ordinates of an.d.
sequence is asymptotically distributed agZ (up to constants The key point
is that if Z ~ x3,, thenE[Z2 7] < oo for 0 < a < J (see Lemma JAwhich
follows). Of course to approximate the moments of a random variable we need
something more than its asymptotic distributidinat is why we approximate
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the probability density of the Fourier transform gfunder the regularity con-
ditions of Assumption 4We conjecture that a related argument could be used
to construct a proof fod = 2.

We introduce some more notatidvrite I; = I (A;) andf; = f(A;) and for the
periodogram of the, innovation sequencé. ; = I.(A;). LetJ be afixed positive
integer Define

j

Mu

I

J
Ik+j7\]7 Isk:2|5,k+j73, k:€+\],€+2\],.,m
1 j=1

We suppress the dependencelan the notation, andl,.
We can write in the same spirit as in Comte and HardgLg95),

Wls,k

_ _ 1)
logl, = logf, + log Zwle,k+log<1+ > K ) (@)

where the error tern, = f I, — 27l is analyzed in Lemma 3 making direct
use of some results of Robins¢h995a1995h based on the characteristics of
the linear filtera (1) under Assumptions 1 and & fact, when approximating the
observed pooled periodogrdiby that of the innovationk , we have two types
of errors indy; one is the bias due to the average acnbﬁequenciesfkfllj —
fi"1;, and the other is the stochastic erfortl; — 27l j, fork +1-J=j =k
Then for € increasing wittN, we show that both errors are negligiblg#) using
atruncation argument similar to that in Chen and Har(d@80, without need of
modifying the definition of the estimatdiere the main problem is the small
values ofl andl. ,, which cause problems because of the logaritfine follow-
ing lemma is useful to show that these values will not occur too often if sufficient
pooling is usedi.e., Jis large enough

LEMMA 1. Under Assumptiod, forJ=1 k# 0 (modN), forall 0 <a < J,
E[{I(A0}* 7] < oo

We now give sufficient conditions for the consistencyddbr linear, possibly
non-Gaussiarseries under conditions 3 andHrst, we introduce the following
condition on the bandwidth numbers

Assumption 5 As N — oo, for someb > 0, J = 3,

mY/2 £(logN)2  m
(logh)® = m

(I3+2b m N - 0.

This assumption imposes quite a high trimming ratd,ihecause fod = 3, ¢
has to grow faster tham®®. If Jis large therf only needs to grow slightly faster
thanm¥?, which is the condition required by RobinsG995h for consistency
and asymptotic normality ad. Then our first result is the following theorem
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THEOREM 1 Under Assumption$—5 with J= 3, d —pd.

The question of whether the asymptotic distributiondafemains the same
once Gaussianity is no longer assumed is of evident intebasthe previous
results are not enough to show thiairst, it is necessary to improve the approx-
imation results between the periodogram ordinates of the observable sequence
and of the innovationsThen a central limit theorem has to be proved for the
random variable

£ = (2 Ai)‘li Aylog 27T
k k

that appears in the proof of Theoremithe next section we propose tapering as
a way of obtaining the previously rpentioned approximataomd then we inves-
tigate the asymptotic distribution aof

3. TAPERED DISCRETE FOURIER TRANSFORM

In the previous sectignve obtained the consistency @fvith a pooling of peri-
odogram ordinate$iowever the bias of the periodogram makes it impossible to
obtain the asymptotic distribution from the proof of Theorgmrless we trans-
late the regression to frequencigst + 1= j = € + m, with m/¢ — 0 asN — co.
Asimilar problem was observed for Gaussian series under stronger conditions by
Comte and Hardouifil995 Propositions 1 and)3

Tapering the data is a well known method to reduce the leakage in the peri-
odogram from other frequencieand in this case it is a very effective way of
reducing the bias of the periodografapering gives more relevance to observa-
tions in the central part of the observed sequedognweighting those obser-
vations at both extremes by means of a smooth positive funbtiohtime, t =
1,...,N,0=h; =1 We need to strengthen Assumptions 1 and 2 wuse these
properties of tapering as in Assumption 3 of Robingb®94b, with 1 < o = 2:

Assumption 6 To further Assumptions 1 and 8enotingg(A) = G| A| 2% we
assumefor some 0< E, < oo, that asx — 0™,

)
g(d)

Assumption 6 is satisfied with = 2 by the fractional ARIMA and fractional
noise modelsThis condition is equivalent to assuming tH&d) = g(A)h(A),
with h(0) = 1 and whereh(\) is even and differentiable with derivative in
Lip(a — 1) for 1 < @ = 2 around the origin

Thereforethis assumption is satisfied at frequencigs 27j/N,j=12,...,m,
for N big enoughThen for frequenciesA| = A;/2, we can expanéin this way:

=14+E, XX +0(\), l<a=2

f(A = A) = F(A) — A XE(A) + O(A724 [ A[*), (3)
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where the derivative df satisfiesf'(A;) = O(A,—’Zd’l). This can be seen heuris-
tically in the following way making a Taylor expansion baroundj;, we are led
to study the difference fdp| =1 andA € [A;/2,3);/2],

|AF/(Aj = 0A) — AT/ (A))]. (4)

Now, as we can writd’ = h'g + g’h, this is not bigger than the sum of the
differenceqtaking6 = 1 to simplify notationw.l.0.g.)

[h'(A; — 1) g(A; — A) — h'(A)g(A))]

+ [h(A; =) g'(A; — A) — h(A)g'(A))], 5)
times| A|. The first term in(5) is bounded by
[h"(A; — A) = h"(AP[[g(A; = V[ + [g(A; — 1) — g(A) [ (A)],

and using the mean value theorem and that for these valueg of =
O(A*).g' = O(x;%*), g" = O(A;*2), h = O(1), h' = O(x™"), and
[h’(A; — A) = h'(A;))| = O(|A]*~1), this is bounded by

O(AIZd/\a71 + Al_deflAlqcfl)\) — O(Ajde/\afl),
becauser € (1,2]. Similarly, the second term ifb) is bounded by
19"(A; = A) = g (APIIh(A; = V[ + [h(A; — A) = h(A))]]g'(A))]

— O(/\jdefZ/\ + /\lq*l/\Jdefl/\) — O(ATdea Aafl).

Then(4) is easily seen to b@(/\j‘zc"“/\“ ), multiplying the last two bounds by.

We consider the full cosine bell or hanning taf@er suggested by Hurvich and
Ray (1995 for a related problemA generalization of the results in this section
can be possible for many smooth data tajieeg e.g., Velascq 1999 in arelated
contexy}, but the hanning tapering has some desirable features that we use later to
find the asymptotic distribution of the log-periodogram regression estimate with
tapered observation$apering allows us to reduce the bias of the periodogram
for frequencies close to the origin if we assume a spectral density smooth enough
at these frequencigs.e.,, a > 1 in Assumption & Also, because the tapered
Fourier transform can be written down as a linear combination of tfree)
Fourier transformswe can still use the results of Chen and HanfE®80 as
before with minor modifications

The tapered discrete Fourier transform is defined as

N
wh(a) = (2 3 h2) 2 S he X expliag ),
t=1

whereh, = 3(1— cogd 27t/N]) and the sum of the squared taper weighfs ¢ =
3N/8. This is called theasymmetricversion of the cosine bell by Percival and
Walden(1993 p. 325). The usual discrete Fourier transfomr{\) is obtained
settingh, =1, [It.

Then we can write(see Bloomfield 1976 pp. 80—84 Percival and Walden
1993 pp. 325-326 the tapered Fourier transformgt2=j=N— 2, as alinear
combination of the usual Fourier transform at the frequentigs;_,, andA; 4,
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1
V6

As a consequenctapering destroys the orthogonality relations between Fourier
transforms at different frequencies if they are too cJaseen asymptotically
because the tapered Fourier transforms have a common component at Fourier
frequencies that are less than two basic frequencies 27/N away For that
reason we only consider frequencigsindi, such thak <j — 2, which we may
expect to be uncorrelateds in the general casdowevey tapering allows us to
obtain much neater results than previouslypecially for the expectation of the
periodogramreducing notably its bias even for frequencies close to a singularity
using expansiof3).

We now present the equivalent of Theorem 2 of Robin€®954 for the
(univariate tapered Fourier transformefinev (1) = w'(A)/(GY2A79).

wh())) = [—W(Aj_1) + 2W(A)) — W(Aj4q)].

