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An alternative semiparametric model for spatial panel data

Román Mínguez1 · Roberto Basile2 ·María Durbán3

Abstract
We propose a semiparametric P-Spline model to deal with spatial panel data. This
model includes a non-parametric spatio-temporal trend, a spatial lag of the dependent
variable, and a time series autoregressive noise. Specifically, we consider a spatio-
temporal ANOVA model, disaggregating the trend into spatial and temporal main
effects, as well as second- and third-order interactions between them. Algorithms
based on spatial anisotropic penalties are used to estimate all the parameters in a closed
form without the need for multidimensional optimization. Monte Carlo simulations
and an empirical analysis of regional unemployment in Italy show that our model
represents a valid alternative to parametric methods aimed at disentangling strong and
weak cross-sectional dependence when both spatial and temporal heterogeneity are
smoothly distributed.

Keywords Spatial panel · Spatio-temporal trend · Mixed models · P-splines ·
PS-ANOVA

JEL Classification C33 · C14 · C63
1 Introduction

A recent strand of the spatial econometric literature has proposed Spatial Autore-
gressive Semiparametric Geoadditive Models as a means of simultaneously dealing
with different critical issues typically encountered when using spatial economic data;
namely, spatial dependence, spatial heterogeneity and unknown functional form (Mon-
tero et al. 2012; Basile et al. 2014; Hoshino 2018). This approach combines penalized
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regression spline (PS) methods (Eilers et al. 2015) with standard spatial autoregressive
models (such as SAR, SEM and SDM). An important feature of these models is that
theymake it possible to includewithin the same specification: (i) spatial autoregressive
terms to capture spatial interaction or network effects; (ii) parametric and nonparamet-
ric (smooth) terms to identify nonlinear relationships between the response variable
and the covariates; and (iii) a geoadditive term, i.e. a smooth function of the spatial
coordinates, to capture a spatial trend effect, that is, to capture spatially autocorrelated
unobserved heterogeneity.

In this paper, we propose a new alternative model for spatial panel data. This model
is based on the P-Spline spatial autoregressive model (PS-SAR), extending it to deal
with spatio-temporal data when both a large cross-section and a long time series are
available. With this kind of data, it is possible to estimate not only spatial trends,
but also spatio-temporal trends in a nonparametric way using a smooth interaction
between the spatial coordinates and the time trend (Lee and Durbán 2011), so as to
capture region-specific nonlinear time trends net of the effect of spatial autocorrelation.
In other words, this approach allows us to answer a number of questions, including:
How do unobserved time-related factors (i.e. common factors), such as economic-
wide technological or demand shocks, heterogeneously affect the long-term dynamics
of all units in the sample? And how does their inclusion in the model affect the
estimation of spatial interaction effects? In this sense, the PS-SAR model with a
spatio-temporal trend may represent an alternative to parametric methods aimed at
disentangling common factor effects (such as common business cycle effects) and
spatial dependence effects (i.e. spatial spillover effects generated by local interactions
between regions), where the former is sometimes regarded as ’strong’ cross-sectional
dependence and the latter as ’weak’ cross-sectional dependence (Chudik et al. 2011;
Ertur and Musolesi 2016).

Bai and Li (2013) and Shi and Lee (2018) propose the quasi-maximum likelihood
method (QML) to estimate dynamic spatial panel data models with common shocks,
thus accommodating both strong and weak cross-sectional dependence. Spatial corre-
lations and common shocks are also considered by Pesaran and Tosetti (2011), but they
specify the spatial autocorrelation on the idiosyncratic errors rather than on the depen-
dent variable.1 Bailey et al. (2016) and Vega and Elhorst (2016) propose a two-step
and one-step approach, respectively, to address both forms of cross-sectional depen-
dence.2 All these approaches are parametric and do not allow practitioners to properly
capture nonlinearities. On the other hand, Su and Jin (2012) examine the problem of
estimating semiparametric panel data models with cross-sectional dependence, where
the individual-specific regressors enter the model nonparametrically, and the common
factors enter the model linearly, thus extending Pesaran (2006)’s common correlated

1 Actually, the approach proposed by Pesaran and Tosetti (2011) does not explicitly allows for both forms 
of cross-sectional dependence (strong and weak). Rather they demonstrate that the CCE approach is still 
valid when in the DGP the errors contain both factors and a spatial-autoregressive terms.
2 The two-step method proposed by Bailey et al. (2016) consists to model first common factors (e.g. 
aggregate shocks) using cross-sectional averages of the observations (thus following Pesaran 2006) and, 
then, to model the de-factored observations using spatial econometric techniques. In the one-step method 
proposed by Vega and Elhorst (2016) common factors and spatial dependence are modeled simultaneously. 
Another related article is of Han and Lee (2016), where the authors use a bayesian estimator.



effects (CCE) estimator to a semiparametric framework. Nevertheless, they do not take
spatial contagion effects into account. By using on the PS-SAR model with spatio-
temporal trends, we simultaneously handle four main econometric issues which are
relevant when modeling spatio-temporal data; namely, functional form bias, spatial
dependence bias, spatial heterogeneity bias, and omitted time-related factors bias.

The econometric model proposed here might appear complicated and computation-
ally demanding, mainly because of the use of a three-dimensional smooth function for
the spatio-temporal trend. Nevertheless, we employ an ANOVA decomposition of the
spatio-temporal trend into several components (spatial and temporal main effects, and
second- and third-order interactions between them), which gives further insights into
the dynamics of the data. Thus, we use the acronym PS-ANOVA-SAR for the new
data generating process (DGP) proposed here. Furthermore, we use a mixed model
representation that allows us to apply the methods already developed in this area for
estimation and inference, and to implement the necessary identifiability constraints
in a straightforward manner. We also present an extension of the algorithm derived
by Rodriguez-Alvarez et al. (2015) (for variance components estimation) to the PS-
ANOVA-SAR model, which dramatically reduces the computational time needed to
estimate the parameters in the model. Also, the use of nested B-spline bases (Lee
et al. 2013) for the interaction components of the spatio-temporal trend contributes
to the efficiency of the fitting procedure without compromising the goodness of fit of
the model. Finally, we also consider an extension of the PS-ANOVA-SAR including
a first-order time series autoregressive process (AR1) in the noise to accommodate
residual serial correlation. All these models can be estimated, in a transparent and
easy way for the potential user, using a new R package named sptpsar. This package
is available in GitHub (https://github.com/rominsal/sptpsar) and can be installed in
the usual way.3

We apply the PS-ANOVA-SAR(AR1) to regional unemployment data in Italy. As
is well known, these data are characterized by spatial dependence, unobserved spatial
heterogeneity, unobserved common effects, and time persistence. Substantive spatial
dependence occurs due to interregional trade, labor migration and commuting, and
knowledge spillovers; this spatial dependence can be captured by including spatial
interaction effects in themodel (Burridge andGordon1981;Molho1995;Overmanand
Puga 2002; Patacchini and Zenou 2007). Unobserved spatial heterogeneity is mainly
due to a strong North-South spatial trend which is largely uncaptured by the explana-
tory variables: regional unemployment rates register a substantial increase moving
from North to South, reflecting the well-known regional development division within
the country. A time-invariant smooth spatial trend could be used to filter out unob-
served heterogeneity; thus, the spatial trend assumes the same role as the fixed regional
effects used in parametric panel datamodels. Several unobserved common factors (e.g.
aggregate demand shocks, aggregate technological shocks, and global labor market
policies) may also affect the level of regional unemployment. The spatially hetero-
geneous effects of these factors may be the result, for instance, of region-specific
technological or institutional constraints. These heterogeneous effects can be con-

3 To install anyRpackage fromGitHub you need to have previously installed devtools package fromCRAN.
Then execute the commands library(devtools), to load devtools, and install github(“rominsal/sptpsar”) to
install sptpsar package.

https://github.com/rominsal/sptpsar


trolled for either by using a model with a multifactor error structure (i.e. by adopting
the CCEP approach developed by Pesaran 2006; Chudik et al. 2011; Pesaran and
Tosetti 2011) or by including smooth interactions between the time trend and the spa-
tial coordinates (i.e. by adopting a PS-ANOVA specification). Finally, time persistence
in regional unemployment is usually (and properly) captured by using a dynamic for-
mulation of the panel data model. In this paper, however, for the sake of simplicity, we
adopt a static formulation of the PS-ANOVA-SAR model, and we control for residual
serial autocorrelation by including an autoregressive (AR1) noise term. A dynamic
development of PS-ANOVA-SAR model is in our future research agenda.

The plan of the paper is as follows. Section 2 provides a brief discussion of the
main parametric spatial panel approaches used in the literature to capture strong and
weak cross-sectional dependence. Section 3 sets out the PS-ANOVA-SAR(AR1) and
discusses various technical aspects related to its identification and estimation. Section 4
reports the results of Monte Carlo experiments, while Sect. 5 discusses the results of
the application of the model to regional unemployment data. Section 6 concludes by
identifying important areas for extensions and further developments.

2 Parametric spatial panel approaches

Spatial spillover effects and common factors are of increasing empirical importance.
Spatial spillovers are due to unobserved idiosyncratic shocks which propagate to all
other regions with a distance-decaymechanism driven by network relationships. Com-
mon factors are unobserved time-related factors which influence all regions (probably
heterogeneously). Both determine cross-sectional correlation in the residuals andmake
it difficult to get unbiased and efficient estimates. There is a growing literature dedi-
cated to the separate analysis of the two types of effect.

On the one hand, spatial spillover effects (weak cross-section dependence) can be
analyzed by using, for example, the spatial autoregressive model with fixed effects
(SAR-FE):

yit = αi + νt + ρ

N∑

j=1

wi j,N y jt + x′
i tβ + εi t (1)

N

where yi t  is a continuous response variable observed on the ith cross-sectional unit at 
time t for i = 1, 2, . . . ,  N and t = 1, 2, . . . ,  T ; xi t  is a k × 1 vector of explanatory 
variables, and β the associated set of coefficients; the nuisance parameters αi capture 
unobserved time-invariant spatial heterogeneity (spatial fixed effects), while νt capture 
unobserved temporal heterogeneity, that is the effect of the omitted variables that are 
specific to each time period. αi and νt are allowed to be correlated with xi t  , while 
the idiosyncratic errors, εi t  , are assumed to be independently distributed over xi t  . 
WN = (wi j,N )N×N is a spatial weights matrix whose diagonal elements wi i,N are 0.
Thus, 

∑
j=1 wi j,N y j t  is the spatial lag of the dependent variable, and ρ the associated 

parameter. This model can be estimated using a quasi-maximum likelihood estimator
(QMLE) (Elhorst 2014; Lee and Yu 2010).

Model (1) allows for interdependence among spatial units and corresponds to a long-
run equilibrium relation between the response variable and its covariates. The spatial



multiplier matrix,4 AN ≡ (IN −ρWN )−1 ≡ IN +ρWN +ρ2W2
N +· · · , in the reduced

form of any SAR model pre-multiplies both observed and unobserved factors: the
outcome in a location i will not only be affected by the exogenous characteristics of i ,
but also by those in any other location j through the inverse spatial transformation. The
impact, therefore, isglobal. Thepowers ofρmatching thepowers ofWN (higher orders
of neighbors) ensure that a distance-decay effect is present. Thus, it is customary to
distinguish between direct, indirect and total marginal effects. Direct effects measure
the impact of a change in regressor xk in region i on the outcome of said region: ∂ yi

∂xki
.

