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Preface

Figure 1: Illustration of nonparametric
kernel estimators of the regression
function.

Welcome

Welcome to the notes for Nonparametric Statistics. The course is part
of the MSc in Statistics for Data Science from Carlos III University
of Madrid.

The course is designed to have, roughly, one session per each
main topic in the syllabus. The schedule is tight due to time con-
straints, which will inevitably make the treatment of certain meth-
ods somehow superficial. Nevertheless, the course will hopefully
give you a respectable panoramic view of different available topics
on nonparametric statistics. A broad view of the syllabus and its
planning is:

1. Introduction (first session)
2. Kernel density estimation I (first/second session)
3. Kernel density estimation II (second/third session)
4. Kernel regression estimation I (fourth/fifth session)

https://www.uc3m.es/master/statistics-data-science
http://www.uc3m.es/
http://www.uc3m.es/
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5. Kernel regression estimation II (fifth/sixth session)
6. Nonparametric tests (seventh session)

Some logistics for the development of the course follow:

• Office hours are described in the Aula Global (right panel).
• Questions and comments during lectures are most welcome.

Particularly if these are clarifications, comments, or alternative
perspectives that may help the rest of the class. So just go ahead
and fire!

• Detailed course evaluation guidelines can be found in the Aula
Global. Recall that participation in lessons is positively evalu-
ated.

Main references and credits

Several great reference books have been used for preparing these
notes. The following list presents the books that have been con-
sulted:

• D’Agostino and Stephens (1986) (Section 6.1).
• Chacón and Duong (2018) (Sections 3.1, 3.3, 3.4, and 3.5).
• DasGupta (2008) (Sections 1.1, 1.3, 1.4, and 6.1).
• Fan and Gijbels (1996) (Sections 4.1, 4.2, and 4.3).
• Li and Racine (2007) (Section 5.1).
• Loader (1999) (Section 5.4).
• Nelsen (2006) (Section 6.3.1).
• Scott (2015) (Sections 2.1, 2.2, and 2.4)).
• Sheskin (2011) (Section 6.2.2).
• Silverman (1986) (Sections 2.2 and 2.4).
• van der Vaart (1998) (Sections 1.3 and 1.4).
• Wand and Jones (1995) (Sections 2.2, 2.4, 2.4, 2.5, and 5.4).
• Wasserman (2004) (Sections 1.3, 5.4, and B).
• Wasserman (2006) (Sections 1.1, 4.3, and A).

These notes are possible due to the existence of the incredible
pieces of software by Xie (2016), Xie (2020), Allaire et al. (2020), Xie
and Allaire (2020), and R Core Team (2020). Also, certain hacks to
improve the design layout have been possible due to the outstand-
ing work by Úcar (2018). The icons used in the notes were designed
by madebyoliver, freepik, and roundicons from Flaticon.

Last but not least, the notes have benefited from contributions
from the following people:

• Roberto Jesús Alcaraz Molina (fixed a typo)
• Dimitar Aleksandrov Terziev (fixed nine typos)
• Irina Antich Moreno (identified a typo)
• Rafaela Becerra Robalino (performed a thorough revision of the

course materials fixing more than twenty typos)
• Germán Blanco Blanco (fixed two typos)
• Xavier Bryant (indicated a bug and fixed one typo)

https://aulaglobal.uc3m.es
https://aulaglobal.uc3m.es
https://aulaglobal.uc3m.es
http://www.flaticon.com/authors/madebyoliver
http://www.flaticon.com/authors/freepik
http://www.flaticon.com/authors/roundicons
http://www.flaticon.com/
https://www.linkedin.com/in/rojealmo/
https://www.linkedin.com/in/dimitar-aleksandrov-terziev/
https://www.linkedin.com/in/irina-a-098821172/
https://www.linkedin.com/in/rafaela-becerra-robalino-/
https://www.linkedin.com/in/german-blanco-b6abb459/
https://www.linkedin.com/in/xavierbryant/


notes for nonparametric statistics 7

• Cynthia Bueno Macedo Medeiros (fixed seven typos)
• Ilán Francisco Carretero Juchnowicz (fixed two typos)
• César Conejo Villalobos (fixed two typos)
• Marta Cortés Ocaña (fixed two typos)
• David Crespo Acero (fixed four typos)
• Álvaro Díaz Pérez (fixed five typos)
• Alba Diego Velarde (fixed one typo)
• Mauricio Marcos Fajgenbaun (fixed two typos)
• Alberto Fernández de Marcos Giménez-Galanes (fixed three

typos)
• David de la Fuente López (fixed three typos and three bugs)
• Javier Gámez Sanz (fixed two typos)
• Manuel García Corbí (indicated two typos)
• María Del Pilar González Barquero (indicated a typo)
• Luis González-Conde Sánchez-Crespo (fixed two bugs)
• Fabian Guignard (fixed three typos)
• Hongfei Guo (fixed a bug)
• Marta Ilundain Martínez (fixed a typo)
• Amalia Jiménez Toledano (indicated a typo)
• Mike Knecht (fixed one typo)
• Julen Leo Gilete (fixed a bug)
• Javier López Fernández (fixed a bug)
• David Enrique Merchán Cano (fixed a typo)
• Rafael Monsalve Roquero (indicated a typo)
• Juan Montero (fixed a typo)
• Pablo Morala Miguélez (fixed two typos)
• Manuel Navarro García (performed a thorough revision of the

course materials fixing fifteen typos)
• Miguel Novillo Arana (indicated a typo)
• Berta de Pablo Brito (fixed two typos)
• Sergio Palacio Vega (fixed a typo)
• Guendalina Palmirotta (fixed a typo)
• Georgia Papadogeorgou (indicated a typo)
• Raquel Parra Suazo (indicated two typos)
• David Parrón Duce (fixed one bug)
• María del Carmen Paternina Die (indicated two typos)
• Eloy Pérez Gómez (fixed one typo)
• Pilar Pérez Piedra (fixed one typo)
• David Pérez Ros (fixed one typo)
• Jingye Qian (indicated two bugs)
• Paloma Romero Palop (fixed a typo)
• Jorge Sánchez Polo (fixed three typos)
• Camila San José (fixed three typos)
• Diego Serrano Ortega (fixed three typos and one bug)
• Kendal Raymond William Smith (performed a thorough revision

of the course materials fixing more than twenty typos)
• Anna Subirós de Arriaga (fixed three typos)
• He Sun (indicated two typos)
• Adrián Torres Núñez (fixed eleven typos)

https://www.researchgate.net/profile/Cynthia_Bueno_Macedo_Medeiros
https://www.linkedin.com/in/cesar-conejo-villalobos-60094056/
https://www.linkedin.com/in/marta-cort%C3%A9s-oca%C3%B1a-26434b103/
https://www.linkedin.com/in/davidcrespoacero/
https://www.linkedin.com/in/%C3%A1lvaro-d%C3%ADaz-p%C3%A9rez-b392671b9/
https://www.linkedin.com/in/alba-diego-velarde-334511231/
https://www.linkedin.com/in/mauricio-marcos-08397a72/
https://www.linkedin.com/in/alberto-fernandez-de-marcos-gimenez-galanes/
https://www.linkedin.com/in/david-de-la-fuente-l%C3%B3pez-8313471a8/
https://www.linkedin.com/in/javier-gamez/
https://www.linkedin.com/in/manugaco/
https://www.linkedin.com/in/mar%C3%ADa-del-pilar-gonz%C3%A1lez-barquero-197b52171/
https://applicationspub.unil.ch/interpub/noauth/php/Un/UnPers.php?PerNum=1195531
https://www.linkedin.com/in/martailundain/
https://www.linkedin.com/in/amaliajimeneztoledano-datascientist/
https://www.linkedin.com/in/julen-leo-gilete-563749210/
https://www.linkedin.com/in/javier-lopez-fernandez/
https://www.linkedin.com/in/david-enrique-merch%C3%A1n-cano-9319a517b/
https://www.linkedin.com/in/rafaelmonsalveroquero/
https://www.linkedin.com/in/pablo-morala-migu%C3%A9lez-829b51181/
https://www.linkedin.com/in/manuel-navarro-garc%C3%ADa-a1843a19a/
https://www.linkedin.com/in/berta-de-pablo-brito/
https://www.linkedin.com/in/sergio-palacio-vega/
https://www.linkedin.com/in/guenda-palmirotta-1275ab145/
https://stat.duke.edu/people/georgia-papadogeorgou
https://www.linkedin.com/in/raquel-parra-suazo-2a183b12a/
https://www.linkedin.com/in/davidparronduce/
https://www.linkedin.com/in/mar%C3%ADa-del-carmen-paternina-die-928308120/
https://www.linkedin.com/in/eloy-p%C3%A9rez-g%C3%B3mez-4a7b3a204/
https://www.linkedin.com/in/pilar-p%C3%A9rez-piedra-5b41aa1bb/
https://www.linkedin.com/in/davidperezros/
https://www.linkedin.com/in/jingye-qian-618663206/
https://www.linkedin.com/in/paloma-romero-palop/
https://www.linkedin.com/in/jorge-s%C3%A1nchez-polo-3a7862265/
https://www.linkedin.com/in/camila-san-jose-663981165/
https://www.linkedin.com/in/diego-serrano-ortega-linked-in-profile/
https://www.linkedin.com/in/annasubiros/
https://www.linkedin.com/in/he-sun-144504184/
https://www.linkedin.com/in/adrian-torres-n%C3%BA%C3%B1ez-944577135/
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• Jaime Ugarte Abollado (indicated a typo)
• Adrian Bijan White (fixed a typo)
• Du Zhang (indicated a bug and a typo)
• Shenbin Zheng (indicated a typo)

Contributions

Contributions, reporting of typos, and feedback on the notes are
very welcome. Just send an email to edgarcia@est-econ.uc3m.es

and give me a good reason for writing your name in the list of
contributors!

License

All the material in these notes is licensed under the Creative Com-
mons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional Public License (CC BY-NC-ND 4.0). You may not use this
material except in compliance with the aforementioned license. The
human-readable summary of the license states that:

• You are free to:

– Share – Copy and redistribute the material in any medium or
format.

• Under the following terms:

– Attribution – You must give appropriate credit, provide a link
to the license, and indicate if changes were made. You may do
so in any reasonable manner, but not in any way that suggests
the licensor endorses you or your use.

– NonCommercial – You may not use the material for commercial
purposes.

– NoDerivatives – If you remix, transform, or build upon the
material, you may not distribute the modified material.

Citation

You may use the following BIBTEX entry when citing these notes:

@book{Garcia-Portugues2023,

title = {Notes for Nonparametric Statistics},

author = {Garc\’ia-Portugu\’es, E.},

year = {2023},

note = {Version 6.9.0. ISBN 978-84-09-29537-1},

url = {https://bookdown.org/egarpor/NP-UC3M/}

}

You may also want to use the following template:

García-Portugués, E. (2023). Notes for Nonparametric Statistics. Version
6.9.0. ISBN 978-84-09-29537-1. Available at https://bookdown.org/
egarpor/NP-UC3M/.

https://www.linkedin.com/in/jaime-ugarte-abollado-64b49513a/
https://www.linkedin.com/in/adrian-bijan-white/
https://www.linkedin.com/in/duzhang-denny/
https://www.linkedin.com/in/shenbin-zheng-6094b115a/
mailto:edgarcia@est-econ.uc3m.es
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
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1 Among others: basic programming
in R, ability to work with objects and
data structures, ability to produce
graphics, knowledge of the main
statistical functions, and ability to run
scripts in RStudio.

Course overview

The notes contain a substantial amount of snippets of code that are
fully self-contained within the chapter in which they are included.
This allows understanding of how the methods and theory translate
neatly to the practice. The software employed in the course is the
statistical language R and its most common IDE (Integrated Devel-
opment Environment) nowadays, RStudio. Prior basic knowledge of
both is assumed.1

The Shiny interactive apps on the notes can be downloaded and
run locally, which in particular allows inspection of their codes.
Check out this GitHub repository for the sources.

We will employ several packages that are not included within R
by default. These can be installed as:

# Installation of required packages

packages <- c("ks", "mvtnorm", "nor1mix", "rgl", "misc3d", "viridis",

"manipulate", "geometry", "numDeriv", "OceanView", "ISLR",

"emstreeR", "circular", "maps", "MASS", "microbenchmark",

"np", "locfit", "latex2exp", "dgof", "goftest", "nortest",

"boot", "energy")

install.packages(packages)

The notes make explicit mention of the package to which a func-
tion belongs by using the operator ::, unless when the use of the
functions of a package is very repetitive and that package is loaded.
You can load all the packages by running:

# Load packages

lapply(packages, library, character.only = TRUE)

https://cran.r-project.org/
https://www.rstudio.com/products/rstudio/download/
https://github.com/egarpor/ShinyServer




Scripts

The snippets of code of the notes are conveniently collected in the
following scripts. To download them, simply save the link as a file
in your browser.

• Chapter 1: 01-intro.R.
• Chapter 2: 02-kde-i.R.
• Chapter 3: 03-kde-ii.R.
• Chapter 4: 04-kre-i.R.
• Chapter 5: 05-kre-ii.R
• Chapter 6: 06-nptests.R

https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/01-intro.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/02-kde-i.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/03-kde-ii.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/04-kre-i.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/05-kre-ii.R
https://raw.githubusercontent.com/egarpor/handy/master/scripts/NP-UC3M/06-nptests.R




1 Inspiration for (1.1) comes from
realizing that F(x) = E[1{X≤x}].

1
Introduction

We begin by reviewing some elementary results that will be em-
ployed during the course and which will also serve to introduce
notation.

1.1 Probability review

1.1.1 Random variables

A triple (Ω,A, P) is called a probability space. Ω represents the sam-
ple space, the set of all possible individual outcomes of a random
experiment. A is a σ-field, a class of subsets of Ω that is closed un-
der complementation and numerable unions, and such that Ω ∈ A.
A represents the collection of possible events (combinations of indi-
vidual outcomes) that are assigned a probability by the probability
measure P. A random variable is a map X : Ω −→ R such that
X−1((−∞, x]) = {ω ∈ Ω : X(ω) ≤ x} ∈ A, ∀x ∈ R (the set
X−1((−∞, x]) of possible outcomes of X is said measurable).

1.1.2 Cumulative distribution and probability density functions

The cumulative distribution function (cdf) of a random variable X is
F(x) := P[X ≤ x]. When an independent and identically distributed
(iid) sample X1, . . . , Xn is given, the cdf can be estimated by the
empirical distribution function (ecdf)

Fn(x) =
1
n

n

∑
i=1

1{Xi≤x}, (1.1)

where 1A :=

1, A is true,

0, A is false
is an indicator function.1

Continuous random variables are characterized by either the cdf
F or the probability density function (pdf) f = F′, the latter represent-
ing the infinitesimal relative probability of X per unit of length. We
write X ∼ F (or X ∼ f ) to denote that X has a cdf F (or a pdf f ). If
two random variables X and Y have the same distribution, we write
X d

= Y.
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2 Recall that the X-part of E[Y|X] is
random. However, E[Y|X = x] is
deterministic.

1.1.3 Expectation

The expectation operator is constructed using the Lebesgue–Stieljes
“ dF(x)” integral. Hence, for X ∼ F, the expectation of g(X) is

E[g(X)] :=
∫

g(x)dF(x)

=


∫

g(x) f (x)dx, if X is continuous,

∑
{x∈R:P[X=x]>0}

g(x)P[X = x], if X is discrete.

Unless otherwise stated, the integration limits of any integral are
R or Rp. The variance operator is defined as Var[X] := E[(X −
E[X])2].

1.1.4 Random vectors, marginals, and conditionals

We employ bold face to denote vectors, assumed to be column ma-
trices, and matrices. A p-random vector is a map X : Ω −→ Rp,
X(ω) := (X1(ω), . . . , Xp(ω))′, such that each Xi is a random
variable. The (joint) cdf of X is F(x) := P[X ≤ x] := P[X1 ≤
x1, . . . , Xp ≤ xp] and, if X is continuous, its (joint) pdf is f :=

∂p

∂x1···∂xp
F.

The marginals of F and f are the cdfs and pdfs of Xi, i = 1, . . . , p,
respectively. They are defined as

FXi (xi) := P[Xi ≤ xi] = F(∞, . . . , ∞, xi, ∞, . . . , ∞),

fXi (xi) :=
∂

∂xi
FXi (xi) =

∫
Rp−1

f (x)dx−i,

where x−i := (x1, . . . , xi−1, xi+1, . . . , xp)′. The definitions can be ex-
tended analogously to the marginals of the cdf and pdf of different
subsets of X.

The conditional cdf and pdf of X1|(X2, . . . , Xp) are defined, re-
spectively, as

FX1|X−1=x−1
(x1) := P[X1 ≤ x1|X−1 = x−1],

fX1|X−1=x−1
(x1) :=

f (x)
fX−1(x−1)

.

The conditional expectation of Y|X is the following random variable2

E[Y|X] :=
∫

y dFY|X(y|X).

The conditional variance of Y|X is defined as

Var[Y|X] := E[(Y − E[Y|X])2|X] = E[Y2|X]− E[Y|X]2.

Proposition 1.1 (Laws of total expectation and variance). Let X and
Y be two random variables.

• Total expectation: if E[|Y|] < ∞, then E[Y] = E[E[Y|X]].
• Total variance: if E[Y2] < ∞, then Var[Y] = E[Var[Y|X]] +

Var[E[Y|X]].
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Exercise 1.1. Prove the law of total variance from the law of total
expectation.

Figure 1.1 graphically summarizes the concepts of joint, marginal,
and conditional distributions within the context of a 2-dimensional
normal.

Figure 1.1: Visualization of the joint
pdf (in blue), marginal pdfs (green),
conditional pdf of X2|X1 = x1 (or-
ange), expectation (red point), and
conditional expectation E[X2|X1 = x1]
(orange point) of a 2-dimensional nor-
mal. The conditioning point of X1 is
x1 = −2. Note the different scales of
the densities, as they have to integrate
one over different supports. Note how
the conditional density (upper orange
curve) is not the joint pdf f (x1, x2)
(lower orange curve) with x1 = −2 but
its rescaling by 1

fX1
(x1)

. The parame-

ters of the 2-dimensional normal are
µ1 = µ2 = 0, σ1 = σ2 = 1 and ρ = 0.75
(see Exercise 1.9). 500 observations
sampled from the distribution are
shown in black.

Exercise 1.2. Consider the random vector (X, Y) with joint pdf

f (x, y) =

ye−axy, x > 0, y ∈ (0, b),

0, else.

a. Determine the value of b > 0 that makes f a valid pdf.
b. Compute E[X] and E[Y].
c. Verify the law of the total expectation.
d. Verify the law of the total variance.

Exercise 1.3. Consider the continuous random vector (X1, X2) with
joint pdf given by

f (x1, x2) =

2, 0 < x1 < x2 < 1,

0, else.

a. Check that f is a proper pdf.
b. Obtain the joint cdf of (X1, X2).
c. Obtain the marginal pdfs of X1 and X2.
d. Obtain the marginal cdfs of X1 and X2.
e. Obtain the conditional pdfs of X1|X2 = x2 and X2|X1 = x1.
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1.1.5 Variance-covariance matrix

For two random variables X1 and X2, the covariance between them
is defined as

Cov[X1, X2] := E[(X1 − E[X1])(X2 − E[X2])] = E[X1X2]− E[X1]E[X2],

and the correlation between them, as

Cor[X1, X2] :=
Cov[X1, X2]√

Var[X1]Var[X2]
.

The variance and the covariance are extended to a random vector
X = (X1, . . . , Xp)′ by means of the so-called variance-covariance
matrix:

Var[X] :=E[(X − E[X])(X − E[X])′]

=E[XX′]− E[X]E[X]′

=


Var[X1] Cov[X1, X2] · · · Cov[X1, Xp]

Cov[X2, X1] Var[X2] · · · Cov[X2, Xp]
...

...
. . .

...
Cov[Xp, X1] Cov[Xp, X2] · · · Var[Xp]

 ,

where E[X] := (E[X1], . . . , E[Xp])′ is just the componentwise
expectation. As in the univariate case, the expectation is a linear
operator, which now means that

E[AX + b] = AE[X] + b, for a q × p matrix A and b ∈ Rq. (1.2)

It follows from (1.2) that

Var[AX + b] = AVar[X]A′, for a q × p matrix A and b ∈ Rq.
(1.3)

1.1.6 Inequalities

We conclude this section by reviewing some useful probabilistic
inequalities.

Proposition 1.2 (Markov’s inequality). Let X be a non-negative ran-
dom variable with E[X] < ∞. Then

P[X ≥ t] ≤ E[X]

t
, ∀t > 0.

Proposition 1.3 (Chebyshev’s inequality). Let X be a random variable
with µ = E[X] and σ2 = Var[X] < ∞. Then

P[|X − µ| ≥ t] ≤ σ2

t2 , ∀t > 0.

Exercise 1.4. Prove Markov’s inequality using X = X1{X≥t} +

X1{X<t}.

Exercise 1.5. Prove Chebyshev’s inequality using Markov’s.
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3 “Finite moments of higher order
imply finite moments of lower order”.

Remark. Chebyshev’s inequality gives a quick and handy way of
computing confidence intervals for the values of any random vari-
able X with finite variance:

P[X ∈ (µ − tσ, µ + tσ)] ≥ 1 − 1
t2 , ∀t > 0. (1.4)

That is, for any t > 0, the interval (µ − tσ, µ + tσ) has, at least, a
probability 1 − 1/t2 of containing a random realization of X. The
intervals are conservative, but extremely general. The table below
gives the guaranteed coverage probability 1 − 1/t2 for common
values of t.

t 2 3 4 5 6

Guaranteed
coverage

0.75 0.8889 0.9375 0.96 0.9722

Exercise 1.6. Prove (1.4) from Chebyshev’s inequality.

Proposition 1.4 (Cauchy–Schwartz inequality). Let X and Y such that
E[X2] < ∞ and E[Y2] < ∞. Then

|E[XY]| ≤
√

E[X2]E[Y2].

Exercise 1.7. Prove Cauchy–Schwartz inequality “pulling a rabbit
out of a hat”: consider the polynomial p(t) = E[(tX + Y)2] =

At2 + 2Bt + C ≥ 0, ∀t ∈ R.

Exercise 1.8. Does E[|XY|] ≤
√

E[X2]E[Y2] hold? Observe that,
due to the next proposition, |E[XY]| ≤ E[|XY|].

Proposition 1.5 (Jensen’s inequality). If g is a convex function, then

g(E[X]) ≤ E[g(X)].

Example 1.1. Jensen’s inequality has interesting derivations. For
example:

1. Take h = −g. Then h is a concave function and h(E[X]) ≥
E[h(X)].

2. Take g(x) = xr for r ≥ 1, which is a convex function. Then
E[X]r ≤ E[Xr]. If 0 < r < 1, then g(x) = xr is concave and
E[X]r ≥ E[Xr].

3. The previous results hold considering g(x) = |x|r. In particular,
|E[X]| ≤ E[|X|] for r ≥ 1.

4. Consider 0 ≤ r ≤ s. Then g(x) = xs/r is convex (since s/r ≥ 1)
and g(E[|X|r]) ≤ E[g(|X|r)] = E[|X|s]. As a consequence,
E[|X|s] < ∞ =⇒ E[|X|r] < ∞ for 0 ≤ r ≤ s.3

5. The exponential (logarithm) function is convex (concave). Conse-
quently, exp(E[X]) ≤ E[exp(X)] and log(E[|X|]) ≥ E[log(|X|)].

1.2 Facts about distributions

We will make use of certain parametric distributions. Some nota-
tion and facts are introduced as follows.
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4 A particular useful value for
computing confidence intervals is
z0.05/2 = z0.025 ≈ 1.96 ≈ 2.

5 Note that this is an immediate
parametrization of a 2 × 2 covari-
ance matrix. The parametrization
becomes cumbersome when p > 2.