THEOREM 2 Under Assumptiof [1 < a = 2], for any sequence of posié
integers j=j(N) and k= k(N) suchtha =k <j + 2and j/N — 0 as N— oo,

@ E[oT(A)vT(A)] =1+ 0O(j~* +[j/N]*),
(b) E[vT(A)vT(A))]=O(j ™),
(© ElvT(AvT(A0)] = O(k™),
(d) E[oT(A)oT ()] = O(k™).

Comparing this with Robinson’s results for the expectation of the periodggram
the bound in(a) is improved fromO(logj/j)to O(j %) for1 < a = 2. Thisis the
main bias reduction gaiiThe magnitude of this bound is determined by Assump-
tion 6 and depends on the taperimghich makes all the other contributions of
smaller orderThis is also the reason why we have such an improved bound in
part(b). This improvement is fundamental to approximate(tapered and pooled
periodogram of the; sequence by the transfer functipm()| times the peri-
odogram of the innovations

However the bounds in Theorem 2 do not improve substantially for the cor-
relations between Fourier transforms at different frequer(giss by a logarithm
factor), because the frequencies can be arbitrarily close and tapering does not
affect substantially the asymptotic behavior of the periodogram thepoved
bounds are possible if we consider explicitly the distafjce k| (see Giraitis
Robinsonand Samaravi997).

4. ASYMPTOTIC DISTRIBUTION

In this section we derive the asymptotic distributiordofor J = 3, when we use
the tapered periodogram&s discussed in the previous section we modify the
definition ofd in this way define ford=1,2, ..., fixed, (assumingm— ¢)/(3J)

to be an integer

Yk(T’J) = Iog(l_T()\k))’ k = € + 3J, € + 6J,...,m,
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where
B J
(k) = 21 T (Akraij—)s 1T(A) = [wT(1)|?
-1
and
d’ = (E A2k>71 S AN (6)
K K

We consider a pooling aftapered periodogram ordinatesd though each of the
tapered Fourier transforms is a linear combination of the Fourier transform at
three adjacent frequenciehis definition ofd™ secures the asymptotic uncorre-
latedness of (A,) and the asymptotic independence of the regres‘ﬁﬁré) at
different frequencies

Let us introduce the following condition concerning the bandwidth numbers

Assumption 7 As N — oo, for somea > 0,

1 {’(Iog N)2 m1+1/2a
-+ + — 0.
4 m N

The basic difference with respect to Assumption 6 of Robind®953 is the
first condition we only need the trimming numbérto increase witiN but in-
dependently o, as from Theorem 2 we can control the bias of the periodogram
for closer frequencies to the origin thanks to tapergw we present our main
result

THEOREM 3 Under Assumption8, 4, 6, and 7, if ¢, has moments of all
orders J=3,aJ/(J+2) > 1,

m¥2(dT —d) —p N (0, % ¢’(J)>,

whereys'(x) = (d/dx) ¢ (x) = (d/dx)logT (x) is the digamma functian

Notice the trade-off between pooling and the smoothness conditidiion
allowing for valuese < 2 whenJ is large enoughThe proof of the theorem is
based on the method of momemsthough for the estimation of the moments of
the logarithm of the innovationgooled and tapergdperiodograms we only
require four bounded moments gf this is not enough to approximate the mo-
ments of a normalized infinite average of such periodogram logarit®omsmo-
ment assumption is then used to approximate with a sufficient degree of accuracy
those moments by means of Edgeworth expansions for the probability density of
the Fourier transform

For the asymptotic normality proof we do not use any special properties of
tapering or pooling the periodograapart from the bound in Lemma(pooling)
and Theorem Ztapering. These two devices are used to improve the approxi-
mations and behavior of the periodogram of the long range dependent time series
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Possibly under stronger conditions on the dependence of the proGessd/or
its distribution one or both of these techniques could be dispensed with

5. SIMULATION WORK

In this section we present a simulation exercise to analyze the techniques of
tapering and pooling in the log-periodogram estimate for non-Gaussiarildata
that end we simulate,800 series following an ARFIMAO,d,0) model and in-
novations with different distributiongniform[ —+/3,1/3], Exponential with pa-
rameter 1recentered with zero meggdistribution which only has four moments

so Theorem 1 hold$ut not Theorem 3and standard Gaussian for comparison

TaBLE 1. Log-periodogram regression estimatbfd = 0.45, N = 256)

m J Bias sd thsd MSE 90% 95% 99%
Gaussian
30 1 Q0056 Q1416 01171 00201 8346 8950 9648
30 2 —0.0295 01189 01037 00150 8448 9Q70 9688
30 3 Q0287 Q1309 00994 00180 7162 8520 9454
45 1 —0.0066 Q1104 00956 Q0122 8530 9106 97.04
45 2 —0.0342 00962 00847 00104 8360 9000 9660
45 3 Q0097 Q1012 00811 00103 8108 8842 9588
Uniform
30 1 Q0024 01437 01171 00207 8180 8890 9664
30 2 —0.0325 Q1190 01037 Q00152 8406 9048 9676
30 3 Q0241 01322 00994 00181 7752 8546 9438
45 1 —0.0098 01120 00956 00126 8424 9098 9678
45 2 —0.0374 00955 00847 00105 8322 8936 9634
45 3 Q0059 01018 00811 00104 8230 8890 95370
Exponential
30 1 Q0030 01426 01171 00204 8240 8918 9636
30 2 —0.0318 01178 01037 00149 8448 9010 9696
30 3 Q0252 01308 00994 Q0177 7816 8372 9424
45 1 —0.0108 Q1124 00956 Q0127 8434 9102 9662
45 2 —0.0373 00954 Q0847 00105 8344 8972 9624
45 3 Q0063 01017 Q0811 00104 8188 8844 9584
ts
30 1 Q0046 01393 01171 00194 8370 9000 9666
30 2 —0.0307 Q1162 01037 00144 8484 9102 9704
30 3 Q0257 Q1277 00994 Q0170 7904 8640 9500
45 1 —0.0052 01093 00956 Q0120 8494 9174 9752
45 2 —0.0332 00932 Q0847 00098 8460 9094 9648
45 3 Q0097 00987 00811 00098 8274 8924 9640
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TABLE 2. Log-periodogram regression estimatbfd = 0.45, N = 512)
m J Bias sd thsd MSE 90% 95% 99%

Gaussian
30 1 Q0075 01432 01171 00205 8282 8924 9630
30 2 —0.0283 01198 01037 00152 8454 9040 9650
30 3 00291 01330 00994 00185 7122 8490 9412
60 1 Q0033 00942 00828 00089 8510 9150 9750
60 2 —0.0211 00800 00733 00068 8550 9168 97.38
60 3 Q0168 00844 00703 00074 8210 8910 9654
90 1 —0.0018 00753 00676 Q0057 8632 9212 9758
90 2 —0.0210 00648 00599 00046 8522 9128 9762
90 3 Q0082 00671 Q0574 00046 8386 9066 9708

Uniform
30 1 Q0090 01411 01171 00200 8306 8970 9650
30 2 —0.0265 01171 01037 00144 8492 9084 9686
30 3 Q00322 01303 00994 00180 7748 8538 9456
60 1 Q0047 00940 00828 00089 8518 9148 9754
60 2 —0.0204 Q0798 Q0733 00068 8610 9214 9734
60 3 Q0176 00843 00703 00074 8222 8904 9628
90 1 —0.0019 00751 Q0676 Q0056 8618 9202 9798
90 2 —0.0219 00638 00599 00046 8574 9172 9746
90 3 Q0070 00663 00574 00044 8438 9062 9732

Exponential
30 1 Q0088 01415 01171 00201 8328 8966 9668
30 2 —0.0274 01175 01037 00145 8470 9074 9690
30 3 Q0309 01302 00994 00179 7756 8586 9440
60 1 Q0048 00927 00828 00086 8556 9210 9762
60 2 —0.0202 00791 Q0733 Q0067 8612 9196 97.78
60 3 Q0183 00836 00703 00073 8278 8936 9654
90 1 —0.0025 00736 00676 00054 8692 9288 9814
90 2 —0.0220 00630 00599 00045 8620 9218 9778
90 3 Q0070 00654 00574 00043 8472 9128 97.24
ts

30 1 Q0069 01417 01171 00201 8228 8928 9654
30 2 —0.0278 01166 01037 00144 8468 9066 9682
30 3 00299 01289 00994 00175 71764 8554 9454
60 1 Q0038 00945 00828 00089 8494 9114 9750
60 2 —0.0202 Q0795 00733 Q0067 8616 9186 9748
60 3 Q0173 00831 00703 Q0072 8270 8986 9674
90 1 —0.0033 Q0747 00676 00056 8642 9256 97.68
90 2 —0.0224 00635 00599 00045 8580 9160 9748
90 3 Q0064 00654 00574 00043 8424 9122 9760
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TaBLE 3. Log-periodogram regression estimattaper d = 0.45, N = 256)