Conversely, indirect (or spatial spillover) effects measure the impact of a change in
regressor xk in region j on the outcome of region i : ∂ yi

∂xk j
. Total marginal effects are

simply the sum of direct and indirect effects.
The problem with these effects is that, conditional on the model, both direct

and indirect effects are specific to the pair of regions involved (i, j). Thus, aver-
age measures are typically used to summarize the results. In the SAR model, the

average total marginal effect is computed as M
k
tot= (1 − ρ̂)−1 β̂k . The average direct

impact is M
k
dir=N−1tr

[
(IN − ρ̂WN )−1 IN β̂k

]
, while the average indirect impact

is M
k
ind=M

k
tot−M

k
dir . In order to draw inference regarding the statistical signif-

icance of the average direct and indirect effects, LeSage and Pace (2009, p. 39)
suggest simulating the distribution of the direct and indirect effects using the variance-
covariance matrix implied by the maximum likelihood (ML) estimates. Efficient
simulation approaches can be used to produce an empirical distribution of the param-
eters β, θ , ρ, σ 2, which are needed to calculate the scalar summary measures. This
distribution can be constructed using a large number of simulated parameters drawn
from the multivariate distribution of the parameters implied by the ML estimates.

On the other hand, strong cross-sectional dependence can be accommodated by the
Common Correlated Effects Pooled (CCEP) estimator proposed by Pesaran (2006).
Suppose that yit is generated by the following DGP with a multifactor error structure:

yit = αi + x′
i tβ + γ

′
i ft + εi t (2)

xi t = 
′
i ft + vi t

where ft is a m × 1 vector of unobserved common factors (introduced to allow for
cross-sectional dependence), and γi the corresponding heterogeneous response. ft are
allowed to be correlated with xi t (
i is a m × k factor loading matrix), while the
idiosyncratic errors, εi t , are assumed to be independently distributed over xi t . Pesaran
(2006) shows that, for sufficiently large N , it is valid to use cross-sectional averages of
yit and xi t as observable proxies for ft . Thus, consistent β parameters can be estimated
using the so-called CCEP estimator, which can be viewed as a generalized fixed effects
estimator.5 The CCEP approach has been proved to be valid in the presence of both
strong and weak (or semi-strong and semi-weak) cross dependence (Chudik et al.

4 It is assumed than forWN row-standardized, |ρ| < 1 so that this serial expansion holds.
5 The assumption of fixed β parameters can be relaxed, and a random coefficient specification can be
assumed: βi = β + ui , with ui ∼ i .i .d.(0, �u). In this case the estimator proposed by Pesaran (2006) is
the common correlated effects mean group (CCEMG) estimator. We do not employ this extension in our
analysis.



2011; Pesaran and Tosetti 2011). Thus, it can easily collect even the pure spatial
spillover effects. However, economic analyses often require the assessment of the
different forms of cross dependence, or better still, the assessment of spatial network
effects, net of the effects of common factors. A natural way to deal with this problem
is to combine the two approaches.

Using slightly different frameworks, Bai and Li (2013) and Shi and Lee (2018)
consider a joint modeling of spatial interaction effects and common-shocks effects:

yit = αi + ρ

N∑

j=1

wi j,N y jt + x′
i tβ + γ

′
i ft + εi t (3)

This model allows one to test which type of effects (common shocks and/or spatial
spillovers) is responsible for the cross-sectional dependence. Bai and Li (2013) and
Shi and Lee (2018) use principle components to estimate common factors, while here
we follow Pesaran (2006) in using cross-sectional averages of yit and xi t as observable
proxies for ft . Thus, we call it the SAR-CCEP model and use the QMLE to estimate
it.

A drawback of this approach is worth noting. Specifically, there is a large number
of incidental parameters involved in the estimation of the CCEP model, and thus
also in the estimation of the SAR-CCEP, especially when the number of regressors is
high and/or T is short. This is also documented in many empirical papers adopting the
CCE approach, where estimates lack precision. In the following section, we propose an
alternative semiparametric approach to disentangle common factor effects and spatial
dependence effects which adequately addresses this problem.

3 Spatio-temporal semiparametric autoregressivemodels

In this section we propose a class of spatio-temporal models for large spatial panel
data. They are a flexible alternative to the parametric models presented in Sect. 2
for modeling spatial economic data, as long as the spatio-temporal heterogeneity is
smoothly distributed (as is commonly the case, we would argue, in empirical eco-
nomic analyses), so that we can approximate it with smooth nonparametric functions.
The models represent a generalization of the Spatial Autoregressive Semiparametric
Geoadditive Models introduced by Basile et al. (2014) and Montero et al. (2012). We
focus in this paper in the case of Gaussian response variables, however, the results
here can be extended to variables with the exponential family of distributions in the
context of Generalized Linear Mixed Models.

Let yit be a sample of spatial panel data, where i is an index for the cross-sectional
dimension (spatial units), with i = 1, . . . , N , and t is an index for the time dimension
(time periods), with t = 1, . . . , T . The general model proposed is written as:

yit = ρ

N∑

j=1

wi j,N y jt + f̃ (s1i , s2i , τt ) +
k∑

δ=1

gδ(xδi t ) + εi t



where (s1i , s2i ) are the spatial coordinates (latitude and longitude) of individual i
(when i refers to areal units: municipality, provinces, etc., the standard convention
here is to identify representative points for areal units, the most typical being areal
centroids), τt is the time period, and xδi t are independent variables;Wi j are the spatial
weights, and ρ the spatial autoregressive parameter. The functions gδ(.) are parametric
or nonparametric smooth functions of the covariates xδi t (they can be linear, or can
accommodate varying coefficient terms, smooth interaction between covariates, by-
factor smooth curves, and so on), and f̃ (s1i , s2i , τt ) is an unknown nonparametric
spatio-temporal trend. The idiosyncratic error term is assumed to follow an AR(1)
process, i.e. εi t = φεi t−1+uit with uit ∼ N (0, σ 2). Then, themodel can be expressed
in vector form as:

y = ρ(WN ⊗ IT )y + f̃ (s1, s2, τ ) +
k∑

δ=1

gδ(xδ) + ε. (4)

In many situations the spatio-temporal trend to be estimated by f̃ can be complex,
and the use of a single multidimensional smooth function may not be flexible enough
to capture the structure in the data. To solve this problem, Lee and Durbán (2011)
proposed an ANOVA-type decomposition of f̃ (s1, s2, τ ) where spatial and temporal
main effects, and second- and third-order interactions between them can be identified:

f̃ (s1, s2, τ ) = f1(s1) + f2(s2) + ft (τ ) + f1,2(s1, s2)

+ f1,t (s1, τ ) + f2,t (s2, τ ) + f1,2,t (s1, s2, τ ).

Thus, model (4) can be written as:

y = ρ(WN ⊗ IT )y + f1(s1) + f2(s2) + ft (τ ) + f1,2(s1, s2)

+ f1,t (s1, τ ) + f2,t (s2, τ ) + f1,2,t (s1, s2, τ ) +
k∑

δ=1

gδ(xδ) + ε. (5)

We will refer to it as the PS-ANOVA-SAR(AR1) model. It is flexible enough to
simultaneously control for different sources of bias: spatial heterogeneity bias, spatial
dependence bias, omitted time-related factors bias, and functional form bias.

First, as already pointed out in Basile et al. (2014), the geoadditive terms given by
f1(s1), f2(s2) and f1,2(s1, s2) (two 1d smooth functions of latitude and longitude and
a 2d smooth function to account for any spatial effect not accounted for by the main
effects) work as control functions to filter the spatial trend out of the residuals, and
transfer it to the mean response in a model specification. Thus, they make it possible
to capture the shape of the spatial distribution of y, eventually conditional on the deter-
minants included in the model. These control functions also isolate stochastic spatial
dependence in the residuals, that is spatially autocorrelated unobserved heterogeneity.
Thus, they can be regarded as an alternative to the use of individual regional dummies
to capture unobserved heterogeneity, as long as such heterogeneity is smoothly dis-
tributed over space. Regional dummies peak at significantly higher and lower levels



of the mean response variable. If these peaks are smoothly distributed over a two-
dimensional surface (i.e. if unobserved heterogeneity is spatially autocorrelated), the
smooth spatial trend is able to capture them.

Second, the smooth time trend, ft (τ ), and the smooth interactions between space
and time— f1,t (s1, τ ), f2,t (s2, τ ), and f1,2,t (s1, s2, τ )—work as control functions to
capture the heterogeneous effect of common shocks. Thus, conditional on a smooth
distribution of the spatio-temporal heterogeneity, the PS-ANOVA-SAR model works
as an alternative to the models proposed by Bai and Li (2013), Shi and Lee (2018),
Pesaran and Tosetti (2011), Bailey et al. (2016) and Vega and Elhorst (2016) based
on extensions of common factor models to accommodate both strong cross-sectional
dependence (through the estimation of the spatio-temporal trend) and weak cross-
sectional dependence (through the estimation of the ρ parameter). The advantage of
the PS-ANOVA-SAR model lies in the fact that, contrary to the CCEP approach, its
estimation does not involve a large number of incidental parameter.

Furthermore, our framework is also flexible enough to control for the linear and
nonlinear functional relationships between the dependent variable and the covariates
as well as the heterogeneous effects of these regressors across space (extending, in
some sense, the work by Hoshino 2018, to the spatial panel case). The model inherits
all the good properties of penalized regression splines, such as, coping with missing
observations by appropriately weighting them, and straightforward interpolation of
the smooth functions.

The smooth functions in the model above can be estimated using a number of
different methods: splines, kernels, wavelets, and so on. However, most methods do
not provide a unified approach whereby all terms and parameters in the model can
be estimated simultaneously. We use the penalized spline approach introduced by
Eilers and Marx (1996), which provides a general framework and can deal with the
identifiability problems that appear in ANOVA decompositions.

3.1 Penalized splines methodology

The penalized regression approach is based on a basis representation of the unknown
functions, which is combinedwith a penalty on the likelihood to control the wiggliness
of the curve/surface. In particular, we use the approach introduced by Eilers and Marx
(1996)which uses cubicB-splines (DeBoor 1977) as basis functions, and second-order
differences of adjacent coefficients as penalties. However, the methodology presented
here can be applied to any basis and quadratic penalty. For the purpose of illustration,
we will assume a simple case here, in which the mean of the response variable is an
unknown function of a single covariate and the errors are independent:

yi = f (xi ) + εi εi ∼ N (0, σ 2).

Then, the smooth function is represented by:

f (x) =
c∑

j=1

Bj (x)θ j , j = 1, . . . , c, (6)



with Bj a B-spline basis function, and θ j is a component of a vector of regression
coefficients of length c (the number of knots used to construct the basis). The size of the
basis should be large enough (in general, between 4 and 40) to identify nonlinearities.
The smoothness of the curve is controlled by a quadratic penalty term. Typically,
this term is equivalent to an integral of squared second derivatives of the function, but
sometimes (especially in the case of interactions) its calculation is not straightforward.
Thus, following Eilers and Marx (1996), we use second-order differences among
adjacent coefficients, yielding the following penalized regression problem:

‖y − Bθ‖2 + λ
∑

j

(�2θ j )
2 (7)

where B is a matrix including Bj B-spline basis by columns and �2 is the difference
operator of order 2. In matrix form the penalty term becomes θ ′Pθ , with P = λD′D,
D is the matrix of second-order differences and λ is the smoothing parameter which
controls the amount of smoothing. The beauty of the P-spline methodology is that
the penalty relaxes the dependence of the fit on the size of the basis or the degree of
the polynomial. From (7) it is immediate to see that the estimated smooth function is
given by:

f̂ (x) = B(B′B + λD′D)−1By.

Asymptotic properties of penalized spline estimators can be found in Claeskens et al.
(2007) and Wood (2006).

When the response is an unknown function of two (or more) covariates, the repre-
sentation of an interaction term is given by:

f1,2(x1, x2) =
ci∑

j=1

ck∑

l=1

Bj (xi )Bl(xk)θ jl , with j = 1, . . . , c1 and l = 1, . . . , c2,

(8)
where Bj (xi )Bl(xk) is the tensor product of two marginal B-spline bases, and θ jl is a
vector of coefficients of length c1c2 × 1. In this case the penalty is given by:

P = λ1D′
1D1 ⊗ I + λ2I ⊗ D′

2D2.

See Currie et al. (2006) and Eilers et al. (2006) for further details on multidimensional
smoothing with penalized splines. A property of this penalty is the fact that it allows
for a separate amount of smoothing per covariate (anisotropy), which is an important
issue when smoothing over space and time.