1.2.1 Normal distribution

The normal distribution with mean µ and variance σ2 is denoted by

N (µ, σ2). Its pdf is ϕσ(x − µ) := 1√
2πσ

e−
(x−µ)2

2σ2 , x ∈ R, and satisfies

that ϕσ(x − µ) = 1
σ ϕ
(

x−µ
σ

)
(if σ = 1 the dependence on σ is

omitted). Its cdf is denoted by Φσ(x − µ). The upper α-quantile of a
N (0, 1) is denoted by zα, so it satisfies that zα = Φ−1(1 − α).4 The
shortest interval that contains 1 − α probability of a X ∼ N (µ, σ2)

is (µ − zα/2σ, µ + zα/2σ), i.e., P[X ∈ (µ ± zα/2σ)] = 1 − α. Some
uncentered moments of X ∼ N (µ, σ2) are

E[X] = µ,

E[X2] = µ2 + σ2,

E[X3] = µ3 + 3µσ2,

E[X4] = µ4 + 6µ2σ2 + 3σ4.

Remark. It is interesting to compare the length of (µ ± zα/2σ)

for α = 1/t2 with the one in (1.4), as this gives direct insight
into how larger the Chebyshev confidence interval (1.4) is when
X ∼ N (µ, σ2). The table below gives the length increment factor
t/z(0.5/t2) of the Chebyshev confidence interval.

t 2 3 4 5 6

Guaranteed
coverage

0.75 0.8889 0.9375 0.96 0.9722

Increment
factor

1.7386 1.883 2.1474 2.4346 2.7268

Balancing between the guaranteed coverage and increment fac-
tor, it seems reasonable to define the “3σ-rule” for any random
variable as: “almost 90% of the values of a random variable X lie on
(µ − 3σ, µ + 3σ), if E[X] = µ and Var[X] = σ2 < ∞”.

The multivariate normal is represented by Np(µ, Σ), where µ is a
p-vector and Σ is a p × p symmetric and positive matrix. The pdf of
a N (µ, Σ) is ϕΣ(x − µ) := 1

(2π)p/2|Σ|1/2 e−
1
2 (x−µ)′Σ−1(x−µ) and satisfies

that ϕΣ(x − µ) = |Σ|−1/2ϕ
(

Σ−1/2(x − µ)
)

(if Σ = I, the dependence
on Σ is omitted). The multivariate normal has an appealing linear
property that stems from (1.2) and (1.3):

ANp(µ, Σ) + b d
= Nq(Aµ + b, AΣA′). (1.5)

Exercise 1.9. The pdf of a bivariate normal (p = 2, see Figure 1.1)
can be also expressed as

ϕ(x1, x2; µ1, µ2, σ2
1 , σ2

2 , ρ) :=
1

2πσ1σ2
√

1 − ρ2
(1.6)

× exp

{
− 1

2(1 − ρ2)

[
(x1 − µ1)

2

σ2
1

+
(x2 − µ2)

2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)

σ1σ2

]}
,
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where µ1, µ2 ∈ R, σ1, σ2 > 0, and −1 < ρ < 1. The parametrization
uses µ = (µ1, µ2)

′ and Σ = (σ2
1 , ρσ1σ2; ρσ1σ2, σ2

2 ).
5

a. Derive the pdf of X1: ϕ(x1; µ1, σ2
1 ).

b. Derive the pdf of X1|X2 = x2: ϕ
(

x1; µ1 + ρ σ1
σ2
(x2 − µ2), (1 − ρ2)σ2

1

)
.

c. Derive E[X1|X2 = x2] and Var[X1|X2 = x2].

1.2.2 Other distributions

• The lognormal distribution is denoted by LN (µ, σ2) and is such

that LN (µ, σ2)
d
= exp(N (µ, σ2)). Its pdf is f (x; µ, σ) = 1

x ϕσ(log x−

log µ) = 1√
2πσx

e−
(log x−log µ)2

2σ2 , x > 0. Note that E[LN (µ, σ2)] =

eµ+ σ2
2 and Var[LN (µ, σ2)] =

(
eσ2 − 1

)
e2µ+σ2

.

• The exponential distribution is denoted by Exp(λ) and has pdf
f (x; λ) = λe−λx, λ, x > 0.

• The gamma distribution is denoted by Γ(a, p) and has pdf f (x; a, p) =
ap

Γ(p) xp−1e−ax, a, p, x > 0, where Γ(p) =
∫ ∞

0 xp−1e−ax dx.
The parameter a is the rate and p is the shape. It is known that
E[Γ(a, p)] = p

a and Var[Γ(a, p)] = p
a2 .

• The inverse gamma distribution, IG(a, p) d
= Γ(a, p)−1, has pdf

f (x; a, p) = ap

Γ(p) x−p−1e−
a
x , a, p, x > 0. It is known that E[IG(a, p)] =

a
p−1 and Var[IG(a, p)] = a2

(p−1)2(p−2) .

• The binomial distribution is denoted by B(n, p). Recall that E[B(n, p)] =
np and Var[B(n, p)] = np(1 − p). A B(1, p) is a Bernoulli distribu-
tion, denoted by Ber(p).

• The beta distribution is denoted by β(a, b) and its pdf is f (x; a, b) =
1

β(a,b) xa−1(1 − x)1−b, 0 < x < 1, where β(a, b) = Γ(a)Γ(b)
Γ(a+b) . When

a = b = 1, the uniform distribution U (0, 1) arises.

• The Poisson distribution is denoted by Pois(λ) and has probability
mass function P[X = x] = xλe−λ

x! , x = 0, 1, 2, . . . Recall that
E[Pois(λ)] = Var[Pois(λ)] = λ.

1.3 Stochastic convergence review

Let Xn be a sequence of random variables defined in a common
probability space (Ω,A, P). The four most common types of con-
vergence of Xn to a random variable in (Ω,A, P) are the following.

Definition 1.1 (Convergence in distribution). Xn converges in distri-

bution to X, written Xn
d−→ X, if limn→∞ Fn(x) = F(x) for all x for

which F is continuous, where Xn ∼ Fn and X ∼ F.

“Convergence in distribution” is also referred to as weak conver-
gence. Proposition 1.6 justifies why this terminology.
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6 Intuitively: if convergence in prob-
ability is fast enough, then we have
almost surely convergence.
7 “Uniformly bounded random vari-
ables”.

Definition 1.2 (Convergence in probability). Xn converges in prob-

ability to X, written Xn
P−→ X, if limn→∞ P[|Xn − X| > ε] = 0,

∀ε > 0.

Definition 1.3 (Convergence almost surely). Xn converges almost
surely (as) to X, written Xn

as−→ X, if P[{ω ∈ Ω : limn→∞ Xn(ω) =

X(ω)}] = 1.

Definition 1.4 (Convergence in r-mean). For r ≥ 1, Xn converges in
r-mean to X, written Xn

r−→ X, if limn→∞ E[|Xn − X|r] = 0.

Remark. The previous definitions can be extended to a sequence
of p-random vectors Xn. For Definitions 1.2 and 1.4, replace | · |
with the Euclidean norm || · ||. Alternatively, Definition 1.2 can be

extended marginally: Xn
P−→ X : ⇐⇒ Xj,n

P−→ Xj, ∀j = 1, . . . , p.
For Definition 1.1, replace Fn and F by the joint cdfs of Xn and X,
respectively. Definition 1.3 also extends marginally.

The 2-mean convergence plays a remarkable role in defining a
consistent estimator θ̂n = T(X1, . . . , Xn) of a parameter θ. We say
that the estimator is consistent if its Mean Squared Error (MSE),

MSE[θ̂n] := E[(θ̂n − θ)2]

= (E[θ̂n]− θ)2 + Var[θ̂n]

=: Bias[θ̂n]
2 + Var[θ̂n],

goes to zero as n → ∞. Equivalently written, if θ̂n
2−→ θ.

If Xn
d,P,r,as−→ X and X is a degenerate random variable such that

P[X = c] = 1, c ∈ R, then we write Xn
d,P,r,as−→ c (the list-notation

d,P,r,as−→ is used to condensate four different convergence results in
the same line).

The relations between the types of convergences are conveniently
summarized in the following proposition.

Proposition 1.6. Let Xn be a sequence of random variables and X a
random variable. Then the following implication diagram is satisfied:

Xn
r−→ X =⇒ Xn

P−→ X ⇐= Xn
as−→ X

⇓
Xn

d−→ X

Also, if s ≥ r ≥ 1, then Xn
s−→ X =⇒ Xn

r−→ X.
None of the converses holds in general. However, there are some notable

exceptions:

i. If Xn
d−→ c, then Xn

P−→ c, c ∈ R.

ii. If ∀ε > 0, limn→∞ ∑n P[|Xn − X| > ε] < ∞ (implies6 Xn
P−→ X),

then Xn
as−→ X.

iii. If Xn
P−→ X and P[|Xn| ≤ M] = 1, ∀n ∈ N and M > 0 7, then

Xn
r−→ X for r ≥ 1.

iv. If Sn = ∑n
i=1 Xi with X1, . . . , Xn iid, then Sn

P−→ S ⇐⇒ Sn
as−→ S.
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The weak Law of Large Numbers (LLN) and its strong version are
the two most representative results of convergence in probability
and almost surely.

Theorem 1.1 (Weak and strong LLN). Let Xn be an iid sequence with

E[Xi] = µ, i ≥ 1. Then: 1
n ∑n

i=1 Xi
P, as−→ µ.

The corner stone limit result in probability is the Central Limit
Theorem (CLT). One of its simpler versions has the following form.

Theorem 1.2 (CLT). Let Xn be a sequence of iid random variables with
E[Xi] = µ and Var[Xi] = σ2 < ∞, i ∈ N. Then:

√
n(X̄ − µ)

σ

d−→ N (0, 1).

We will later use the following CLT for random variables that are
independent but not identically distributed due to its easy-to-check
moment conditions.

Theorem 1.3 (Lyapunov’s CLT). Let Xn be a sequence of independent
random variables with E[Xi] = µi and Var[Xi] = σ2

i < ∞, i ∈ N, and
such that for some δ > 0

1
s2+δ

n

n

∑
i=1

E
[
|Xi − µi|2+δ

]
−→ 0 as n → ∞,

with s2
n = ∑n

i=1 σ2
i . Then:

1
sn

n

∑
i=1

(Xi − µi)
d−→ N (0, 1).

Finally, the following results will be useful (′ denotes transposi-
tion). In particular, Slutsky’s theorem allows mixing the LLNs and
the CLT with additions and products.

Theorem 1.4 (Cramér–Wold device). Let Xn be a sequence of p-
dimensional random vectors. Then:

Xn
d−→ X ⇐⇒ c′Xn

d−→ c′X, ∀c ∈ Rp.

Theorem 1.5 (Continuous mapping theorem). If Xn
d, P, as−→ X, then

g(Xn)
d, P, as−→ g(X)

for any continuous function g.

Theorem 1.6 (Slutsky’s theorem). Let Xn and Yn be sequences of
random variables and c ∈ R. Then:

i. If Xn
d−→ X and Yn

P−→ c, then XnYn
d−→ cX.

ii. If Xn
d−→ X and Yn

P−→ c, c ̸= 0, then Xn
Yn

d−→ X
c .

iii. If Xn
d−→ X and Yn

P−→ c, then Xn + Yn
d−→ X + c.

Theorem 1.7 (Limit algebra for (P, r, as)-convergence). Let Xn

and Yn be sequences of random variables, and an → a and bn → b two
sequences.
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i. If Xn
P, r, as−→ X and Yn

P, r, as−→ Y, then anXn + bnYn
P, r, as−→ aX + bY.

ii. If Xn
P, as−→ X and Yn

P, as−→ Y, then XnYn
P, as−→ XY.

Remark. Recall the absence of the analogous results for convergence
in distribution. In general, there are no such results!

• Particularly, it is false that, in general, Xn
d−→ X and Yn

d−→ Y

imply Xn + Yn
d−→ X + Y or XnYn

d−→ XY.

• It is true, however, that (Xn, Yn)
d−→ (X, Y) (a much stronger

premise) implies both Xn + Yn
d−→ X + Y and XnYn

d−→ XY,

as Theorem 1.5 indicates. Note that Xn + Yn
d−→ X + Y is also

implied by (Xn, Yn)
d−→ (X, Y) by Theorem 1.4 with c = (1, 1)′.

• Consequently, it is also true that, under independence of Xn and

Yn, Xn
d−→ X and Yn

d−→ Y imply Xn + Yn
d−→ X + Y and

XnYn
d−→ XY

Theorem 1.8 (Delta method). If
√

n(Xn − µ)
d−→ N (0, σ2), then

√
n(g(Xn)− g(µ)) d−→ N

(
0, (g′(µ))2σ2

)
for any function g that is differentiable at µ and such that g′(µ) ̸= 0.

Example 1.2. It is well known that, given a parametric density fθ

with parameter θ ∈ Θ and iid X1, . . . , Xn ∼ fθ , then the Maximum
Likelihood (ML) estimator θ̂ML := arg maxθ∈Θ ∑n

i=1 log fθ(Xi) (the
parameter that maximizes the “probability” of the data based on the
model) converges to a normal under certain regularity conditions:

√
n(θ̂ML − θ)

d−→ N
(

0, I(θ)−1
)

,

where I(θ) := −Eθ

[
∂2 log fθ(x)

∂θ2

]
is known as the Fisher information.

Then, it is satisfied that

√
n(g(θ̂ML)− g(θ)) d−→ N

(
0, (g′(θ))2 I(θ)−1

)
.

Note that, had we applied the continuous mapping theorem for g,
we would have obtained a different result:

g(
√

n(θ̂ML − θ))
d−→ g

(
N
(

0, I(θ)−1
))

.

Exercise 1.10. Let’s dig further into the differences between the
delta method and the continuous mapping theorem when applied

to
√

n(Xn − µ)
d−→ N (0, σ2):

a. Under what kind of maps g the results
√

n(g(Xn)− g(µ)) d−→
N (0, (g′(µ))2σ2) and g(

√
n(Xn − µ))

d−→ g(N (0, σ2)) are equiva-
lent?

b. Take g(x) = ex. What two results do you obtain with the delta
method and the continuous mapping theorem when applied to
√

nX̄ d−→ N (0, σ2)?
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8 For a deterministic sequence an,

lim supn→∞ an := limn→∞

(
supk≥n ak

)
is the largest limit of the subse-
quences of an. It can be defined even
if limn→∞ an does not exist (e.g., in
trigonometric functions). If limn→∞ an
exists, as in most of the common
usages of the big-O notation, then
lim supn→∞ an = limn→∞ an.

1.4 OP and oP notation

1.4.1 Deterministic versions

In computer science the O notation is used to measure the complex-
ity of algorithms. For example, when an algorithm is O(n2), it is
said that it is quadratic in time and we know that is going to take on
the order of n2 operations to process an input of size n. We do not
care about the specific amount of computations; rather, we focus
on the big picture by looking for an upper bound for the sequence
of computation times in terms of n. This upper bound disregards
constants. For example, the dot product between two vectors of size
n is an O(n) operation, although it takes n multiplications and n − 1
sums, hence 2n − 1 operations.

In mathematical analysis, O-related notation is mostly used to
bound sequences that shrink to zero. The technicalities are however
the same.

Definition 1.5 (Big-O). Given two strictly positive sequences an and
bn,

an = O(bn) : ⇐⇒ lim sup
n→∞

an

bn
≤ C, for a C > 0.

If an = O(bn), then we say that an is big-O of bn. To indicate that an

is bounded, we write an = O(1).8

Definition 1.6 (Little-o). Given two strictly positive sequences an

and bn,

an = o(bn) : ⇐⇒ lim
n→∞

an

bn
= 0.

If an = o(bn), then we say that an is little-o of bn. To indicate that
an → 0, we write an = o(1).

Exercise 1.11. Show the following statements by directly applying
the previous definitions.

a. n−2 = o(n−1).
b. log n = O(n).
c. n−1 = o((log n)−1).
d. n−4/5 = o(n−2/3).
e. 3 sin(n) = O(1).
f. n−2 − n−3 + n−1 = O(n−1).
g. n−2 − n−3 = o(n−1/2).

The interpretation of these two definitions is simple:

• an = O(bn) means that an is “not larger than” bn asymptotically.
If an, bn → 0, then it means that an “does not decrease more
slowly” than bn, i.e., that an either decreases as fast as bn or
faster than bn.

• an = o(bn) means that an is “smaller than” bn asymptotically. If
an, bn → 0, then it means that an “decreases faster” than bn.
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Obviously, little-o implies big-O (take any C > 0 in Definition
1.5). Playing with limits we can get a list of useful facts.

Proposition 1.7. Consider two strictly positive sequences an, bn → 0.
The following properties hold:

i. kO(an) = O(an), ko(an) = o(an), k ∈ R.
ii. o(an) + o(bn) = o(an + bn), O(an) + O(bn) = O(an + bn).
iii. o(an)o(bn) = o(anbn), O(an)O(bn) = O(anbn).
iv. o(an) + O(bn) = O(an + bn), o(an)O(bn) = o(anbn).
v. o(1)O(an) = o(an).
vi. ar

n = o(as
n), for r > s ≥ 0.

vii. anbn = o(a2
n + b2

n).
viii. anbn = o(an + bn).
ix. (an + bn)k = O(ak

n + bk
n).

The last result is a consequence of a useful inequality.

Lemma 1.1 (Cp inequality). Given a, b ∈ R and p > 0,

|a + b|p ≤ Cp(|a|p + |b|p), Cp =

1, p ≤ 1,

2p−1, p > 1.

Exercise 1.12. Illustrate the properties of Proposition 1.7 consider-
ing an = n−1 and bn = n−1/2.

1.4.2 Stochastic versions

The previous notation is purely deterministic. Let’s add some
stochastic flavor by establishing the stochastic analogous of little-
o.

Definition 1.7 (Little-oP). Given a strictly positive sequence an and
a sequence of random variables Xn,

Xn = oP(an) : ⇐⇒ |Xn|
an

P−→ 0

⇐⇒ lim
n→∞

P

[
|Xn|
an

> ε

]
= 0, ∀ε > 0.

If Xn = oP(an), then we say that Xn is little-oP of an. To indicate that

Xn
P−→ 0, we write Xn = oP(1).

Therefore, little-oP allows us to easily quantify the speed at
which a sequence of random variables converges to zero in prob-
ability.

Example 1.3. Let Yn = oP

(
n−1/2) and Zn = oP(n−1). Then Zn

converges faster to zero in probability than Yn. To visualize this,
recall that Xn = oP(an) and that limit definitions entail that

∀ε, δ > 0, ∃ n0 = n0(ε, δ) ∈ N : ∀n ≥ n0(ε, δ), P [|Xn| > anε] < δ.

Therefore, for fixed ε, δ > 0 and a fixed n ≥ max(n0,Y, n0,Z), then

P
[
Yn ∈

(
− n−1/2ε, n−1/2ε

)]
> 1 − δ and P

[
Zn ∈ (−n−1ε, n−1ε)

]
>

1 − δ, but the latter interval is much shorter, hence Zn is forced to
be more tightly concentrated about 0.
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Big-OP allows us to bound a sequence of random variables in
probability, in the sense that we can state that the probability of
being above an arbitrarily large threshold C converges to zero. As
with its deterministic versions o and O, a little-oP is more restric-
tive than a big-OP, and the former implies the latter.

Definition 1.8 (Big-OP). Given a strictly positive sequence an and a
sequence of random variables Xn,

Xn = OP(an) : ⇐⇒ ∀ε > 0, ∃Cε > 0, n0(ε) ∈ N :

∀n ≥ n0(ε), P

[
|Xn|
an

> Cε

]
< ε

⇐⇒ lim
C→∞

lim sup
n→∞

P

[
|Xn|
an

> C
]
= 0.
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Figure 1.2: Differences and simi-
larities between little-o and big-O,
illustrated for the dominating se-
quence bn = 1/ log(n) (black solid
curve) and sequences ai,n, j = 1, . . . , 9
(colored curves). The dashed lines
represent the sequences Cbn, for a
grid of constants C. The plots on the
left column compare ai,n against bn,
whereas the right column plots show
the equivalent view in terms of the
ratios ai,n/bn (recall iii in Proposition
1.7). Sequences a1,n = 2/n + 50/n2,
a2,n = (sin(n/5) + 2)/n5/4, and a3,n =
3(1 + 5 exp(−(n − 55.5)2/200))/n are
o(bn) (hence also O(bn)). Sequences
a4,n = (2 log10(n)((n + 3)/(2n)))−1 +
a3,n/2, a5,n = (4 log2(n/2))−1,
and a6,n = (log(n2 + n))−1 are
O(bn), but not o(bn). Finally, se-
quences a7,n = log(5n + 3)−1/4/2,
a8,n = (4 log(log(10n + 2)))−1, and
a9,n = (2 log(log(n2 + 10n + 2)))−1 are
not O(bn) (hence neither o(bn)).
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If Xn = OP(an), then we say that Xn is big-OP of an.

Example 1.4. Chebyshev inequality entails that P[|Xn − E[Xn]| ≥
t] ≤ Var[Xn]/t2, ∀t > 0. Setting ε := Var[Xn]/t2 and Cε := 1/

√
ε,

then P
[
|Xn − E[Xn]| ≥

√
Var[Xn]Cε

]
≤ ε. Therefore,

Xn − E[Xn] = OP

(√
Var[Xn]

)
. (1.7)

This is a very useful result, as it gives an efficient way of deriving
the big-OP form of a sequence of random variables Xn with finite
variances.

An application of Example 1.4 shows that Xn = OP(n−1/2) for

Xn
d
= N (0, 1/n). The nature of this statement and its relation with

little-oP is visualized with Figure 1.3, which shows a particular
realization Xn(ω) of the sequence of random variables.
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Figure 1.3: Differences and similar-
ities between little-oP and big-OP,
illustrated for the sequence of ran-

dom variables Xn
d
= N (0, 1/n).

Since Xn
P−→ 0, Xn = oP(1), as ev-

idenced in the upper left plot. The
next plots check if Xn = oP(an)

by evaluating if Xn/an
P−→ 0, for

an = n−1/3, n−1/2, n−2/3. Clearly,

Xn = oP(n−1/3) (n1/3Xn
P−→ 0) but

Xn ̸= oP(n−1/2) (n1/2Xn
P−→ N (0, 1))

and Xn ̸= oP(n−2/3) (n2/3Xn di-
verges). In the first three cases,
Xn = OP(an); the fourth is
Xn ̸= OP(n−2/3), n2/3Xn is not
bounded in probability. The red lines
represent the 95% confidence intervals(
−z0.025/(an

√
n), z0.025/(an

√
n)
)

of
the random variable Xn/an, and help
evaluating graphically the convergence
in probability towards zero.

Exercise 1.13. As illustrated in Figure 1.3, prove that it is actually
true that:

a. Xn
P−→ 0.

b. n1/3Xn
P−→ 0.

c. n1/2Xn
P−→ N (0, 1).

Exercise 1.14. Prove that if Xn
d−→ X, then Xn = OP(1). Hint: use

the double-limit definition and note that X = OP(1).
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Example 1.5 (Example 1.18 in DasGupta (2008)). Suppose that

an(Xn − cn)
d−→ X for deterministic sequences an and cn such that

cn → c. Then, if an → ∞, Xn − c = oP(1). The argument is simple:

Xn − c = Xn − cn + cn − c

=
1
an

an(Xn − cn) + o(1)

=
1
an

OP(1) + o(1).

Exercise 1.15. Using the previous example, derive the weak law of
large numbers as a consequence of the CLT, both for id and non-id
independent random variables.

Proposition 1.8. Consider two strictly positive sequences an, bn → 0.
The following properties hold:

i. oP(an) = OP(an) (little-oP implies big-OP).
ii. o(1) = oP(1), O(1) = OP(1) (deterministic implies probabilistic).
iii. kOP(an) = OP(an), koP(an) = oP(an), k ∈ R.
iv. oP(an) + oP(bn) = oP(an + bn), OP(an) + OP(bn) = OP(an + bn).
v. oP(an)oP(bn) = oP(anbn), OP(an)OP(bn) = OP(anbn).
vi. oP(an) + OP(bn) = OP(an + bn), oP(an)OP(bn) = oP(anbn).
vii. oP(1)OP(an) = oP(an).
viii. (1 + oP(1))−1 = OP(1).