Spacingd™ No Spacingd ™
m J Bias sd thsd MSE 90% 95% 99% Bias sd MSE 90% 95% 99%
Gaussian
30 1 Q0133 02536 02028 Q0645 8268 8954 9600 00067 02026 Q0411 9032 9452 9864
30 2 —0.0043 02642 01796 Q0698 7416 8164 9230 —0.0181 Q1728 Q0302 9144 9534 9900
30 3 Q0657 03115 01721 01014 6388 7202 8416 00191 01849 00346 8780 9276 9796
45 1 —0.0030 01970 01656 Q0388 8454 9018 9652 —0.009 Q1545 Q0240 9246 9648 9920
45 2 —0.0200 02187 01466 Q0482 7440 8176 9158 —0.0282 Q1356 00192 9162 9614 9916
45 3 Q0209 02209 Q1405 Q0492 7122 7926 8972 —0.0008 01405 Q0198 9022 9510 9894
Uniform
30 1 —0.0015 02548 02028 (00649 8278 8904 9550 —0.0065 02033 Q0414 8998 9466 9878
30 2 -—0.0198 02762 Q1796 Q0767 7302 8060 9092 —0.0296 01737 00311 9084 9512 9904
30 3 Q0468 03175 01721 01030 6310 7166 8386 00064 01863 00348 8734 9274 9806
45 1 —0.0145 Q01955 01656 Q0384 8500 9096 9670 —0.0211 Q1535 Q0240 9262 9612 9940
45 2 —0.0325 02255 01466 Q0519 7264 8102 9100 —0.0383 Q1347 Q0196 9224 9602 9912
45 3 Q0111 02240 Q1405 Q0503 7038 7840 8958 —0.0113 Q1397 Q0196 9022 9552 9886



LS

30
30
30
45
45
45

30
30
30
45
45
45

WNEFE WN P

WNEFE WN PP

—0.0017
—0.0139
Q0518
—0.0125
—0.0282
Q0128

Q0033
—0.0138
Q0485
—0.0080
—0.0250
00126

02545
02686
03093
01977
02200
02212

02490
02678
03125
01932
02194
02185

02028
01796
01721
01656
01466
01405

02028
01796
01721
01656
01466
01405

00648
00724
00984
00393
00492
00491

00620
00719
01000
Q0374
00488
Q0479

8294
7386
6378
8452
7424
7114

8284
7438
6380
8476
7380
7110

Exponential

8906
8200
7224
9062
8182
7904
ts
8978
8174
7168
9104
8190
7894

9566
9102
8464
9662
9108
8988

9620
9166
8414
9702
9148
9028

—0.0047
—0.0275

00089
—0.0193
—0.0371
—0.0102

—0.0017
—0.0254

00095
—0.0140
—0.0324
—0.0058

01980
01686
01806
01534
01341
01385

02000
01718
01828
01538
01350
01390

00392
00292
00327
00239
00194
00193

00400
00302
00335
00239
00193
00194

8998
9084
81734
9262
9224
9022

9080
9116
8810
9230
9214
9094

9466
9312
9274
9612
9602
9552

9526
9552
9386
9650
9612
9546

9878
9904
9806
9940
9912
9886

9878
9886
9808
9940
9916
9904
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TABLE 4. Log-periodogram regression estimattaper d = 0.45, N = 512)

Spacingd™ No Spacingd ™
m J Bias sd thsd MSE 90% 95% 99% Bias sd MSE 90% 95% 99%
Gaussian
30 1 Q0068 02605 02028 Q0679 8128 8770 9550 00019 02060 Q0424 8988 9448 9844
30 2 -—-0.0113 02687 Q1796 Q0723 7358 8226 9150 -—0.0222 Q1777 Q0321 9066 9504 9846
30 3 Q0534 03143 01721 01016 6270 7150 8378 00138 Q1906 Q0365 8666 9258 9760
60 1 Q0028 01670 01434 00279 8488 9104 9714 00004 Q01316 Q0173 9238 9658 9938
60 2 —0.0174 01817 01270 Q0333 7622 8366 9272 -—0.0167 01156 00136 9238 9632 9938
60 3 Q0244 01989 Q1217 00402 6904 7756 8858 00073 01194 Q0143 9030 9540 9906
90 1 -—0.0043 01301 01171 Q0169 8674 9280 9748 —0.0062 Q01021 Q0105 9380 9740 9964
90 2 —0.0219 01445 01037 Q0214 7690 8464 9364 —0.0199 Q0901 Q0085 9326 9704 9954
90 3 Q0029 01434 00994 00206 7490 8338 9274 —0.0014 00919 00084 9246 9638 9944
Exponential
30 1 Q0149 02525 (02028 00640 8238 8874 9588 00034 02043 00418 8968 9460 9868
30 2 —-0.0009 02710 01796 Q0734 7416 8132 9138 -—0.0182 01752 Q0310 9072 9498 9882
30 3 Q0692 03129 01721 01027 6262 7108 8366 00186 Q01871 Q0353 8738 9256 9794
60 1 Q0068 01628 01434 00266 8502 9154 9750 00009 01283 Q0165 9366 9724 9952
60 2 —0.0137 01809 01270 Q0329 7664 8342 9260 —0.0151 Q1117 Q0127 9370 9738 9950
60 3 Q0302 01976 01217 Q0400 6862 7704 8810 00093 Q01162 Q0136 9104 9590 9938
90 1 -0.0023 01282 01171 Q0164 8736 9264 9788 -—0.0074 01011 Q0103 9434 9714 9970
90 2 —0.0215 01436 01037 Q0211 7814 8468 9344 —0.0201 00883 Q0082 9420 9720 9952
90 3 Q0066 01430 00994 Q0205 7442 8256 9294 —0.0012 00907 Q0082 9322 9648 9934
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30
30
30
60
60
60
90
90
90

30
30
30
60
60
60
90
90
90

WNNPFPWNRFEPE WN P

WNPFP WNEFEP WN P

Q0141
—0.0059
Q0617
Q0064
—0.0146
00291
—0.0005
—0.0207
Q0073

Q0099
—0.0051
Q0656
Q0040
—0.0135
00283
—0.0033
—0.0190
Q0058

02494
02645
03136
01635
01807
01989
01305
01452
01453

02577
02666
03126
01660
01824
01970
01326
01484
01454

02028
01796
01721
01434
01270
01217
01171
01037
00994

02028
01796
01721
01434
01270
01217
01171
01037
00994

00624
Q00700
01022
00268
00329
00404
Q0170
00215
00212

00665
00711
01020
00276
00335
00396
00176
00224
00212

8242
7400
6198
8530
7542
6844
8562
7556
7500

8184
7482
6298
8606
7560
6808
8640
7626
7418

Uniform

8938
8272
7138
9162
8344
7640
9232
8336
8270
ts
8840
8242
7094
9162
8366
7734
9224
8384
8234

9590
9212
8320
9750
9290
8830
9772
9284
9198

9536
9176
8352
9740
9280
8838
9756
9256
9246

00075
—0.0164
00204
00017
—0.0157
00085
—0.0062
—0.0199
—0.0012

00103
—0.0141
00231
00032
—0.0140
00106
—0.0047
—0.0185
00005

02002
01725
01846
01276
01118
01161
01010
00890
00911

02021
01730
01840
01278
01113
01152
01003
00881
00903

00402
00300
00345
00163
00127
00135
00102
00083
00083

00410
00301
00344
00163
00126
00134
00101
00081
00082

8990
9114
8680
9356
9384
9164
9432
9368
9266

9056
9124
8720
9370
9390
9186
9448
9392
9284

9536
9350
9322
97.30
9712
9608
9742
9740
9680

9536
9592
9316
9708
9712
9622
9768
9740
9686

9926
9918
9818
9966
9966
9932
9962
9950
9954

9900
9922
9850
9938
9954
9930
9968
9970
9948
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purposesWe report only the results far = 0.45, the conclusions being similar
for other values in the intervéd, 3). We use for the simulations a modification of
the functionarima.fracdiff.sim included in the SPLUS package