It is worth noting that the dimension of the matrices involved in interaction terms
can increase very quickly if the size of the marginal bases is large, and so the esti-
mation of the model can become very slow or even intractable. In order to reduce the
computational burden without compromising the fit of the model, we follow Lee et al.
(2013) in using nested B-spline bases for the interactions terms. The idea is to use
a matrix B̆ in the interaction, such that the space spanned by this matrix is a subset



of the space spanned by B. The use of this simpler matrix for the construction of the
interaction terms will not be a problem since the information about the interaction is
generally sparse. In the ANOVA context, the main effects are more important than the
interactions, so this would be reasonable in most situations. In order to ensure that the
new basis is nested relative to the original basis, we assume that the number of knots
(ndx∗) in B̆ is a divisor of the number of knots used to construct the original basis
(ndx):

ndx∗ of B̆ = ndx of B
div

⇒ span(B̆) ⊂ span(B).

Then, the number of parameters is dramatically reduced but the model is still flexible
enough to capture the complex space-time structure in the data. Lee et al. (2013) and
Rodrìguez-Álvarez et al. (2018), among others, have carried out several simulation
studies under different scenarios to test the impact of the use of reduced-rank basis to
represent interaction terms. They showed that a moderate reduction of the number of
knots (half for a two-way interaction, etc.) has no significant loss in terms of the fit to
the data, and produces remarkable results in computing time that would be unbearable
otherwise.

Earlier in this section we could see that the estimate of the unknown function
depends on the smoothing parameter λ, thus optimal selection of this parameter is
needed. Leave-one-out cross-validation (CVorGCV) provides amechanism to choose
this parameter. However, this approach has a tendency to under-smooth the data,
specially if errors are correlated. An alternative way to select the optimal smoothing
parameter is through reparameterization of the penalized spline model as a mixed
model (Currie and Durbán 2002). This idea comes from the fact that the minimization
problem in (7) is the minimization criterion in a random effects model of the form:

y = Bθ , θ ∼ N (0, σ 2
θ P

−1) ε ∼ N (0, σ 2I),

but the penalty matrix P is singular (2 eigenvalues are zero), and so it has a degenerate 
distribution. One possible solution is to rewrite the model as Bθ = Xβ + Zα, such 
that the 2 columns of X span the polynomial null space of P and the columns of Z 
span its complement:

y = Xβ + Zα + ε, ε ∼ N (0, Iσ 2), α ∼ N (0, G),

where matrices X, Z and G are computed using an appropriate decomposition on the 
penalty term (see “Appendix A” for details). This approach will allow us the simulta-
neous estimation of all parameters in the model, and the use of existing algorithms in 
the mixed model framework.

Model (5) is non-identifiable since, for example, f1(s1) and f2(s2) are confounded 
with f1,2(s1, s2) (as in a three-way ANOVA, lower order effect are confounded with 
higher order interactions). An elegant way to construct an identifiable model is to 
impose the constraints used in a factorial design to the coefficients of the B-splines

basis, i.e. 
∑

j θ j = 0 for 1d smooth functions (see (7)) and 
∑ 

j θ jl  = 
∑

l θ jl  =0 in the



case of 2d smooth functions (see 8). It is easy to show that this is equivalent to remov-
ing from the matrices of fixed effects (given in the mixed model reparametrization
above) the columns that are repeated. Furthermore, the mixed model reparametriza-
tion will also provide an automatic selection of the smoothing parameter, since the
latter becomes a ratio of variances, meaning that it is no longer necessary to estimate
λ via a cross-validation method or an information criterion.

3.2 PS-ANOVA-SAR(AR1) model as amixedmodel

We propose the estimation of the PS-SAR-ANOVAmodel (with temporal autoregres-
sive dependence in the noise) by means of its representation as a mixed model. This
allows us to use the standard mixed model methodology, which is well known and
tested, and is implemented in most statistical software. For the sake of simplicity we
assume that there are no covariates in the model (the inclusion of covariates is an
immediate step); then model (5), including time autoregressive errors, becomes:

(AN ⊗ IT )y = f1(s1) + f2(s2) + ft (τ ) + f1,2(s1, s2)

+ f1,t (s1, τ ) + f2,t (s2, τ ) + f1,2,t (s1, s2, τ ) + ε (9)

where

ε ∼ N (0,R), AN = IN − ρWN , R = σ 2

1 − φ2 (IN ⊗ Ω)

and

Ω =

⎛

⎜⎜⎜⎜⎜⎝

1 φ φ2 · · · φT−1

φ 1 φ · · · φT−2

φ2 φ 1 · · · φT−3

...
...

...
...

...

φT−1 φT−2 φT−3 · · · 1

⎞

⎟⎟⎟⎟⎟⎠

Again, we can use the reparameterization of this type of model into a mixed model
(see “Appendix B” for details) to obtain:

(AN ⊗ IT )y = Xβ + Zα + ε, ε ∼ N (0,R) , α ∼ N (0,G)

whereG is a diagonal matrix which depends on several variance components σ 2
ν j
(one

per univariate smooth function, two per bivariate function, and so on). This implies
that each function is estimated with a separate amount of smoothing.

Conditional on the correlation parameters and variance components, the estimates
of the coefficients β and of the random effects α follow from the standardmixedmodel
theory (Searle et al. 1992), and are the solution of the system of equations:

[
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

] [
β

α

]
=
[
X′R−1(AN ⊗ IT )y
Z′R−1(AN ⊗ IT )y

]
. (10)



Variance components (and, therefore, smoothing parameters), and correlation
parameters may be estimated by maximizing the residual log-likelihood (REML),
as in Patterson and Thompson (1971):

�(σ 2
τi
, σ 2, ρ, φ) = −1

2
log |V| − 1

2
log |X′V−1X|

− 1

2

[
(AN ⊗ IT )y

]′
(V−1 − V−1X(X′V−1X)−1X′V−1)

× [(AN ⊗ IT )y
]

+ log |AN ⊗ IT | (11)

where V = R + ZGZ′.
The numerous variance components (3 for the main effects of latitude, longitude

and time, 6 for the 3 two-way interactions, and 3 for the three-way interaction) and
correlation parameters (ρ and φ in our case) make the maximization of this func-
tion using numerical methods very time consuming. Rodriguez-Alvarez et al. (2015)
recently developed an algorithm named SAP (Separation of Anisotropic Penalties)
that maximizes REML much faster than numerical optimization procedures can. This
algorithm can be applied to any mixed model (or models in which mixed model based
inference is used) in which the precision matrix of random effects can be expressed
as a linear combination over the variance components. SAP is computationally very
efficient and the estimates produced match those obtained using REML. In “Appendix
B”, we show how the SAP algorithm can also be adapted to estimate the correlation
parameters in the PS-ANOVA-SAR(AR1) model.

Estimated curves or interaction surfaces in the model can be easily obtained from
Eq. (10). For example, the estimated effect of the spatial term f1,2(s1, s2) is:

f̂1,2(s1, s2) = E1,2C−1[X : Z]′(AN ⊗ IT )y,

where C is the matrix on the left-hand side of (10) and E1,2 is a diagonal matrix with
ones in the diagonal positions corresponding to the interaction smooth term.

The mixed model approach to penalized splines smoothing can also be inter-
preted from an empirical Bayes viewpoint in which fixed effects have (constant)
non-informative prior, and we use this approach for variance estimation. In this frame-
work it is easy to show (see Lin and Zhang (1999)) that the covariance matrix of the
regression parameters β and α is given by Cov(β,α) = C−1, and so, again in the
case of the space interaction term:

Var( f̂1,2) = H1,2 = E1,2 [X : Z]C−1 [X : Z]′ E′
1,2

Also, the trace of H1,2 can be used as a measure of the complexity of the smooth
surface (as in the linear model) by defining the effective dimension of the smooth term
as:

e.d.( f̂1,2) = trace(H1,2).



4 Monte Carlo experiments

Wepropose aMonte Carlo experiment in order to compare the small sample properties
of different parametric and semiparametric estimators (namely CCEP, SAR-CCEP,
PS-ANOVA, PS-ANOVA-SAR, and PS-ANOVA-SAR-AR1) in the presence of weak
and strong cross-sectional dependence. The aim of this study is to assess whether the
PS-ANOVA-SAR-AR1 represents a valid alternative to the SAR-CCEP estimator in
the presence of spatial dependence, spatial heterogeneity and unobserved common
factors. To fulfill this aim, we set two different data generating processes (DGPs).

4.1 DGP 1: SAR-CCEP

The first DGP is amodified version of the one proposed by Pesaran (2006) and Pesaran
and Tosetti (2011), where the dependent variable and the individual-specific regressors
are assumed to depend on a linear combination of unobserved common factors. We
extend thisDGPby including a spatial lag of the dependent variable to combine the two
sources of cross-sectional dependence, i.e. common factors and spatial dependence as
in Bailey et al. (2016) and Vega and Elhorst (2016):

[DGP1] yit = αi + β1x1i t + β2x2i t + γi1 f1t + γi2 f2t + ρ

N∑

j=1

wi j,N y jt + uit

uit = φui,t−1 + εi t

x ji t = a ji + γ j i1 f1t + γ j i3 f3t + v j i t j = 1, 2

for i = 1, . . . , N and t = 1, . . . , T .6

We always assume homogeneous slopes, i.e. β = (1, 1)′ for x1i t and x2i t , and
serially correlated errors, i.e. uit are generated as stationary AR(1) processes with
φ = 0.75, εi t ∼ iidN (0, σ 2) and σ 2 ∼ iidU [0.5, 1.5].

In [DGP 1], f1t , f2t and f3t are unobserved common effects following first-order
temporal autoregressive processes,

f j t = 0.5 f j,t−1 + v f j t j = 1, 2, 3

v f j t ∼ iidN (0, 0.75) f j0 = 0

and the idiosyncratic noises for the individual-specific regressors are generated as

v j i t = φ j iv j i,t−1 + ς j i t

ς j i t ∼ N (0, 1 − φ2
j i )

φ j i ∼ iidU [0.05, 0.95]
For all serially correlated errors, the first 50 observations are discarded.

6 All variables involved, both observable and latent, are stationary in the simulations. The analysis of the
statistical properties of the proposed estimator under the assumption of nonstationarity is a subject of current
research.



The heterogeneous intercepts are generated as

αi ∼ iidN (1, 1)

(a1i , a2i ) ∼ iidN (0.5τ 2, 0.5I2)

where τ 2 = (1, 1)′ and I2 is a 2 × 2 identity matrix.
The factor loadings associated with the unobserved common effects in the x jit and

yit equations are simulated from

(
γ1i1 0 γ1i3
γ2i1 0 γ2i3

)
∼ iid

(
N (0.5, 0.5) 0 N (0, 0.5)
N (0, 0.5) 0 N (0.5, 0.5)

)

˜

and

γi1 ∼ iidN (1, 0.2)
γi2 ∼ iidN (1, 0.2)

Finally, ρ is the spatial autoregressive coefficient associated to the spatial lag 
of the dependent variable, and wi j  , for i, j = 1, . . . ,  N , are elements of a spatial 
weight matrix W, assumed to be time-invariant. To construct this matrix, we have 
simulated random spatial coordinates, s1i , s2i , following iidU [0, 1] distributions. The 
neighborhood criterion corresponds to the five closest observations and the matrix 
W is row-normalized. Prior to this, we set up two values of the spatial coefficient, 
ρ = (0, 0.5), in order to consider both independence and sizeable spatial dependence.