Example 1.6. Example 1.4 allows us to obtain the OP-part of a se-
quence of random variables Xn with finite variances using (1.7). As
a result of ii and iv in Proposition 1.8, we can also further simplify
the coarse-grained description of Xn as

Xn = O(E[Xn]) + OP

(√
Var[Xn]

)
= OP

(
E[Xn] +

√
Var[Xn]

)
.

Exercise 1.16. Consider the following sequences of random vari-
ables:

a. Xn
d
= Γ(2n, n + 1)− 2.

b. Xn
d
= LN (0, n−1/3)− 1.

c. Xn
d
= B(n, 1/n)− 1.

For each Xn, obtain, if possible, two different positive sequences
an, bn → 0 such that:

1. Xn = oP(an).
2. Xn ̸= oP(bn), Xn = OP(bn).

Use (1.7) and check your results by performing an analogous
analysis to that in Figure 1.3.
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1.5 Review of basic analytical tools

We will make use of the following well-known analytical results.

Theorem 1.9 (Mean value theorem). Let f : [a, b] −→ R be a continu-
ous function and differentiable in (a, b). Then there exists c ∈ (a, b) such
that f (b)− f (a) = f ′(c)(b − a).

Theorem 1.10 (Integral mean value theorem). Let f : [a, b] −→ R be
a continuous function over (a, b). Then there exists c ∈ (a, b) such that∫ b

a f (x)dx = f (c)(b − a).

Theorem 1.11 (Taylor’s theorem). Let f : R −→ R and x ∈ R.
Assume that f has p continuous derivatives in an interval (x − δ, x + δ)

for a δ > 0. Then, for any |h| < δ,

f (x + h) =
p

∑
j=0

f (j)(x)
j!

hj + Rn, Rn = o(hp).

Remark. The remainder Rn depends on x ∈ R. Explicit control of
Rn is possible if f is further assumed to be (p + 1) differentiable in

(x − δ, x + δ). In that case, Rn = f (p+1)(ξx)
(p+1)! hp+1 = o(hp) for a certain

ξx ∈ (x − δ, x + δ). Then, if f (p+1) is bounded in (x − δ, x + δ),
supy∈(x−δ,x+δ)

Rn
hp → 0, i.e., the remainder is o(hp) uniformly in

(x − δ, x + δ).

Theorem 1.12 (Dominated Convergence Theorem; DCT). Let fn :
S ⊂ R −→ R be a sequence of Lebesgue measurable functions such that
limn→∞ fn(x) = f (x) and | fn(x)| ≤ g(x), ∀x ∈ S and ∀n ∈ N, where∫

S |g(x)|dx < ∞. Then

lim
n→∞

∫
S

fn(x)dx =
∫

S
f (x)dx < ∞.

Remark. Note that if S is bounded and | fn(x)| ≤ M, ∀x ∈ S and
∀n ∈ N, then limit interchangeability with integral is always possi-
ble.

1.6 Why Nonparametric Statistics?

The aim of statistical inference is to use data to infer an unknown
quantity. In the game of inference, there is usually a trade-off be-
tween efficiency and generality, and this trade-off is controlled by
the strength of assumptions that are made on the data generating
process.

Parametric inference favors efficiency. Given a model (a strong
assumption on the data generating process), parametric infer-
ence delivers a set of methods (point estimation, confidence in-
tervals, hypothesis testing, etc) tailored for such model. All of these
methods are the most efficient inferential procedures if the model
matches the reality, in other words, if the data generating process
truly satisfies the assumptions. Otherwise the methods may be
inconsistent.
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9 For example, the exact two-sided t-
test for the mean of a random variable
X, i.e., the test H0 : µ = µ0 vs. H1 : µ ̸=
µ0, assumes that X ∼ N (µ, σ2). This
is an assumption indexed by the two
parameters (µ, σ2) ∈ R × R+.

Nonparametric inference favors generality. Given a set of mini-
mal and weak assumptions (e.g., certain smoothness of a density or
existence of moments of a random variable), it provides inferen-
tial methods that are consistent for broad situations, in exchange
for losing efficiency for small or moderate sample sizes. Broadly
speaking, a statistical technique qualifies as “nonparametric” if it
does not rely on parametric assumptions, these typically having a
finite-dimensional nature.9

Hence, for any specific data generation process there is a para-
metric method that dominates its nonparametric counterpart in
efficiency. But knowledge of the data generation process is rarely
the case in practice. That is the appeal of a nonparametric method:
it will perform adequately no matter what the data generation
process is. For that reason, nonparametric methods are useful:

1. When we have no clue on what could be a good parametric
model.

2. For creating goodness-of-fit tests employed to validate paramet-
ric models.

The following example aims to illustrate the first advantage, the
most useful in practice.

Example 1.7. Assume we have a sample X1, . . . , Xn from a ran-
dom variable X and we want to estimate its distribution function F.
Without any assumption, we know that the ecdf in (1.1) is an esti-
mate for F(x) = P[X ≤ x]. It is indeed a nonparametric estimate for F.
Its expectation and variance are

E[Fn(x)] = F(x), Var[Fn(x)] =
F(x)(1 − F(x))

n
.

From the squared bias and variance, we can get the MSE:

MSE[Fn(x)] =
F(x)(1 − F(x))

n
.

Assume now that X ∼ Exp(λ). By maximum likelihood, it is
possible to estimate λ as λ̂ML = X̄−1. Then, we have the following
estimate for F(x):

F(x; λ̂ML) = 1 − e−λ̂MLx. (1.8)

Obtaining the exact MSE for (1.8) is not so simple, even if it is easy
to prove that λ̂ML ∼ IG(λ−1, n). Approximations are possible using
Exercise 1.2. However, the MSE can be easily approximated by
Monte Carlo.

What happens when the data is generated from an Exp(λ)? Then
(1.8) uniformly dominates (1.1) in performance. But, even for small
deviations from Exp(λ) given by Γ(λ, p), p ̸= 1, the parametric
estimator (1.8) shows major problems in terms of bias, while the
performance of the nonparametric estimator (1.1) is completely
unaltered. The animation in Figure 1.4 illustrates precisely this
behavior.
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Figure 1.4: A simplified example of
parametric and nonparametric estima-
tion. The objective is to estimate the
distribution function F of a random
variable. The data is generated from
a Γ(λ, p). The parametric method
assumes that p = 1, that is, that
the data comes from a Exp(λ). The
nonparametric method does not as-
sume anything on the data generation
process. The left plot shows the true
distribution function and ten esti-
mates of each method from samples of
size n. The right plot shows the MSE
of each method on estimating F(x).
Application available here.

https://shinyserv.es/shiny/dist-mse/


1 Another example is the p-quantile
xp := F(−1)(p), where F(−1)(u) :=
inf{x ∈ R : F(x) ≥ u} is the pseudo-
inverse of the cdf F. Then, xp can be
estimated by the sample p-quantile

x̂p := F(−1)
n (p).
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Figure 2.1: The pdf and cdf of a
mixture of three normals. The pdf
yields better insights into the structure
of the continuous random variable X
than the cdf does.
2 Is not even continuous!

3 Note that we estimate f (x) by means
of an estimate for f (x0), where x is at
most h > 0 units above x0. Thus, we
do not estimate directly f (x) with the
histogram.

2
Kernel density estimation I

A random variable X is completely characterized by its cdf. Hence,
an estimation of the cdf yields estimates for different characteristics
of X as side-products by plugging, in these characteristics, the ecdf
Fn instead of the F. For example1, the mean µ = E[X] =

∫
x dF(x)

can be estimated by
∫

x dFn(x) = 1
n ∑n

i=1 Xi = X̄.
Despite their usefulness and many advantages, cdfs are hard to

visualize and interpret, a consequence of their cumulative-based
definition.

Densities, on the other hand, are easy to visualize and interpret,
making them ideal tools for data exploration of continuous random
variables. They provide immediate graphical information about the
highest-density regions, modes, and shape of the support of X. In
addition, densities also completely characterize continuous random
variables. Yet, even though a pdf follows from a cdf by the relation
f = F′, density estimation does not follow immediately from the
ecdf Fn, since this function is not differentiable2. Hence the need for
specific procedures for estimating f that we will see in this chapter.

2.1 Histograms

2.1.1 Histogram

The simplest method to estimate a density f from an iid sample
X1, . . . , Xn is the histogram. From an analytical point of view, the
idea is to aggregate the data in intervals of the form [x0, x0 + h)
and then use their relative frequency to approximate the density at
x ∈ [x0, x0 + h), f (x), by the estimate of3

f (x0) = F′(x0)

= lim
h→0+

F(x0 + h)− F(x0)

h

= lim
h→0+

P[x0 < X < x0 + h]
h

.

More precisely, given an origin t0 and a bandwidth h > 0, the
histogram builds a piecewise constant function in the intervals
{Bk := [tk, tk+1) : tk = t0 + hk, k ∈ Z} by counting the number
of sample points inside each of them. These constant-length inter-
vals are also called bins. The fact that they are of constant length h
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4 Recall that, with this standardization,
we approach to the probability density
concept.
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is important: we can easily standardize the counts on any bin by
h in order to have relative frequencies per length4 in the bins. The
histogram at a point x is defined as

f̂H(x; t0, h) :=
1

nh

n

∑
i=1

1{Xi∈Bk :x∈Bk}. (2.1)

Equivalently, if we denote the number of observations X1, . . . , Xn in
Bk as vk, then the histogram can be written as

f̂H(x; t0, h) =
vk
nh

, if x ∈ Bk for a certain k ∈ Z.

The computation of histograms is straightforward in R. As an ex-
ample, we consider the old-but-gold faithful dataset. This dataset
contains the duration of the eruption and the waiting time between
eruptions for the Old Faithful geyser in Yellowstone National Park
(USA).

# The faithful dataset is included in R

head(faithful)

## eruptions waiting

## 1 3.600 79

## 2 1.800 54

## 3 3.333 74

## 4 2.283 62

## 5 4.533 85

## 6 2.883 55

# Duration of eruption

faith_eruptions <- faithful$eruptions

# Default histogram: automatically chosen bins and absolute frequencies!

histo <- hist(faith_eruptions)

# List that contains several objects

str(histo)

## List of 6

## $ breaks : num [1:9] 1.5 2 2.5 3 3.5 4 4.5 5 5.5

## $ counts : int [1:8] 55 37 5 9 34 75 54 3

## $ density : num [1:8] 0.4044 0.2721 0.0368 0.0662 0.25 ...

## $ mids : num [1:8] 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25

## $ xname : chr "faith_eruptions"

## $ equidist: logi TRUE

## - attr(*, "class")= chr "histogram"

# With relative frequencies

hist(faith_eruptions, probability = TRUE)

# Choosing the breaks

# t0 = min(faithE), h = 0.25

Bk <- seq(min(faith_eruptions), max(faith_eruptions), by = 0.25)

hist(faith_eruptions, probability = TRUE, breaks = Bk)

rug(faith_eruptions) # Plotting the sample

Exercise 2.1. For iris$Sepal.Length, compute:

a. The histogram of relative frequencies with five bins.
b. The histogram of absolute frequencies with t0 = 4.3 and h = 1.
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5 Note that it is key that the {Bk}
are deterministic (and not sample-
dependent) for this result to hold.
6 This is an important point. Notice
also that this k depends on h because
tk = t0 + kh, therefore the k for which
x ∈ [tk , tk+1) will change when, for
example, h → 0.

7 Because x ∈ [tk , tk+1) with k changing
as h → 0 (see the previous footnote)
and the interval ends up collapsing in
x, so any point in [tk , tk+1) converges
to x.
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Figure 2.2: The dependence of the
histogram on the origin t0. The red
curve represents the uniform pdf.

Add the rug of the data for both histograms.

The analysis of f̂H(x; t0, h) as a random variable is simple, once
one recognizes that the bin counts vk are distributed as B(n, pk),
with pk := P[X ∈ Bk] =

∫
Bk

f (t)dt.5 If f is continuous, then by the
mean value theorem, pk = h f (ξk,h) for a ξk,h ∈ (tk, tk+1). Assume
that k ∈ Z is such that x ∈ Bk = [tk, tk+1).6 Therefore:

E[ f̂H(x; t0, h)] =
npk
nh

= f (ξk,h),

Var[ f̂H(x; t0, h)] =
npk(1 − pk)

n2h2 =
f (ξk,h)(1 − h f (ξk,h))

nh
.

(2.2)

The results above yield interesting insights:

1. If h → 0, then ξk,h → x 7, resulting in f (ξk,h) → f (x), and thus
(2.1) becomes an asymptotically (when h → 0) unbiased estimator
of f (x).

2. But if h → 0, the variance increases. For decreasing the variance,
nh → ∞ is required.

3. The variance is directly dependent on f (ξk,h)(1 − h f (ξk,h)) →
f (x) (as h → 0), hence there is more variability at regions with
higher density.

A more detailed analysis of the histogram can be seen in Section
3.2.2 in Scott (2015). We skip it since the detailed asymptotic anal-
ysis for the more general kernel density estimator will be given in
Section 2.2.

Exercise 2.2. Given (2.2), obtain MSE[ f̂H(x; t0, h)]. What should
happen in order to have MSE[ f̂H(x; t0, h)] → 0?

Clearly, the shape of the histogram depends on:

• t0, since the separation between bins happens at t0 + kh, k ∈ Z;
• h, which controls the bin size and the effective number of bins

for aggregating the sample.

We focus first on exploring the dependence on t0, as it serves for
motivating the next density estimator.

# Sample from a U(0, 1)

set.seed(1234567)

u <- runif(n = 100)

# Bins for t0 = 0, h = 0.2

Bk1 <- seq(0, 1, by = 0.2)

# Bins for t0 = -0.1, h = 0.2

Bk2 <- seq(-0.1, 1.1, by = 0.2)

# Comparison of histograms for different t0's

hist(u, probability = TRUE, breaks = Bk1, ylim = c(0, 1.5),

main = "t0 = 0, h = 0.2")

rug(u)

abline(h = 1, col = 2)

hist(u, probability = TRUE, breaks = Bk2, ylim = c(0, 1.5),

main = "t0 = -0.1, h = 0.2")

rug(u)

abline(h = 1, col = 2)
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Figure 2.3: The dependence of the
histogram on the origin t0 for non-
compactly supported densities. The
red curve represents the underlying
pdf, a mixture of two normals.
8 The motivation for this terminology
will be apparent in Section 2.2.

High dependence on t0 also happens when estimating densities
that are not compactly supported. The following snippet of code
points towards it.

# Sample 50 points from a N(0, 1) and 25 from a N(3.25, 0.25)

set.seed(1234567)

samp <- c(rnorm(n = 50, mean = 0, sd = 1),

rnorm(n = 25, mean = 3.25, sd = sqrt(0.5)))

# min and max for choosing Bk1 and Bk2

range(samp)

## [1] -2.082486 4.344547

# Comparison

Bk1 <- seq(-2.5, 5, by = 0.5)

Bk2 <- seq(-2.25, 5.25, by = 0.5)

hist(samp, probability = TRUE, breaks = Bk1, ylim = c(0, 0.5),

main = "t0 = -2.5, h = 0.5")

curve(2/3 * dnorm(x, mean = 0, sd = 1) +

1/3 * dnorm(x, mean = 3.25, sd = sqrt(0.5)), col = 2, add = TRUE,

n = 200)

rug(samp)

hist(samp, probability = TRUE, breaks = Bk2, ylim = c(0, 0.5),

main = "t0 = -2.25, h = 0.5")

curve(2/3 * dnorm(x, mean = 0, sd = 1) +

1/3 * dnorm(x, mean = 3.25, sd = sqrt(0.5)), col = 2, add = TRUE,

n = 200)

rug(samp)

Clearly, the subjectivity introduced by the dependence of t0

is something that we would like to get rid of. We can do so by
allowing the bins to be dependent on x (the point at which we want
to estimate f (x)), rather than fixing them beforehand.

2.1.2 Moving histogram

An alternative to avoid the dependence on t0 is the moving his-
togram, also known as the naive density estimator.8 The idea is to ag-
gregate the sample X1, . . . , Xn in intervals of the form (x − h, x + h)
and then use its relative frequency in (x − h, x + h) to approximate
the density at x, which can be expressed as

f (x) = F′(x)

= lim
h→0+

F(x + h)− F(x − h)
2h

= lim
h→0+

P[x − h < X < x + h]
2h

.

Recall the differences with the histogram: the intervals depend on
the evaluation point x and are centered about it. This allows us to
directly estimate f (x) (without the proxy f (x0)) using an estimate
based on the symmetric derivative of F at x, instead of employing
an estimate based on the forward derivative of F at x0.

More precisely, given a bandwidth h > 0, the naive density
estimator builds a piecewise constant function by considering the
relative frequency of X1, . . . , Xn inside (x − h, x + h):

f̂N(x; h) :=
1

2nh

n

∑
i=1

1{x−h<Xi<x+h}. (2.3)
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Figure 2.4: The naive density estimator
f̂N(·; h) (black curve). The red curve
represents the underlying pdf, a
mixture of two normals.

9 Or, in other words, if h−1 = o(n), i.e.,
if h−1 grows more slowly than n does.

Figure 2.4 shows the moving histogram for the same sample used
in Figure 2.3, clearly revealing the remarkable improvement with
respect to the histograms shown when estimating the underlying
density.

Exercise 2.3. Is f̂N(·; h) continuous in general? Justify your answer.
If the answer is negative, then:

a. What is the maximum number of discontinuities it may have?
b. What should happen to have fewer discontinuities than its maxi-

mum?

Exercise 2.4. Implement your own version of the moving histogram
in R. It must be a function that takes as inputs:

1. a vector with the evaluation points x;
2. sample X1, . . . , Xn;
3. bandwidth h.

The function must return (2.3) evaluated for each x. Test the imple-
mentation by comparing the density of a N (0, 1) when estimated
with n = 100 observations.

Analogously to the histogram, the analysis of f̂N(x; h) as a ran-
dom variable follows from realizing that

n

∑
i=1

1{x−h<Xi<x+h} ∼ B(n, px,h),

px,h := P[x − h < X < x + h] = F(x + h)− F(x − h).

Then:

E[ f̂N(x; h)] =
F(x + h)− F(x − h)

2h
, (2.4)

Var[ f̂N(x; h)] =
F(x + h)− F(x − h)

4nh2

− (F(x + h)− F(x − h))2

4nh2 . (2.5)

Exercise 2.5. Derive expressions (2.4) and (2.5) from the binomial
relation indicated above.

Results (2.4) and (2.5) provide interesting insights into the effect
of h:

1. If h → 0, then:

• E[ f̂N(x; h)] → f (x) and (2.3) is an asymptotically unbiased
estimator of f (x).

• Var[ f̂N(x; h)] ≈ f (x)
2nh − f (x)2

n → ∞.

2. If h → ∞, then:

• E[ f̂N(x; h)] → 0.
• Var[ f̂N(x; h)] → 0.
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10 Why so?

3. The variance shrinks to zero if nh → ∞.9 So both the bias and
the variance can be reduced if n → ∞, h → 0, and nh → ∞,
simultaneously.

4. The variance is almost proportional10 to f (x).

The animation in Figure 2.5 illustrates the previous points and
gives insights into how the performance of (2.3) varies smoothly
with h.

Figure 2.5: Bias and variance for the
moving histogram. The animation
shows how for small bandwidths the
bias of f̂N(x; h) on estimating f (x) is
small, but the variance is high, and
how for large bandwidths the bias is
large and the variance is small. The
variance is visualized through the
asymptotic 95% confidence intervals
for f̂N(x; h). Application available here.

The estimator (2.3) raises an important question:

Why give the same weight to all X1, . . . , Xn in (x − h, x + h) for
approximating P[x−h<X<x+h]

2h ?

We are estimating f (x) = F′(x) by estimating F(x+h)−F(x−h)
2h

through the relative frequency of X1, . . . , Xn in the interval (x −
h, x + h). Therefore, it seems reasonable that the data points closer
to x are more important to assess the infinitesimal probability of x
than the ones further away. This observation shows that (2.3) is in-
deed a particular case of a wider and more sensible class of density
estimators, which we will see next.

https://shinyserv.es/shiny/bias-var-movhist/
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11 In greater generality, the kernel
K might only be assumed to be an
integrable function with unit integral.
12 Also known as the Parzen–Rosemblatt
estimator to honor the proposals by
Parzen (1962) and Rosenblatt (1956).

2.2 Kernel density estimation

The moving histogram (2.3) can be equivalently written as

f̂N(x; h) =
1

2nh

n

∑
i=1

1{x−h<Xi<x+h}

=
1

nh

n

∑
i=1

1
2

1{−1< x−Xi
h <1

}
=

1
nh

n

∑
i=1

K
(

x − Xi
h

)
, (2.6)

with K(z) = 1
2 1{−1<z<1}. Interestingly, K is a uniform density in

(−1, 1)! This means that, when approximating

P[x − h < X < x + h] = P

[
−1 <

x − X
h

< 1
]

by (2.6), we are giving equal weight to all the points X1, . . . , Xn. The
generalization of (2.6) to non-uniform weighting is now obvious:
replace K with an arbitrary density! Then K is known as a kernel.
As it is commonly11 assumed, we consider K to be a density that
is symmetric and unimodal at zero. This generalization provides the
definition of the kernel density estimator (kde)12:

f̂ (x; h) :=
1

nh

n

∑
i=1

K
(

x − Xi
h

)
. (2.7)

A common notation is Kh(z) := 1
h K
( z

h
)

, the so-called scaled
kernel, so that the kde is written as f̂ (x; h) = 1

n ∑n
i=1 Kh(x − Xi).

Figure 2.6: Construction of the kernel
density estimator. The animation
shows how bandwidth and kernel
affect the density estimate, and how
the kernels are rescaled densities with
modes at the data points. Application
available here.

https://shinyserv.es/shiny/kde/
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It is useful to recall (2.7) with the normal kernel. If that is the
case, then Kh(x − Xi) = ϕh(x − Xi) and the kernel is the density of
a N (Xi, h2). Thus the bandwidth h can be thought of as the standard
deviation of a normal density with mean Xi, and the kde (2.7) as
a data-driven mixture of those densities. Figure 2.6 illustrates the
construction of the kde and the bandwidth and kernel effects.

Several types of kernels are possible. Figure 2.7 illustrates the
form of several implemented in R’s density function. The most
popular is the normal kernel K(z) = ϕ(z), although the Epanech-
nikov kernel, K(z) = 3

4 (1 − z2)1{|z|<1}, is the most efficient.13 The
rectangular kernel K(z) = 1

2 1{|z|<1} yields the moving histogram
as a particular case. Importantly, the kde inherits the smoothness
properties of the kernel. That means, for example, that (2.7) with a
normal kernel is infinitely differentiable. But with an Epanechnikov
kernel, (2.7) is not differentiable, and with a rectangular kernel is
not even continuous. However, if a certain smoothness is guaran-
teed (continuity at least), the choice of the kernel has little importance in
practice, at least in comparison with the much critical choice of the
bandwidth h.

The computation of the kde in R is done through the density

function. The function automatically chooses the bandwidth h
using a data-driven criterion14 referred to as a bandwidth selector.
Bandwidth selectors will be studied in detail in Section 2.4.