The sample sizes tried ale= 256 andN = 512, and the bandwidth numbers
considered aren = 30,45 andm = 30,60,90, respectivelywith pooling numbers
J=1,2,3 for all casesWe do not perform any trimming = 0, this not being a
decisive choicgFor each of the time series simulated we calculate three different
types of estimate for all the combinations of bandwidth and pooling chdibey
are the nontapered log-periodogram regression estimhatee tapered log-
periodogram estimam@’, as defined previously it6) with asymptotically inde-
pendent regressofwith “spacing’), and a modification of this last ond ™,
considering all possible frequencies between the origingyitho spacing’, with

J
I_T(/\k)=2|T(/\k+j,J), k=€+J,€+2J,...,m,
j=1

which we may expect to achieve some efficiency gains from the augmented num-
ber of elements in the regression

We reportin Tables 1—4 the results of the simulations for the three estirttaes
firsttwo tables for nontapered estimatie® other two for tapered dai&/e give for
allthe estimates calculated the bias and standard deviatipacross replications
the asymptotic standard deviati¢th.sd) in the appropriate central limit theorem
(CLT), the mean square err@vSE), and the true coverage for the 9096% and
99% confidence intervals calculated using the previous CIHGs the third esti-
mate we have not provided asymptotic the@iyhough its consistency could be
shown using the same techniquE®wever the analysis of the asymptotic distri-
bution of this estimate is more complicaié&cause without the additional spac-
ing betweenregressors we cannotguarantee theirasymptotic independence and our
approach fodT breaks downNevertheless we compute confidence intervals for
this estimate using the asymptotic standard deviatiah'ppretending now that
the incrementin the variability af™ caused by the regressors correlationinduced
by tapering when all periodograms are used is of about the same magnitude as the
one resulting by the use of a reduced number of periodogram ordiflacesyh it
also depends ahin a complicated way as a result of the averaging

Following the discussion in Robins@h®9953, increasing) may produce as-
ymptotic efficiency gainsbecausdys’(J) is decreasingThis can be checked in
the column for the theoretical standard deviatitrsd However in practice and
for these sample sizgthe gains are only apparent for the log-periodogram with-
outtapering and = 2,3, both giving similar reductions of the MSE but with larger
standard deviations than the nonpooled estim@tesl), because of the reduced
number of regressar8/hen we taper the observation¥ is already using a re-
duced number of frequencies whia 1, so settingl > 1 always increases the vari-
ance The situation is much different when we do not space the regressots,in
obtaining efficiency gains with larger valueslbivith much reduced variances than
d™ and only slightly smaller than the asymptotic valuesdar



NON-GAUSSIAN LOG-PERIODOGRAM 61

In all cases considerethe variability decreases witim as expectedout the
behavior of the bias is not unifornfror the smallest sample sizend for both
tapered and nontapered periodograthe minimum values are obtained fbe
3 and the maximum fod = 2. Forn = 512 the overall result is less cleaut in
most casesd = 1 seems to be the less biased optionsome situations the bhias
tends to decrease with, because for these series the semiparametric model con-
sidered is a good approximation for the entire range of frequeini@jes. The
bias tends to be negative for high(all J) and forJ = 2 (all m) for almost all
choices of estimates and distributions

The minimum MSE is then attained for the estimates with biggesind with
J = 2 when tapering and spacing of frequencies are (d&y but withJ = 2,3
when no spacing is employéd ™), both values ofl giving similar resultsWhen
no tapering is usedveraging with] > 1 seems to be the best opti@dl equal,
tapering always increases the MSEspecially if spacing of frequencies is used

The accuracy of the CLT deteriorates with tapesimgcause we are effectively
reducing the number of observations in the log-periodogram regresisetrue
variability being much larger than predicted by the asymptoéitsen no tapering
is usedthe asymptotic distribution approximates quite well the true distribution of
the log-periodogram estimate for alandJ, especially for the largest sample size
even for thes distribution and it is not easy to distinguish differences across data
distributions in the behavior of the estimat&aussianity not necessarily giving
the best performance and the CLT being robustto bounded syppgnimetric or
heavy-tailed innovation distributiond&/hen tapering the same conclusions apply
here the CLT providing a very good approximation for the finite sample behavior
of d%*, though the true variability is slightly overestimated by our heuristic choice
We have not pursued other variance estimation methods using for exam(plethe
autocorrelategordinary least squaré®LS) residualsbut this could also be tried
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APPENDIX

The following is a simplified version of Chen and Hanna(I980 Lemma 2 where we
only use the first two terms of an Edgeworth expansion for the probability density of the
Fourier transform oé;, so only four bounded moments are required
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LEMMA2. Under Assumptio#, the probability distribution function Qof thevector
N

Wy =N""23Y,

t=1
where
Yt/ = Y/(](l), cee ,j (k)) = \/?Et(cost/\j(l), Sintl\j(l), oo ,COSt)\j(k), Sintl\j(k)),

has density g for all sufficiently large N and
1

sup (1+ Iyl*)|an(y) = 2 N™#R(=¢: X.m) ()| = O(N™™), (A1)
yE

r=0

where Rare polynomials in thew@erage of the joint cumulants of M =t = N) of order
v = (v1,...,¥2), X».n,» Multiplied by the2kth multvariate normal densityp and where

Po(y) = ¢ (y).

Proof of Lemma 1. First, from Lemma 2 27, has the probability density of fy2,
distribution with errof(using onlyP) of orderO((1+ |y|*)"*N~%?2). Also the density of
ax3is

XJflefx/Z

= - 0=x<oo.
J—1)127 «

&,2,(X)

Itis clear that ifX ~ y2;thenE[ X3 7] < w0 if 0 < a < J. Thus we only need to check that
the error in the evaluation of the second inverse momenfaking Lemma 2 is bounded
If we write

J J
I_ek = 2 |e(/\k+j—3) = 2 (y§j + ygj)
=1 =1
we need
N sy (S04 +v8) by <o (A2)
RZJ

First, defining the seté& = [—1,1]%’ andAC its complementary ifR?’, for some 0< C <
m!

-’RZJ (1+ Hy”4)7l<z(y§l + ygj)>a—3 dy
= CJ;<2(Y% + y§]—)>a,J dy+C J;c(]_+ ly[4)"tdy

= constf <2 (y2+ ygj))“ dy + const,
A

becausél + |y|*)~* and(Z(y2 + y&))*  are bounded from above handA", respec-
tively. Next, to bound the remaining integtaf ¢(-) denotes the densities of the corre-
sponding distributionsve have
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0 > f X2 ¢ 2 (X) dx = f (2 (ya + ya)>a7J¢N(o,|2J)(Y) dy
0 R\ j
2 2y\aJd
> L(E (yz + ybj)> P01, (Y) dy

= constf (E(ygj + y§j)>EH dy,
A

as the normal density is bounded from belowAirand the lemma follows |
LEMMAS3. For §,= i, f, 1 — 27l under the conditions of Theorehino tapering:

E|8| = O([k~tlogk]¥?), E[82] = O(k tlogk).

and under the conditions of Theorehitapering, 1 < a = 2:

E| 6] = O(k™*/2), E[82] = O(k™).

Proof of Lemma 3. Denote in either case

J
Fo =l fc = Hy, He=> lerj—a ficrf— -

j=1

Consider first the nontapered ca8y the triangle inequalityE|8y| = E|i fict — Hy| +
E|Hx — 27 |, whereforj=1—-J+k,...,k

ElHx — 27| = X E[l; f 1 — 270 ;| = O([k *logk]¥2)
j

from Robinson(1995h p. 1637) and using the mean value theorem

e fic = H = max| it = £t X 1) = Cfi k2,
! j

SOE| I, fir * — Hy| = O(k™1). Next, E| 8y |? < 2E| I\ fie t — Hy|? + 2E|Hy — 27, |2 where
E[Hy — 271, |2 = O(k tlog k) from Robinson(1995h pp. 1648-1649 andE| [, f, * —

Hil? = C2fi 2k 2EI?2 = O(k2).
When tapering is applied the results follow in the same,wajng now part(a) of
Theorem 2 to obtain thd&|Hy — 27l | = O(k™2) andE|Hy — 27l |? = O(k™®).
|

Proof of Theorem 1. From Robinsor{19953 and the definition for the summation in
k, we can obtain