The reader may note that, in line with Pesaran (2006) and Pesaran and Tosetti 
(2011), we always consider an autoregressive, but stationary, process for the gener-
ation of common factors ( f j t  = 0.5 f j,t−1 + v f j t  ). Thus, we exclude both the case 
of a pure random distribution of common factors (e.g. f j t  ∼ iidN (1, 1)) and the 
case of a nonstationary process (i.e. f j t  = f j,t−1 + v f j t  ). Under the assumption of 
totally random common shocks (e.g. a random perturbation of world demand), the 
CCEP estimator would certainly remain strongly consistent. The PS-ANOVA-SAR 
approach (Eq. 4) can also be adapted to this situation by introducing random time 
effects (as in Perperoglou and Eilers 2009), or interactions between a smooth spatial 
trend and time fixed effects (i.e. f (s1i , s2i )×τt ). Nevertheless, since in many situations 
the common shocks are persistent over time, we prefer to allow for an autoregressive 
process. Moreover, for the sake of simplicity, we do not extend the analysis to the non-
stationarity case. Indeed, all variables involved, both observable and latent (including 
common factors), are stationary in the simulations. The Pesaran’s multifactor error 
structure approach has already been extended to the cases where the unobservable 
common factors follow unit root processes. In particular, the Monte Carlo study con-
ducted by Kapetanios et al. (2011) show that the CCE estimator is robust to the case 
where unobserved common factors are integrated of order 1. The analysis of the sta-
tistical properties of the proposed PS-ANOVA-SAR estimator under the assumption 
of nonstationarity is a subject of current research.



4.2 DGP 2: PS-ANOVA-SAR(AR1)

The second DGP includes smooth spatio-temporal trends in place of heterogeneous
intercepts and unobserved common factors. In other words, time-invariant spatial
unobservedheterogeneity and time-varyingunobservedheterogeneity (due to common
factors) are assumed to be smoothly distributed (over time and space) and generated
by a specific spatio-temporal trend for each variable (in this DGP, we only consider
an individual-specific regressor), that is,

[DGP2] yit = α + βxit + ρ

N∑

j=1

wi j,N y jt + fspt + uit

uit = φui,t−1 + εi t

xi t = hspt + εi t

for i = 1, . . . , N and t = 1, . . . , T .
α is a constant intercept and both wi j,N and uit are generated as in [DGP 1].
The terms fspt and hspt represent spatio-temporal trends includingmain effects and

interaction effects of second- and third-order between spatial and temporal coordinates.
They have been generated by the following nonlinear terms:

f1spt = fs1i + fs2i + fτt + fs1i ,s2i + fs1i ,τt + fs2i ,τt + fs1i ,s2i ,τt
fs1i = sin(2πs1i )

fs2i = cos(3πs2i )

fτt = sin(4πτt )

fs1i ,s2i = sin(2πs1i )(s
2
2i − 1)

fs1i ,τt = 2 sin(2πs21i )cos(2τt )

fs2i ,τt = cos(3πs2i )sin(3τ 2t )

fs1i ,s2i ,τt = sin(2πs1i )s
2
2i cos(3τt )

hspt = hs1i ,s2i + hτt

hs1i ,s2i = 2 cos(3πs2i )(2s1i s2i )

hτt = 2 sin(3πτ 3t )

As in [DGP 1], the spatial coordinates, s1i , s2i , follow iidU [0, 1] distributions, while
the temporal coordinate is generated as τt = t/T , for t = 1, . . . , T . Finally, the noise
term of x jit is generated by the following stochastic process:

εi t = νiεi,t−1 + ςi t

ςi t ∼ N (0, 1 − φ2
i )

φi ∼ i idU [0.05, 0.95]



Table 1 Spatio-temporal competing models

Model I Model with unobserved common effects (CCEP)

Model II SAR model with unobserved common effects (SAR-CCEP)

Model III Spatio-temporal model (PS-ANOVA)

Model IV Spatio-temporal SAR model (PS-ANOVA-SAR)

Model V Spatio-temporal SAR-AR(1) model (PS-ANOVA-SAR-AR1)

4.3 Monte Carlo results

For both DGPs, the generated sample panels have N = 100 and T = 30, and 300
simulations have been used for each value of ρ. For each simulated DGP, we assess the
small sample properties of five parametric and semiparametric estimators (Table 1). In
particular, we computed the parametric pooled common correlated estimator (CCEP)
described in Pesaran (2006) (Eq. 2 in Sect. 2), and its extension (SAR-CCEP) which
includes a spatial lag of the dependent variable (Vega and Elhorst 2016) (Eq. 3 in
Sect. 2); plus three versions of the semiparametric model described in Sect. 3 (Eq. 4)
with the ANOVA decomposition for the spatio-temporal trend (imposing linearity for
the effect of the covariates), namely the PS-ANOVA (which excludes the spatial lag
termWy), the PS-ANOVA-SAR (which excludes serial correlation in the error term),
and the PS-ANOVA-SAR-AR(1). For all PS-ANOVA specifications, B-spline bases
have been included and we have chosen 16 knots for both time and spatial coordinates.
Furthermore, we have nested the bases for second- and third-order interaction terms
dividing the number of knots by 2 and 4, respectively (as explained in Sect. 3.1).
Finally, all the parameters of PS-ANOVA specifications have been estimated using
REMLapplied to the PS-ANOVAmodels previously reparameterized asmixedmodels
(details in Sect. 3.2).

Table 2 provides estimates of the bias and of the root-mean-square error (RMSE)
for parameters β1, β2, and ρ over the two DGPs.

The main conclusions can be synthesized as follows:

1. With respect to the estimates of the parameter β1, the five estimators perform
quite differently, depending on the DGP and on the value of the ρ parameter. More
specifically, for [DGP 1] and ρ = 0, the estimators of the parametric specifications
(I and II) are substantially unbiased. Conversely, the estimators of the semipara-
metric specifications (III to V) are slightly positively biased, and their RMSE is
approximately double that of specifications I and II.
With ρ = 0.5, the relative performance of the different estimators changes a
great deal. The estimators of the spatial lag models (II, IV and V) are substantially
unbiased, with comparatively similar values of RMSE. As expected, the estimators
of the models without a spatial lag (I and III) show a positive and non-negligible
bias in the estimation of the slope parameter.
Semiparametric models (III, IV and V) prove their superiority in estimating the
parameter β1 when ρ = 0.5 in [DGP 2], which includes smooth spatio-temporal
trends in place of unobserved common factors and spatial fixed effects. The esti-



Table 2 Bias and root-mean-square-error (RMSE)

Model I II III IV V

β1

DGP 1

ρ = 0 Bias 0.0018 0.0015 0.0440 0.0387 0.0515

RMSE 0.0285 0.0284 0.0557 0.0500 0.0608

ρ = 0.5 Bias 0.0512 0.0026 0.1047 0.0144 0.0088

RMSE 0.0613 0.0287 0.1198 0.0333 0.0386

DGP 2

ρ = 0 Bias 0.0005 0.0062 0.0027 −0.0112 0.0029

RMSE 0.0395 0.0346 0.0274 0.0319 0.0160

ρ = 0.5 Bias 0.0485 −0.0256 0.0024 0.0063 0.0024

RMSE 0.0840 0.0435 0.0363 0.0280 0.0162

β2

DGP 1

ρ = 0 Bias −0.0006 −0.0010 −0.0034 −0.0011 −0.0200

RMSE 0.0262 0.0264 0.0327 0.0306 0.0396

ρ = 0.5 Bias 0.0497 0.0008 0.0310 −0.0120 −0.0505

RMSE 0.0632 0.0305 0.0630 0.0322 0.0627

ρ

DGP 1

ρ = 0 Bias −0.0125 0.1903 0.3666

RMSE 0.0374 0.2053 0.3750

ρ = 0.5 Bias −0.0137 0.1318 0.2220

RMSE 0.0286 0.1404 0.2320

DGP 2

ρ = 0 Bias 0.4311 −0.2074 0.0063

RMSE 0.4353 0.2150 0.0224

ρ = 0.5 Bias 0.2589 −0.1454 −0.0006

RMSE 0.2606 0.1512 0.0132

Fixed values of β1 and β2 are (1,1) and true values of ρ and φ are (0,0.5) and 0.75, respectively

mator of model III is also unbiased when ρ = 0.5 although this model does not
include a spatial lag (nevertheless, its RMSE is bigger than that computed for esti-
mators of models IV and V). Not surprisingly, the best results are achieved by the
estimator of model V, since it is the specification closest to [DGP 2]. Moreover,
considering that in [DGP 2] the spatio-temporal trend is different for the dependent
variable yit and the regressor xit , semiparametric models (III, IV and V) produce
unbiased estimates for the parameters despite the existence of complex unobserved
spatio-temporal trends with the only requirement of smoothness.7

7 Following the suggestion of an anonymous referee, we have also simulated (only for DGP2) the CCEP
and SAR-CCEP specifications including individual time trends. The results are similar to those reported in
Table 2 and are available upon request.



When examining the estimates for parameter β2, the conclusions for [DGP 1] are
similar to those reported for β1 except for the unexpectedly poor performance of
the estimator of model V when ρ = 0.5. On the other hand, the assessment of
model III is better for parameterβ2 than forβ1.Webelieve that this behaviour could
be explained by the difficulties of PS-ANOVAmodels to identify which part of the
variability corresponds to spatio-temporal trends andwhich part to other regressors
when the DGP is far from the assumptions made for these specifications. This lack
of identifiability is aggravated when the specification includes more terms (like V)
and tends to be more unstable and likely overparameterized for [DGP 1].

2. As for the estimates of the ρ parameter, the results clearly show that, depending
on the DGP considered, either the parametric or the semiparametric estimators are
unbiased. Specifically, for [DGP 1] only model III (SAR-CCEP) produces unbi-
ased estimates, while the estimators of models IV and V are positively biased.
The size of the bias for the estimators of models IV and V decreases as the true
value of ρ increases. This evidence attests to the fact that the smooth-based esti-
mator ”prefers” diffused spatial dependence, so that cross-sectional smoothness
increases.
This situation is reversed when the data are generated using [DGP 2]. In this case,
the estimator of model III is positively biased with greater bias and RMSE than in
models IV and V in [DGP 1]. When assessing semiparametric models IV and V
for [DGP 2], the negative bias of the estimator of model IV is noteworthy. In fact,
model V is the only unbiased estimator which is not surprising given that [DGP
2] includes a first-order temporal autoregressive term in the noise. Again, the bias
for the estimators of models III and IV decreases as the value of ρ increases.
Summing up, as also pointed out by one of the anonymous referees, the results of
the simulations suggest that SAR-CCEP and PS-ANOVA-SAR remain different
tools for different jobs. Nevertheless, they also suggest that, in the presence of
spatial dependence, spatial unobserved heterogeneity, and time-related unobserved
factors, the semiparametric estimator proposed in this paper represents a valid
alternative to parametric estimators proposed in the literature (CCEP and SAR-
CCEP) to estimate the slope parameters as long as both types of unobserved effects
are smoothly distributed over time and space. In practical terms,wemay say that the
CCEP estimator can be a better choice in cross-country or cross-industry analyses
to deal with strong cross-sectional dependence problems generated by any kind
of common (international or inter-industry) shocks. The PS-ANOVA estimator
can offer a good alternative in cross-regional analyses, especially when the spatial
unit is relatively small (e.g. provinces, cities, metropolitan areas, and so on), to
deal with strong cross-sectional dependence generated by any kind of common
shocks (technological shock or demand shocks) propagating smoothly over space
and time.

5 Empirical case

Ever since Partridge and Rickman (1997) and Taylor and Bradley (1997), regional 
unemployment differentials have been the subject of intensive research in the literature.



Recent contributions apply spatial econometricmodels both in a cross-sectional setting
(Molho1995;Aragon et al. 2003;Cracolici et al. 2007) and in a spatial panel framework
(Lottmann 2012; Basile et al. 2012; Ríos 2014). Here, we analyze the performance of
the PS-ANOVA-SAR(AR1) model compared to different competing parametric and
semiparametric models using panel data on regional unemployment in Italy. We first
describe these data and their features in terms of spatial and temporal trends (Sect. 5.1).
Then, we briefly discuss the theoretical background and the set of variables used to
explain regional unemployment differentials (Sect. 5.2). Finally, we report the results
of the econometric analysis (Sect. 5.3).