# Sample 100 points from a N(0, 1)

set.seed(1234567)

samp <- rnorm(n = 100, mean = 0, sd = 1)

# Quickly compute a kde and plot the density object

# Automatically chooses bandwidth and uses normal kernel

plot(density(x = samp))

# Select a particular bandwidth (0.5) and kernel (Epanechnikov)

lines(density(x = samp, bw = 0.5, kernel = "epanechnikov"), col = 2)

# density() automatically chooses the interval for plotting the kde

# (observe that the black line goes to roughly between -3 and 3)

# This can be tuned using "from" and "to"

plot(density(x = samp, from = -4, to = 4), xlim = c(-5, 5))

# The density object is a list

kde <- density(x = samp, from = -5, to = 5, n = 1024)

str(kde)

## List of 7

## $ x : num [1:1024] -5 -4.99 -4.98 -4.97 -4.96 ...

## $ y : num [1:1024] 5.98e-17 3.46e-17 2.33e-17 3.40e-17 4.29e-17 ...

## $ bw : num 0.315

## $ n : int 100

## $ call : language density.default(x = samp, n = 1024, from = -5, to = 5)

## $ data.name: chr "samp"

## $ has.na : logi FALSE

## - attr(*, "class")= chr "density"

# Note that the evaluation grid "x" is not directly controlled, only through

# "from, "to", and "n" (better use powers of 2)

plot(kde$x, kde$y, type = "l")

curve(dnorm(x), col = 2, add = TRUE) # True density

rug(samp)
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15 The variance, since
∫

zK(z)dz = 0
because the kernel is symmetric with
respect to zero.

Exercise 2.6. Employing the normal kernel:

1. Estimate and plot the density of faithful$eruptions.
2. Create a new plot and superimpose different density estimations

with bandwidths equal to 0.1, 0.5, and 1.
3. Get the density estimate at exactly the point x = 3.1 using h =

0.15.

We next introduce an important remark about the use of the
density function. Before that, we need some notation. From now
on, we consider the integrals to be over R if not stated otherwise. In
addition, we denote

µ2(K) :=
∫

z2K(z)dz

to the second-order moment15 of K.

Remark. The kernel, say K̃, employed in density uses a parametriza-
tion that guarantees that µ2(K̃) = 1. This implies that the variance
of the scaled kernel is h2, that is, that µ2(K̃h) = h2. These normalized
kernels may be different from the ones we have considered in the
exposition. For example, the uniform kernel K(z) = 1

2 1{−1<z<1}, for
which µ2(K) = 1

3 , is implemented in R as K̃(z) = 1
2
√

3
1{−

√
3<z<

√
3}

(observe in Figure 2.7 that the rectangular kernel takes the value
1

2
√

3
≈ 0.29).

The density’s normalized kernel K̃ can be obtained from K, and
vice versa, with a straightforward derivation. On the one hand,
since µ2(K) =

∫
z2K(z),

1 =
∫ z2

µ2(K)
K(z)dz

=
∫

t2K
(

µ2(K)1/2t
)

µ2(K)1/2 dt (2.8)

by making the change of variables t = z
µ2(K)1/2 in the second equal-

ity. Now, based on (2.8), define

K̃(z) := µ2(K)1/2K
(

µ2(K)1/2z
)

(2.9)

and this is a kernel that satisfies µ2(K̃) =
∫

t2K̃(t)dt = 1 and is
a density unimodal about 0. It is indeed the kernel employed by
density.

Therefore, if we consider a bandwidth h for the normalized
kernel K̃ (resulting K̃h), we have that

K̃h(z) =
µ2(K)1/2

h
K

(
µ2(K)1/2z

h

)
= Kh̃(z)

where

h̃ := µ2(K)−1/2h. (2.10)

As a consequence, a normalized kernel K̃ with a given bandwidth h
(for example, the one considered in density’s bw) has an associated
scaled bandwidth h̃ for the unnormalized kernel K.
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16 Finite-sample results might be either
analytically unfeasible or dependent
on simulation studies that are neces-
sarily limited in their scope.
17 This assumption requires certain
smoothness of the pdf, allowing thus
for Taylor expansions to be performed
on f .
18 Mild assumption that makes the
first term of the Taylor expansion
of f negligible and the second one
bounded.
19 The key assumption for reducing the
bias and variance of f̂ (·; h) simultane-
ously.
20 h = hn always depends on n from
now on, although the subscript is
dropped for the ease of notation.

The following code numerically illustrates the difference between
K̃ and K for the Epanechnikov kernel.

# Implementation of the Epanechnikov based on the theory

K_Epa <- function(z, h = 1) 3 / (4 * h) * (1 - (z / h)ˆ2) * (abs(z) < h)

mu2_K_Epa <- integrate(function(z) zˆ2 * K_Epa(z), lower = -1, upper = 1)$value

# Epanechnikov kernel by R

h <- 0.5

plot(density(0, kernel = "epanechnikov", bw = h))

# Build the equivalent bandwidth

h_tilde <- h / sqrt(mu2_K_Epa)

curve(K_Epa(x, h = h_tilde), add = TRUE, col = 2)

# The other way around

h_tilde <- 2

h <- h_tilde * sqrt(mu2_K_Epa)

curve(K_Epa(x, h = h_tilde), from = -3, to = 3, col = 2)

lines(density(0, kernel = "epanechnikov", bw = h))

Exercise 2.7. Obtain the kernel K̃ for:

a. the normal kernel K(z) = ϕ(z);
b. the Epanechnikov kernel K(z) = 3

4 (1 − z2)1{|z|<1};
c. the kernel K(z) = (1 − |z|)1{|z|<1}.

Exercise 2.8. Given h, obtain h̃ such that K̃h = Kh̃ for:

a. the uniform kernel K(z) = 1
2 1{|z|<1};

b. the kernel K(z) = 1
2π (1 + cos(z))1{|z|<π};

c. the kernel K(z) = (1 − |z|)1{|z|<1}.

Exercise 2.9. Repeat Exercise 2.6, but now considering the Epanech-
nikov kernel in its unnormalized form. To do so, find the adequate
bandwidths to input in density’s bw.

2.3 Asymptotic properties

Asymptotic results serve the purpose of establishing the large-
sample (n → ∞) properties of an estimator. One might question
why they are useful, since in practice we only have finite sample
sizes. Apart from purely theoretical reasons, asymptotic results
usually give highly valuable insights into the properties of the esti-
mator, typically much simpler to grasp than those obtained from
finite-sample results.16

Throughout this section we will make the following assump-
tions:

• A1.17 The density f is square integrable, twice continuously
differentiable, and the second derivative is square integrable.

• A2.18 The kernel K is a symmetric and bounded pdf with finite
second moment and square integrable.

• A3.19 h = hn is a deterministic sequence of positive scalars20

such that, when n → ∞, h → 0 and nh → ∞.



notes for nonparametric statistics 41

21 Since Bias[ f̂ (x; h)] = (Kh ∗ f )(x)−
f (x) ̸= 0. An example of this bias in
given in Section A.

We need to introduce some notation. The squared integral of
a function f is denoted by R( f ) :=

∫
f (x)2 dx. The convolution

between two real functions f and g, f ∗ g, is the function

( f ∗ g)(x) :=
∫

f (x − y)g(y)dy = (g ∗ f )(x). (2.11)

We are now ready to obtain the bias and variance of f̂ (x; h).
Recall that is not possible to apply the “binomial trick” we used
previously for the histogram and moving histogram: now the esti-
mator is not piecewise constant. Instead, we use the linearity of the
kde and the convolution definition. For the expectation, we have

E[ f̂ (x; h)] =
1
n

n

∑
i=1

E[Kh(x − Xi)]

=
∫

Kh(x − y) f (y)dy

= (Kh ∗ f )(x). (2.12)

Similarly, the variance is obtained as

Var[ f̂ (x; h)] =
1
n
((K2

h ∗ f )(x)− (Kh ∗ f )2(x)). (2.13)

These two expressions are exact, but hard to interpret. Equation
(2.12) indicates that the estimator is biased21, but it does not ex-
plicitly differentiate the effects of kernel, bandwidth, and density
on the bias. The same happens with (2.13), yet more emphasized.
Clarity is why the following asymptotic expressions are preferred.

Theorem 2.1. Under A1–A3, the bias and variance of the kde at x are

Bias[ f̂ (x; h)] =
1
2

µ2(K) f ′′(x)h2 + o(h2), (2.14)

Var[ f̂ (x; h)] =
R(K)

nh
f (x) + o((nh)−1). (2.15)

Proof. For the bias we consider the change of variables z = x−y
h ,

y = x − hz, dy = −h dz. The integral limits flip and we have

E[ f̂ (x; h)] =
∫

Kh(x − y) f (y)dy

=
∫

K(z) f (x − hz)dz. (2.16)

Since h → 0, an application of a second-order Taylor expansion
gives

f (x − hz) = f (x)− f ′(x)hz +
f ′′(x)

2
h2z2

+ o(h2z2). (2.17)

Substituting (2.17) in (2.16), and bearing in mind that K is a sym-
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metric density about 0, we have∫
K(z) f (x − hz)dz

=
∫

K(z)
{

f (x)− f ′(x)hz +
f ′′(x)

2
h2z2

+ o(h2z2)
}

dz

= f (x) +
1
2

µ2(K) f ′′(x)h2 + o(h2),

which provides (2.14).
For the variance, first note that

Var[ f̂ (x; h)] =
1
n2

n

∑
i=1

Var[Kh(x − Xi)]

=
1
n

{
E[K2

h(x − X)]− E[Kh(x − X)]2
}

. (2.18)

The second term of (2.18) is already computed, so we focus on the
first. Using the previous change of variables and a first-order Taylor
expansion, we have

E[K2
h(x − X)] =

1
h

∫
K2(z) f (x − hz)dz

=
1
h

∫
K2(z) { f (x) + O(hz)} dz

=
R(K)

h
f (x) + O(1). (2.19)

Plugging (2.18) into (2.19) gives

Var[ f̂ (x; h)] =
1
n

{
R(K)

h
f (x) + O(1)− O(1)

}
=

R(K)
nh

f (x) + O(n−1)

=
R(K)

nh
f (x) + o((nh)−1),

since n−1 = o((nh)−1).

Remark. Integrating little-o’s is a tricky issue. In general, integrat-
ing a ox(1) quantity, possibly dependent on x (this is emphasized
with the superscript), does not provide an o(1). In other words:∫

ox(1)dx ̸= o(1). If the previous inequality becomes an equal-
ity, then the limits and integral will be interchangeable. But this is
not always true – only if certain conditions are met, recall the DCT
(Theorem 1.12). If one wants to be completely rigorous on the two
implicit commutations of integrals and limits that took place in the
proof, it is necessary to have explicit control of the remainder via
Taylor’s theorem (Theorem 1.11) and then apply the DCT. This has
been skipped for simplicity in the exposition.

The bias and variance expressions (2.14) and (2.15) yield interest-
ing insights (see Figure 2.5 for visualizations thereof):

• The bias decreases with h quadratically. In addition, the bias
at x is directly proportional to f ′′(x). This has an interesting
interpretation:
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22 The variance of an unweighted
mean is reduced by a factor n−1 when
n observations are employed. For
computing f̂ (x; h), n observations are
used but in a weighted fashion that
roughly amounts to considering nh
unweighted observations.

– The bias is negative where f is concave, i.e., {x ∈ R : f ′′(x) <
0}. These regions correspond to peaks and modes of f , where the
kde underestimates f (it tends to be below f ).

– Conversely, the bias is positive where f is convex, i.e., {x ∈ R :
f ′′(x) > 0}. These regions correspond to valleys and tails of f ,
where the kde overestimates f (it tends to be above f ).

– The wilder the curvature f ′′, the harder to estimate f . Flat
density regions are easier to estimate than wiggling regions
with high curvature (e.g., with several modes).

• The variance depends directly on f (x). The higher the density,
the more variable is the kde. Interestingly, the variance decreases
as a factor of (nh)−1, a consequence of nh playing the role of the
effective sample size for estimating f (x). The effective sample size
can be thought of as the amount of data22 in the neighborhood
of x that is employed for estimating f (x).
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Figure 2.8: Illustration of the effective
sample size for estimating f (x) at
x = 2. In blue, the kernels with
contribution to the kde larger than
0.01. In gray, rest of the kernels. Only 3
observations are effectively employed
for estimating f (2) by f̂ (2; 0.2), despite
the sample size being n = 20.

Exercise 2.10. Using Example 1.4 and Theorem 2.1, show that:

a. f̂ (x; h) = f (x) + O(h2) + OP

(
(nh)−1/2).

b. f̂ (x; h) = f (x)(1 + oP(1)).

The MSE of the kde is trivial to obtain from the bias and vari-
ance.

Corollary 2.1. Under A1–A3, the MSE of the kde at x is

MSE[ f̂ (x; h)] =
µ2

2(K)
4

( f ′′(x))2h4 +
R(K)

nh
f (x)

+ o(h4 + (nh)−1). (2.20)
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23 That is, towards the random variable
that always takes the value f (x).

24 This is satisfied, for example, if the
kernel decreases exponentially, i.e., if
∃ α, M > 0 : K(z) ≤ e−α|z|, ∀|z| > M.

Therefore, the kde is pointwise consistent in MSE, i.e., f̂ (x; h) 2−→ f (x).

Exercise 2.11. Prove Corollary 2.1 using Theorem 2.1 and Proposi-
tion 1.7.

Note that, due to the MSE-consistency of f̂ (x; h),

f̂ (x; h) 2−→ f (x) =⇒ f̂ (x; h) P−→ f (x) =⇒ f̂ (x; h) d−→ f (x)

under A1–A2. However, these results are not useful for quantifying
the randomness of f̂ (x; h): the convergence is towards the degenerate
random variable f (x), for a given x ∈ R.23 For that reason, we now
turn our attention to the asymptotic normality of the estimator.

Theorem 2.2. Assume that
∫

K2+δ(z)dz < ∞ 24 for some δ > 0. Then,
under A1–A3,

√
nh
(

f̂ (x; h)− E[ f̂ (x; h)]
)

d−→ N (0, R(K) f (x)). (2.21)

Additionally, if nh5 = O(1), then

√
nh
(

f̂ (x; h)− f (x)− 1
2

µ2(K) f ′′(x)h2
)

d−→ N (0, R(K) f (x)).

(2.22)

Proof. First note that Kh(x − Xn) is a sequence of independent but
not identically distributed random variables: h = hn depends on n.
Therefore, we look forward to applying Theorem 1.3.

We first prove (2.21). For simplicity, denote Ki := Kh(x − Xi),
i = 1, . . . , n. From the proof of Theorem 2.1 we know that E[Ki] =

E[ f̂ (x; h)] = f (x) + o(1) and

s2
n =

n

∑
i=1

Var[Ki]

= n2Var[ f̂ (x; h)]

= n
R(K)

h
f (x)(1 + o(1)).

An application of the Cp inequality of Lemma 1.1 (first) and Jensen’s
inequality (second), gives

E
[
|Ki − E[Ki]|2+δ

]
≤ C2+δ

(
E
[
|Ki|2+δ

]
+ |E[Ki]|2+δ

)
≤ 2C2+δE

[
|Ki|2+δ

]
= O

(
E
[
|Ki|2+δ

])
.

In addition, due to a Taylor expansion after z = x−y
h and using that∫

K2+δ(z)dz < ∞,

E
[
|Ki|2+δ

]
=

1
h2+δ

∫
K2+δ

(
x − y

h

)
f (y)dy

=
1

h1+δ

∫
K2+δ(z) f (x − hz)dz

=
1

h1+δ

∫
K2+δ(z)( f (x) + o(1))dz

= O
(

h−(1+δ)
)

.
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Then,

1
s2+δ

n

n

∑
i=1

E
[
|Ki − E[Ki]|2+δ

]
=

(
h

nR(K) f (x)

)1+ δ
2
(1 + o(1))O

(
nh−(1+δ)

)
= O

(
(nh)−

δ
2

)
and the Lyapunov’s condition is satisfied. As a consequence, by
Lyapunov’s CLT and Slutsky’s theorem,√

nh
R(K) f (x)

( f̂ (x; h)− E[ f̂ (x; h)])

= (1 + o(1))
1
sn

n

∑
i=1

(Ki − E[Ki])

d−→ N (0, 1)

and (2.21) is proved.
To prove (2.22), we consider

√
nh
(

f̂ (x; h)− f (x)− 1
2

µ2(K) f ′′(x)h2
)

=
√

nh( f̂ (x; h)− E[ f̂ (x; h)] + o(h2)).

Therefore, Slutsky’s theorem and the assumption nh5 = O(1) give
√

nh( f̂ (x; h)− E[ f̂ (x; h)] + o(h2))

=
√

nh
(

f̂ (x; h)− E[ f̂ (x; h)] + o(
√

nh5)
)

=
√

nh
(

f̂ (x; h)− E[ f̂ (x; h)]
)
+ o(1). d−→ N (0, R(K) f (x)).

Remark. Note the rate
√

nh in the asymptotic normality results.
This is different from the standard CLT rate

√
n (see Theorem 1.2).

Indeed,
√

nh is slower than
√

n: the variance of the limiting nor-
mal distribution decreases as O((nh)−1) and not as O(n−1). The
phenomenon is related to the effective sample size previously illus-
trated with Figure 2.8.

Exercise 2.12. Using (2.22) and Example 1.5, show that f̂ (x; h) =

f (x) + oP(1).

2.4 Bandwidth selection

As we saw in the previous sections, the kde critically depends on
the bandwidth employed. The purpose of this section is to intro-
duce objective and automatic bandwidth selectors that attempt to
minimize the estimation error of the target density f .

The first step is to define a global, rather than local, error crite-
rion. The Integrated Squared Error (ISE),

ISE[ f̂ (·; h)] :=
∫
( f̂ (x; h)− f (x))2 dx,
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25 For defining ĝ(y; h) we consider the
transformed kde seen in Section 2.5.1.

is the squared distance between the kde and the target density.
The ISE is a random quantity, since it depends directly on the
sample X1, . . . , Xn. As a consequence, looking for an optimal-ISE
bandwidth is a hard task, since the optimality is dependent on the
sample itself and not only on the population and n. To avoid this
problem, it is usual to compute the Mean Integrated Squared Error
(MISE):

MISE[ f̂ (·; h)] :=E
[
ISE[ f̂ (·; h)]

]
=E

[∫
( f̂ (x; h)− f (x))2 dx

]
=
∫

E
[
( f̂ (x; h)− f (x))2

]
dx

=
∫

MSE[ f̂ (x; h)]dx.

The MISE is convenient due to its mathematical tractability and
its natural relation to the MSE. There are, however, other error cri-
teria that present attractive properties, such as the Mean Integrated
Absolute Error (MIAE):

MIAE[ f̂ (·; h)] :=E

[∫
| f̂ (x; h)− f (x)|dx

]
=
∫

E
[
| f̂ (x; h)− f (x)|

]
dx.

The MIAE, unlike the MISE, has the appeal of being invariant with
respect to monotone transformations of the density. For example, if
g(x) = f (t−1(x))(t−1)′(x) is the density of Y = t(X) and X ∼ f ,
then the change of variables25 y = t(x) gives∫

| f̂ (x; h)− f (x)|dx =
∫

| f̂ (t−1(y); h)− f (t−1(y))|(t−1)′(y)dy

=
∫

|ĝ(y; h)− g(y)|dy.

Despite this attractive invariance property, the analysis of MIAE is
substantially more complicated than the MISE. We refer to Devroye
and Györfi (1985) for a comprehensive treatment of absolute value
metrics for kde.

Once the MISE is set as the error criterion to be minimized, our
aim is to find

hMISE := arg min
h>0

MISE[ f̂ (·; h)]. (2.23)

For that purpose, we need an explicit expression of the MISE which
we can attempt to minimize. The following asymptotic expansion
for the MISE solves this issue.

Corollary 2.2. Under A1–A3,

MISE[ f̂ (·; h)] =
1
4

µ2
2(K)R( f ′′)h4 +

R(K)
nh

+ o(h4 + (nh)−1). (2.24)

Therefore, MISE[ f̂ (·; h)] → 0 when n → ∞.
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26 Since n−4/5 = o(n−2/3).

27 We only use a parametric assump-
tion for estimating the curvature of
f in present hAMISE, not for directly
estimating f itself.

Exercise 2.13. Prove Corollary 2.2 by integrating the MSE of f̂ (x; h).

The dominating part of the MISE is denoted by AMISE, which
stands for Asymptotic MISE:

AMISE[ f̂ (·; h)] =
1
4

µ2
2(K)R( f ′′)h4 +

R(K)
nh

.

The closed-form expression of the AMISE allows obtaining a band-
width that minimizes this error.

Corollary 2.3. The bandwidth that minimizes the AMISE is

hAMISE =

[
R(K)

µ2
2(K)R( f ′′)n

]1/5

.

The optimal AMISE is:

inf
h>0

AMISE[ f̂ (·; h)] =
5
4
(µ2

2(K)R(K)4)1/5R( f ′′)1/5n−4/5. (2.25)

Exercise 2.14. Prove Corollary 2.3 by solving d
dh AMISE[ f̂ (·; h)] = 0.

The AMISE-optimal order deserves some further inspection. It
can be seen in Section 3.2 in Scott (2015) that the AMISE-optimal
order for the histogram of Section 2.1.1 (not the moving histogram)
is (3/4)2/3 R( f ′)1/3n−2/3. Two aspects are interesting when com-
paring this result with (2.25):

• First, the MISE of the histogram is asymptotically larger than the
MISE of the kde.26 This is a quantification of the quite apparent
visual improvement of the kde over the histogram.

• Second, R( f ′) appears instead of R( f ′′), evidencing that the
histogram is affected by how fast f varies and not only by the
curvature of the target density f .

Unfortunately, the AMISE bandwidth depends on R( f ′′) =∫
( f ′′(x))2 dx, which measures the curvature of the density. As a

consequence, it can not be readily applied in practice, as R( f ′′)
is unknown! In the next subsection we will see how to plug-in
estimates for R( f ′′).

2.4.1 Plug-in rules

A simple solution to estimate R( f ′′) is to assume that f is the den-
sity of a N (µ, σ2) and then plug-in the form of the curvature for
such density,27

R(ϕ′′
σ (· − µ)) =

3
8π1/2σ5 .

While doing so, we approximate the curvature of an arbitrary den-
sity by means of the curvature of a normal and we have that

hAMISE =

[
8π1/2R(K)

3µ2
2(K)n

]1/5

σ.
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28 Not to confuse with bw.nrd0!

Interestingly, the bandwidth is directly proportional to the standard
deviation of the target density. Replacing σ by an estimate yields
the normal scale bandwidth selector, which we denote ĥNS to
emphasize its randomness:

ĥNS =

[
8π1/2R(K)

3µ2
2(K)n

]1/5

σ̂.

The estimate σ̂ can be chosen as the standard deviation s, or, in
order to avoid the effects of potential outliers, as the standardized
interquantile range

σ̂IQR :=
X([0.75n]) − X([0.25n])

Φ−1(0.75)− Φ−1(0.25)

or as

σ̂ = min(s, σ̂IQR). (2.26)

When combined with a normal kernel, for which µ2(K) = 1 and
R(K) = 1

2
√

π
, this particularization of ĥNS featuring (2.26) gives the

famous rule-of-thumb for bandwidth selection:

ĥRT =

(
4
3

)1/5
n−1/5σ̂ ≈ 1.06n−1/5σ̂.

ĥRT is implemented in R through the function bw.nrd28.

# Data

set.seed(667478)

n <- 100

x <- rnorm(n)

# Rule-of-thumb

bw.nrd(x = x)

## [1] 0.4040319

# bwd.nrd employs 1.34 as an approximation for diff(qnorm(c(0.25, 0.75)))

# Same as

iqr <- diff(quantile(x, c(0.25, 0.75))) / diff(qnorm(c(0.25, 0.75)))

1.06 * nˆ(-1/5) * min(sd(x), iqr)

## [1] 0.4040319

The previous selector is an example of a zero-stage plug-in se-
lector, a terminology inspired by the fact that the scalar R( f ′′) was
estimated by plugging a parametric assumption directly, without
attempting a nonparametric estimation first. Another possibility
could have been to estimate R( f ′′) nonparametrically and then to
plug-in the estimate into hAMISE. Let’s explore this possibility in
more detail next.

First, note the useful equality∫
f (s)(x)2 dx = (−1)s

∫
f (2s)(x) f (x)dx.

This equality follows by an iterative application of integration by
parts. For example, for s = 2, take u = f ′′(x) and dv = f ′′(x)dx. It
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29 See Section 3.5 in Wand and Jones
(1995) for full details.