2
gz@k: 4Tm<1+ o(@)) = 4Tm(1+ 0(1)),

%|Ak|p =0(m), p=1 (A.3)
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and sup| A| = O(log m). Hence under Assumption,with the previous properties
-1 mle
<2A2k> EAhogfk=d+O<[N] ) (A.4)
k k
Substituting in the definition ofl and using(A.4),

d= (2 Ai)flz‘,Ak[logfk+ log 27l ] + R
k k

—d+ (2 A2k>’12 Axlog 27l + O([mMN~1]%) + R
k k
= d+ &g+ R+ 0p(L),

say We first show thaR = 0,(1) splitting this remainder term into two terms as

R = (% A2k>71 % Ak{log I_k fk71 - |Og 27T|_e,k} = 2 + E,

Ar At

whereAr = {k:iy fiy t < m~¢}, for somec > 0, and letn; = the number of elements iy.
Denote log = log(l, fiy HI{I fict=m=¢}, § = I fi t — 270, k.
We first bound the contribution frolt. Fork € A, with J = 3, from (A.5)—(A.7)

E||Og I_k fk_l - |Og 2'77'|_e,k|

Sk
logl 1+ —
27T|€’k

= E‘ %
27T|e,k

logk - A
=0l J= *logmx P[5/ (27l = 3 =O(k*"**logm),

for anye > 0 becaus&[l, ] < co andE[i_}] < oo, SO

=E

_ _ _ 1
+ €| (gl + og 2eT. i 6201 = 5

E

(2 A2k>71 > Aloglifi* — log 2l )
K ~
= (Z Ai)’lz | Al EllogTicfi* — log 2T 4|
P o
= O<m‘1 log?m>, ke‘°<5) = 0O(m*~%5log? m),
k

which iso(1) with Assumption 5For any fixed integeb =1
E[llogik|°]= (clogm)® + E[|log i fi *[PI{I} fi * > 1}]
= (C|Og m)b + E[‘ I_kfk_1|]

= (clogm)® + E[|27I, , + 8|1 = O(log® m), (A.5)
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using Lemma 3 ané&[i. ] < co. Then

= O(logk X k79%), (A.6)

P{\a/(z i )|>1}<2E %
KWAET e = o [ = 5 2al

because from Lemma 8 <a’' <J,J= 3,

S
E’ K
27T|E,k

= E[8Z]V2E[(I ) 212 = O([k* logk]*2), (A7)

becaus&[{I, }¥ 7] < co from Lemma 1
We now estimaterr. Following Hannan and Chef1980 we can show that for any
sequence — oo asN — oo, for all n > 0,

n
p lim p tm Y2 E{Iog 2mi  J{27l, \ < n} —f e *logx dx} =0.
— 00 K 0
Letn; be the number of values &for which 2r7i_ is less than g€ for fixed c > 0. Then

we argue as in that reference that

i nylogm
im sup——5 =
pN—>oo p pml/2

sont = Op( pmY2log™tm) = 0,(T), T = m¥2log~Y2m. Then i fi * < m~Cimplies that
2wl < 2m~Cor|8| = m . Thenn; = Oy(T), with ¢ < 3.

Then denotind_, = (log i fc * — log 27i. ) log?m, for someC > 0 and anys > 0
fixed asN — oo,

P{max|Lk| > s} = P{max|Lk| >eNn = CT} + P{max|Lk| >eNng > CT}
kEAT kEAT kEAT
< P{max| Lyl > e/np < CT} +P{n; > CT},
keAT

whereP{nr > CT} = 0o(1) asN — co. Then with Bonferroni's inequality and.;, =
LkH{k € AT}7

P{E;§X|Lk| Y CT} = P{m3x| Li| > e/np < CT}
= CngxP{| Li| > e/ny = CT},

noting thatP{|L{| > e/nr = CT} = 0 for all butn; values ofk becausé¢L | = 0 for all k
but at mosny = CT. Then becausé{n; = CT} — 1 asN — oo, we can write for some
s> 0 that

P{L{| > e/m =CT}=P{|L{|>eNn=CT}P{ny =CT}?
=sP{|Lg|>eNn: =CT}

= sP{|Ly| > &} = O(k=/UT2%2 |ogm),
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for eacha > 0 using(A.8), which follows J = 3. Then maxP{|L;| > e/nf = CT} =
O(¢~Y*2+alogm) and therefore maga, | Ly| = 0(1), mY/2¢~YI+2+a|og2m— 0 as
N — oo for somea > 0, with Assumption 5

Then the contribution fromy is

‘(2 Ai)fl > Allog 1 £t — log 2771 )
K Ar

I\

-1
( Ai) > [Ad[Lillog ™2 m
Kk Ar
— —1 1/2

p<m Tlog ngz/?T(\LkD

= 0p(M~Y2) = 0p(1).

It remains to boundP{|Ly| > &}. Fore > 0 fixed asN — oo (anya > 0), on choosing
A — 0 optimally ask — o0, J = 3, ey = elog™¥?manda’ > 0 small enough

Ok
>enp TP =
2l 2wl

Ok Ok
=P — | >eny +P =
27T|s,k 27T|€,k

= 2P{|27I_ | < 2Ac/Vent + 2P{[6k] > Awen/2}

Ok
P{|Lk|>8}SP D >1—e *N

> sN/Z}

= O(ed "V2A® + en*A Pk tlog k) = O(en2k—Y0+2+ay, (A.8)

Then to prove the consistency of the estimé@tee only need to calculate the first two
moments of the random variakjg. To evaluate the moments of I(ﬁgk, we approximate
the probability densityy(y) with Chen and Hannan’s Lemma 2his result uses some
results in Bhattacharya and RE®76 to approximate the density of the Fourier transform
w, () of the sequence,. These researchers employed a finite fifth momenrg; ¢6 get a
stronger resultFor our purposes Lemma 2 is enough

Set 4riy = 2.1 (y3 + y2), wherey,; andyy; correspond to the sine and cosine com-
ponentsrespectivelyof 4sl. ;. Now, from Chen and Hannaf198Q Lemma 3,

A_/V N 2K (9 Vi

P=¢: 0,0y = 2 — 11 <—> oy, ot =]y
=3 vl =1\ oY i

As |v| = 3 the terms irP; are of one of the following types when we are considering the

joint distribution inR* of the sine and cosine componentsi4 and 4ri. o,k # k' (up

to constants

1. Hs(ys) ¢ (y), whereH; are the Hermite polynomials of ordeands € {1,...,4J},

AR\
H(X)o(x) = (—1)' <5(> o(x), XER.

Then this term is odd in the componegDfy (becauséis is odd andp is ever).
2. Ho(ys)Ha(yr) d(y), yr # ysandr,s € {1,...,4J}. Then this term is odd iy, .
3. Hi(ys)Hi(yr)Hi(yw) o (Y), Vi, ¥s, Yu all different Then this term is odd irys, V;,
andy,.
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If k = k', we consider only a distribution iR?’, and the typical terms d?; are as follows

1. Hs(ys) ¢ (y), wheres € {1,...,2J}. Then this term is odd in the componeRbf y.
2. Ho(ys)Ha(y,)p(y),r # sandr,s € {1,...,2}. Then this term is odd in the compo-
nenty,.

Then we have

Elog 2w|;k1+logz:fﬂlog(&y&ﬁy&))qu) dy
R i

- fR '°g<2 (y& + ygj)>[¢(Y) +N"¥2Py(y)]dy + O(N™1)
]

=4(J)+1log2+ O(N™1),

becausd;”(logx)"/(1 + x5) dx < co and f;°(xlogx)"e > dx < oo, for all h = 0. Here
¥ (z) = d/dzlogI'[Zz] is the digamma functianThe contribution fronP;(y) is 0 because
the interval of integration i§—oo,00) andPy is always odd in one componentyand the
log term is even in all the components

Consider now the covariance ternienoteE, = E[log 27i.]. Then (k # k'),

Cov{log 27i, log 27 4 ]

- Lu['%(z (¥ + yt'?D) - Ek][log<2 (V3 + yg,.,)> - Ek}
] o

]
X [¢p(y) + N"V2P;(y)]dy + O(N~1)

=N"V2 | 2 2)) — E
fRM[Og<JZ(yJ+be)> k:|
X [uog<z(y§j, +y§jf)) - Ekr]Pl(w +O(N™Y)
E

=O(NY),

as¢(y) is the density of the standard normal densityRitY (with uncorrelated compo-
nent9 and because the contribution frdPa cancels out by the same argument as before
The variance is

Var[log 27i ] = f [l()g(]E (Y2 + y§j)> - Ek] “an(y) dy

]RZJ

= fR ['09@ (v% + yé"ﬂ) - Ek]2[¢>(y) + N"V2p,(y)]dy + O(N"?)

=¢'(J)+O(N1),
reasoning as befor@hen using(A.3), it is immediate thaE[ £y] = O(N 1) and that

J B . J
Var{gn] = 7 ¢'(3) + O(N™) +o(m™) ~ 7= ¢'(J).

