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Concurrent enhancement of 
percolation and synchronization in 
adaptive networks
Young-Ho Eom1,2, Stefano Boccaletti3,4 & Guido Caldarelli1,5,6,7

Co-evolutionary adaptive mechanisms are not only ubiquitous in nature, but also beneficial for 
the functioning of a variety of systems. We here consider an adaptive network of oscillators with a 
stochastic, fitness-based, rule of connectivity, and show that it self-organizes from fragmented and 
incoherent states to connected and synchronized ones. The synchronization and percolation are 
associated to abrupt transitions, and they are concurrently (and significantly) enhanced as compared 
to the non-adaptive case. Finally we provide evidence that only partial adaptation is sufficient to 
determine these enhancements. Our study, therefore, indicates that inclusion of simple adaptive 
mechanisms can efficiently describe some emergent features of networked systems’ collective 
behaviors, and suggests also self-organized ways to control synchronization and percolation in natural 
and social systems.

Synchronization is possibly the paramount example of how collective behaviors arise in complex systems, as it 
involves emergence of collective organizations from microscopic interactions of unitary constituents (such as 
neurons, heart cells, power grids, or crickets1). The architecture of such interactions are formally well represented 
by complex networks2–4, and underlying network structure of a system has, indeed, crucial roles in synchroni-
zation5,6. For instance, synchronization on small-world networks can be enhanced compared to regular lattice 
thanks to the short average distance7,8 while it could be more difficult on scale-free networks compared to random 
homogeneous networks due to increased concentration of load to highly connected nodes9. Also synchronization 
can emerges more easily from weighted networks10 and scale-free networks and Erdös-Renyi networks follow 
different paths to synchronization11.

The simplest approach to synchronization in networks is assuming a static network structure. However, this 
approach does not reproduce the behavior observed in real-world systems, where the tendency observed is actu-
ally not static, rather dynamic. To cope with this limitation, synchronization have been considered on temporal 
or time-varying networks12–15. For example, systems of mobile oscillators have been introduced to consider sit-
uations where interaction topology changes due to motion of the oscillators16–19. On the other hand, one can 
observe co-evolution of network structure and network dynamics in many natural and social systems. To take 
into account these co-evolutionary adaptive mechanisms, various adaptive network models were introduced20, 
where structure and the dynamics co-evolve in time21,22, and states of the nodes shape the structure of their 
interaction, cooperatively and simultaneously. Synchronization on adaptive networks has been shown interesting 
phenomena23,24. Moreover adaptive mechanisms are not only realistic, but they can also enhance and stabilize 
collective processes25–28, change the order of synchronization29, or enable the emergence of meso-scale structures 
and scale-free properties30,31.

Current studies on synchronization are, so far, focused on completely percolated networks, i.e., in a situation 
where all interacting oscillators belong to a single giant connected component. However, real-world systems 
often show, even temporarily, sparser and non-connected structures, as links between units might well be not 
continuously active32,33. In such non-connected configurations (where not all nodes belong to a single connected 
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component), achieving global functions (e.g., synchronization) may be hampered by the absence of stable  
interactions between the units.

In this paper, we consider an adaptive network of oscillators, where every unit (i.e., oscillator) selects its neigh-
borhood on the basis of a homophily principle34. Specifically, each oscillator is meant establishing connections 
with the others that share a similar phase, in analogy to what observed in social and natural systems34. It is worth 
noticing that such a similarity might be time-dependent, as distinct oscillators adjust their phases but also (and 
simultaneously) update the network structure following homophily principles. We will show that our frame-
work qualitatively and quantitatively differs from non-adaptive networks, in that synchronization and percolation  
transitions come out to be substantially enhanced.

The Adaptive Network Model
We start by considering a network of N (Kuramoto-type) phase oscillators35,36, whose time evolution is ruled by:
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where ωi (θi) is the natural frequency (the instantaneous phase) of oscillator i drawn from a uniform distribution 
in the range [− 1, 1], λ is the coupling strength, and {aij} are the elements of the network’s adjacency matrix.

The structure of connections is given by the so-called fitness or hidden variable network model37,38, which is a 
generalized Erdös-Reyni (ER) model. The distinctive character of such a model is that the topology is fully shaped 
by the fitness of the nodes (herein associated to the oscillators’ phases) while the topology is given by a constant 
probability in the ER model. Accordingly the connection probability between two node i and j at time t is deter-
mined by a given function f(θi, θj). While the form of function f can be, in general, arbitrary, we here consider it to 
follow a homophily principle, through which oscillators with more similar phases are more likely to be connected. 
For the sake of exemplification, we then define the function f as follows:
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where z is a positive parameter, f(θi, θj) =  2z/N if θi =  θj and f(θi, θj) =  0 if |θi −  θj| =  π. If two oscillators feature 
close enough phases (i.e., |θi −  θj| ~ 0), they are then more likely to establish a link, with probability 2z/N. The 
expectation is therefore that higher z values would lead to more connected network structure, while higher λ  
values would result into more coherent dynamical state. We assume that at each time step the phases of oscillators 
are updated by Eq. 1 and at the same time step, with a coupling probability P, the network topology is shaped 
by Eq. 2. In this study, without specific indication, we consider the case of P =  1.0. For comparison we show the 
results with P =  0.5 and P =  0.2, which are very similar with the case of P =  1.0, in the Supplementary Information.