30 Recall there is no “I”, since we are
estimating a scalar, not a function.

gives ∫
f ′′(x)2 dx = [ f ′′(x) f ′(x)]+∞

−∞ −
∫

f ′(x) f ′′′(x)dx

= −
∫

f ′(x) f ′′′(x)dx

under the assumption that the derivatives vanish at infinity. Apply-
ing again integration by parts with u = f ′′′(x) and dv = f ′(x)dx
gives the result. This simple derivation has an important conse-
quence: for estimating the functionals R( f (s)) it suffices to estimate
the functionals

ψr :=
∫

f (r)(x) f (x)dx = E[ f (r)(X)] (2.27)

for r = 2s. In particular, R( f ′′) = ψ4.
Thanks to the expression (2.27), a possible way to estimate ψr

nonparametrically is

ψ̂r(g) =
1
n

n

∑
i=1

f̂ (r)(Xi; g)

=
1
n2

n

∑
i=1

n

∑
j=1

L(r)
g (Xi − Xj), (2.28)

where f̂ (r)(·; g) is the r-th derivative of a kde with bandwidth g and
kernel L, i.e.,

f̂ (r)(x; g) =
1

ngr+1

n

∑
i=1

L(r)
(

x − Xi
g

)
.

Note that g and L can be different from h and K, respectively. It
turns out that estimating ψr involves the adequate selection of a
bandwidth g. The agenda is analogous to the one for hAMISE, but
now taking into account that both ψ̂r(g) and ψr are scalar quantities:

1. Under certain regularity assumptions29, the asymptotic bias and
variance of ψ̂r(g) are obtained. With them, we can compute the
asymptotic expansion of the MSE30 and obtain the Asymptotic
Mean Squared Error AMSE:

AMSE[ψ̂r(g)] =

{
L(r)(0)
ngr+1 +

µ2(L)ψr+2g2

4

}
+

2R(L(r))ψ0

n2g2r+1

+
4
n

{∫
f (r)(x)2 f (x)dx − ψ2

r

}
.

Note: k is the highest integer such that µk(L) > 0. In these notes
we have restricted the exposition to the case k = 2 for the kernels
K, but there are theoretical gains if one allows high-order kernels L
with vanishing even moments larger than 2 for estimating ψr.

2. Obtain the AMSE-optimal bandwidth:

gAMSE =

[
− k!L(r)(0)

µk(L)ψr+kn

]1/(r+k+1)
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31 For the rule-of-thumb selector, ℓ = 0
and we estimate ψ4 parametrically. If
ℓ = 2, we estimate ψ8 parametrically,
which is then required for estimating
ψ6 nonparametrically.
32 Hence, what we are doing is “sweep-
ing under ℓ nonparametric carpets”
this parametric estimate on the charac-
teristic ψℓ+4 of the density, ultimately
required for computing the bandwidth
selector.

The order of the optimal AMSE is

inf
g>0

AMSE[ψ̂r(g)] =

O(n−(2k+1)/(r+k+1)), k < r,

O(n−1), k ≥ r,

which shows that a parametric-like rate of convergence can be
achieved with high-order kernels. If we consider L = K and
k = 2, then

gAMSE =

[
− 2K(r)(0)

µ2(L)ψr+2n

]1/(r+3)

.

The result above has a major problem: it depends on ψr+2! Thus,
if we want to estimate R( f ′′) = ψ4 by ψ̂4(gAMSE) we will need to
estimate ψ6. But ψ̂6(gAMSE) will depend on ψ8, and so on! The solu-
tion to this convoluted problem is to stop estimating the functional
ψr after a given number ℓ of stages, hence the terminology ℓ-stage
plug-in selector. At the ℓ-th stage, the functional ψ2ℓ+4 inside the
AMSE-optimal bandwidth for estimating ψ2ℓ+2 nonparametri-
cally31 is computed assuming that the density is a N (µ, σ2) 32, for
which

ψr =
(−1)r/2r!

(2σ)r+1(r/2)!
√

π
, for r even.

Typically, two stages are considered a good trade-off between
bias (mitigated when ℓ increases) and variance (increases with ℓ) of
the plug-in selector. This is the method proposed by Sheather and
Jones (1991), where they consider L = K and k = 2, yielding what
we call the Direct Plug-In (DPI). The algorithm is:

1. Estimate ψ8 using ψ̂NS
8 := 105

32
√

πσ̂9 , where σ̂ is given in (2.26).

2. Estimate ψ6 using ψ̂6(g1) from (2.28), where

g1 :=

[
− 2K(6)(0)

µ2(K)ψ̂NS
8 n

]1/9

.

3. Estimate ψ4 using ψ̂4(g2) from (2.28), where

g2 :=

[
− 2K(4)(0)

µ2(K)ψ̂6(g1)n

]1/7

.

4. The selected bandwidth is

ĥDPI :=

[
R(K)

µ2
2(K)ψ̂4(g2)n

]1/5

.

Remark. The derivatives K(r) for the normal kernel can be obtained
using the (probabilists’) Hermite polynomials: ϕ(r)(x) = ϕ(x)Hr(x).
For r = 0, . . . , 6, these are: H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,
H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x,
and H6(x) = x6 − 15x4 + 45x2 − 15. Hermite polynomials satisfy the
recurrence relation Hℓ+1(x) = xHℓ(x)− ℓHℓ−1(x) for ℓ ≥ 1.
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ĥDPI is implemented in R through the function bw.SJ (use method

= "dpi"). An alternative and faster implementation is ks::hpi,
which also accounts for more flexibility and has a somehow more
complete documentation.

# Data

set.seed(672641)

x <- rnorm(100)

# DPI selector

bw.SJ(x = x, method = "dpi")

## [1] 0.5006905

# Similar to

ks::hpi(x) # Default is two-stage

## [1] 0.4999456

Exercise 2.15. Apply and inspect the kde of airquality$Ozone
using the DPI selector (both bw.SJ and ks::hpi). What can you
conclude from the estimate?

2.4.2 Cross-validation

We now turn our attention to a different philosophy of bandwidth
estimation. Instead of trying to minimize the AMISE by plugging
estimates for the unknown curvature term, we directly attempt
to minimize the MISE. The idea is to use the sample twice: one
for computing the kde and other for evaluating its performance
on estimating f . To avoid the clear dependence on the sample,
we do this evaluation in a cross-validatory way: the data used for
computing the kde is not used for its evaluation.

We begin by expanding the square in the MISE expression:

MISE[ f̂ (·; h)] =E

[∫
( f̂ (x; h)− f (x))2 dx

]
=E

[∫
f̂ (x; h)2 dx

]
− 2E

[∫
f̂ (x; h) f (x)dx

]
+
∫

f (x)2 dx.

Since the last term does not depend on h, minimizing MISE[ f̂ (·; h)]
is equivalent to minimizing

E

[∫
f̂ (x; h)2 dx

]
− 2E

[∫
f̂ (x; h) f (x)dx

]
. (2.29)

This quantity is unknown, but it can be estimated unbiasedly by

LSCV(h) :=
∫

f̂ (x; h)2 dx − 2n−1
n

∑
i=1

f̂−i(Xi; h), (2.30)

where f̂−i(·; h) is the leave-one-out kde and is based on the sample
with the Xi removed:

f̂−i(x; h) =
1

n − 1

n

∑
j=1
j ̸=i

Kh(x − Xj).
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33 Why so? Because X is unbiased for
estimating E[X].

34 Long intervals containing the so-
lution may lead to unsatisfactory
termination of the search; short inter-
vals might not contain the minimum.

Exercise 2.16. Prove that (2.30) is indeed an unbiased estimator of
(2.29).

Exercise 2.17 (Exercise 3.3 in Wand and Jones (1995)). Prove that
E[LSCV(h)] = MISE[ f̂ (·; h)]− R( f ).

The motivation for (2.30) is the following. The first term is
unbiased by design.33 The second arises from approximating∫

f̂ (x; h) f (x)dx by Monte Carlo from the sample X1, . . . , Xn ∼ f ; in
other words, by replacing f (x)dx = dF(x) with dFn(x). This gives∫

f̂ (x; h) f (x)dx ≈ 1
n

n

∑
i=1

f̂ (Xi; h)

and, in order to mitigate the dependence of the sample, we replace
f̂ (Xi; h) with f̂−i(Xi; h) above. In that way, we use the sample for
estimating the integral involving f̂ (·; h), but for each Xi we com-
pute the kde on the remaining points.

The Least Squares Cross-Validation (LSCV) selector, also de-
noted Unbiased Cross-Validation (UCV) selector, is defined as

ĥLSCV := arg min
h>0

LSCV(h).

Numerical optimization is required for obtaining ĥLSCV, contrary
to the previous plug-in selectors, and there is little control on the
shape of the objective function. This will also be the case for the
subsequent bandwidth selectors. The following remark warns
about the dangers of numerical optimization in this context.

Remark. Numerical optimization of the LSCV function can be
challenging. In practice, several local minima are possible, and
the roughness of the objective function can vary notably depend-
ing on n and f . As a consequence, optimization routines may
get trapped in spurious solutions. To be on the safe side, it is al-
ways advisable to check (when possible) the solution by plotting
LSCV(h) for a range of h, or to perform a search in a bandwidth
grid: ĥLSCV ≈ arg minh1,...,hG LSCV(h).

ĥLSCV is implemented in R through the function bw.ucv. This
function uses R’s optimize, which is quite sensitive to the selection
of the search interval.34 Therefore, some care is needed; that is why
the bw.ucv.mod function is presented below.

# Data

set.seed(123456)

x <- rnorm(100)

# UCV gives a warning

bw.ucv(x = x)

## [1] 0.4499177

# Extend search interval

bw.ucv(x = x, lower = 0.01, upper = 1)

## [1] 0.5482419

# bw.ucv.mod replaces the optimization routine of bw.ucv with an exhaustive

# search on "h_grid" (chosen adaptatively from the sample) and optionally



notes for nonparametric statistics 53

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0
.2
6

-0
.2
4

-0
.2
2

-0
.2
0

-0
.1
8

-0
.1
6

-0
.1
4

h_grid

o
b
j

Figure 2.9: LSCV curve evaluated for a
grid of bandwidths, with a clear global
minimum corresponding to ĥLSCV.

# plots the LSCV curve with "plot_cv"

bw.ucv.mod <- function(x, nb = 1000L,

h_grid = 10ˆseq(-3, log10(1.2 * sd(x) *
length(x)ˆ(-1/5)), l = 200),

plot_cv = FALSE) {

if ((n <- length(x)) < 2L)

stop("need at least 2 data points")

n <- as.integer(n)

if (is.na(n))

stop("invalid length(x)")

if (!is.numeric(x))

stop("invalid 'x'")

nb <- as.integer(nb)

if (is.na(nb) || nb <= 0L)

stop("invalid 'nb'")

storage.mode(x) <- "double"

hmax <- 1.144 * sqrt(var(x)) * nˆ(-1/5)

Z <- .Call(stats:::C_bw_den, nb, x)

d <- Z[[1L]]

cnt <- Z[[2L]]

fucv <- function(h) .Call(stats:::C_bw_ucv, n, d, cnt, h)

## Original

# h <- optimize(fucv, c(lower, upper), tol = tol)$minimum

# if (h < lower + tol | h > upper - tol)

# warning("minimum occurred at one end of the range")

## Modification

obj <- sapply(h_grid, function(h) fucv(h))

h <- h_grid[which.min(obj)]

if (h %in% range(h_grid))

warning("minimum occurred at one end of h_grid")

if (plot_cv) {

plot(h_grid, obj, type = "o")

rug(h_grid)

abline(v = h, col = 2, lwd = 2)

}

h

}

# Compute the bandwidth and plot the LSCV curve

bw.ucv.mod(x = x, plot_cv = TRUE, h_grid = 10ˆseq(-1.25, 0.5, l = 200))

## [1] 0.5431561

# We can compare with the default bw.ucv output

abline(v = bw.ucv(x = x), col = 3)

The next cross-validation selector is based on Biased Cross-
Validation (BCV). The BCV selector presents a hybrid strategy that
combines plug-in and cross-validation ideas. It starts by consider-
ing the AMISE expression in (2.24)

AMISE[ f̂ (·; h)] =
1
4

µ2
2(K)R( f ′′)h4 +

R(K)
nh

and then plugs-in an estimate for R( f ′′) based on a modification of
R( f̂ ′′(·; h)). The modification is

R̃( f ′′) := R( f̂ ′′(·; h))− R(K′′)

nh5

=
1
n2

n

∑
i=1

n

∑
j=1
j ̸=i

(K′′
h ∗ K′′

h )(Xi − Xj), (2.31)

a leave-out-diagonals estimate of R( f ′′). It is designed to reduce the
bias of R( f̂ ′′(·; h)), since E

[
R( f̂ ′′(·; h))

]
= R( f ′′) + R(K′′)

nh5 + O(h2)



54 eduardo garcía-portugués

35 The precise point at which a band-
width is “too big” can be formalized
with the maximal smoothing principle,
as elaborated in Section 3.2.2 in Wand
and Jones (1995).

(Scott and Terrell, 1987). Plugging (2.31) into the AMISE expression
yields the BCV objective function and the BCV bandwidth selector:

BCV(h) :=
1
4

µ2
2(K)R̃( f ′′)h4 +

R(K)
nh

,

ĥBCV := arg locminh>0BCV(h),

where arg locminh>0BCV(h) stands for the smallest local minimizer
of BCV(h). The consideration of the local minimum is because,

by design, BCV(h) → 0 as h → ∞ for fixed n: R̃( f ′′) → 0, at
a faster rate than O(h−4). Therefore, when minimizing BCV(h),
some care is required, as one is actually interested in obtaining the
smallest local minimizer. Consequently, bandwidth grids with an
upper extreme that is too large35 are to be avoided, as these will
miss the local minimum in favor of the global one at h → ∞.

The most appealing property of ĥBCV is that it has a considerably
smaller variance than ĥLSCV. This reduction in variance comes at
the price of an increased bias, which tends to make ĥBCV larger than
hMISE.

ĥBCV is implemented in R through the function bw.bcv. Again,
bw.bcv uses R’s optimize so the bw.bcv.mod function is presented
to have better guarantees on finding the first local minimum. Quite
some care is needed with the range of bandwidth grid, though, to
avoid the global minimum for large bandwidths.

# Data

set.seed(123456)

x <- rnorm(100)

# BCV gives a warning

bw.bcv(x = x)

## [1] 0.4500924

# Extend search interval

args(bw.bcv)

## function (x, nb = 1000L, lower = 0.1 * hmax, upper = hmax, tol = 0.1 *
## lower)

## NULL

bw.bcv(x = x, lower = 0.01, upper = 1)

## [1] 0.5070129

# bw.bcv.mod replaces the optimization routine of bw.bcv with an exhaustive

# search on "h_grid" (chosen adaptatively from the sample) and optionally

# plots the BCV curve with "plot_cv"

bw.bcv.mod <- function(x, nb = 1000L,

h_grid = 10ˆseq(-3, log10(1.2 * sd(x) *
length(x)ˆ(-1/5)), l = 200),

plot_cv = FALSE) {

if ((n <- length(x)) < 2L)

stop("need at least 2 data points")

n <- as.integer(n)

if (is.na(n))

stop("invalid length(x)")

if (!is.numeric(x))

stop("invalid 'x'")

nb <- as.integer(nb)

if (is.na(nb) || nb <= 0L)

stop("invalid 'nb'")

storage.mode(x) <- "double"

hmax <- 1.144 * sqrt(var(x)) * nˆ(-1/5)
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Figure 2.10: BCV curve evaluated for
a grid of bandwidths, with a clear
local minimum corresponding to ĥBCV.
Observe the decreasing pattern when
h → ∞.
36 Recall that another way of writing

(2.32) is as the relative error ĥ−hMISE
hMISE

being asymptotically distributed as a

N
(

0, σ2

n2ν

)
.

37 Compare it with the n1/2 rate of the
CLT!

Z <- .Call(stats:::C_bw_den, nb, x)

d <- Z[[1L]]

cnt <- Z[[2L]]

fbcv <- function(h) .Call(stats:::C_bw_bcv, n, d, cnt, h)

## Original code

# h <- optimize(fbcv, c(lower, upper), tol = tol)$minimum

# if (h < lower + tol | h > upper - tol)

# warning("minimum occurred at one end of the range")

## Modification

obj <- sapply(h_grid, function(h) fbcv(h))

h <- h_grid[which.min(obj)]

if (h %in% range(h_grid))

warning("minimum occurred at one end of h_grid")

if (plot_cv) {

plot(h_grid, obj, type = "o")

rug(h_grid)

abline(v = h, col = 2, lwd = 2)

}

h

}

# Compute the bandwidth and plot the BCV curve

bw.bcv.mod(x = x, plot_cv = TRUE, h_grid = 10ˆseq(-1.25, 0.5, l = 200))

## [1] 0.5111433

# We can compare with the default bw.bcv output

abline(v = bw.bcv(x = x), col = 3)

2.4.3 Comparison of bandwidth selectors

Next, we state some insights from the convergence results of the
DPI, LSCV, and BCV selectors. All of them are based on results of
the kind

nν(ĥ/hMISE − 1) d−→ N (0, σ2), (2.32)

where σ2 depends on K and f only, and measures how variable the
selector is. The rate nν serves to quantify how fast36 the relative
error ĥ/hMISE − 1 decreases (the larger the ν, the faster the conver-
gence).

Under certain regularity conditions, we have:

• n1/10(ĥLSCV/hMISE − 1) d−→ N (0, σ2
LSCV) and n1/10(ĥBCV/hMISE −

1) d−→ N (0, σ2
BCV). Both cross-validation selectors have a slow

rate of convergence.37 Inspection of the variances of both se-
lectors reveals that, for the normal kernel, σ2

LSCV/σ2
BCV ≈ 15.7.

Therefore, LSCV is considerably more variable than BCV.

• n5/14(ĥDPI/hMISE − 1) d−→ N (0, σ2
DPI). Thus, the DPI selector has

a convergence rate much faster than the cross-validation selec-
tors. There is an appealing explanation for this phenomenon. Re-
call that ĥBCV minimizes the slightly modified version of BCV(h)
given by

1
4

µ2
2(K)ψ̃4(h)h4 +

R(K)
nh
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and

ψ̃4(h) :=
1

n(n − 1)

n

∑
i=1

n

∑
j=1
j ̸=i

(K′′
h ∗ K′′

h )(Xi − Xj)

=
n

n − 1
R̃( f ′′).

ψ̃4 is a leave-out-diagonals estimate of ψ4. Despite being different
from ψ̂4, it serves for building a DPI analogous to BCV that
points towards the precise fact that drags down the performance
of BCV. The modified version of the DPI minimizes

1
4

µ2
2(K)ψ̃4(g)h4 +

R(K)
nh

,

where g is independent of h. The two methods differ in the
way g is chosen: BCV sets g = h and the modified DPI looks
for the best g in terms of the AMSE[ψ̃4(g)]. It can be seen that
gAMSE = O(n−2/13), whereas the h used in BCV is asymptotically
O(n−1/5). This suboptimality on the choice of g is the reason of
the asymptotic deficiency of BCV.

We now focus on exploring the empirical performance of band-
width selectors. The workhorse for doing that is simulation. A
popular collection of simulation scenarios was given by Marron
and Wand (1992) and is conveniently available through the package
nor1mix. This collection is formed by normal r-mixtures of the form

f (x; µ, σ, w) : =
r

∑
j=1

wjϕσj(x − µj),

where wj ≥ 0, j = 1, . . . , r and ∑r
j=1 wj = 1. Densities of this form

are especially attractive since they allow for arbitrary flexibility and,
if the normal kernel is employed, they allow for explicit and exact
MISE expressions:

MISEr[ f̂ (·; h)] = (2
√

πnh)−1 + w′{(1 − n−1)Ω2 − 2Ω1 + Ω0}w,

(Ωa)ij = ϕ(ah2+σ2
i +σ2

j )
1/2(µi − µj), i, j = 1, . . . , r.

(2.33)

These exact MISE expressions are highly convenient for computing
hMISE, as defined in (2.23), by minimizing (2.33) numerically.

# Available models

?nor1mix::MarronWand

# Simulating

samp <- nor1mix::rnorMix(n = 500, obj = nor1mix::MW.nm9)

# MW object in the second argument

hist(samp, freq = FALSE)

# Density evaluation

x <- seq(-4, 4, length.out = 400)

lines(x, nor1mix::dnorMix(x = x, obj = nor1mix::MW.nm9), col = 2)
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# Plot a MW object directly

# A normal with the same mean and variance is plotted in dashed lines --

# you can remove it with argument p.norm = FALSE

par(mfrow = c(2, 2))

plot(nor1mix::MW.nm5)

plot(nor1mix::MW.nm7)

plot(nor1mix::MW.nm10)

plot(nor1mix::MW.nm12)

lines(nor1mix::MW.nm7, col = 2) # Also possible

Exercise 2.18. Implement the hMISE using (2.23) and (2.33) for
model nor1mix::MW.nm6. Then, compute by Monte Carlo the den-
sities of ĥDPI/hMISE − 1, ĥLSCV/hMISE − 1, and ĥBCV/hMISE − 1.
Compare them for n = 100, 200, 500, adding a vertical line to rep-
resent the hMISE bandwidth. Describe in detail the results and the
major takeaways.

Exercise 2.19. Compare the MISE and AMISE criteria in three den-
sities in nor1mix of your choice. To that purpose, code (2.33) and
the AMISE expression for the normal kernel, and compare the two
error curves. Compare them for n = 100, 200, 500, adding a verti-
cal line to represent the hMISE and hAMISE bandwidths. Describe in
detail the results and the major takeaways.

A key practical issue that emerges after discussing several band-
width selectors is the following:

Which bandwidth selector is the most adequate for a given dataset?

Unfortunately, there is no simple and universal answer to this ques-
tion. There are, however, a series of useful facts and suggestions:

• Trying several selectors and inspecting the results may help to
determine which one is estimating the density better.

• The DPI selector has a convergence rate much faster than the
cross-validation selectors. Therefore, in theory it is expected to
perform better than LSCV and BCV. For this reason, it tends to
be among the preferred bandwidth selectors in the literature.

• Cross-validatory selectors may be better suited for highly non-
normal and rough densities, in which plug-in selectors may end
up oversmoothing.

• LSCV tends to be considerably more variable than BCV.
• The RT is a quick, simple, and inexpensive selector. However, it

tends to give bandwidths that are too large for non-normal-like
data.

Figure 2.11 presents a visualization of the performance of the
kde with different bandwidth selectors, carried out in the family of
mixtures by Marron and Wand (1992).

2.5 Practical issues

In this section we discuss several practical issues for kernel density
estimation.



58 eduardo garcía-portugués

Figure 2.11: Performance comparison
of bandwidth selectors. The RT, DPI,
LSCV, and BCV are computed for each
sample for a normal mixture den-
sity. For each sample, the animation
computes the ISEs of the selectors
and sorts them from best to worst.
Changing the scenarios gives insight
into the adequacy of each selector to
hard- and simple-to-estimate densities.
Application available here.
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2.5.1 Boundary issues and transformations

In Section 2.3 we assumed certain regularity conditions for f . As-
sumption A1 stated that f should be twice continuously differen-
tiable (on R!). It is simple to think a counterexample to that: take
any density with a support with boundary, for example a LN (0, 1)
in (0, ∞), as seen below. The kde will run into trouble!

# Sample from a LN(0, 1)

set.seed(123456)

samp <- rlnorm(n = 500)

# kde and density

plot(density(samp), ylim = c(0, 0.8))

curve(dlnorm(x), from = -2, to = 10, n = 500, col = 2, add = TRUE)

rug(samp)

What is happening is clear: the kde is spreading probability
mass outside the support of LN (0, 1), because the kernels are
functions defined in R. Since the kde places probability mass at
negative values, it takes it from the positive side, resulting in a se-
vere negative bias about the right-hand side of 0. As a consequence,
the kde does not integrate one in the support of the data. No mat-
ter what the sample size considered is, the kde will always have
a negative bias of O(h) at the boundary, instead of the standard
O(h2).