Thereforefy = op(1) with Assumption 5and the theorem is proved u
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Proof of Theorem 2. We use exactly the same method as in Robind®953 or in
Theorem 4 of Velasc¢1999. These proofs are based on the properties of the Dirichlet
kernelDy(A) = S, e and the Fejér kernddy(A) = (2rN)"1|Dn(A)|2 The spectral
kernel for the tapered periodogranorresponding to the Fejér kerr€,(A) for the raw
periodogramis

Ki(A) =

th

= - ——— DI
2 Z he It 27w > h? N '
where DJ(A) is the equivalent of the Dirichlet kern@y(A) in the nontapered case
Obviously

1
Fﬁ {ZDN(Aj) - DN(/\j—l) - DN()‘jJrl)}-

It can be seen th#t () is even positive integrates to one and satisfiege e.g., Bloom-

field, 1976 Hannan197Q p. 265) sup, | KN (A)| = O(min{N,N 5| A|~8}), A € [, 7],

where this property follows from sy |Di(A)| = O(min{N,N~2|A|~3}). This implies

that the tapered periodogram has improved asymptotic properties with respect to the usual
periodogrambecause the tails of the kerngfl(A) decrease much faster with the fre-
quency and with the sample size than the tails of the Fejér k@vitalboundO(N 1| x| 72)),

though they are no longer orthogon&lowever using the properties of the Dirichlet
kernelDy(A), we have thatfor 3=j +k=N-3,

Dl-\ll—()‘j) =

fﬁ DY(A; = )DG(A + A ) dA = 0. (A.9)

We consider the same intervals of integration as in Robi($685a to analyze the bias
of the tapered periodogram in

E[wT(A)I2]=f(y) = fj [F(A) = FANIKT(A; — A) dA.

We only analyze here in detail the interyal;/2,3);/2] (for details see Velascd999.
Using (3),

3;/2
f [F(A) = FAIKI(A — /\)d)\’

i/2

= U [F(A = A) — F(ADIKT ()\)d/\‘

= ‘f [AXE7(A)) + O(A7* 29 A|*)]KN(A) dA
—Aj/2

2/2
=0 A;“*de [A|*KT(A) dA ),
—)/2
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becauseKy is even and we integrate in a symmetric interval aroundld@w, with « €

(12],

Aj/2 N-1 Aj/2
J [A[YKN(A) = 2{f +f } A7KJ(A) dA
—Aj/2 0 Nt

N Aj/2
= O(Nf AYdA + N’sf A*6 d/\) =O0O(N™),
0

N*l

and therefore this integral ®(A;* 24 X N~%) = O(f(4;) X j~*). The analysis of the
covariances between tapered Fourier transform; é6llows the same lines as in Rob-
inson (19953 and Velascq1999. The additional ternO([ j/N]*) that shows up in the
theorem when we normalize with respechlfz\,T2d (instead of with respect tt(A;)) fol-
lows as in Robinson19954. u

Proof of Theorem 3. We do this in three steps

First. We argue that all the previous results concerning the asymptotic distribution of
i, J € {iayi@s,---»ia}, still go through for the tapered versidd; if jo, + 2 <
J@s- o da-n 2 <juw-

The reason is the followinghe results of Chen and Hann&t980 are based on the
exact uncorrelatedness of the discrete Fourier transform of.itdesequence o§; at
different Fourier frequencieso the periodogram ordinates are approximately indepen-
dent Thereforethe real and imaginary components of the tapered Fourier transforms of
are still exactly uncorrelated if we consider only one periodogram ordinate of every three
as we did in the definition od . Then an equivalent Edgeworth expansion for the density
of the vector of real and imaginary components bfis valid as beforgbecause each of
the tapered Fourier transforms irffexed) linear combination of three Fourier transforms
with valid Edgeworth expansions for their densities

SecondFollowing the proof of Theorem 1 we obtain < 2,
dT=d+ <2 A2k>’1 S Aylog 270+ O([mMN-1]%) + RT
k k
=d+ &0+ R+ 0p(mY2),

say using Assumption 7Hence the asymptotic distribution ah2(d™ — d) can be ap-
proximated by that oin®/2£ if RT = o,(m~%2), where

RT = (2 A2k>_1 > Adlog i fct —log 27l = 3 + 3
k k :

Ar  Ar

with the same definitions as in the proof of Theorem 1 but with tapered observations
Then fork € At, we have that forr > 1 ande > 0 sufficiently smal)

E ’(Z A2k>71 > Aflogiffict — log 2711}
K A

IA

> Ai)’l S | A Ellog Ty — log 27T,
Kk At

= O(m—l |092 mz ks—a/2> = O(ms—a/Z |ng m) — O(m—l/z )’
k
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with Assumption 7because fronfA.10)—(A.12) we obtain J = 3, for anys > 0,
Ellog i fi * — log 271,

Ok
2’7T|€Tk

_ _ 1
= E‘ + E[(|Iog|;| + |log 2w|gk|)n{|5k/(zw|gk)\ = EH

1 1-¢
= O<k‘“/2 + logm X P{|6k/(27rlgk)| = E} ) = 0O(k™ %2 logm).
As in the nontapered cag®er any fixed integeb =1,
E[llogl|?] = O(log® m). (A.10)

Then for a € (1,2]

_ 1 I
P{\ak/@m! ol = —} = ZE‘ | = O(k2), (A.11)
’ 2 2l
becausgusing Lemma 3
d
‘ o | = E[881V2E[0110 212 = O(k /%), (A.12)
€,k

becaus&[{iJ,}2 7] < oo, from Lemma 10 < a’ < J.

We now estimat@r. As before let nf be the number of values &ffor which 271, is
less than &€, for any fixedc < %, son; = Oy( pm*¥2log~tm) for any increasing se-
quencep andny = Op( pm*2log—tm).

Denotey = (aJ/(J + 2) — 1)/2> 0. Now we can proceed in a simpler way than without
tapering DenotingLy = (log i f, * — log 2771 [ )y—a, for anye > 0 fixed and for any
a> 0 such that < vy,

PlmaxLy >el =D P{|L > e} =0 €20~ Y k312 ) = O(£~?) = 0o(1),
k P P

using(A.13), which follows So max|Lx| = 0,(1). Then fora > 0 small enough

‘(2 A2k>_l > Aflog iy i — log 27ri ]}
K A

—1
= (E Azk) S AL lea
k

At

—1/2pa—y
Op(pm ¢ Q;%ILKD

Op( pm~Y2£277) = op(m~/2),

The bound folP{|Ly| > &} follows as(A.8), because for any > 0 fixed with N (and any
a > 0), on choosingAx — 0 ask — oo optimally anda’ > 0 small enoughey = €277,
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P{ILil > &} = 2P{|27I 1| < Ax/Ven} + 2P{| 8| > Acen}
= O(eff V2A + en*AK ) = O(enk® 17 27), (A.13)

Third. Denoting byé&* and log 27i % the corresponding random variables when the
€; are Gaussian with the same first two momemts follow related arguments to those
of Robinson(19953; we show that the moments of all orders rat’2¢y converge to
those ofm¥2£%* that are boundedrom the proof of Theorem 3 of Robinsdh9953.
Next, the uncorrelatedness of the real and imaginary componenitg;ofor different
frequencies implies the independence and equal distrib(tioa to the Gaussianityf
I5¢ and of logiy at different frequenciesTherefore mY/2¢}* is a sum of ii.d. vari-
ables with bounded moments and by the Lindberg—Feller CLT it is asymptotically nor-
mal (the first two moments can be obtained from the proof of TheorgnBécause
each moment of the variat@?£%* is bounded uniformly inN, all these moments
converge to those of the corresponding normal distributiéence as all moments of
mY2&% converge to those ofm2£5*, mY2&] is easily found asymptotically normal
distributed by the method of moments

Thereforeit only remains to prove that the moments of all ordersndf2£,] converge
to those o2, so there is not influence from the higher order cumulants, &fut this
is Lemma 4 u

LEMMAA4. Under the assumptions of Theor&nthe moments of all orders of Hi&
corverge to those of M2&0* as N— co.

Proof of Lemma 4. To make our arguments clearer we consider in an initial stage the
nontapered and nonpoolédl= 1) caseAfter this, we will show that the same conclusions
apply for the tapered case for ady> 1.