Results
In our simulations, performed with a 4th order Runge-Kutta method and a time-step Δ t =  0.02 (See the 
Supplementary Information for the case of Δ t =  0.05 and Δ t =  0.1 for comparison), we consider a network size 
N =  300 (See the Supplementary Information for cases of N =  150 and N =  600). We assign initial conditions 
for the oscillators’ phases from a uniformly distributed distribution in the range [− π, π], while the initial net-
work structure is taken to be that extracted from Eq. (2) with the given initial phases. At each time step of the  
integration, oscillators’ phases evolve by Eq. (1), and (simultaneously) network structure is reshaped by Eq. (2). 
To compare with, the non-adaptive evolution is also simulated, where the structure of the network is determined 
by Eq. (2) only initially.

The degree of synchronization can be monitored by the synchronization order parameter:
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whose modulus (r(t) ∈  [0, 1]) measures actually the system’s phase coherence (r =  1 for the fully synchronized 
regime, r ~ 0 for the incoherent state). Ψ (t) is instead the average phase of the system. For percolation, we consider 
the relative size of the largest connected component s(t) as the order parameter. For each parameter r(t) and s(t), 
we furthermore define R and S as the respective steady state values, i.e. the values obtained by averaging over 500 
steps, and after 3,000 transient steps.

Figure 1 reports the time evolution of r(t) and s(t), at different values of the control parameters z and λ. When 
t <  0, the time evolution of the order parameters is determined by the fixed network structure constructed by 
Eq. 2 with the initial phases (i.e., non-adaptive networks), whereas the network structure (starting from t =  0) is 
updated by Eq. 2 at every time step. In Fig. 1(a,c), r(t) and s(t) are plotted at λ =  0.5 and varying z, respectively 
while Fig. 1(b,d) reports r(t) and s(t) (at fixed z =  1.2) by varying λ. A clear enhancement of synchronization 
and percolation is simultaneously observed for most values of λ and z (except when z =  0.5 and λ =  0.5, or when 
z =  1.2 and λ =  0.25). The evolution of the network’s average degree k(t) [Fig. 1(e,f)] reveals that adaptation leads 
actually to an increase of the average degree, which may explain the concurrent enhancement of percolation and 
synchronization in the adaptive network.

Figure 2 accounts for S and R in the parameter space (λ, z). The percolation transition in the non-adaptive 
network only depends on z [as shown in Fig. 2(a)]. We observe existence of typical percolation transitions within 
the subcritical regime (S ~ 0.0) of z <  1.0, the critical regime of z ~ 1.0, and the supercritical regime (0.0 <  S <  1.0) 
of 1.0 <  z <  3.0, and also the connected regime (S ~ 1.0) is observed for z >  3.0. As shown in Fig. 2(b), 
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synchronization in the non-adaptive case depends on the specific percolation state the network is attaining. Fully 
incoherent states (R <  0.05) are observed in sub-critical and critical regime (z <  1.0) regardless of λ. Partial syn-
chronization (0.1 <  R <  0.9) is observed, instead, in supercritical regimes, and highly synchronized states emerge 
only in the connected regime (z >  3.0).

On the other hand, significant enhancement of percolation and synchronization is evident in Fig. 2(c,d). In 
particular, the enhancement is substantial in the region of z <  3.0 corresponding to the non-connected regimes 
in the non-adaptive network. In particular, the percolation indicator S depends not only on z, but also on λ, and 
(when λ increases) the giant connected component emerges even for smaller values of z.

Furthermore, synchronization is actually boosted in the adaptive network [Fig. 2(d)]. Similarly to percola-
tion, the enhancement is here predominant in low connection ability regions (z <  3.0). Interestingly enough, also 
some not-fully connected regions (S <  1.0) still can display highly coherent states (R ~ 1). The conclusions that 
can be drawn from our results is that the adaptive mechanism actually creates a positive feedback loop between 
network’s structure and dynamics, thence supporting the ubiquity of synchronized and connected components 
in complex systems under limited resources for interactions.

The adaptive mechanisms here considered not only enhance synchronization and percolation, but also make 
both transitions more abrupt. In other words both transitions in the adaptive networks are more sensitive to the 
coupling strength λ and to the connectivity parameter z than the transitions in the non-adaptive networks. Note 
that, in this sense, here we do not consider the observed transitions as so-called explosive synchronization39 or 
percolation40. In Fig. 3 we report R [panels (a) and (b)] and S [panels (c) and (d)] as a function of λ at fixed z, 
as well as varying z at fixed λ. For non-adaptive networks, the passage from incoherent to coherent states (and 
that from fragmented to percolated structures) features typical traits of second-order transitions, while adaptive 
networks displays abrupt patterns. The case of percolation transition shows, actually, more interesting patterns. 