5.1 Regional unemployment data

The data on regional unemployment rates (unratei,t ) for each Italian province i =
1, . . . , N (N=103) (corresponding to ItalianNUTS-3 regions) and for each time period
t = 1996, . . . , 2014 (T=19) used in this analysis are provided online by the Italian

National Institute of Statistics (ISTAT). They are defined as unratei,t = 100× Ui,t

LFi,t
,

where Ui,t is the number of unemployed people and LFi,t is the total labor force.
Regional unemployment rates differ widely in Italy, especially between northern

and southern provinces. TheNorth-South division can be depicted bymapping the pre-
dicted values of a simple regression of provincial unemployment rates on the smooth
interaction between longitude and latitude (Fig. 1). A clear spatial trend emerges and
is persistent over time. These findings suggest that the nature of regional unemploy-
ment disparities in Italy is the result of a long-run equilibrium rather than a short-term
disequilibrium caused by temporary shocks. As such, as Marston (1985) points out,
“If unemployment is of equilibrium nature, any policy oriented to reduce regional
disparities is useless since it cannot reduce unemployment anywhere for long”. Nev-
ertheless, we cannot exclude the possibility that the strong persistence of regional
unemployment differentials is caused by both structural problems in the economy and
the inability of Italian regions to absorb specific shocks (on either the demand or the
supply side).

A nonlinear time trend also characterizes unemployment data. The national unem-
ployment rate (red line in Fig. 2) shows a fall from 1996 (11.2%) to 2007 (6.1%);
however, with the outbreak of the financial crisis, and its subsequent impact on the
productive economy, there was an upturn in the unemployment rate, reaching 12.7% in
2014. Both northern and southern provinces followed a similar time path, suggesting
that common business cycle factors affect all the regions. However, there are relevant
differences across provinces, indicating that regions may differ in their elasticity to
common shocks. This feature is rather usual in regional unemployment studies. Thus,
in order to obtain coefficients of the determinants that measure their impact on regional
unemployment rates net of aggregate cyclical factors, these studies adopt one of two
main approaches. The first is to include time-period fixed effects in the model (Elhorst
1995; Partridge and Rickman 1997). However, this is a homogeneous approach since
it assumes that the impact of common factors is the same across regions, whereas it
is often the case in applied settings that certain regions are found to be more sensitive



Fig. 1 Spatial trend of provincial unemployment rates. To simulate a continuous trend, shades of grey are
assigned to each percentile. Darker regions are those with higher unemployment rates

Fig. 2 Time trend of provincial unemployment rates: 1996–2014

than others to aggregate fluctuations. The alternative approach is to take the difference 
between the regional and national unemployment rates as a way to appraise disper-
sion and factor out country-specific dynamics (Thirlwall 1966; Blanchard et al. 1992; 
Decressin and Fatas 1995). This ‘factoring out’ of aggregate cyclical factors also bears 
a clear resemblance to the common factor approach proposed in Pesaran (2007), where 
common factors are modeled by cross-sectional averages of the variables at each point 
in time.

The presence of common cyclical factors is expected to generate significant cross-
sectional correlation in the data. This hypothesis can be assessed using the CD test 
developed by Pesaran (2004, 2015). This test uses the pair-wise correlation coefficients 
between the time-series for each panel unit. The CD statistics computed on our sample 
of regional unemployment rates is highly significant, confirming the existence of



Table 3 Cross-sectional dependence test

Without controlling for
serial correlation

Controlling for
serial correlation

Unemployment rate (unrate) 180.7*** 87.4***

Employment growth rate (enpgrow) 54.1*** 58.7***

Participation rate (partrate) 36.8*** 25.9***

Agriculture (agri) 238.8*** 106.9***

Industry (ind) 248.9*** 262.0***

Construction (cons) 69.7*** 28.6***

Services (serv) 185.8*** 22.2***

***; ** and * significance at 1%, 5% and 10%, respectively

cross-sectional dependence (Table 3). Applying the same test on the residuals of an
AR(2) model (to accommodate serial correlation), we obtain a CD value of 87.4, still
highly significant. Moreover, the result of the estimation of the exponent of cross-
section dependence (introduced by Bailey et al. 2016) provides clear evidence of
strong cross-sectional dependence (the parameter is equal to 1). This result has relevant
implications in terms of econometric modeling, underlining the importance of using
a proper approach to control for strong cross-sectional dependence (either the CCEP
or the PS-ANOVA approach).

Nevertheless, net of the effect of common factors (-‘strong’-cross-sectional depen-
dence), significant cross-sectional correlation in the data could also be generated by
spatial autocorrelation (-‘weak’-cross-sectional dependence). From a theoretical point
of view, spatial autocorrelation in regional unemployment rates can be justified on the
basis of a framework which builds on Blanchard et al. (1992) regional labor mar-
ket model, including neighboring effects due to interregional trade, migration, and
knowledge spillovers (Zeilstra and Elhorst 2014). Starting from a steady-state pattern
of regional unemployment, a region-specific shock not only affects the respective labor
market, but also spills over to neighboring regions. Given this interdependence, the
resulted changes in unemployment in neighboring areas may spill over again to adja-
cent labor markets, including the location where the shock originated. This implies
that the unemployment rate of a particular region is affected not only by its own labor
market characteristics, but also by the labor market performance of all other regions.
Thus, in principle, we cannot exclude the possibility that potential sources of inter-
action between regions are both weak -due to, for example commuting flows-, and
strong -due to common factors. A joint modeling of weak and strong cross-sectional
dependence is, therefore, needed.

Finally, another important issue is the assessment of the stationarity of regional
unemployment data. To this end, we use a panel unit root test proposed by Pesaran
(2007) which is robust against cross-sectional dependence. This test clearly rejects
the hypothesis of a unit root at all reasonable significance levels (Table 4). Hence,
these results give a strong indication regarding the stationarity of the data once cross-
sectional dependence is taken into account.



Table 4 IPS panel unit root tests robust against cross-sectional dependence

None Drift Drift and trend

Unemployment rate (unrate) −1.462* −2.387*** −10.109***

Employment growth rate (enpgrow) −1.871*** −2.581*** −2.700**

Participation rate (partrate) −1.309 −1.905 −8.974***

Agriculture (agri) −1.713*** −2.670*** −10.550***

Industry (ind) −1.830*** −2.47*** −8.955***

Construction (cons) −1.786*** −1.899 −5.274***

Services (serv) −1.379 −1.408 −2.454

Deterministic components: none, drift, drift and trend
***; ** and * significance at 1%, 5% and 10%, respectively

Table 5 Summary statistics

Variable Min 1st qu. Median Mean 3rd qu. Max SD

unrate 1.33 4.78 7.71 9.23 12.50 32.72 5.65

empgrowth −14.68 −1.54 0.40 0.37 2.27 13.91 3.21

agri 0.05 3.52 6.80 7.77 10.99 30.57 5.30

ind 5.54 13.57 20.53 21.32 27.96 46.33 9.22

cons 3.59 6.71 7.75 7.83 8.77 14.68 1.64

serv 45.09 58.75 63.96 64.27 69.51 86.09 7.88

partrate 27.04 37.73 42.85 41.52 45.16 53.19 4.70

5.2 Observable and unobservable determinants

The unemployment rate can be considered as a reduced form function of a variety of
factors affecting labor demand, labor supply and wages.8 According to the pioneering
work of Partridge and Rickman (1997), these factors can be broadly categorized as
either disequilibrium factors (e.g. employment growth rates) or market equilibrium
factors (e.g. industry and services shares, demographic variables and amenities). For
the choice of the actual variables in these categories, we take into account the empirical
regional unemployment literature. However, our set of variables is limited by data
availability. Table 5 reports simple descriptive statistics of these variables, while Tables
3 and 4 show that all of them are affected by significant cross-sectional dependence
and, except for serv, they can be considered stationary variables.

In order to account for regional disequilibrium labor market dynamics, the employ-
ment growth rate (empgrowthi,t ) is included in the set of explanatory variables.
Obviously, it is expected to have a negative effect on unemployment.

The other covariates are proxies of equilibrium variables. First of all, differences
in the industrial mix should impact the geographical distribution of unemployment.
Provinces specializing in a declining economic sector, such as agriculture or indus-

8 If some of these covariates were considered as endogeneous, the methodology outlined in Sect. 3 can be 
extended using the control function approach, as explained in Basile et al. (2014).



try, might show higher structural unemployment rates than provinces specializing in
services and construction. The share of employment in agriculture (agrii,t ), in indus-
try (indi,t ), in services (servi,t ), and in construction (consi,t ) over total provincial
employment are proxies of the provincial economic structure. However, we excluded
ind from our model due to multicollinearity problems.

The labor force participation rate (partratei,t ), i.e. the ratio between the total labor
force and the working population (population aged between 16 and 65 years), is used
as an indicator of labor supply. The expected sign of its coefficient is not unambiguous.
On the one hand, factors determining low participation rates in a particular region also
reflect relatively low investments in human capital and low commitment to working
life, which make it more likely that people with these characteristics will become
unemployed. On the other hand, a positive effect may occur if the growth of the labor
force (i.e. young people) outpaces the growth of new jobs (or vacancies).

As stated above, spatial amenities are considered a compensating differential for
the higher probability of unemployment. Variables used to proxy for producer and
consumer amenities are largely conditioned by the availability of data, which are
usually very scarce.9 Thus, scholars often introduce spatial fixed effects in the model
to control for time-invariant unobservable equilibrium effects (e.g. Ríos 2014). The
alternative approach used in the present paper consists of including a spatial trend
(i.e. the smooth interaction between latitude and longitude) in the model as a way to
clean up the residuals. Specifically, the spatial trend can be regarded as an alternative
to the use of individual regional dummies to capture unobserved spatial heterogeneity,
as long as said heterogeneity is smoothly distributed over space. Regional dummies
peak at significantly higher and lower levels of the mean response variable. If these
peaks are smoothly distributed over a two-dimensional surface (i.e. if unobserved
spatial heterogeneity is spatially autocorrelated), the smooth spatial trend is able to
capture them. This is the case in our empirical application (and, we would argue, in
most spatial economic analyses). Figure 3 shows the maps of the distribution of the
spatial fixed effects estimated with different models (the one-way fixed effects model
[FE], the two-way fixed effects model [FE/TE], the one-way fixed effects SAR model
[SAR-FE], and the two-way fixed effects SAR model [SAR-FE/TE]). In all cases, the
maps do indeed clearly show a smooth distribution of the fixed effects, very similar
to the North-South spatial trend described above in Fig. 1.

Unobserved commonbusiness cycle factorsmayalso influence labormarket dynam-
ics with a heterogeneous effect across regions. Some authors include time fixed effects
or measures of cyclical output fluctuations (e.g. Ríos 2014) to control for these effects,
although the CCEP approach (or a combination of the CCE with a spatial model) is
surely a better solution (Vega and Elhorst 2016). The PS-ANOVAmodel with a spatio-

9 In addition, there are many other equilibrium and disequilibrium variables affecting regional unemploy-
ment differentials. These include, for example, demographic factors (workers migration, commuting, age
structure of the population and human capital variables), and institutional factors (unemployment bene-
fits, tax wedge, employment protection legislation, collective bargaining labor relations, and so on). Valid
measures for all these variables are often difficult to find at the adopted spatial unit level of the analy-
sis. This means that there is a huge amount of spatial unobserved heterogeneity when modeling regional
unemployment rates.



Fig. 3 Maps of spatial fixed effects estimated with models 1, 2, 3 and 4

temporal trend is used here as an alternative model to control for unobserved common
factors.

Finally, we include the spatial lag of the regional unemployment rate

(
∑ 

j t  wi j  unrate j t  ) on the right-hand side of the model. It is important to remark again that this endogenous variable should only capture substantive spatial dependence (i.e. 
externalities in regional labor markets), which implies that the unemployment rate 
of a particular region is affected by both its own labor market characteristics and the 
labor market performance of other regions, rather than spatially correlated unobserved 
heterogeneity or common time effects.