A simple approach to deal with the boundary bias is to map a
non-real-supported density f into a real-supported density g, which
is simpler to estimate, by means of a transformation t:

f (x) = g(t(x))t′(x).

https://shinyserv.es/shiny/kde-bwd/
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The transformation kde is obtained by replacing g with the usual kde,
but acting on the transformed data t(X1), . . . , t(Xn):

f̂T(x; h, t) :=
1
n

n

∑
i=1

Kh(t(x)− t(Xi))t′(x). (2.34)

Note that h is in the scale of t(Xi), not Xi. Hence, another benefit of
this approach, in addition to its simplicity, is that bandwidth selec-
tion can be done transparently38 in terms of the already discussed
bandwidth selectors: select a bandwidth from t(X1), . . . , t(Xn) and
use it in (2.34). A table with some common transformations39 is the
following.

Transform. Data in t(x) t′(x)

Log (a, ∞) log(x − a) 1
x−a

Probit (a, b) Φ−1
(

x−a
b−a

)
(b − a)ϕ

(
Φ−1(x)−a

b−a

)−1

Shifted
power

(−λ1, ∞)

(data
skewed)

(x + λ1)
λ2sign(λ2)

if λ2 ̸= 0
λ2(x + λ1)

λ2−1sign(λ2)

if λ2 ̸= 0

Figure 2.12: Construction of the trans-
formation kde for the log and probit
transformations. The left panel shows
the kde (2.7) applied to the trans-
formed data. The right plot shows the
transformed kde (2.34) applied to the
original data. Application available
here.

The code below illustrates how to compute a transformation kde
in practice from density.

# kde with log-transformed data

kde <- density(log(samp))

plot(kde, main = "Kde of transformed data")

rug(log(samp))

# Careful: kde$x is in the reals!

range(kde$x)

## [1] -4.542984 3.456035

# Untransform kde$x so the grid is in (0, infty)

kde_transf <- kde

kde_transf$x <- exp(kde_transf$x)

# Transform the density using the chain rule

https://shinyserv.es/shiny/kde-transf/
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kde_transf$y <- kde_transf$y * 1 / kde_transf$x

# Transformed kde

plot(kde_transf, main = "Transformed kde", xlim = c(0, 15))

curve(dlnorm(x), col = 2, add = TRUE, n = 500)

rug(samp)

Exercise 2.20. Consider the data given by set.seed(12345); x <-

rbeta(n = 500, shape1 = 2, shape2 = 2). Compute:

a. The untransformed kde employing the DPI and LSCV selectors.
Overlay the true density.

b. The transformed kde employing a probit transformation and
using the DPI and LSCV selectors on the transformed data.

Exercise 2.21 (Exercise 2.23 in Wand and Jones (1995)). Show that
the bias and variance for the transformation kde (2.34) are

Bias[ f̂T(x; h, t)] =
1
2

µ2(K)g′′(t(x))t′(x)h2 + o(h2),

Var[ f̂T(x; h, t)] =
R(K)

nh
g(t(x))t′(x)2 + o((nh)−1),

where g is the density of t(X).

Exercise 2.22. Using the results from Exercise 2.21, prove that

AMISE[ f̂T(·; h, t)] =
1
4

µ2
2(K)

∫
(g′′(x))2t′(t−1(x))dxh4

+
R(K)

nh
E[t′(X)],

where g is the density of t(X).

2.5.2 Sampling

Sampling a kde is relatively straightforward. The trick is to recall

f̂ (x; h) =
1
n

n

∑
i=1

Kh(x − Xi)

as a mixture density made of n mixture components in which each
of them is sampled independently. The only part that might re-
quire special treatment is sampling from the density K, although R
contains specific sampling functions for the most popular kernels.

The algorithm for sampling N points goes as follows:

1. Choose i ∈ {1, . . . , n} at random.
2. Sample from Kh(· − Xi) =

1
h K
(
·−Xi

h

)
.

3. Repeat the previous steps N times.

Let’s see a quick example.

# Sample the claw

n <- 100

set.seed(23456)

samp <- nor1mix::rnorMix(n = n, obj = nor1mix::MW.nm10)
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# Kde

h <- 0.1

plot(density(samp, bw = h), main = "", col = 4)

# # Naive sampling algorithm

# N <- 1e6

# samp_kde <- numeric(N)

# for (k in 1:N) {

#

# i <- sample(x = 1:n, size = 1)

# samp_kde[k] <- rnorm(n = 1, mean = samp[i], sd = h)

#

# }

# Sample N points from the kde

N <- 1e6

i <- sample(x = n, size = N, replace = TRUE)

samp_kde <- rnorm(N, mean = samp[i], sd = h)

# Add kde of the sampled kde -- almost equal

lines(density(samp_kde), col = 3)

legend("topright", legend = c("Kde", "Kde of sampled kde"),

lwd = 2, col = 4:3)

Exercise 2.23. Sample data points from the kde of iris$Petal.Width
that is computed with the NS selector.

Exercise 2.24. The dataset sunspot.year contains the yearly num-
bers of sunspots from 1700 to 1988 (rounded to one digit). Em-
ploying a log-transformed kde with DPI bandwidth, sample new
sunspots observations. Check by simulation that the sampling is
done appropriately by comparing the log-transformed kde of the
sampled data with the original kde.

2.6 Kernel density estimation with ks

The density function in R presents certain limitations, such as the
impossibility of evaluating the kde at arbitrary points, the unavail-
ability of built-in transformations, and the lack of a multivariate
extension. The ks package (Duong, 2020) delivers the ks::kde

function, providing these and other functionalities. It will be the
workhorse for carrying out multivariate kde (Section 3.1). The only
drawback of ks::kde to be aware of is that it only considers normal
kernels – though these are by far the most popular.

The following chunk of code shows that density and ks::kde

give the same outputs. It also presents some of the extra flexibility
on the evaluation that ks::kde provides.

# Sample

n <- 5

set.seed(123456)

samp_t <- rt(n, df = 2)

# Comparison: same output and same parametrization for bandwidth

bw <- 0.75

plot(kde <- ks::kde(x = samp_t, h = bw), lwd = 3) # ?ks::plot.kde for options

lines(density(x = samp_t, bw = bw), col = 2)

# Beware: there is no lines() method for ks::kde objects
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# The default h is the DPI obtained by ks::hpi

kde <- ks::kde(x = samp_t)

# Manual plot -- recall $eval.points and $estimate

lines(kde$eval.points, kde$estimate, col = 4)

# Evaluating the kde at specific points, e.g., the first 2 sample points

ks::kde(x = samp_t, h = bw, eval.points = samp_t[1:2])

## $x

## [1] 1.4650470 -0.4971902 0.6701367 2.3647267 -5.9918352

##

## $eval.points

## [1] 1.4650470 -0.4971902

##

## $estimate

## [1] 0.2223029 0.1416113

##

## $h

## [1] 0.75

##

## $H

## [1] 0.5625

##

## $gridtype

## [1] "linear"

##

## $gridded

## [1] TRUE

##

## $binned

## [1] TRUE

##

## $names

## [1] "x"

##

## $w

## [1] 1 1 1 1 1

##

## $type

## [1] "kde"

##

## attr(,"class")

## [1] "kde"

# By default ks::kde() computes the *binned* kde (much faster) and then employs

# an interpolation to evaluate the kde at the given grid; if the exact kde is

# desired, this can be specified with binned = FALSE

ks::kde(x = samp_t, h = bw, eval.points = samp_t[1:2], binned = FALSE)

## $x

## [1] 1.4650470 -0.4971902 0.6701367 2.3647267 -5.9918352

##

## $eval.points

## [1] 1.4650470 -0.4971902

##

## $estimate

## [1] 0.2223316 0.1416132

##

## $h

## [1] 0.75

##

## $H

## [1] 0.5625

##

## $gridded

## [1] FALSE

##

## $binned
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## [1] FALSE

##

## $names

## [1] "x"

##

## $w

## [1] 1 1 1 1 1

##

## $type

## [1] "kde"

##

## attr(,"class")

## [1] "kde"

# Changing the size of the evaluation grid

length(ks::kde(x = samp_t, h = bw, gridsize = 1e3)$estimate)

## [1] 1000

The computation of log-transformed kde is straightforward
using the positive and adj.positive.

# Sample from a LN(0, 1)

set.seed(123456)

samp_ln <- rlnorm(n = 200)

# Log-kde without shifting

a <- seq(0.1, 2, by = 0.4) # Sequence of shifts

col <- viridis::viridis(length(a) + 1)

plot(ks::kde(x = samp_ln, positive = TRUE), col = col[1],

main = "Log-transformed kde and the effect of adj.positive",

xlim = c(0, 7.5), ylim = c(0, 0.75))

# If h is not provided, then ks::hpi() is called on the transformed data

# Shifting: larger a increases the bias

for (i in seq_along(a)) {

plot(ks::kde(x = samp_ln, positive = TRUE, adj.positive = a[i]),

add = TRUE, col = col[i + 1])

}

curve(dlnorm(x), col = 2, add = TRUE, n = 500)

rug(samp_ln)

legend("topright", legend = c("True density", paste("adj.positive =", c(0, a))),

col = c(2, col), lwd = 2)

Finally, sampling from the kde and log-transformed kde is easily
achieved by the use of ks::rkde.

# Untransformed kde

plot(kde <- ks::kde(x = log(samp_ln)), col = 4)

samp_kde <- ks::rkde(n = 5e4, fhat = kde)

plot(ks::kde(x = samp_kde), add = TRUE, col = 3)

legend("topright", legend = c("Kde", "Kde of sampled kde"),

lwd = 2, col = 3:4)

# Transformed kde

plot(kde_transf <- ks::kde(x = samp_ln, positive = TRUE), col = 4)

samp_kde_transf <- ks::rkde(n = 5e4, fhat = kde_transf, positive = TRUE)

plot(ks::kde(x = samp_kde_transf), add = TRUE, col = 3)

legend("topright", legend = c("Kde", "Kde of sampled kde"),

lwd = 2, col = 3:4)

Exercise 2.25. Consider the MNIST dataset in the MNIST-tSNE.RData

file. It contains the first 60, 000 images of the MNIST database.
Each observation is a grayscale image made of 28 × 28 pixels that

https://raw.githubusercontent.com/egarpor/handy/master/datasets/MNIST-tSNE.RData
http://yann.lecun.com/exdb/mnist/
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is recorded as a vector of length 282 = 784 by concatenating the
pixel columns. The entries of these vectors are numbers in [0, 1]
indicating the level of grayness of the pixel: 0 for white, 1 for black.
These vectorised images are stored in the 60, 000 × 784 matrix in
MNIST$x. The 0–9 labels of the digits are stored in MNIST$labels.

a. Compute the average gray level, av_gray_one, for each image of
the digit “1”.

b. Compute and plot the kde of av_gray_one. Consider taking into
account that it is a positive variable.

c. Overlay the lognormal distribution density, with parameters
estimated by maximum likelihood (use MASS::fitdistr).

d. Repeat c for the Weibull density.
e. Which parametric model seems more adequate?
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Figure 3.1: The contour levels of the
joint cdf and pdf for a mixture of
three bivariate normals. Clearly, the
pdf surface yields insights into the
structure of the continuous random
vector X, whereas the cdf gives hardly
any.
1 Observe that, if p = 1, then H will
equal the square of the bandwidth h,
that is, H = h2.
2 A positive definite matrix is a real
symmetric matrix with positive
eigenvalues. Recall that this is of
key importance in order to guaran-
tee that |H|1/2 (|H| must be non-
negative!) and H−1/2 are well-defined
(H−1/2 := PΛ1/2P′ where H = PΛP′

is the spectral decomposition of H
with Λ = diag(λ1, . . . , λp) and
Λ1/2 := diag(λ1/2

1 , . . . , λ1/2
p )).

3
Kernel density estimation II

Like in the univariate case, any random vector X supported in
Rp is completely characterized by its cdf. However, cdfs are even
harder to visualize and interpret when p > 1, as the accumulation
of probability happens simultaneously in several directions. As
a consequence, densities become highly valuable tools for data
exploration, especially for dimensions p = 2, 3.

Densities characterize continuous random vectors X and are
key building blocks for a variety of highly successful multivariate
methods. Indeed, many of them may be seen as connected to the
omnipresent normal distribution.

As we will see in this chapter, the concepts associated with mul-
tivariate density estimation extend quite straightforwardly from the
univariate situation. However, despite this conceptual simplicity,
and as often happens with any problem in statistics, density esti-
mation in Rp becomes more and more complex as the dimension p
increases.

3.1 Multivariate kernel density estimation

Kernel density estimation can be extended to estimate multivariate
densities f in Rp based on the same principle: perform an average
of densities “centered” at the data points. For a sample X1, . . . , Xn

in Rp, the kde of f evaluated at x ∈ Rp is defined as

f̂ (x; H) :=
1

n|H|1/2

n

∑
i=1

K
(

H−1/2(x − Xi)
)

, (3.1)

where K is multivariate kernel, a p-variate density that is (typically)
symmetric and unimodal at 0, and that depends on the bandwidth
matrix1 H, a p × p symmetric and positive definite2 matrix.

A common notation is KH(z) := |H|−1/2K
(
H−1/2z

)
, the so-called

scaled kernel, so the kde can be compactly written as f̂ (x; H) :=
1
n ∑n

i=1 KH(x − Xi). The most employed multivariate kernel is the

normal kernel K(z) = ϕ(z) = (2π)−p/2e−
1
2 z′z, for which KH(x −

Xi) = ϕH(z − Xi). Then, the bandwidth H can be thought of as
the variance-covariance matrix of a multivariate normal density with
mean Xi and the kde (3.1) can be regarded as a data-driven mixture
of those densities.
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The interpretation of (3.1) is analogous to the one of (2.7): build a
mixture of densities with each density centered at each data point.
As a consequence, and roughly speaking, most of the concepts and
ideas seen in univariate kernel density estimation extend to the
multivariate situation, although some of them have considerable
technical complications. For example, bandwidth selection inherits
the same cross-validatory ideas (LSCV and BCV selectors) and
plug-in methods (NS and DPI) seen before, but with increased
complexity for the BCV and DPI selectors.

Exercise 3.1. Using that |H| = ∏
p
i=1 λi and tr(H) = ∑

p
i=1 λi,

where λ1, . . . , λp are the eigenvalues of H, find a simple check for
a symmetric matrix H that guarantees its positive definiteness (and
hence its adequacy as a bandwidth for (3.1)) when p = 2.

Recall that considering a full bandwidth matrix H gives more
flexibility to the kde, but also quadratically increases the amount
of bandwidth parameters that need to be chosen – precisely p(p+1)

2
– which notably complicates bandwidth selection as the dimen-
sion p grows, and increases the variance of the kde. A common
simplification is to consider a diagonal bandwidth matrix H =

diag(h2
1, . . . , h2

p), which yields the kde employing product kernels:

f̂ (x; h) =
1
n

n

∑
i=1

Kh1(x1 − Xi,1)×
p
· · · ×Khp(xp − Xi,p), (3.2)

where Xi = (Xi,1, . . . , Xi,p)
′ and h = (h1, . . . , hp)′ is the vector

of bandwidths. If the variables X1, . . . , Xp are standardized (so
that they have the same scale), then a simple choice is to consider
h = h1 = · · · = hp. Diagonal bandwidth matrices will be thor-
oughly employed when performing kernel regression estimation in
Chapter 4.

Multivariate kernel density estimation and bandwidth selection
is not supported in base R, but ks::kde implements both for p ≤ 6.
In the following code snippet, the functionalities of ks::kde are
illustrated for data in R2.

# Simulated data from a bivariate normal

n <- 200

set.seed(35233)

x <- mvtnorm::rmvnorm(n = n, mean = c(0, 0),

sigma = rbind(c(1.5, 0.25), c(0.25, 0.5)))

# Compute kde for a diagonal bandwidth matrix (trivially positive definite)

H <- diag(c(1.25, 0.75))

kde <- ks::kde(x = x, H = H)

# The eval.points slot contains the grids on x and y

str(kde$eval.points)

## List of 2

## $ : num [1:151] -8.58 -8.47 -8.37 -8.26 -8.15 ...

## $ : num [1:151] -5.1 -5.03 -4.96 -4.89 -4.82 ...

# The grids in kde$eval.points are crossed in order to compute a grid matrix

# where to evaluate the estimate

dim(kde$estimate)

## [1] 151 151
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# Manual plotting using the kde object structure

image(kde$eval.points[[1]], kde$eval.points[[2]], kde$estimate,

col = viridis::viridis(20), xlab = "x", ylab = "y")

points(kde$x) # The data is returned in $x

# Changing the grid size to compute the estimates to be 200 x 200 and in the

# rectangle (-4, 4) x c(-3, 3)

kde <- ks::kde(x = x, H = H, gridsize = c(200, 200), xmin = c(-4, -3),

xmax = c(4, 3))

image(kde$eval.points[[1]], kde$eval.points[[2]], kde$estimate,

col = viridis::viridis(20), xlab = "x", ylab = "y")

dim(kde$estimate)

## [1] 200 200

# Do not confuse "gridsize" with "bgridsize". The latter controls the internal

# grid size for binning the data and speeding up the computations (compare

# with binned = FALSE for a large sample size), and is not recommended to

# modify unless you know what you are doing. The binning takes place if

# binned = TRUE or if "binned" is not specified and the sample size is large

# Evaluating the kde at specific points can be done with "eval.points"

kde_sample <- ks::kde(x = x, H = H, eval.points = x)

str(kde_sample$estimate)

## num [1:200] 0.0803 0.0332 0.0274 0.0739 0.0411 ...

# Assign colors automatically from quantiles to have an idea the densities of

# each one

n_cols <- 20

quantiles <- quantile(kde_sample$estimate, probs = seq(0, 1, l = n_cols + 1))

col <- viridis::viridis(n_cols)[cut(kde_sample$estimate, breaks = quantiles)]

plot(x, col = col, pch = 19, xlab = "x", ylab = "y")

# Binning vs. not binning

abs(max(ks::kde(x = x, H = H, eval.points = x, binned = TRUE)$estimate -

ks::kde(x = x, H = H, eval.points = x, binned = FALSE)$estimate))

## [1] 2.189159e-05

There are specific, more sophisticated, plot methods for ks::kde
objects via ks::plot.kde.

# Contourplot

plot(kde, display = "slice", cont = c(25, 50, 75), xlab = "x", ylab = "y")

# "cont" specifies the density contours, which are upper percentages of the

# highest density regions. The default contours are at 25%, 50%, and 75%

# Raw image with custom colors

plot(kde, display = "image", xlab = "x", ylab = "y", col = viridis::viridis(20))

# Filled contour with custom color palette in "col.fun"

plot(kde, display = "filled.contour2", cont = seq(5, 95, by = 10),

xlab = "x", ylab = "y", col.fun = viridis::viridis)

# Alternatively: col = viridis::viridis(length(cont) + 1)

# Add contourlevels

plot(kde, display = "filled.contour", cont = seq(5, 95, by = 10),

xlab = "x", ylab = "y", col.fun = viridis::viridis)

plot(kde, display = "slice", cont = seq(5, 95, by = 10), add = TRUE)
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# Perspective plot

plot(kde, display = "persp", col.fun = viridis::viridis, xlab = "x", ylab = "y")

Kernel density estimation in R3 can be visualized via 3D con-
tours (to be discussed in more detail in Section 3.5.1) that represent
the level surfaces.

# Simulated data from a trivariate normal

n <- 500

set.seed(213212)

x <- mvtnorm::rmvnorm(n = n, mean = c(0, 0, 0),

sigma = rbind(c(1.5, 0.25, 0.5),

c(0.25, 0.75, 1),

c(0.5, 1, 2)))

# Show nested contours of high-density regions

plot(ks::kde(x = x, H = diag(c(rep(1.25, 3)))), drawpoints = TRUE, col.pt = 1)

# Beware! Incorrect (not symmetric or positive definite) bandwidths do not

# generate an error, but they return a non-sense kde

head(ks::kde(x = x, H = diag(c(1, 1, -1)), eval.points = x)$estimate)

head(ks::kde(x = x, H = diag(c(1, 1, 0)), eval.points = x)$estimate)

# H not positive definite

H <- rbind(c(1.5, 0.25, 0.5),

c(0.25, 0.75, -1.5),

c(0.5, -1.5, 2))

eigen(H)$values

head(ks::kde(x = x, H = H, eval.points = x)$estimate)

# H semipositive definite but not positive definite

H <- rbind(c(1.5, 0.25, 0.5),

c(0.25, 0.5, 1),

c(0.5, 1, 2))

eigen(H)$values

head(ks::kde(x = x, H = H, eval.points = x)$estimate) # Numerical instabilities

The kde can be computed in higher dimensions (up to p ≤ 6,
the maximum supported by ks) with a little care to avoid a bug
in versions of ks prior to 1.11.4. For these outdated versions, the
bug was present in the ks::kde function for dimensions p ≥ 4, as
illustrated in the example below.

# Sample test data

p <- 4

data <- mvtnorm::rmvnorm(n = 10, mean = rep(0, p))

kde <- ks::kde(x = data, H = diag(rep(1, p))) # Error on the verbose argument

The bug resided in the default arguments of the internal function
ks:::kde.points, and as a consequence made ks::kde not imme-
diately usable. Although the bug has been patched since the 1.11.4
version of ks, it is interesting to observe that this and other bugs
one may encounter in any function within an R package (even inter-
nal functions) can be patched in-session by means of the following
code, which simply replaces a function in the environment of the
loaded package.

# Create the replacement function. In this case, we just set the default

# argument of ks:::kde.points to F (FALSE)

kde.points.fixed <- function (x, H, eval.points, w, verbose = FALSE) {

n <- nrow(x)
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3 Beware! For the package version
1.11.3 the error message has a typo
and asks to set binned = TRUE, pre-
cisely what generated the error. This
has been fixed since version 1.11.4.

4 Which is the algebraic object contain-
ing all the third derivatives? And all
the fourth derivatives?

5 Precisely, given An×m = (aij), then
vec A := (a11, . . . , an1︸ ︷︷ ︸

Column 1

, . . . , a1m, . . . , anm︸ ︷︷ ︸
Column m

)′

is a column vector in Rnm.

d <- ncol(x)

ne <- nrow(eval.points)

Hs <- replicate(n, H, simplify = FALSE)

Hs <- do.call(rbind, Hs)

fhat <- dmvnorm.mixt(x = eval.points, mus = x, Sigmas = Hs,

props = w / n, verbose = verbose)

return(list(x = x, eval.points = eval.points, estimate = fhat,

H = H, gridded = FALSE))

}

# Assign package environment to the replacement function

environment(kde.points.fixed) <- environment(ks:::kde.points)

# Overwrite original function with replacement (careful -- you will have to

# restart session to come back to the original object)

assignInNamespace(x = "kde.points", value = kde.points.fixed, ns = "ks",

pos = 3)

# ns = "ks" to indicate the package namespace, pos = 3 to indicate :::

# Check the result

ks:::kde.points

Another peculiarity of ks::kde to be aware of is that it does not
implement binned kde for dimension p > 4, so it is necessary to set
the flag binned = FALSE3 when calling ks::kde.

3.2 Density derivative estimation

As we will see in Section 3.5, sometimes it is interesting to estimate
the derivatives of the density, particularly the gradient and the
Hessian, rather than the density itself.

For a density f : Rp −→ R its gradient D f : Rp −→ Rp is
defined as

D f (x) :=


∂ f (x)
∂x1
...

∂ f (x)
∂xp

 ,

which can be regarded as the result of applying the differential

operator D :=
(

∂
∂x1

, . . . , ∂
∂xp

)′
to f . The Hessian of f is the matrix

H f (x) :=

(
∂2 f (x)
∂xi∂xj

)
, i, j = 1, . . . , p.