Figure 1. Time evolution of r(t) (a,b), s(t) (c,d) and of the network’s average degree k(t) (e,f). (a,c,e) λ =  0.5; 
(b,d,f) z =  1.2. Color codes in the legends of (a,b).
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When z is fixed, S in the non-adaptive network does not depend on λ [as shown in Figs 2(a) and 3(c)]. However, 
S in the adaptive case shows a clear percolation transition with growing λ when z <  4.0 [see the red lines with 
filled symbols in Fig. 3(c)]. Interestingly, there is no difference in the behavior of S (before the transition) between 
the adaptive and non-adaptive case. Only above certain values of λ, the percolation transition assumes a charac-
teristic “first-order-type nature” [as seen in Fig. 3(d)]. It is notable that, although the interplay between network 
evolution and dynamics happens here simultaneously, the transition to synchrony seems to occur at lower z or λ 
values, actually, than the percolation transition.

While the effect of the interplay between topological and dynamical evolution of nodes appears to be 
clear, it is of the highest importance orienting the study to the inspection of the timescales at which the two 
phenomena appear. In particular, if updating network structure costs more than updating states of oscilla-
tors, it is necessary to check whether adaptive mechanisms should be applied at every time step or, instead, 
just few applications of them are actually sufficient to determine the observed enhancements. The issue is 
here addressed by introducing a coupling probability P between dynamics of oscillators and structural evo-
lution, namely by updating the network structure [via Eq. (2)] with probability P at each time step. The limit 
P =  0 recovers a non-adaptive network model, while P =  1.0 corresponds to a totally adaptive case. In Fig. 4 
we report S (top row) and R (middle row) from the cases of P =  1, 0.1, 0.01, 0.001 and 0. Remarkably, one 
observes that both transitions (to percolation and synchrony) are significantly enhanced along all the finite 
range of P, including P =  0.001. This fact has significant implications, in the sense that one can actually inter-
vene on the collective behaviors of a given system, only with a few applications of our proposed adaptive 
mechanism.

It was recently reported that blinking networks (i.e. topologies of interactions which change over times-
cale much faster than that of the network units’ dynamics), can actually enhance synchronization41,42. As our 
adaptive model also can have such a ‘blinking’ nature (when P ~ 1.0), it is therefore mandatory to compar-
atively investigate on how much the observed enhancement in synchronization has a route within the yet 
known blinking effects. To this purpose, we consider a blinking network of oscillators (which is exactly the 
same as the considered adaptive network) with a topology updated by a random probability Q, and which 
gives the same number of links at the initial step given by Eq. 2. Note that whether updating topology or not 

Figure 2. Phase diagrams of the non adaptive (a,b) and adaptive (c,d) models. Panels refer to the percolation 
indicator S (a,c) and the synchronization indicator R (b,d). For each z and λ, data refer to ensemble averages 
over 40 different realizations.
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at each time step depends on the coupling probability P in both of the adaptive network and the blinking 
network while the connections between the oscillators are given by Eq. 2 in the adaptive network but by the 
random probability Q in the blinking network. The bottom panels of Fig. 4 reports the values of R for such a 
latter, blinking, network as function of λ and z, with varying P. When P =  1.0, one notices that the blinking 
effect is, indeed, quite strong. However, the effect vanishes rapidly with decreasing P. This indicates that 
our adaptive mechanism may enhance synchronization only partially due to blinking effects, whereas sig-
nificant other contributions exist. It is also noticeable that no enhancement in percolation exists at all in the 
blinking framework, due punctually to the lack of feedback between dynamics of oscillators and topological 
evolution.

Discussion
In conclusion, complex networks need to stay in connected and synchronized states, in order to perform inte-
grated and coherent functions. However, when the units have only limited ability to connect to each other, it 
is of paramount importance understanding how the networks self-organize from fragmented and incoherent 
states to connected and synchronized states. We have considered an adaptive model, where connections between 
nodes are ruled by a positive feedback loop connecting structural evolution (driven by a fitness model) and nodal 
dynamics (driven by the Kuramoto model). We actually gave evidence that such an adaptive framework enhances 
substantially synchronization and percolation, while non-adaptive counterparts fail to reach synchronization 
and percolation in the non-connected regime. This indicates that co-evolutionary adaptive networks are not only 
more realistic descriptions of complex systems, but also they are beneficial for the correct and robust functioning 
of complex systems.

The observed enhancement of synchronization and percolation shed actually light on how one can con-
trol such two processes in a spontaneous, or self-organized, way22. In particular, as shown in our Fig. 4, the 

Figure 3. R (a,b) and S (c,d) for adaptive and non-adaptive networks. (a) R vs. λ at different z values; (b) R vs. 
z at different λ values; (c) S vs. λ at different z values; (d) S vs. z at different λ values. Legends (in the bottom 
panels) have to be referred to for the understanding of the used parameters’ values. Data refer to ensemble 
averages over 40 realizations.
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needed coupling has not to be very strong, thus suggesting that the control of unwanted events emerging through  
synchronization (such as epileptic seizure or market crashes) could be easily achieved by just (properly) coupling 
or decoupling network’s structure evolution and dynamics. In this sense, our findings suggest efficient control 
methods to maintain an integrated functioning of natural and social systems.
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