A distance-based spatial weights matrix (W ) is used to estimate spatial lag models. A 
general element of this matrix, wi j  , represents a combination of a binary spatial weight 
based on the critical cut-off criterion and a decreasing function of pure geographical
distance, namely the inverse distance function, di j

−1:



νi j =
{
d−1
i j /

∑
j 
=i d

−1
i j i f 0 < di j < d∗

0 i f i = j or i f di j > d∗

where di j is the great-circle distance between the centroids of provinces i and j . The
selected cut-off distance (d∗) corresponds to the minimum distance that allows all
provinces to have at least one neighbor.

5.3 Econometric results

5.3.1 Model selection and diagnostics

We use the data described above to compare the performance of PS-ANOVA-
SAR(AR1) specifications with that of different competing parametric and semipara-
metric models in terms of: i) goodness of fit, by means of a BIC criterion defined as
BIC=Residual sum of squares+ log(N × T ) × EDF , where EDF corresponds to
the number of parameters fitted in the case of parametric models, and to the effec-
tive dimension of the model defined in “Appendix B” in the case of models with
non-parametric smooth terms; and ii) residual diagnostics, focusing on the tests for
cross-sectional dependence, and for serial correlation (see Table 6 for the complete
list of models).

The most restricted specifications are the parametric one-way (FE) and two-
way (FE/TE) fixed effects models (Models 1 and 2), estimated using the standard
within-group estimator. Clearly, they cannot capture the presence of cross-sectionally
correlated error terms, either strong or weak, as indicated by the results of the CD
test (Table 7). Using the CCEP estimator proposed by Pesaran (2006) (Model 5), the

Table 6 List of models

Linear parametric panel data models

Model 1 Fixed spatial effects model (FE)

Model 2 Fixed spatial and time effects model (FE/TE)

Model 3 SAR model with fixed spatial effects (SAR-FE)

Model 4 SAR model with fixed spatial and time effects (SAR-FE/TE)

Model 5 Model with unobserved common effects (CCEP)

Model 6 SAR model with unobserved common effects (SAR-CCEP)

Spatio-temporal penalized spline (PS) ANOVA models

Model 7 Spatio-temporal model with linear terms (PS-ANOVA-Linear)

Model 8 PS-ANOVA-Linear-AR1

Model 9 Spatio-temporal SAR model with linear terms (PS-ANOVA-SAR-Linear)

Model 10 PS-ANOVA-SAR-Linear-AR1

Model 11 Spatio-temporal model with nonlinear terms (PS-ANOVA-Nonlinear)

Model 12 PS-ANOVA-Nonlinear-AR1

Model 13 Spatio-temporal SAR model with nonlinear terms (PS-ANOVA-SAR-Nonlinear)

Model 14 PS-ANOVA-SAR-Nonlinear-AR1
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Table 7 Model selection and diagnostics

Model CD test rho phi EDF σ 2 BIC LM-AR1 test

Parametric models (p values in parenthesis)

Model 1 139.57*** 108.00 6.01 4225.60 4538.37***

(0.00) (0.00)

Model 2 2.67*** 126.00 3.29 3161.00 1746.82***

(0.01) (0.00)

Model 3 −0.61 0.55*** 109.00 3.53 3188.10 16.92***

(0.54) (0.00) (0.00)

Model 4 −0.09 0.28*** 127.00 2.94 2951.30 12.02***

(0.92) (0.00) (0.00)

Model 5 −0.67 726.00 1.03 4666.00 18.53***

(0.50) (0.00)

Model 6 −0.41 0.10*** 727.00 1.02 4649.45 3.97**

(0.68) (0.00) (0.05)

Spatio-temporal models (p values in parenthesis)

Model 7 −0.31 143.15 2.43 2679.19 548.8***

(0.76) (0.00)

Model 8 −1.59 0.901*** 46.37 1.44 1031.89 1.09

(0.11) (0.00) (0.30)

Model 9 −0.32 −0.021 145.25 2.42 2688.94 541.12***

(0.75) (0.51) (0.00)

Model 10 −1.64 0.084*** 0.897*** 46.36 1.44 1026.83 1.196

(0.10) (0.00) (0.00) (0.27)

Model 11 0.07 171.95 2.10 2578.75 458.02***

(0.94) (0.00)

Model 12 −1.04 0.904*** 72.19 1.36 1077.89 0.994

(0.30) (0.00) (0.32)

Model 13 0.07 −0.003 173.14 2.10 2586.66 457.1***

(0.94) (0.92) (0.00)

Model 14 −1.11 0.065** 0.903*** 71.95 1.35 1071.30 1.01

(0.27) (0.00) (0.00) (0.31)

The CD test is Pesaran’s cross-sectional dependence test. ρ is the spatial spillover parameter, and φ is 
the time series correlation coefficient in the noise. The EDF values include the parametric (fixed part in 
mixed model) and non-parametric (random part in mixed model) for each additive covariate. Therefore, they 
correspond to the total value of estimated degrees of freedom for each variable. σ 2 is the model variance. BIC 
is the value of the Bayesian Information Criterion. LM-AR1 test is a Wooldridge-type Lagrange Multiplier 
test for AR(1) errors
***; **, and * statistical significance at 1%, 5%, and 10%, respectively

evidence of cross-dependence disappears. These results strongly confirm the exist-
ing literature. However, with the CCEP method, we cannot disentangle strong and
weak cross-dependence, that is we cannot assess the presence of spatial interaction
(network) effects net of the effect of strong cross-sectional dependence.



On the other hand, with the spatial lag fixed effects models (SAR-FE and SAR-
FE/TE;Models 3 and 4) widely used in the recent applied spatial panel data literature
(Elhorst 2014), we are implicitly assuming that only weak cross-dependence (i.e.
spatial dependence) exists. The CD test for the residuals of models 3 and 4 reveals that
the null cannot be rejected, but the ρ parameter is quite high, suggesting that the spatial
lag term has likely captured all cross-dependence (both strong and weak). Combining
the SAR-FE specification and the CCEP model (Model 6), that is, estimating a linear
spatial lagmodel with interactions between spatial fixed effects and the cross-sectional
average of dependent and independent variables, in line with recent contributions (Bai
andLi 2013; Shi andLee 2018; Bailey et al. 2016;Vega andElhorst 2016), we allow for
both strong and weak cross-dependence. Indeed, the value of the ρ parameter (0.10)
now appears much lower than before, while still remaining statistically significant.
This value seems to be much more plausible than those estimated with SAR models,
since we believe that most of the cross-sectional dependence in local labor market
performance is due to unobserved time-related factors which influence all regions,
rather than to unobserved idiosyncratic shocks which propagate to all regions with
a distance decay mechanism driven by network relationships. Finally, Model 6 also
proves to bemore robust against residual serial correlation, as shownby the result of the
Wooldridge-type Lagrange Multiplier test for AR(1) errors (LM-AR1) reported in the
last column of Table 7, while all other parametric models show a strongly significant
error correlation in the residuals.10

The results of the CD test on the residuals confirm that the smooth spatio-temporal
trend (Models 7–14) is able to capture the unobserved cross-sectional dependence and
thus represents a valid alternative to the inclusion of cross-sectional averages in the
model.11 With respect to fixed effects models and to CCEP models, the PS-ANOVA
models are less affected by the incidental (nuisance) parameter problem as a result
of the effective penalizing estimation procedure described in Sect. 3. Indeed, the BIC
values of PS-ANOVAmodels are lower than those computed for any parametricmodel.
ThePS-ANOVAmodel has been estimatedby including either linear or nonlinear terms
for the explanatory variables, and eventually adding a spatial autoregressive term (Wy)
and a serially correlated (AR1) error term. It clearly emerges that the AR1 extension is
needed to control for the strong persistence in the residuals. In absolute terms,Model
10 (the PS-ANOVA-SAR-Linear-AR1) shows the best performance with a BIC value
of 965, and non-significant cross-sectional dependence and serial correlation in the
residuals. Moreover, the ρ parameter estimated with Model 10 (0.08) is statistically
significant and very close in magnitude to that estimated with Model 6, confirming
the existence of some weak dependence net of the effect of common business cycle
effects.

10 Testing error persistence in the case of fixed effects models (like Models 1–6) is complicated by the
’artificial’ serial correlation induced by time-demeaning. In fact, if the original errors are serially uncorre-
lated, the transformed ones are negatively serially correlated with coefficient −1/(T − 1). Thus, following
Millo (2015), the null hypothesis for the Wooldridge-type test of serial correlation in the case of Models
1–6 is H0 : ψ = −1/(T − 1), while in the case of Models 7–14 (which do not include fixed effects) is
simply H0 : ψ = 0.
11 All the computations for smooth spatio-temporal models have been made with the R package sptpsar
available in github (https://github.com/rominsal/sptpsar).

https://github.com/rominsal/sptpsar


5.3.2 Estimation results

Table 8 reports the estimated marginal effects of the linear terms included in models 
1–10, along with the associated standard errors. Obviously, for non-SAR models (i.e. 
models 1, 2, 5, 7, and 8), only direct effects have been reported, with indirect (spatial 
spillover) effects being equal to zero by construction. For all the SAR specifications 
direct, indirect and total marginal effects,12 as well as their standard errors, have been 
computed using the algorithms discussed in Sect. 2.

We previously pointed out the evidence of a ρ parameter from SAR-FE (0.55) and 
SAR-FE/TE (0.28) that is rather high with respect to the values obtained with SAR-
CCEP (0.10) and PS-ANOVA-SAR-AR1-Linear (0.08). It is also important to discuss 
here the consequences of these differences in terms of the magnitude of direct and 
indirect effects. In particular, in the SAR-FE model the indirect (spillover) effect of 
any variable is very close to the corresponding direct effect. This would imply that, 
if there is an idiosyncratic shock in a specific province (for example, an increase in 
the employment growth rate, i.e. an increase in labor demand), this shock would have 
the same impact on this province (direct effect) as it does in the rest of the country 
(spillover effect). Of course, this is implausible, since we would expect a spillover 
effect to be much lower than a direct effect. By including a time fixed effect in the 
model (SAR-FE/TE), the spillover effect turns out to be about one third of the direct 
effect, but it is still very high. Much more reasonable magnitudes of spillover effects 
(one tenth of the direct effect) emerge once we control for the common factor effects 
(strong cross-sectional correlation) either through the SAR-CCEP or through the PS-
ANOVA-SAR-AR1-Linear model.

Focusing on Model 10 (PS-ANOVA-SAR-AR1-Linear model), that is, the best-
performing model, the results suggest that there is a clear explanation of unemployment 
differentials in terms of spatial equilibrium and disequilibrium factors. First, higher 
employment growth rates lower provincial unemployment rates, as suggested by the 
disequilibrium approach. Both average direct and indirect marginal effects of the 
variable empgrowth  have a negative sign and are strongly significant, indicating that 
an increase in the employment growth rate in one region reduces the unemployment 
rate not only in that region, but also in other regions, with a distance decay effect. 
However, as observed above, spatial spillovers (indirect effects) appear much lower 
than direct effects. Second, regional unemployment rates are also positively influenced 
by labor force participation rates. Both direct and indirect marginal effects of the

12 It is worth noticing that the ratio between the indirect effect and the direct effect is the same for every 
explanatory variables in Table 8. This is the consequence of the SAR specification, where we only consider 
a spatial lag in the dependent variable, and not in the independent variables. As well known (Elhorst 
2014), a Spatial Durbin specification, including also WX terms, would allow for different ratios between 
direct and indirect effects across the different explanatory variables. First of all, we must observe that this 
generalization (i.e. the inclusion of WX terms) does not have any effect on the estimators (either SAR-
CCEP or PS-ANOVA-SAR). Indeed, as it is well known, we might define a larger matrix including both X 
and WX terms, and transform the Durbin specification into a SAR model. Second, in our empirical case, 
we have tried to estimate a Spatial Durbin version of the regional unemployment model, but the WX terms 
did not enter significantly the model. However, this is not surprising since the WX terms mainly work 
to capture unobserved heterogeneity in cross-sectional settings. In panel data settings, when unobserved 
heterogeneity is properly captured through other tools (fixed effects or smooth trends), the spatial lags of 
the exogenous variables often lose their relevance.