The Hessian is a well-known object in multivariate calculus, but
in the way it is defined somehow closes the way to the construction
of high-order derivatives that admit a simple algebraic disposition.4

Thus, an alternative arrangement of the Hessian is imperative, and
this can by achieved by its columnwise stacking performed by the
vec operator. The vec operator stacks the columns of any matrix
into a long vector5 and makes the Hessian operator H :=

(
∂2

∂xi∂xj

)
expressible as the vector

vec H =


∂2

∂x1∂x1
...

∂2

∂xp∂xp

 ∈ Rp2
. (3.3)
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6 The Kronecker product of two ma-
trices An×m = (aij) and Bp×q = (bij)
is defined as the (np)× (mq) matrix

A ⊗ B :=


a11B · · · a1mB

...
. . .

...
an1B · · · anmB

 . Of

course, A ⊗ B ̸= B ⊗ A.

7 If r = 0, D⊗0 f := f .

8 Often truncated at two terms because
it becomes too cumbersome (without
the (3.5) operator!) for larger orders.

9 To be precise, this is the collection of
pr mixed r-th derivatives (if r = 1, the
gradient; if r = 2, the Hessian in its
vectorized form).

Interestingly, (3.3) coincides with the Kronecker product6 of D with
itself: D⊗2 := D ⊗ D (a column vector with p2 entries). That is,

vec(H f (x)) = D⊗2 f (x). (3.4)

The previous relation may seem to be just a mathematical formal-
ism without a clear practical relevance. However, it is key for sim-
plifying the consideration of second and high-order derivatives of a
function f . Indeed, the r-th derivatives of f , for r ≥ 0 7, can now be
collected in terms of the r-fold Kronecker product of D:

D⊗r f (x) :=



∂r f (x)
∂x1···∂x1

...
∂r f (x)

∂x1···∂xp
...

∂r f (x)
∂xp ···∂xp


∈ Rpr

. (3.5)

This formalism is extremely useful, for example, to obtain a com-
pact expansion of the univariate Taylor’s theorem (Theorem 1.11).

Theorem 3.1 (Multivariate Taylor’s Theorem). Let f : Rp −→ R and
x ∈ Rp. Assume that f has r continuous derivatives in B(x, δ) := {y ∈
Rp : ∥y − x∥ < δ}. Then, for any ∥h∥ < δ,

f (x + h) =
r

∑
j=0

1
j!
(D⊗j f (x))′h⊗j + Rr, Rr = o(∥h∥r). (3.6)

Observe the compactness and scalability of (3.6), featuring mul-
tiplications between vectors of lengths pj for j = 0, . . . , r. This
contrasts with the traditional second-order8 multivariate Taylor
expansion:

f (x + h) = f (x) + (D f (x))′h +
1
2

h′H f (x)h + o(∥h∥2).

Exercise 3.2. Let f (x, y) := x3 + cos(y). Compute:

1. D f and H f .
2. D⊗2 f . Check that vec(H f ) = D⊗2 f .
3. D⊗3 f = D ⊗ D⊗2 f .
4. The Taylor expansion of f at x = (1, 0)′ for the first, second, and

third orders.

Exercise 3.3. Considering the setting in Exercise 3.2:

1. Plot the surface for f about x = (1, 0)′.
2. Plot the surfaces for the three Taylor expansions at x = (1, 0)′

and verify their increasing accuracy on approximating f .

For visualizing the different surfaces, rely on several image panels
with the same vertical scale or use rgl::surface3d.

Exercise 3.4. Perform Exercises 3.2 and 3.3 using the function
f (x, y) = ϕσ1(x)ϕσ2(y) and x = (0, 0)′. Consider σ1 = σ2 = 1,
and σ1 = 1.25 and σ2 = 0.75.
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Employing the (3.5) operator, the kernel estimator for the r-th
derivative9 D⊗r f is defined as the application of the operator D⊗r to
the kde f̂ (·; H):

D̂⊗r f (x; H) := D⊗r f̂ (x; H) =
1
n

n

∑
i=1

(D⊗rKH)(x − Xi), (3.7)

where D⊗rKH can be computed as

D⊗rKH = |H|−1/2(H−1/2)⊗r(D⊗rK)(H−1/2(x − Xi)). (3.8)

The gradient estimator has a key relevance in Section 3.5.2 and is
the simplest derivative estimator. Its form follows either by replac-
ing r = 1 in (3.7) and (3.8) or by directly differentiating (3.1):

D̂ f (x; H) =
H−1/2

n|H|1/2

n

∑
i=1

(DK)(H−1/2(x − Xi)).

If we set (DK)H(x − Xi) := |H|−1/2(DK)(H−1/2(x − Xi)), then it can
clearly be seen that

D̂ f (x; H) =
H−1/2

n

n

∑
i=1

(DK)H(x − Xi)

and how the extra factor H−1/2 appears. This extra factor explains
why the optimal bandwidth selectors for (3.1) and (3.7) are differ-
ent. The estimator of the Hessian will be employed in Section 3.5.4.

The estimator (3.7) can be computed using ks::kdde. The follow-
ing code presents how to do so for p = 1 and r = 1, 2.

# Simulated univariate data

n <- 1e3

set.seed(324178)

x <- nor1mix::rnorMix(n = n, obj = nor1mix::MW.nm8)

# Location of relative extrema

dens <- function(x) nor1mix::dnorMix(x, obj = nor1mix::MW.nm8)

minus_dens <- function(x) -dens(x)

extrema <- c(nlm(f = minus_dens, p = 0)$estimate,

nlm(f = dens, p = 0.75)$estimate,

nlm(f = minus_dens, p = 1.5)$estimate)

# Plot target density

par(mfrow = c(2, 2))

plot(nor1mix::MW.nm8, p.norm = FALSE)

rug(x)

abline(v = extrema, col = c(3, 2, 3))

# Density estimation (automatically chosen bandwidth)

kdde_0 <- ks::kdde(x = x, deriv.order = 0)

plot(kdde_0, xlab = "x", main = "Density estimation")

abline(v = extrema, col = c(3, 2, 3))

# Density derivative estimation (automatically chosen bandwidth, but different

# from kdde_0!)

kdde_1 <- ks::kdde(x = x, deriv.order = 1)

plot(kdde_1, xlab = "x", main = "Density derivative estimation")

abline(v = extrema, col = c(3, 2, 3))

# Density second derivative estimation

kdde_2 <- ks::kdde(x = x, deriv.order = 2)

plot(kdde_2, xlab = "x", main = "Density second derivative estimation")

abline(v = extrema, col = c(3, 2, 3))
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Figure 3.2: Univariate density deriva-
tive estimation for r = 0, 1, 2. The
green vertical bars represent the modes
(local maxima) and the red vertical
bar the antimode (local minimum) of
nor1mix::MW8. Observe how the den-
sity derivative estimation vanishes at
the local extrema and how the second
derivative estimation captures the sign
of the extrema, thus indicating the
presence of a mode or an antimode.

-8 -6 -4 -2 0 2 4

-1
0

-5
0

5

x

y

x

y

-8 -6 -4 -2 0 2 4 6

-1
0

-5
0

5
1
0

The following code presents how to do so for p = 2 and r = 1, 2.

# Simulated bivariate data

n <- 1e3

mu_1 <- rep(1, 2)

mu_2 <- rep(-1.5, 2)

Sigma_1 <- matrix(c(1, -0.75, -0.75, 3), nrow = 2, ncol = 2)

Sigma_2 <- matrix(c(2, 0.75, 0.75, 3), nrow = 2, ncol = 2)

w <- 0.45

set.seed(324178)

x <- ks::rmvnorm.mixt(n = n, mus = rbind(mu_1, mu_2),

Sigmas = rbind(Sigma_1, Sigma_2), props = c(w, 1 - w))

# Density estimation

kdde_0 <- ks::kdde(x = x, deriv.order = 0)

plot(kdde_0, display = "filled.contour2", xlab = "x", ylab = "y")

# Density derivative estimation

kdde_1 <- ks::kdde(x = x, deriv.order = 1)

str(kdde_1$estimate)

## List of 2

## $ : num [1:151, 1:151] -4.76e-19 4.18e-19 1.18e-19 -6.27e-20 -3.74e-19 ...

## $ : num [1:151, 1:151] -7.66e-19 -1.18e-18 -4.19e-19 -6.70e-19 -8.30e-19 ...

# $estimate is now a list of two matrices with each of the derivatives

# Plot of the gradient field - arrows pointing towards the modes

plot(kdde_1, display = "quiver", xlab = "x", ylab = "y")

# Plot of the two components of the gradient field

for(i in 1:2) {

plot(kdde_1, display = "filled.contour2", which.deriv.ind = i,

xlab = "x", ylab = "y")

}
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10 Check equations (347) and (348)
in Petersen and Pedersen (2012), for
example.

# Second density derivative estimation

kdde_2 <- ks::kdde(x = x, deriv.order = 2)

str(kdde_2$estimate)

## List of 4

## $ : num [1:151, 1:151] -2.53e-19 -6.84e-19 -2.33e-19 -1.33e-18 -4.44e-19 ...

## $ : num [1:151, 1:151] -1.55e-20 9.60e-20 3.56e-19 7.44e-20 1.11e-19 ...

## $ : num [1:151, 1:151] -1.55e-20 9.60e-20 3.56e-19 7.44e-20 1.11e-19 ...

## $ : num [1:151, 1:151] -5.53e-19 -3.68e-19 6.63e-21 -7.58e-19 -1.28e-19 ...

# $estimate is now a list of four matrices with each of the derivatives

# Plot of the two components of the gradient field ("which.deriv.ind" indicates

# the index in the Kronecker product)

par(mfcol = c(2, 2))

for(i in 1:4) {

plot(kdde_2, display = "filled.contour2", which.deriv.ind = i,

xlab = "x", ylab = "y")

}

Exercise 3.5. Inspecting the second derivatives of a bivariate
kde can be challenging. For that reason, the summary curvature
s(x) = −1{H f (x) is negative definite}||H f (x)|| is often considered, as it
serves for indicating the presence and “strength” of a local mode.
Implement, from the output of ks::kdde, the kernel estimator for s.
Then, compare your implementation with the function ks::kcurv

and use both to determine the presence of modes in the previous
example.

To evaluate the performance of kernel estimators of the deriva-
tives, it is very useful to recall that the gradient and Hessian of a
multivariate normal density ϕΣ(· − µ) are:10

DϕΣ(x − µ) = −ϕΣ(x − µ)Σ−1(x − µ), (3.9)

HϕΣ(x − µ) = ϕΣ(x − µ)Σ−1 ((x − µ)(x − µ)′ − Σ
)

Σ−1. (3.10)

These functions can be implemented as follows.

# Gradient of a N(mu, Sigma) density (vectorized on x)

grad_norm <- function(x, mu, Sigma) {

# Check dimensions

x <- rbind(x)

p <- length(mu)

stopifnot(ncol(x) == p & nrow(Sigma) == p & ncol(Sigma) == p)

# Gradient

grad <- -mvtnorm::dmvnorm(x = x, mean = mu, sigma = Sigma) *
t(t(x) - mu) %*% solve(Sigma)

return(grad)

}

# Hessian of a N(mu, Sigma) density (vectorized on x)

Hess_norm <- function(x, mu, Sigma) {

# Check dimensions

x <- rbind(x)

p <- length(mu)

stopifnot(ncol(x) == p & nrow(Sigma) == p & ncol(Sigma) == p)

# Hessian

Sigma_inv <- solve(Sigma)
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11 This assumption requires certain
smoothness of f , allowing thus for
Theorem 3.1 to be applied.

12 Mild assumption that makes the
first term of the Taylor expansion of f
negligible and the second bounded.
13 This is the extension of the sym-
metry requirement for a univariate
kernel to Rp. The spherical symme-
try of K implies that

∫
zK(z)dz = 0

and that
∫

zz′K(z)dz = µ2(K)Ip
(the covariances are zero), where
µ2(K) :=

∫
z2

j K(z)dz =
∫

z2
kK(z)dz

for all j, k = 1, . . . , p. Equivalently,∫
z⊗2K(z)dz = µ2(K)vec Ip.

14 The key assumption for reducing the
bias and variance of f̂ (·; H) simultane-
ously.

H <- apply(x, 1, function(y) {

mvtnorm::dmvnorm(x = y, mean = mu, sigma = Sigma) *
(Sigma_inv %*% tcrossprod(y - mu) %*% Sigma_inv - Sigma_inv)

})

# As an array

return(array(data = c(H), dim = c(p, p, nrow(x))))

}

Obviously, in the case of a mixture ∑r
j=1 wjϕΣj(x − µj), the gradi-

ent becomes ∑r
j=1 wjDϕΣj(x − µj) and the Hessian, ∑r

j=1 wjHϕΣj(x −
µj).

Exercise 3.6. Graphically evaluate the accuracy on estimating the
density gradient and Hessian of the estimators considered in the
previous code chunks. For that aim:

1. Use (3.9) and (3.10) to compute the gradients and Hessians of
the mixtures of normal densities considered for p = 1, 2.

2. Compare these density derivatives with their estimators.

3.3 Asymptotic properties

The asymptotic results for the multivariate kde are very similar
to those of the univariate kde, but with an increasing notational
complexity. Hopefully, the vec operator, (3.5), and Theorem 3.1
allow for expression simplification and yield a clear connection
with, for example, the expressions for the asymptotic bias and
variance obtained in Theorem 2.1. As before, the insights obtained
from these expressions will be highly valuable to select H optimally
in practice by means of the derivation of the MISE and AMISE
errors.

We need to make the following assumptions:

• A1.11 The density f is square integrable, twice continuously
differentiable, and all the second order partial derivatives are
square integrable.

• A2.12 The kernel K is a spherically symmetric13 and bounded pdf
with finite second moment and square integrable.

• A3.14 H = Hn is a deterministic sequence of positive definite
symmetric matrices such that, when n → ∞, vec H → 0 and
n|H|1/2 → ∞.

The convolution between two functions f , g : Rp −→ R is
defined analogously as in the univariate case as ( f ∗ g)(x) :=∫

f (x − y)g(y)dy. Thus, we readily obtain that

E[ f̂ (x; H)] =
∫

KH(x − y) f (y)dy

= (KH ∗ f )(x), (3.11)

Var[ f̂ (x; H)] =
1
n
((K2

H ∗ f )(x)− (KH ∗ f )2(x)).
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15 If H = diag(h2
1, . . . , h2

p), the reduction
is clearly seen to be quadratic on the
marginal bandwidths.
16 By (3.4), D⊗2 f (x) = vec(H f (x)).
On the other hand, (vec A)′vec B =
tr(A′B) for any matrices A and B.
17 For any two symmetric matrices
A and B of size p × p having as
sorted eigenvalues α1, . . . , αp and
β1, . . . , βp, respectively, it is satisfied
that ∑

p
i=1 αi βp−i ≤ tr(AB) ≤ ∑

p
i=1 αi βi .

Taking B = H, we know that its
eigenvalues are positive because
of the positive definiteness of H. If
A = (H f (x))′ is negative definite, then
all its eigenvalues are negative and, as
a consequence, tr(AB) < 0.

Again, although these two expressions are exact, they are hard to
interpret. The only immediate insight that we are able to get is
that, by equation (3.11), the kde is biased. But neither expression
differentiates the effects of kernel, bandwidth, and density, the
reason why asymptotic expressions are preferred. In what follows,
we denote R(g) =

∫
g(z)2 dz for any function g : Rp −→ R.

Theorem 3.2. Under A1–A3, the bias and variance of the kde at x are

Bias[ f̂ (x; H)] =
1
2

µ2(K)(D⊗2 f (x))′vec H + o(∥vec H∥), (3.12)

Var[ f̂ (x; H)] =
R(K)

n|H|1/2 f (x) + o((n|H|1/2)−1). (3.13)

Proof. The proof follows the lines of the proof of Theorem 2.1 and
we only provide a sketch. First, consider the change of variables
z = H−1/2(x − y), y = x − H1/2z, dy = −|H|1/2 dz. The integral
limits flip and we have

E[ f̂ (x; H)] =
∫

KH(x − y) f (y)dy

=
∫

K(z) f (x − H1/2z)dz.

Since H → 0, we can apply (3.6) to f (x − H1/2z) and then use
the properties of the kernel to arrive to (3.12). Therefore, (3.13)
is obtained by adapting the steps of the bias and replicating the
arguments in the proof of Theorem 2.1.

Exercise 3.7. Detail, elaborate, and conclude the proof above.

The bias and variance expressions (3.12) and (3.13) give impor-
tant insights:

• The bias decreases with H.15 By observing that (D⊗2 f (x))′vec H =

tr((H f (x))′H) 16 we have interesting interpretations:

– The bias is negative whenever H f (x) is negative definite.17

These regions correspond to the modes (or local maxima) of f ,
where the kde underestimates f (it tends to be below f ).

– Conversely, the bias is positive whenever H f (x) is positive
definite, which happens in the antimodes (or local minima) of f ,
where the kde overestimates f (it tends to be above f ).

– The wilder the curvature D⊗2 f , the harder to estimate f . Flat
density regions are easier to estimate than wiggling regions
with high curvature (e.g., with several modes).

• The variance depends directly on f (x). The higher the density,
the more variable the kde is. The variance decreases as a factor
of (n|H|1/2)−1, a consequence of n|H|1/2’s playing the role of the
effective sample size for estimating f (x).
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18 Observe that implementing the
optimization of (3.14) is not trivial,
since it is required to enforce the
constrain H ∈ SPDp. A neat way
of parametrizing H that induces
the positive definiteness constrain
is through the (unique) Cholesky
decomposition of H ∈ SPDp: H = R′R,
where R is a triangular matrix with
positive entries on the diagonal (but
the remaining entries unconstrained).
Therefore, optimization of (3.14) (if f
was known) can be done through the
p(p+1)

2 entries of R.

19 Intuitively, this fact can be regarded
as the necessity of hAMISE to account
for larger neighborhoods about x, as
the emptiness of the space Rp grows
with p.
20 Recall that, restricting to specific
bandwidths like H = h2Ip, then
HAMISE = h2

AMISEIp, so the expressions
hAMISE = O(n−1/(p+4)) and HAMISE =
O(n−2/(p+4)) are perfectly coherent.

3.4 Bandwidth selection

The construction of bandwidth selectors for the multivariate kde
is analogous to the univariate case. The first step is to consider the
multivariate MISE

MISE[ f̂ (·; H)] :=E

[∫
( f̂ (x; H)− f (x))2 dx

]
=E

[
ISE[ f̂ (·; H)]

]
=
∫

MSE[ f̂ (x; H)]dx

and define the optimal MISE bandwidth matrix as

HMISE := arg min
H∈SPDp

MISE[ f̂ (·; H)], (3.14)

where SPDp is the set of positive definite matrices18 of size p.
In practice, obtaining (3.14) is unfeasible, and the first step to-

wards constructing a usable selector is to derive a more practical
(but close to the MISE) error criterion, such as the AMISE. The
following result provides it from the bias and variance given in
Theorem 3.2.

Corollary 3.1. Under A1–A3,

AMISE[ f̂ (·; H)] =
1
4

µ2
2(K)R (tr(HH f (·))) + R(K)

n|H|1/2 .

Therefore, AMISE[ f̂ (·; H)] → 0 when n → ∞.

Exercise 3.8. Prove Corollary 3.1 by deriving the MSE of f̂ (x; H)

and integrating it.

Differently to what happened in the univariate case, and despite
the closed expression of the AMISE, it is not possible to obtain a
general bandwidth matrix that minimizes the AMISE, that is, to
obtain

HAMISE := arg min
H∈SPDp

AMISE[ f̂ (·; H)] (3.15)

explicitly. It is possible in the special case in which H = h2Ip, since
R (tr(HH f (·))) = h4R (tr(H f (·))) and, differentiating with respect
to h, it follows that

hAMISE =

[
pR(K)

µ2
2(K)R (tr(H f (·))) n

]1/(p+4)

. (3.16)

Exercise 3.9. Show that the expression for hAMISE minimizes
AMISE[ f̂ (·; h2Ip)].

Even if (3.16) has been obtained by means of an important sim-
plification, it gives a very important insight: hAMISE = O(n−1/(p+4)).
Therefore, the larger the dimension p, the larger the optimal
bandwidth needs to be.19 In addition, it can be seen that, for un-
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21 Or by a robust estimator of Σ.

22 The interested reader is referred
to Section 3.6 in Chacón and Duong
(2018) for an excellent exposition.

constrained bandwidth matrices, HAMISE = O(n−2/(p+4)) 20 for
(3.15), so exactly the same insight holds without imposing H = h2Ip

for obtaining (3.16).
However, neither the computation of (3.15) (through numerical

optimization over SPDp) nor of (3.16) can be performed in practice,
as both depend on functionals of f .

3.4.1 Plug-in rules

The normal scale bandwidth selector, denoted by ĤNS, escapes
the dependence of the AMISE on f by replacing the latter with
ϕΣ(· − µ), for which the curvature term in (3.15) can be computed
(using (3.10)). Conveniently, this replacement also allows us to solve
explicitly (3.15) and, with the normal kernel, results in

HNS = (4/(p + 2))2/(p+4)n−2/(p+4)Σ. (3.17)

Replacing Σ by the sample covariance matrix21 S in (3.17) gives
ĤNS, which can be straightforwardly computed in practice.

ĤNS is a zero-stage plug-in selector, a concept that was introduced
in Section 2.4. The DPI selector, or henceforth simply Plug-In selec-
tor (PI), follows the same steps that were employed in Section 2.4.1
to build up an ℓ-stage plug-in selector. This selector successively
estimates a series of bandwidths, each of them associated with a
chain of optimality problems, until “giving up” at stage ℓ (usually,
ℓ = 2) and “sweeping under the carpet” a parametric assumption
for f that allows a functional of f to be estimated at the latest opti-
mal expression. In the multivariate context, the conceptual idea is
the same, but the technicalities are more demanding, with the extra
nuisance of the lack of explicit expressions for the optimal band-
widths in each of the PI steps. We do not go into details22 and we
just denote ĤPI to the bandwidth selector that extends ĥDPI to the
multivariate case.

Plug-in selectors are implemented by ks::Hns (NS), ks::Hpi (PI
with full bandwidth matrix) and ks::Hpi.diag (PI with diagonal
bandwidth matrix). The next chunk of code shows how to use
them.

# Simulated data

n <- 500

Sigma_1 <- matrix(c(1, -0.75, -0.75, 2), nrow = 2, ncol = 2)

Sigma_2 <- matrix(c(2, -0.25, -0.25, 1), nrow = 2, ncol = 2)

set.seed(123456)

samp <- ks::rmvnorm.mixt(n = n, mus = rbind(c(2, 2), c(-2, -2)),

Sigmas = rbind(Sigma_1, Sigma_2),

props = c(0.5, 0.5))

# Normal scale bandwidth

(Hns <- ks::Hns(x = samp))

## [,1] [,2]

## [1,] 0.7508991 0.4587521

## [2,] 0.4587521 0.6582366

# PI bandwidth unconstrained

(Hpi <- ks::Hpi(x = samp))

## [,1] [,2]
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## [1,] 0.26258868 0.03375926

## [2,] 0.03375926 0.23619016

# PI bandwidth diagonal

(Hpi_diag <- ks::Hpi.diag(x = samp))

## [,1] [,2]

## [1,] 0.2416352 0.0000000

## [2,] 0.0000000 0.2172413

# Compare kdes

par(mfrow = c(2, 2))

cont <- seq(0, 0.05, l = 20)

col <- viridis::viridis

plot(ks::kde(x = samp, H = Hns), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "NS")

plot(ks::kde(x = samp, H = diag(diag(Hns))), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "NS diagonal")

plot(ks::kde(x = samp, H = Hpi), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "PI")

plot(ks::kde(x = samp, H = Hpi_diag), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "PI diagonal")
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23 Note the presence of the squared
norm ∥ · ∥2 in the integrand, as
D̂⊗r f (x; H) − D⊗r f (x) is a vector
in Rpr
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Figure 3.3: Graphs of n 7→ fn,p,r (for
varying p and r) and p 7→ fn,p,r (for
n = 100 and varying r).