Following the arguments of the second part in the proof of Theorgwelcan check
that the moments and cross moments of all orders ofteigf 2, k= ¢ + 3J,..., mconverge
to those we would obtain if the’s were actually Gaussiawith errorO(N~1), because
Jo (logx)2(1 + x*)tdx < oo foralla= 0.

However this result is not enough to approximate the momenta'éf&, which is an
(increasing weighted sum of the log2i 1. Whene, has bounded moments of all orders
we can obtain an Edgeworth expansion for the density of the Fourier transfefiofainy
ordersfixed, under the same assumptions of Lemm&n2Chen and Hannaf1980 the
second terni, is presentedalthough it is not totally correct in their notatiohhe exact
shape of these higher order terms in a general Edgeworth approximation is fundamental
for our proof and we dedicate some space to that

Edgeworth ApproximationThe validity of an Edgeworth approximation for the real
and imaginary components of the discrete Fourier transforpaifany ordeis > 1, when
enough moments exidbllows from Lemma 2 of Chen and Hanné&t980, because their
proof generalizes immediately for any order of approximatiost just 2 For anys =
0,1,..., fixed, we can obtain that the vectd (see Lemma Rhas densitygy for all
sufficiently largeN and

sup (1= Iyl1*) |an(y) — %N‘”ZR(—qﬁ:)?y,N)(Y) = O(N~"172), (A.14)

YER
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whereP; are polynomials with coefficients depending on the joint cumulantg,gf, n,
multiplied by the Xth standard multivariate normal densidy (given the covariance
structure of the discrete Fourier transfopmBollowing Bhattacharya and Raa976),
we find thatP,(—¢: ¥,.n) = P(—D: ¥,.n) ¢, Where for nonnegative integer vectors
v=(v(1),r(2),...,v(2k)) of 2k dimensions

9 \*@ 9 \¥2k
=) ()
ay1 Yok

with

_ 1 X,(2 X, (D X

P(z:xon) = 2, = * = e =

FEs AN ngl n! {jl,%n Ja! j2! In!

1 vyt X,
2 _ 2 2** X X ZV1+-v'+Vn . (A15)
n—1 N! J1re-in vel -yl

The summatior * is over alln-tuples of positive integersjy, ..., j,) satisfying

n

Sii=r ji=L2...r  (1si=n), (A.16)

and the >** denotes summation over afl-tuples of nonnegative integral vectors
(vq,...,vpn) satisfying|vi| = j; + 2, (1 =i = n), where we use the usual multivariate
notation |v;| = Efilvi(j) (for details see Bhattacharya and R&876. In particular
Po=1,

Buiz: ) = 222 = 2, S
Pa(z: Xun) = XZ(!Z) ] <XZ(!Z)>’

Ps(z: Xon) = Xs(2) N Xa(2) x3(2) - <X3(z)> ’

5! 314! 3!

and in general

XV, v
(2= =5z,

o= V!

wherey;! = »;(1)! --- »;(2k)!, 0! = 1. ThenP,(y) is a polynomial in the components pf
(timesg), with coefficients that are functions of the joint cumulantsrpdf orderw (i.e.,
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of the components in the vectgrwith exponent irv different from zerg, y, n, and of the
Hermite polynomials of order, H, (y), obtained from(the derivatives of ¢(y). Follow-
ing the discussion in the proof of Theorem 1 and the preceding comymengiress some
properties that we will use later

Using (A.14) the first term of the expectations of functions of the periodograg isf
always exactly equal to the Gaussian expectasorwe only need to concentrate on
the higher order terms of an approximation up to a finite order to be determined later

When|v|is odd the polynomial functiord, (y) is odd in at least one of the components
of y. Then all the summands iR, with r odd also will be odd in at least one of the
components oy. As we are going to consider the expectation of even functioys of
(i.e., logarithm of the periodogram minus a consjawe need to consider only terms
P, with r even(r =0,2,...).

The cumulanty,, y are exactly zero in many situatiofise., for many vectors), be-
cause of the special nature of the ve gy, becaus& , e« =0, Ok # 0(modN).

In other cases these cumulants are different from zero only under linear restrictions on
some of the frequencié€s; i), ..., Aj2k) Of the periodogram ordinates that we are con-
sidering in each moment

MomentsBecause, A, = 0, in contrast with the proof of Theorem We substitute
now in the definition oy the actual mean of logz2l. « by the mean it would have in the
Gaussian casé (J), obtaining(without need to make explicit the log 2 adjustmentith
J=1

£y = (2 Azk)’l S A(log 2l — (D).
k k

Denote byEs andEZ thesth moments omY2¢] andm/2£%*, respectivelyThen for s=
34,...,

S
E. = m5/2<z Azk)*sz S, LS ARD ARG AR
K =1 p  k@k@# k(j)#
j
X E| IT (log 1Tk —¢(1)P@ |, (A.17)
q=1

where the indexk(i) # means that the summation is for all the valueskéif) #
k(1),...,k(i — 1) (so we only make explicit frequencies that are always diffgrant
the sum inp is for all vectors of positive integef(1),...,p(j)) such thal!_, p(i) =
s, andc, is a combinatorial number that depends onlymi®bviously whenj = s, all
p(i) =1 and wherj = 1, p(1) = s. Recall also that>A%) 1 = O(m™1).

The key idea is to substitute each of the expectatiod ih7) by an integral oveR?,
approximating the true probability density of the vector of periodogram ordinates by a
2j-dimensional Edgeworth expansion of the fo(A14). The first term(in N°) of the
Edgeworth approximation always gives the corresponding Gaussian expedgition
whereas the odd terms cancel cad
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S
E-E=m2(3K4) TES6S 3 o 3 AW - Al
=1 p k(l) k(2)# k(j)#

><f {E P(y)N"/2 + O(N- "™ 0/2) (1 + |y|*) 1}
Rl

j
[[ (109(Y2 k(g + Yé k(@) — ¥(1)P@dy (A.18)

(with rhax= sto be determined latgrThen we need to check that the contribution from all
higher order terms with = 2 in (A.18) is negligible First, for s fixed, we study all the
terms in(A.18) with different values of.

Consider first the terms ifA.18) for which j = 1 + s/2. Using (A.3) and that
[5°(logx)P(1 + x*)~1dx < o0, b = 0, the contribution tdEs — EZ of each of the higher
order termsP,, r > 0, is O(m ¥2"IN~1) = O(mN~?1) = o(1), just using the order of
magnitude of the error term of an Edgeworth approximation with &lgndP,, because
the termP; cancels out

Thereforewe only need to consider terms whe¢re 1+ s/2. The main idea to deal with
these terms is the followindecause we have> 1 + s/2 summandsthere should be
some of themh, say with exponentp(i) = 1. In facth = 2j — s = 3. Then whenever
h > 0 the leading term in the approximation for the corresponding expeci@tieGauss-
ian par) is exactly zerdi.e., Eg = 0), given the uncorrelatedness of the discrete Fourier
transform at Fourier frequenciésven in the non-Gaussian casé/e will argue that this
orthogonality property of the firstGaussianterm is transferred to some extent to the
higher order termsThe reason is that for each periodogram ordiriaés, for each pair of
variables iry), some of the contributions from the higher order term@iri4) are still the
Gaussian ones given y(y.) ¢ (yp) (i.€., we have not taken derivativesnt. those vari-
ables, given null contribution for the whole expectation when this periodogram ordinate
has exponent(i) = 1. (The same argument is valid for any expongfi) odd but we do
not need if)

We illustrate this idea with an exampl@onsiderP,, with

= — /\_/V,N 1 /\_/V,N v 2
Pa(z: o) = 3 —,zv+—< > itz )
lv|=4 Vi 2 |lv|=3 V!

_V l _V 2
s X, s (u) Jor
|v|=4 v! 2‘,,‘:3 v!

+E /\_/V,N /\_/V',N ZV+V,.

2 1023, Za s

vl vl

When we substituteby —D, to obtainP,, we observe that in each of the terms of the last
expression we take at most3} or 6 derivativesrespectivelywith respect to the vector of
2j componenty. Therefore all but at most 43, or 6 functionsg(y;) in ¢ = ¢(yq) ---
¢ (y»;) are not affected by the differential operator

Then for each periodogram ordinateith frequencya; ), and each of the terms i,
(with », 2v or v andv'), we obtain the following
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If a periodogram has exponepti) = 1 and neither of its two components ynis
included inv (or in»"), then we have irfA.18) an integral of the form

fR J;Q [10g(y2 + y2) — (L] (ya) d(ys) dyadyp = O, (A.19)

and this term does not contribyteecause the whole integral is zero because the
variablesy, andy, do not appear in any other factor of this particular summation term
in (A.18).