Table 8 Direct, indirect and total marginal effects

Model empgr . partr . agri cons serv

Model 1 Direct −0.241*** 0.591*** −0.116*** −0.906*** −0.060*

(0.019) (0.037) (0.043) (0.061) (0.032)

Model 2 Direct −0.168*** 0.577*** 0.051 −0.092* 0.137***

(0.015) (0.029) (0.036) (0.053) (0.029)

Model 3 Direct −0.187*** 0.473*** −0.080*** −0.646*** −0.059**

(0.015) (0.033) (0.033) (0.055) (0.027)

Indirect −0.177*** 0.447*** −0.075*** −0.611*** −0.056**

(0.017) (0.044) (0.032) (0.067) (0.026)

Total −0.365*** 0.920*** −0.155*** −1.256*** −0.115***

(0.030) (0.073) (0.065) (0.118) (0.054)

Model 4 Direct −0.161*** 0.520*** 0.003 −0.139*** 0.104***

(0.014) (0.029) (0.036) (0.052) (0.027)

Indirect −0.055*** 0.179*** 0.001 −0.048*** 0.036***

(0.008) (0.021) (0.013) (0.018) (0.010)

Total −0.217*** 0.699*** 0.004 −0.187*** 0.140***

(0.020) (0.045) (0.049) (0.070) (0.036)

Model 5 Direct −0.184*** 0.570*** 0.054 0.048 −0.013

(0.011) (0.036) (0.057) (0.071) (0.043)

Model 6 Direct −0.181*** 0.570*** 0.047 0.038 −0.016

(0.008) (0.028) (0.042) (0.057) (0.036)

Indirect −0.018*** 0.058*** 0.005 0.004 −0.002

(0.005) (0.017) (0.004) (0.006) (0.004)

Total −0.200*** 0.628*** 0.052 0.042 −0.018

(0.011) (0.036) (0.046) (0.063) (0.040)

Model 7 Direct −0.116*** 0.213*** 0.044** −0.024 0.060***

(0.013) (0.027) (0.018) (0.042) (0.012)

Model 8 Direct −0.194*** 0.636*** −0.026 0.022 0.051**

(0.008) (0.030) (0.030) (0.045) (0.022)

Model 9 Direct −0.116*** 0.213*** 0.044** −0.022 0.059***

(0.013) (0.028) (0.018) (0.040) (0.012)

Indirect 0.0022 −0.004 −0.0008 0.0004 −0.001

(0.004) (0.007) (0.0016) (0.0016) (0.002)

Total −0.114*** 0.209*** 0.044** −0.022 0.059***

(0.013) (0.028) (0.018) (0.040) (0.012)

Model 10 Direct −0.194*** 0.638*** −0.025 0.024 0.052**

(0.008) (0.030) (0.032) (0.045) (0.022)

Indirect −0.018*** 0.058*** −0.002 0.002 0.0047*

(0.006) (0.020) (0.003) (0.004) (0.0026)

Total −0.212*** 0.696*** −0.028 0.026 0.056**

(0.010) (0.039) (0.035) (0.049) (0.024)

Standard errors (in parenthesis). For the SAR model, standard errors are computed using Monte Carlo
simulations following the method discussed in Sect. 2
***; **, and * statistical significance at 1%, 5%, and 10%, respectively



Fig. 4 Spatial trends of unrate in 1996 and 2014 for the spatio-temporal ANOVA SAR Model with linear 
terms and AR(1) in the noise (Model 10)

variable partr have a positive sign, but again the indirect effects are much lower 
than the direct effects. The positive impact of the participation rate along with the 
negative effect of the employment growth rate suggests, in particular, that labor market 
conditions in the South have worsened as a result of a growth in the labor force (i.e. 
more young people) that has outpaced the growth of new jobs (or vacancies). It is 
worth noting that the coefficients of empgrowth  and partrate in Model 10 are very 
close in magnitude to those in Model 6, confirming that the SAR-CCEP and the PS-
ANOVA-SAR-AR1-Linear model behave very similarly. Third, the coefficients of the 
regressors related to the structure of the economy are not stable across the various 
model specifications. In particular, they lose statistical significance once we control 
for the effect of common factors.

Finally, Figs. 4 and 5 report the yearly estimated spatial trend maps, and the region-
specific time trends, respectively, from Model 10. The maps clearly show that, even 
after controlling for the role of equilibrium and disequilibrium factors, the spatial 
distribution of expected regional unemployment rates remains persistently character-
ized by a strong North-South spatial trend; the estimated region-specific temporal 
trends also confirm the presence of common business cycles factors heterogeneously 
affecting all the regions.

6 Conclusions

Many large spatial panel data sets used in cross-regional and cross-country empir-
ical analyses exhibit cross-sectional dependence which may arise from both spatial 
spillovers and common factors. Spatial spillovers are the results of local interactions



Fig. 5 Regional time trends estimated by the Spatio-Temporal ANOVA SAR with linear terms and AR(1)
in the noise (Model 10)

and are thus classified as weak dependence effects. Common factors, on the other
hand, represent latent economic-wide technological and/or demand shocks, heteroge-
neously affecting the dynamics in all the different regions and are thus classified as
strong dependence effects.

In the present paper, we propose a wide class of models called spatio-temporal
autoregressive semiparametric models (PS-SAR-ANOVA-AR1), including a non-
parametric spatio-temporal trend, a spatial lag of the dependent variable, and a time
series autoregressive noise. Using generated data, we have illustrated the relative small
sample properties of the PS-ANOVA-SAR(AR1) model as compared to alternative
DGPs such as spatial panel data models. Simulation results indicate that the PS-
ANOVA-SAR(AR1)model represents a competitive alternative to parametricmethods
(such as the SAR-CCEP model) for estimating model parameters in the presence of
time-invariant (i.e. spatial fixed effects) and time-varying unobserved heterogeneity
(i.e. common factor effects) as long as both types of unobserved effects are smoothly
distributed across time and space (which is quite commonly the case in regional eco-
nomic analyses). More specifically, we show that the spatio-temporal trend can be
interpreted as an alternative to the use of cross-sectional averages of the observa-
tions to capture the heterogeneous effect of unobserved common factors when the
spatio-temporal heterogeneity is smoothly distributed.

The models proposed do not impose a predetermined structure to capture weak
and strong dependence; the ANOVA decomposition of the spatio-temporal trend into
a spatial trend, a time trend, and second- and third-order interactions works effec-
tively to control for both unobserved spatial heterogeneity and unobserved common
factors. Thus, the inclusion of the ANOVA decomposition of the spatio-temporal
trend helps us to interpret the evidence of significant spatial spillovers as weak cross-



dependence net of common effects (strong dependence). With respect to the fully 
parametric approaches (such as the CCEP and the SAR-CCEP models), our frame-
work does not involve the estimation of a large number of incidental parameters. A 
further advantage of our approach is that it allows for non-linear relationships between 
the covariates and the response.

Although PS-ANOVA-SAR(AR1) models can be applied to any type of large spa-
tial panels, we have focused on their performance in the analysis of regional economic 
data. In particular, we have implemented this new framework using real data on unem-
ployment rates in Italy. The econometric results show that the PS-ANOVA-SAR-AR1 
performs better than several competing parametric and nonparametric models both in 
terms of model fitting and diagnostics of the residuals. In particular, the spatio-temporal 
trend effectively captures the strong cross-sectional dependence (due to common fac-
tors), while the parameter associated with the spatial lag term reveals the existence of 
significant spatial spillovers net of the effect of the observed and unobserved common 
factors.

As a concluding remark, it is worth noting that regional unemployment rates, like 
many other regional and national economic variables, are typically characterized by 
strong persistence over time. Thus, in order to control for serial correlation, we have 
extended our model by including an auto-regressive (AR1) error term. In line with 
Chudik and Pesaran (2015), which have developed a CCEP estimator for dynamic 
panel data models, our future research includes the extension of the PS-ANOVA-SAR 
model to a dynamic specification. We believe that this dynamic setting would not 
imply an increase in the number of incidental parameters, and it could be a very 
promising alternative when dealing with spatio-temporal panels not very large in 
temporal dimension.
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España (Grant Nos. MTM2014-52184 and ECO2015-65826-P) and Grant 2019-GRIN-26913 provided by 
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to the Research Group “Applied Economics and Quantitative Methods”.

Appendix A: Penalized splines as mixed models

Given the model:

yi = f (xi ) + εi ε ∼ N (0, σ 2I),

using the penalized regression approach we have (in matrix form):

y = Bθ + ε, ε ∼ N (0, σ 2I),

where B is a matrix of B-spline bases, and θ a vector of regression parameters to be 
estimated via penalized sum of squares:

(y − Bθ)′(y − Bθ) + θ ′Pθ .



The reformulation of a P-spline into a mixed model can be viewed as a reparameter-
ization of the original non-parametric model; B-spline bases are transformed into a
new model basis, i.e. B → [X : Z], and coefficients θ → (β,α)′. Hence, this repre-
sentation decomposes the fitted values into the sum of a polynomial (unpenalized) part
(Xβ) and a nonlinear (penalized) (Zα) smooth term. To carry out this transformation,
we need to find an (orthogonal) transformation matrix T, so that BT = [X : Z] and
T′θ = (β,α)′. There are several possibilities for this matrix; we choose one based on
the singular value decomposition of the penalty matrix P = λD′D, that is:

D′D = U�U′,

where � is a diagonal matrix that contains the eigenvalues of D′D, with 2 zero eigen-
values, and U is the corresponding matrix of eigenvectors that can be decomposed
into two parts: Un of dimension c× 2 containing the null-part eigenvectors and Us of
dimension c× (c− 2) (where c is the rank of the basis and 2 the order of the penalty)

with non-null-part eigenvectors. Note thatwe canwrite� as� = blockdiag
(
02, Σ̃

)
,

where Σ̃ is a diagonal matrix that contains the non-zero eigenvalues of D′D and 02 is
a 2 × 2 matrix of zeroes. Therefore, we define the transformation matrix T as:

T = [Un : UsΣ̃
−1/2],

where the fixed and random effect matrices are X = BUn , and Z = BUs�̃
−1/2

,
respectively. Also, given this transformation matrix, the new coefficients are β = U′

nθ

and α = U′
sΣ̃

−1/2
θ . The fixed effect matrix X may be replaced by any sub-matrix

such that [X : Z] has full rank and X′Z = 0 (that is, X and Z are orthogonal). So, for
example, if we assume a second-order penalty (d = 2), the fixed effect matrix can be
taken as X = [1 : x], where 1 is a vector of ones and x is the explanatory variable.
Also, the penalty term θ ′Pθ becomes α′Fα, where F = λI. This follows since T is
orthogonal and (β,α)′ = T′θ . Hence, given the new basis and the new penalty, the
penalized sum of squares,

(y − Bθ)′(y − Bθ) + θ ′Pθ ,

becomes:

(y − Xβ − Zα)′ (y − Xβ − Zα) + λα′ Ic−2α,

This corresponds to the joint log-likelihood of a linear mixed model:

y = Xβ + Zα + ε, ε ∼ N (0, σ 2I), α ∼ N (0,G),

with G = σ 2
ν Ic−2 and λ = σ 2/σ 2

ν . Therefore, the smoothing parameters is estimated
via the estimation of the variance components in the mixed model.



Appendix B: Mixed model representation of the semiparametric
spatio-temporal autoregressivemodel and parameter estimation

For the sake of simplicity, we assume here that there are no covariates. The inclusion
of covariates with a linear or non-linear functional relationship with the response is
immediate by augmenting the matrices for fixed and random effects accordingly, as
well as the corresponding covariance matrices. We therefore focus on the following
model:

y = f1(s1) + f2(s2) + ft (τ ) + f1,2(s1, s2) + f1,t (s1, τ )

+ f2,t (s2, τ ) + f1,2,t (s1, s2, τ ) + ρ(WN ⊗ IT )y + ε

where the errors are assumed to follow a temporal AR(1) process, see (9). In matrix
form:

(AN ⊗ IT )y = Bθ + ε ε ∼ N

(
0,

σ 2

1 − φ2 (IN ⊗ Ω)

)
AN = IN − ρWN

The regression matrix of the model above will be the concatenation of B-spline
bases for each of the smooth terms in the model:

B = [1|Bs1 |Bs2 |Bs2 |Bs1�Bs2 |Bs1 ⊗ Bτ |Bs2 ⊗ Bτ |(Bs1�Bs2) ⊗ Bτ , ]

where Bs1 , Bs2 and Bτ correspond to the marginal B-spline basis for the spatial coor-
dinates (s1, s2) and time (τ ), and � represents the row-wise tensor product defined
as:

Bi�B j = (Bi ⊗ 1′
ci ) ∗ (1′

c j ⊗ B j ),

and 1 is a column vector of ones, ci is the rank of Bi , and ⊗ and ∗ are the Kronecker
and element-wise matrix products, respectively.

The penaltymatrix is nowblock-diagonalwith blocks corresponding to the different
terms in the model: λiD′

iDi for main effects, λiD′
iDi ⊗ Ick + λkIci ⊗ D′

kDk for the
second-order interactions, and λiD′

iDi ⊗ Ick ⊗ Icl + λkIci ⊗D′
kDk ⊗ Ic j + λl ⊗ Ici ⊗

Ick ⊗ D′
lDl for the three-way interaction.

In this case, several constraints need to be imposed, since the space spanned by
any product Bi ⊗ B j , contains the space spanned by the marginal bases Bi and B j .
The mixed model reparameterization of this model will automatically provide the
necessary constraints. To find that parameterization, a new transformation matrix is
needed (again based on the singular value decomposition of the penalty P) (see Lee
2010, for details). Then, the model is written as:

(AN ⊗ IT ) y = Xβ + Zα + ε (12)

α ∼ N (0,G) ε ∼ N

(
0,

σ 2

1 − φ2 (IN ⊗ Ω)

)



with

X = [
(Xs1�Xs2) ⊗ Xτ

]

Z = [
(Zs1�Xs2) ⊗ Xτ |(Xs1�Zs2) ⊗ Xτ |(Xs1�Xs2) ⊗ Zτ |(Zs1�Zs2) ⊗ Xτ |
(Zs1�Xs2) ⊗ Zτ |(Xs1�Zs2) ⊗ Zτ |(Zs1�Zs2) ⊗ Zτ

]

where Xk , Zk (k = s1, s2, τ ) are the mixed model matrices obtained for the reparam-
eterization of the marginal basis described in “Appendix A”. The covariance matrix of
random effects, G, is such that:

G−1 = blockdiag

(
0,

1

σ 2
ν1

Λ1,
1

σ 2
ν2

Λ2,
1

σ 2
ν3

Λ3,
1

σ 2
ν4

Λ4 + 1

σ 2
ν5

Λ5,
1

σ 2
ν6

Λ6 + 1

σ 2
ν7

Λ7,

1

σ 2
ν8

Λ8 = 1

σ 2
ν9

Λ9,
1

σ 2
ν10

Λ10 + 1

σ 2
ν11

Λ11 + 1

σ 2
ν12

Λ12

)
(13)

where

Λ1 = Σ̃ s1 , Λ2 = Σ̃ s2 , Λ3 = Σ̃τ

Λ4 = Σ̃ s1 ⊗ Ics2−2, Λ5 = Ics1−2 ⊗ Σ̃ s2 , Λ6 = Σ̃ s1 ⊗ I2

Λ7 = Ics1−qs1
⊗ I2, Λ8 = Σ̃ s2 ⊗ Ict−2 Λ9 = Ics2−2 ⊗ Σ̃τ (14)

Λ10 = Σ̃ s1 ⊗ Ics2−2 ⊗ Icτ −2, Λ11 = Ics1−2 ⊗ Σ̃ s2 ⊗ Icτ −2,

Λ12 = Ics1−2 ⊗ Ics2−2 ⊗ Σ̃τ

and Σ̃ matrices correspond to the non-zero eigenvectors of the singular value decom-
position of penalty matrices. It is important to be able to decompose the precision
matrix of the random effects as a linear combination over the variance parameters,
since this is a necessary condition to apply the SAP algorithm.

B.1: Estimation of the PS-ANOVA-SAR(AR1) model via the SAP algorithm

Fixed and random effects in model (12) are estimated (conditional on the correlation
parameters and variance components) using the standard mixed model theory (see
Searle et al. 1992):

β̂ = (X′V−1X)−1X′V−1(AN ⊗ IT )y (15)

α̂ = GZ′V−1((AN ⊗ IT )y − Xβ̂), (16)

where V = σ 2

1−φ2 (IN ⊗ Ω) + ZGZ′.



Variance components (and, therefore, smoothing parameters), and correlation
parameters may be estimated by maximizing the residual log-likelihood (REML) of
Patterson and Thompson (1971) (slightly modified by the Kronecker matrix product,
AN ⊗ IT ):

�(σ 2
νi

, σ 2, ρ, φ) = −1

2
log |V| − 1

2
log |X′V−1X|

− 1

2

[
(AN ⊗ IT )y

]′
(V−1 − V−1X(X′V−1X)−1X′V−1)

[
(AN ⊗ IT )y

]

+ log |AN ⊗ IT | (17)

where thematricesV,X andZ are obtained as described above (if linear and non-linear
covariates have been added, X and Z matrices are augmented in a suitable additive
way).

Maximization of this REML function is a very complex numerical problem, spe-
cially when the number of variance components/correlation parameters is large.
Rodriguez-Alvarez et al. (2015) recently developed an algorithm named SAP (Sep-
aration of Anisotropic Penalties), which is based on the fact that the inverse
variance-covariance matrix of the random effects, G−1, is a linear combination of
precision matrices. This is the case for the PS-ANOVA-SAR(AR1) model, as we
showed in (13). This expression allows us to get closed estimates for all the variance
component parameters σ 2

νi
and σ 2 very efficiently. We have adapted this algorithm to

also include the estimation of ρ and φ parameters. The steps for applying the SAP
algorithm to optimize (17) can be summarized as follows:

1. Initialization. Set

– Set k = 0
– β̂

(k) = 0; α̂
(k) = 0

– σ̂
2,(k)
νi = 1 i = 1, 2, . . . , 12

– σ̂ 2,(k) = var(y)
– ρ̂(k) = 0

2. Compute Ĝ
(k)

, V̂
(k)

, P̂
(k)

, Â
(k)
N matrices using next expressions:

Ĝ
−1,(k) =

12∑

i=1

1

σ̂
2,(k)
νi

Λ
(k)
i

V̂
(k) = σ̂ 2,(k)INT + ZĜ

(k)
Z

P̂
(k) = V̂

−1,(k) − V̂
−1,(k)

X(X′V̂−1,(k)
X)−1X′V̂−1,(k)

Â
(k)
N = IN − ρ̂(k)WN



3. Compute the estimates:

β̂
(k) = (X′V̂−1,(k)

X)−1(X′V̂−1,(k)
Â

(k)
N y)

α̂
(k) = Ĝ

(k)
Z′V̂−1,(k)

(Â
(k)
N y − Xβ̂

(k)
)

ed(k)
i = trace(Z′P̂(k)

ZĜ
(k) 1

σ̂
2,(k)
νi

Λi Ĝ
(k)

) i = 1, 2, . . . , 12

where Λi i = 1, . . . , 12 is defined in (14).
4. Estimate the variance components:

σ̂ 2,(k+1)
νi

= α̂
(k)′

Λi α̂
(k)

ed(k)
i

i = 1, . . . , 12

Estimate the variance of the noise as:

σ̂ 2,(k+1) = (Â
(k)
N y − Xβ̂

(k) − Zα̂
(k)

)′(Â(k)
N y − Xβ̂

(k) − Zα̂
(k)

)

N −∑i ed
(k)
i − rank(X) − 2

5. Estimate the spatial parameter ρ̂(k+1) and serial correlation parameter φ̂(k+1) solv-
ing numerically the non-linear equations obtained by equating to zero the score
of REML function with respect to ρ and φ respectively (this additional step is the
only difference with respect to the usual SAP algorithm):

∂�(.)

∂ρ
= −1

2

[
2P̂

(k)
((AN ⊗ IT )y)

]′ (∂(AN ⊗ IT )

∂ρ
y
)

+ trace

(
(AN ⊗ IT )−1 ∂(AN ⊗ IT )

∂ρ

)

= y′(AN ⊗ I′T )P̂
(k)

(WN ⊗ IT )y − T trace(A−1
N WN ) = 0

∂l(.)

∂φ
= −1

2

{
trace

(
P

∂V
∂φ

)
−
[
(AN ⊗ IT ) y − Xβ̂

]′
V−1

× ∂V
∂φ

V−1
[
(AN ⊗ IT ) y − Xβ̂

]}
= 0

where:

∂V
∂φ

=
∂
{
ZGZ′ + σ 2

1−φ2 (IN ⊗ Ω)
}

∂φ
=
⎛

⎝IN ⊗
∂
[
( σ 2

1−φ2 )Ω
]

∂φ

⎞

⎠

and
6. Set k = k + 1 and go to step (2) until convergence.



Once the convergence is obtained, the effective degrees of freedom of the model
can be estimated as:

edf =
∑

i

ed(k)
i + rank(X) + 2

This quantity is increased by two units with respect to spatio-temporal smooth models
because of the need to estimate ρ and φ parameters.

To obtain the covariance matrix of the estimates, we need the hessian matrix of
REML function with respect to ρ and φ parameters given by the expressions:

∂2l(.)

∂ρ2 = −y′ (W′
N ⊗ IT

)
P (WN ⊗ IT ) y − T trace

(
(A−1

N WN )2
)

∂2l(.)

∂φ2 = −1

2

⎧
⎨

⎩
∂trace

(
P ∂V

∂φ

)

∂φ
−
[
(AN ⊗ IT ) y − Xβ̂

]′

×
∂
(
V−1 ∂V

∂φ
V−1

)

∂φ

[
(AN ⊗ IT ) y − Xβ̂

]
⎫
⎬

⎭

∂2l(.)

∂φ∂ρ
= y′ (W′

N ⊗ IT
)
V−1 ∂V

∂φ
V−1

[
(AN ⊗ IT ) y − Xβ̂

]

where:

∂trace
(
P ∂V

∂φ

)

∂φ
= trace

(
∂(P ∂V

∂φ
)

∂φ

)
= trace

(
∂P
∂φ

∂V
∂φ

+ P
∂2V
∂φ2

)

∂V
∂φ

=
⎛

⎜⎝IN ⊗
∂
[
(

σ 2
ε

1−φ2 )Ω
]

∂φ

⎞

⎟⎠
∂2V
∂φ2 =

⎛

⎜⎝IN ⊗
∂2
[
(

σ 2
ε

1−φ2 )Ω
]

∂φ2

⎞

⎟⎠

∂P
∂φ

= −V−1 ∂V
∂φ

V−1 −
(

−V−1 ∂V
∂φ

V−1X(X′V−1X)−1X′V−1

+ V−1X(X′V−1X)−1X′V−1 ∂V
∂φ

V−1X(X′V−1X)−1X′V−1

−V−1X(X′V−1X)−1X′V−1 ∂V
∂φ

V−1
)

These expressions can be evaluated at maximum of REML function to obtain the 
negative of the hessian matrix. The inverse of this matrix provides the asymptotic 
covariance matrix in the usual way.

Eventually the covariance matrix of ρ and φ, jointly with the covariance matrix 
of the regression parameters β and α given by Cov(β, α) = C−1 (see Sect. 3), 
can be used to obtain the simulated distributions of total, direct and indirect effects



as explained in Sect. 2. As usual, REML estimates are asymptotically unbiased and
gaussian distributed.
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