For any exponeri(i), if any component of the vectgris included inv (orv') with odd
coordinate then this term inP, will be odd in that variable/,, say and again the
contribution of these terms is nubbecause the periodogram is even in its real and
imaginary components

In conclusionwe need at least two derivatives with respect to one of the two variables
that havep(i) = 1, that is only the terms irP, that consider Hermite polynomials with an
even number in the order vector corresponding to one of the two variablep@jtk 1
have contribution different from zero

In the particular case d?, we only need to consider the following generic vecters
When|v| = 4, only those vectors with coordinates 02, or 4. For the|v| = 3 terms any
combination is valid from this point of viesaecause all the terms are squamatt for the
|v|,|v'| = 3 terms coordinates 1 or 3 are allowed ironly if they coincide with another
coordinate 1 or 3 in’, so that we always take an even number of derivatives. v any
of the variables;,. However the number of such terms is limited by

Then with|»| = 4, the maximum number of frequencies affected by the derivative
MNFA, say(in the sense that we are taking an even number of derivativeésamy of the
components of the periodogram at this particular frequgne, and with| v| = 3 and/or
|v’| = 3 this number is 3Consider the different possible situations for the sarfiged.

Forj = s, p(i) = 10i. Then forP,, the contribution whes > 3 is zerg because there
always will be at least one integral equal to zero(Byl19), as none of its components is
included in the differentiatiofi.e., there are at least four possible orthogonal conditions
like (A.19), and only three can be destroyed by the differentiatios)ofVhens= 3 and
j = 3 we obtain that any term will contribu@(m¥2N 1),

Whenj = s — 1, so there are at least— 2 exponent(i) = 1, the contribution of
P, for s > 5 is zerg for s = 3, is O(mY2N™1), for s = 4, O(mN™1), and fors = 5,
O(m¥2N~1),

In general for anyj > 1 + s/2, becauséh = 2j — s there are only terms i, that
contribute toEs if

minh = 2j — s= MNFA = {2},)=4, 3if| =31}

and when v| = 4 their contribution is of orde®(mi~¥2N~1) = O(mN~1) = o(1), and
when |v| = 3 is of orderO(mi~¥2N~1) = O(m®2N~1). Although we could assume
thatm®2N~1 — 0 asN increasesto make this last bound(1), the consideration of the
form of the cumulants whefv| = 3 will allow us to obtain the same results with just
mN~1(logm)¢ — 0, any finitec > 0, implied by the assumptions of the lemma
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CumulantsThe preceding bounds have been constructe®faonsidering that three
frequencies were affected in the term corresponding to cumulantgmith3. The ques-
tionis, when are these cumulants different from zero? For any three frequangigs, A;,
(possibly repeatedthe cumulaniy,, v, |v| = 3 is of any of the following four typeswith
«3 being the third cumulant a;.

K3
N ¢

HMZ

(i) cost)\ ,COstA;, cos

132

IEY

N
K
(i) ﬁZ costA;, costA;, sintA;
t=1

K3N

(iii) — >, costA, sintA;, sintA;

132

Z

K

N
(iv) WZ sintA;, sintA;, sintA;,.

Now using the orthogonality of the Dirichlet kerrig}, at Fourier frequencigshe cumu-
lants y, n with [¢| = 3 will only be different from zero if there is a linear restriction
between the frequencias , A;,, ;.. (This same holds for any odd-ordes cumulant but
not for even-order cumulants as a result of symmefriBisen all the bounds have to be
multiplied bym~*log m, because one of the summatid¥gin (A.18) cancels out because
of the linear restriction with the othétwo) summatiorts), and supA| = O(log m). Fi-
nally, we obtain a contribution d®(m¥?N~*logm) = o(1), for any term with|»| =

Let us now study the contribution from a generic polynorRjat = 4. We only need to
consider expansions uptes rma.= 2[(s—1)/2] (where[ - | means integer pagtbecause
the bound in(A.18) due to the error term in the Edgeworth expansion Wihs_1),2) iS
immediatelyo(1) from the exponen ~1~(s=1/2] jn it and the boundedness of the corre-
sponding integral

Now from (A.15), the different terms irP. will include terms with combinations of
cumulants

Kr+2,Kr+1K3,Kr Kg,.. "(K4)r/25 . "7(K3)r’

corresponding to all possible combinations of frequencies in the vector

We will only need to consider combinations of cumulants of the foem " ~2/2(k3)2
for evena, 0 = a =r when the MNFA is now + a/2, which requires at least/2 restric-
tions forks(1) #0,...,«3(a) # 0. The reason is that witfk,) /2 we maximize the number
of frequencies affected without any restrictipasd on the other handwith (x3)" we
maximize the number of frequencies affegtiedyeneralwith and without restrictiondVe
show subsequently that any other combination of higher order cumulants will always
provide a smaller MNFA or more restrictions than this combination

Denoting by NRES théminimum) number of linear restrictions necessary to make the
cumulants considered different from zetioe contribution tqA.18) of these terms is of
ordet for fixeds,j > 1+ s/2,
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S
m %2> ml D N"72[{2]j — s < MNFA}(m* log m)NRES

J r

S
= O<maxms/22 m > N~721{2j —s=r + a/2}(m ' log m)a/z)
i :

j r

= O(maxmj’S/2 > NT21{2j —s=r+a/2}(m tlog m)a/2>
a,]j

r

= O(maxme“”/zN*'/z(m*1 log m)fVZ) = O(maxmf/ZN*’/Z) =o0(1),
r r

with a = 0, so the contribution is always negligible

The last three points that need justification are the choice of cumulietsapering
and the pooling

CumulantsLet us check that we do not need to consider other sets of cumuGors
sider the case with maximum number of frequencies affeatitdout restrictions(x,) "2,
so we have the typical term with contribution of the largest order of magnitude without
restrictions We check that the introduction &f= 1 restrictions among the frequencies
Ay, | =1,...,] cannot generate terms of larger order of magnitudEg ithan the one
corresponding téx,)"/? (for anyj ands fixed).

Seeking the least favorable situatjtime newb restrictions will be used to maximize the
number of frequencies affected by the differentiatisnbstituting a certain number of
powers ofx, in (k4)"/? with a generic term in the odd-order cumulafitstake advantage
of the restrictionssuch as

(Kcl)Z(Kcz)z e (ch)z»

where thec; = 3 are odd possibly equalThis will increase MNFA by>); ¢;, and the
reduction in the exponent af,, to satisfy(A.16), is of magnitude); (¢; — 2). This reduc-
tion will lower MNFA (by the contribution of,) in 23 (¢; — 2) units The global effect
on MNFAis finally

b b b
AMNFA = D¢ —-2> (-2 =4b— > c.
i=1 i =

=1 i=1

Therefore in a generic bour(tbr anyj) for the contribution of these term®(mi~%2 x
m~NRESN=1/2) = Q(mMNFA/2m~NRESN ~1/2) (hecause P— s = MNFA), the net effect of
introducing the nevb restrictions isO((log m)°m¢) where

4b > ¢ 1
§=AMNFA/2—b=T'—b=b—EZCi.

Becausec; = 3, the final effect is(ignoring the logarithm termnat most of order
O(mP=3%2) = O(m~™2) = O(1), so the term with biggest contribution is that with
(ka)7% ie,a=0.
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Tapering.An equivalent Edgeworth expansion for the real and imaginary components
of tapered Fourier transform ef is valid, because they are fixed linear combinations of
the components of the usual Fourier transfohiso, because we consider frequencies that
are 3\, apart at leastwe guarantee the uncorrelatedness fo the different variables in
In this way the Edgeworth expansion is based again on the standard normal,certsigy
differentiation process is performed separately for each variabje Furthermorethe
comments about the restrictions to obtain odd-order cumulants different from zero apply
equally in the tapered cagdeecause for the frequencies considei2d has the same or-
thogonality properties a3y.

Pooling.The difference is that each pooled periodogfgmpered or ngtdepends on 2
components of the basic vectpiinstead on just 2single periodogramas beforeThis
does not affect any of the resulkeecause we have only used the fact thatin each summand
of (A.18) there arg different logl. \ functions but not that the vector of variablggin the
Edgeworth expansion required to approximate each expectatasof dimension P(2jJ
now). The same comments about the differentiation to obtain the Hermite polynomials and
the cancellation of integrals go through here agagnwe have considered the cases where
just differentiation(an even number of timgsv.r.t. to one single component of the peri-
odogram destroys the orthogonality conditi@n19). u