Density derivative estimation

The normal scale selector expands in a simple fashion to the
problem of selecting the optimal bandwidth for estimating the
r-th derivative of f . The solution to this problem follows a path
completely parallel to the density case. To begin with, the MISE of
the density derivative estimator D̂⊗r f (·; H) is defined as23

MISE[D̂⊗r f (·; H)] := E

[∫
∥D̂⊗r f (x; H)− D⊗r f (x)∥2 dx

]
.

After obtaining an explicit form for AMISE[D̂⊗r f (·; H)], the as-
sumption that f = ϕΣ(· − µ) for computing the functional de-
pending on f , and the use of the normal kernel, the normal scale
bandwidth selector for the r-th derivative of f follows:

HNS,r = (4/(p + 2r + 2))2/(p+2r+4)n−2/(p+2r+4)Σ. (3.18)

Replacing Σ by the sample covariance matrix S in (3.18) gives ĤNS,r,
which is remarkably simple to compute in practice.

Observe that HNS,0 = HNS and that the factor fn,p,r := (4/(p +

2r + 2))2/(p+2r+4)n−2/(p+2r+4) increases as r increases (see Figure
3.3), indicating that optimal bandwidths for derivative estimation
are larger than optimal bandwidths for density estimation (r = 0).
Indeed, it can be seen that HAMISE,r = O(n−2/(p+2r+4)). Therefore,
employing an optimal bandwidth for density estimation to estimate
a derivative will result in an undersmoothing of the derivative.

The PI selector also admits a derivative version, ĤPI,r, which
sacrifices the simplicity of (3.18) to gain performance on estimating
HAMISE,r for non-normal-like densities.

# Normal scale bandwidth (compare with Hns)

(Hns1 <- ks::Hns(x = samp, deriv.order = 1))

## [,1] [,2]

## [1,] 1.138867 0.6957760

## [2,] 0.695776 0.9983282

# PI bandwidth unconstrained (compare with Hpi)

(Hpi1 <- ks::Hpi(x = samp, deriv.order = 1))

## [,1] [,2]

## [1,] 0.3248011 0.1125982

## [2,] 0.1125982 0.3017212

# PI bandwidth diagonal (compare with Hpi_diag)

(Hpi_diag1 <- ks::Hpi.diag(x = samp, deriv.order = 1))

## [,1] [,2]

## [1,] 0.2854801 0.0000000

## [2,] 0.0000000 0.2545556

# Compare kddes

par(mfrow = c(2, 2))

cont <- seq(-0.02, 0.02, l = 21)

plot(ks::kdde(x = samp, H = Hns1, deriv.order = 1),

display = "filled.contour2", main = "NS", abs.cont = cont)

plot(ks::kdde(x = samp, H = diag(diag(Hns1)), deriv.order = 1),

display = "filled.contour2", main = "NS diagonal", abs.cont = cont)

plot(ks::kdde(x = samp, H = Hpi1, deriv.order = 1),

display = "filled.contour2", main = "PI", abs.cont = cont)

plot(ks::kdde(x = samp, H = Hpi_diag1, deriv.order = 1),

display = "filled.contour2", main = "PI diagonal", abs.cont = cont)
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Exercise 3.10. The data(sunspots_births, package = "rotasym")

dataset contains the recorded sunspots births during 1872–2018

from the Debrecen Photoheliographic Data (DPD) catalog. The
dataset presents 51, 303 sunspot records, featuring their positions
in spherical coordinates (theta and phi), sizes (total_area), and
distances to the center of the solar disk (dist_sun_disc).

a. Compute and plot the kde for phi using the DPI selector. De-
scribe the result.

b. Compute and plot the kernel density derivative estimator for
phi using the adequate DPI selector. Determine approximately
the location of the main mode(s).

c. Compute the log-transformed kde with adj.positive = 1 for
total_area using the NS selector.

d. Draw the histogram of M = 10, 000 samples simulated from the
kde obtained in a.

3.4.2 Cross-validation

The Least Squares Cross-Validation (LSCV) selector directly ex-
tends from the univariate case and attempts to minimize MISE[ f̂ (·; H)]

by estimating it unbiasedly with

LSCV(H) :=
∫

f̂ (x; H)2 dx − 2n−1
n

∑
i=1

f̂−i(Xi; H)

and then minimizing that loss:

ĤLSCV := arg min
H∈SPDp

LSCV(H).

http://fenyi.solarobs.csfk.mta.hu/DPD/
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Biased Cross-Validation (BCV) combines the cross-validation
ideas from ĤLSCV with the plug-in ideas behind ĤPI to build, in a
way analogous to the univariate case (see (2.31)), the ĤBCV selector.
This selector trades the unbiasedness of ĤLSCV for a reduction in its
variance.

Cross-validatory selectors, allowing for full or diagonal band-
width matrices, are implemented by ks::Hlscv and ks::Hlscv.diag

(LSCV), and ks::Hbcv and ks::Hbcv.diag (BCV). The following
chunk of code shows how to use them.

# LSCV bandwidth unconstrained

Hlscv <- ks::Hlscv(x = samp)

# LSCV bandwidth diagonal

Hlscv_diag <- ks::Hlscv.diag(x = samp)

# BCV bandwidth unconstrained

Hbcv <- ks::Hbcv(x = samp)

# BCV bandwidth diagonal

Hbcv_diag <- ks::Hbcv.diag(x = samp)

# Compare kdes

par(mfrow = c(2, 2))

cont <- seq(0, 0.03, l = 20)

col <- viridis::viridis

plot(ks::kde(x = samp, H = Hlscv), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "LSCV")

plot(ks::kde(x = samp, H = Hlscv_diag), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "LSCV diagonal")

plot(ks::kde(x = samp, H = Hbcv), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "BCV")

plot(ks::kde(x = samp, H = Hbcv_diag), display = "filled.contour2",

abs.cont = cont, col.fun = col, main = "BCV diagonal")
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24 Such as, e.g., intervals in R.
25 The kde is not exogenous to box
plots. Several kde-based variants of
box plots have been produced, such as
the popular violin plots by Hintze and
Nelson (1998); see Benjamini (1988)
and Wickham and Stryjewski (2011).
26 The construction of the box plot by
Tukey (1977) seems to be influenced
by the normal distribution. For a
N (0, σ2), the “1.5 × IQR rule” that
flags an observation as an outlier
has a special interpretation. Since
1.5 × IQR = 1.5 × (Φ−1(0.75) −
Φ−1(0.25))σ ≈ 2.0235σ, an observation
is flagged as an outlier if it is below
Q1 − 1.5 × IQR = Φ−1(0.25)σ −
2.0235σ ≈ −2.6980σ or above Q3 +
1.5 × IQR ≈ 2.6980σ. This is slightly
more liberal than the “3σ rule” that
accounts for 99.73% of the probability,
which seems too restrictive for outlier-
hunting. Tukey’s 1.5 × IQR rule
precisely determines that 99.3% of the
points are not outliers. The closeness of
this percentage to 99% might explain
the magic behind the 1.5 factor.
27 Which is based on the assumption
that X ∼ Np(µ, Σ).
28 Which can be seen as a special case
of fitting a mixture of k normals with
isotropic covariance matrices Σ = cIp,
c > 0.

Exercise 3.11. Consider the normal mixture

wN2(µ1, Σ1) + (1 − w)N2(µ2, Σ2),

where w = 0.3, µ1 = (1, 1)′, µ2 = (−1,−1)′, Σi =

(
σ2

i1 σi1σi2ρi

σi1σi2ρi σ2
i2

)
,

i = 1, 2, and σ2
11 = σ2

21 = 1, σ2
12 = σ2

22 = 2, ρ1 = 0.5, and ρ2 = −0.5.
Perform the following simulation exercise:

1. Plot the density of the mixture using ks::dmvnorm.mixt and
overlay points simulated employing ks::rmvnorm.mixt. You
may want to use ks::contourLevels to produce density plots
comparable to the kde plots performed in the next step.

2. Compute the kde employing ĤPI, both for full and diagonal
bandwidth matrices. Are there any gains on considering full
bandwidths? What if ρ2 = 0.7?

3. Consider the previous point with ĤLSCV instead of ĤPI. Are the
conclusions the same?

3.5 Applications of kernel density estimation

Once we are able to adequately estimate the multivariate density
f of a random vector X by f̂ (·; H), we can perform a series of in-
teresting applications that go beyond the mere visualization and
graphical description of the estimated density. These applications
are intimately related to multivariate analysis methods rooted on
the normality assumption:

• Density level set estimation. The level set of the density f at
level c ≥ 0 is defined as L( f ; c) := {x ∈ Rp : f (x) ≥ c}.
An estimation of L( f ; c) is useful to visualize the highest den-
sity regions, which give a concise view of the most likely values
for X and therefore summarize the structure of X. In addition,
this summary is produced without needing to restrict to con-
nected sets,24 as the box plot25 does,26 and with the additional
benefit of determining the approximate probability contained in
them. Level sets also are useful to estimate the support of X and
to detect multivariate outliers without the need to employ the
Mahalanobis distance.27

• Clustering or unsupervised learning. The aim of clustering
techniques, such as hierarchical clustering or k-means,28 is to find
homogeneous clusters (subgroups) within the sample (group).
Despite their usefulness, these two techniques have important
drawbacks: they do not automatically determine the number
of clusters and they lack a simple interpretation in terms of the
population, relying entirely on the sample for its construction
and performance evaluation. Based on a density f , the population
clusters of the domain of X can be precisely defined as the “do-
mains of attraction of the density modes”. The mean shift cluster-
ing algorithm replaces f with f̂ (·; H) and gives a neat clustering
recipe that automatically determines the number of clusters.
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29 The difference between LDA and
QDA is that the former assumes
Σ1 = Σ2 when confronting Np(µ1, Σ1)
against Np(µ2, Σ2), whereas the latter
does not. As a consequence, LDA
produces a separating hyperplane
between both classes, whereas QDA
produces a separating quadric surface
(such as a hyperboloid or paraboloid
in R3).

30 Indeed, the principal components
can be regarded as the maximum like-
lihood estimators of the eigenvectors
of Σ when X ∼ Np(µ, Σ).

• Classification or supervised learning. Suppose X has a cate-
gorical random variable Y as a companion, the labels of which
indicate several classes within the population X. Then, the task
of assigning a point x ∈ Rp to a class of Y, based on a sample
(X1, Y1), . . . , (Xn, Yn), is a classification problem. Classic mul-
tivariate techniques such as Linear Discriminant Analysis (LDA)
and Quadratic Discriminant Analysis (QDA)29 tackle this task by
confronting normals associated with each class, say Np(µ1, Σ1)

and Np(µ2, Σ2), and then assigning x ∈ Rp to the class that
maximizes ϕΣ̂i

(x − µ̂i), i = 1, 2. The very same principle can be
followed by replacing the estimated normal densities with the
kdes of each class.

• Description of the main features of the data. Principal Com-
ponent Analysis (PCA) is a very well-known linear dimension-
reduction technique that is closely related to the normal distri-
bution.30 PCA helps to describe the main features of a dataset
by estimating the principal directions on Rp, p ≥ 2, of the max-
imum projected variance of X. These principal directions are
highly related to the density ridges of ϕΣ(· − µ), the latter con-
cept generating flexible principal curves for any density f . As a
consequence, density ridges of f̂ (·; H) give a flexible nonlinear
description of the structure of the data.

Next, we review the details associated with these applications,
which are excellently described in Chapters 6 and 7 in Chacón and
Duong (2018).

3.5.1 Level set estimation

The estimation of the level set L( f ; c) = {x ∈ Rp : f (x) ≥ c}, useful
to determine high-density regions, can be straightforwardly done
by plugging the kde of f and considering

L( f̂ (·; H); c) = {x ∈ Rp : f̂ (x; H) ≥ c}.

Obtaining the representation of L( f̂ (·; H); c) in practice involves
considering a grid in Rp in order to evaluate the condition f̂ (x; H) ≥
c and to determine the region of Rp in which it is satisfied.

We illustrate the computation of L( f̂ (·; H); c) for a couple of
simulated examples in R. Notice, in the code below, how the
function kde_level_set automatically deals with the annoyance
that L( f̂ (·; H); c) may not be a connected region, that is, that
L( f̂ (·; H); c) =

⋃k
i=1[ai, bi] with k unknown beforehand.

# Simulated sample

n <- 100

set.seed(12345)

samp <- rnorm(n = n)

# Kde as usual, but force to evaluate it at seq(-4, 4, length = 4096)

bw <- bw.nrd(x = samp)

kde <- density(x = samp, bw = bw, n = 4096, from = -4, to = 4)
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Figure 3.4: Level set L( f ; c) and its
estimation by L( f̂ (·; h); c) for c = 0.2
and f = ϕ.

# For a given c, what is the theoretical level set? Since we know that the

# real density is symmetric and unimodal, then the level set is an interval

# of the form [-x_c, x_c]

c <- 0.2

x_c <- tryCatch(uniroot(function(x) dnorm(x) - c, lower = 0, upper = 4)$root,

error = function(e) NA)

# Show theoretical level set

x <- seq(-4, 4, by = 0.01)

plot(x, dnorm(x), type = "l", ylim = c(0, 0.5), ylab = "Density")

rug(samp)

polygon(x = c(-x_c, -x_c, x_c, x_c), y = c(0, c, c, 0),

col = rgb(0, 0, 0, alpha = 0.5), density = 10)

# Function to compute and plot a kde level set. Observe that kde stands for an

# object containing the output of density(), although obvious modifications

# could be done to the function to receive a ks::kde object

# as the main argument

kde_level_set <- function(kde, c, add_plot = FALSE, ...) {

# Begin and end index for the potentially many intervals in the level sets

# of the kde

kde_larger_c <- kde$y >= c

run_length_kde <- rle(kde_larger_c) # Trick to compute the length of the

# sequence of TRUEs that indicates an interval for which kde$y >= c

begin <- which(diff(kde_larger_c) > 0) + 1 # Trick to search for the beginning

# of each of the intervals

end <- begin + run_length_kde$lengths[run_length_kde$values] - 1 # Compute

# the end of the intervals from begin + length

# Add polygons to a density plot? If so, ... are the additional parameters

# for polygon()

if (add_plot) {

apply(cbind(begin, end), 1, function(ind) {

polygon(x = c(kde$x[ind[1]], kde$x[ind[1]],

kde$x[ind[2]], kde$x[ind[2]]),

y = c(0, kde$y[ind[1]],

kde$y[ind[2]], 0), ...)

})

}

# Return the [a_i, b_i], i = 1, ..., K in the K rows

return(cbind(kde$x[begin], kde$x[end]))

}

# Add kde and level set

lines(kde, col = 2)

kde_level_set(kde = kde, c = c, add_plot = TRUE,

col = rgb(1, 0, 0, alpha = 0.5))

## [,1] [,2]

## [1,] -1.01685 1.444689

abline(h = c, col = 4) # Level

legend("topright", legend = c("True density", "Kde", "True level set",

"Kde level set", "Level c"),

lwd = 2, col = c(1, 2, rgb(0:1, 0, 0, alpha = 0.5), 4))

The following code chunk illustrates how changing the band-
width h and the level of the set c affects the connectedness of
L( f̂ (·; h); c).

# Simulated sample

n <- 100

set.seed(12345)

samp <- rnorm(n = n)
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31 Since
∫

f (x)dx = 1, the scale for
a pdf f decreases as the dimension p
increases, as the volume in Rp grows
exponentially with p.

32 We consider the largest cα such that∫
L( f ;cα)

f (x)dx ≥ 1 − α, instead of the
cα such that

∫
L( f ;cα)

f (x)dx = 1 − α,
because the function c ∈ [0, ∞) 7→∫
L( f ;c) f (x)dx ∈ [0, 1] may not be

continuous: think about f (x) =
1{0<x<1} and c = 1. What is cα for
α = 1/2 in this case?
33 Smallest in terms of volume in Rp.
Since f is measuring the density of
probability per volume in Rp, the
highest density regions minimize
the amount of volume required for
allocating at least 1 − α probability.
If p = 1, then the union of intervals
that conform L( f ; cα) has the shortest
length possible to allocate 1 − α
probability.

# Interactive visualization

x <- seq(-4, 4, by = 0.01)

manipulate::manipulate({

# Show theoretical level set

plot(x, dnorm(x), type = "l", ylim = c(0, 0.5), ylab = "Density")

rug(samp)

x_c <- tryCatch(uniroot(function(x) dnorm(x) - c, lower = 0, upper = 4)$root,

error = function(e) NA) # tryCatch() to bypass errors

polygon(x = c(-x_c, -x_c, x_c, x_c), y = c(0, c, c, 0),

col = rgb(0, 0, 0, alpha = 0.5), density = 10)

# Add estimation

kde <- density(x = samp, bw = bw, n = 1e5, from = -4, to = 4)

lines(kde, col = 2)

kde_level_set(kde = kde, c = c, add_plot = TRUE,

col = rgb(1, 0, 0, alpha = 0.5))

abline(h = c, col = 4) # Level

legend("topright", legend = c("True density", "Kde", "True level set",

"Kde level set", "Level c"),

lwd = 2, col = c(1, 2, rgb(0:1, 0, 0, alpha = 0.5), 4))

}, c = manipulate::slider(min = 0.01, max = 0.5, initial = 0.2, step = 0.01),

bw = manipulate::slider(min = 0.01, max = 1, initial = 0.25, step = 0.01))

Exercise 3.12. Consider the bimodal density f given in nor1mix::MW.nm6.
Consider c = 0.15, 0.25.

• Compute L( f ; c).
• From a sample of size n = 200, compute L( f̂ (·; ĥDPI); c).

Highest density regions for a given probability

The level c in L( f ; c) = {x ∈ Rp : f (x) ≥ c} may be difficult
to interpret: its effective scale depends on the dimension31 p of the
random vector X and on the units in which their components are
measured. A more convenient parametrization of the level set is
attained if we state the probability that is intended to contain, rather
than the minimum value of the density attained in the region. For
that purpose, it is usually considered the largest32 cα such that∫

L( f ;cα)
f (x)dx ≥ 1 − α, α ∈ (0, 1).

This formulation raises a key interpretation of L( f ; cα):

L( f ; cα) is the smallest33 region of Rp that contains at least 1 − α of
the probability of X.

As defined, cα depends on f , which is of course unknown. How-
ever, it can be estimated in a very elegant and computationally
efficient way. To see it, first recall that∫

L( f ;cα)
f (x)dx = P[X ∈ L( f ; cα)]

= P[ f (X) ≥ cα] ≥ 1 − α, (3.19)

which amounts to find the largest cα such that P[ f (X) ≤ cα] ≤ α.
Therefore,

cα is precisely the lower α-quantile of the random variable f (X)!
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Figure 3.5: Level set L( f ; cα) and its
estimation by L( f̂ (·; h); ĉα) for α = 0.25
and f = ϕ.

From this insight, it follows that, if we knew f , then from the
sample X1, . . . , Xn we could estimate cα by the (lower) sample α-
quantile of f (X1), . . . , f (Xn). Since this is not the case, we can opt to
replace f with the kde and define

ĉα as the sample α-quantile of f̂ (X1; H), . . . , f̂ (Xn; H).

Then, the estimator of L( f ; cα), the highest density region that
accumulates 1 − α of the probability, follows by considering the kde
twice, one for obtaining ĉα and another for replacing f with f̂ (·; H),
resulting in L( f̂ (·; H), ĉα).

The following code illustrates how to estimate L( f , cα) by L( f̂ (·; H), ĉα).
Since we need to evaluate the kde at X1, . . . , Xn, we employ ks::kde

instead of density, as the latter allows evaluating the kde at a uni-
formly spaced grid only.

# Simulate sample

n <- 200

set.seed(12345)

samp <- rnorm(n = n)

# We want to estimate the highest density region containing 0.75 probability

alpha <- 0.25

# For the N(0, 1), we know that this region is the interval [-x_c, x_c] with

x_c <- qnorm(1 - alpha / 2)

c_alpha <- dnorm(x_c)

c_alpha

## [1] 0.2058535

# This corresponds to the c_alpha

# Theoretical level set

x <- seq(-4, 4, by = 0.01)

plot(x, dnorm(x), type = "l", ylim = c(0, 0.5), ylab = "Density")

rug(samp)

polygon(x = c(-x_c, -x_c, x_c, x_c), y = c(0, c_alpha, c_alpha, 0),

col = rgb(0, 0, 0, alpha = 0.5), density = 10)

abline(h = c_alpha, col = 3, lty = 2) # Level

# Kde

bw <- bw.nrd(x = samp)

c_alpha_hat <- quantile(ks::kde(x = samp, h = bw, eval.points = samp)$estimate,

probs = alpha)

c_alpha_hat

## 25%

## 0.1838304

kde <- density(x = samp, bw = bw, n = 4096, from = -4, to = 4)

lines(kde, col = 2)

kde_level_set(kde = kde, c = c_alpha_hat, add_plot = TRUE,

col = rgb(1, 0, 0, alpha = 0.5))

## [,1] [,2]

## [1,] -1.2337 1.378266

abline(h = c_alpha_hat, col = 4, lty = 2) # Level

legend("topright", legend = expression("True density", "Kde", "True level set",

"Kde level set", "Level " * c[alpha],

"Level " * hat(c)[alpha]),

lwd = 2, col = c(1, 2, rgb(0:1, 0, 0, alpha = 0.5), 3:4),

lty = c(rep(1, 4), rep(2, 4)))

Observe that equation (3.19) points towards a simple way of ap-
proximating the multidimensional integral

∫
L( f ;c) f (x)dx through-
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out a sample X1, . . . , Xn of f :

∫
L( f ;c)

f (x)dx = P[ f (X) ≥ c] ≈ 1
n

n

∑
i=1

1{ f (Xi)≥c}. (3.20)

This Monte Carlo method has the important advantage of avoid-
ing an expensive numerical integration. This is precisely the same
advantage behind the approximation of cα (essentially, such that∫
L( f ;cα)

f (x)dx = 1 − α for α ∈ (0, 1)) by the α-quantile of
f (X1), . . . , f (Xn).

The application of (3.20) is illustrated below.

# N(0, 1) case

alpha <- 0.3

x_c <- qnorm(1 - alpha / 2)

c_alpha <- dnorm(x_c)

c_alpha

## [1] 0.2331588

# Approximates c_alpha

quantile(dnorm(samp), probs = alpha)

## 30%

## 0.2043856

# True integral: 1 - alpha (by construction)

1 - 2 * pnorm(-x_c)

## [1] 0.7

# Monte Carlo integration, approximates 1 - alpha

mean(dnorm(samp) >= c_alpha)

## [1] 0.655

Exercise 3.13. Consider the kde for the faithful$eruptions dataset
with a DPI bandwidth.

• What is the estimation of the shortest set that contains the 50% of
the probability? And the 75%?

• Compare the results obtained with the application of a boxplot.
Which graphical analysis do you think is more informative?

Exercise 3.14. Repeat Exercise 3.13 with the data airquality$Wind.

Exercise 3.15. Section 2F in Tukey (1977) presents “the Rayleigh
example” as an illustration of the weakness of box plots (referred to
as “schematic plots” in Tukey’s terminology) for analyzing bimodal
data. The weights of nitrogen obtained by Lord Rayleigh (table in
page 49 in Tukey (1977)) are:

x <- c(2.30143, 2.29816, 2.30182, 2.29890, 2.31017,

2.30986, 2.31010, 2.31001, 2.29889, 2.29940,

2.29849, 2.29889, 2.31024, 2.31030, 2.31028)

a. Obtain the box plot of x. Do you see any interesting insights?
b. Compute ĥLSCV (beware of local minima) and draw a kde based

on this bandwidth.
c. Estimate and plot the shortest sets containing 50% and 75% of

the probability. What are your insights?
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Exercise 3.16. Repeat Exercise 3.12 but now considering α =

0.25, 0.50 and obtaining the corresponding cα and ĉα. Compute
cα by Monte Carlo from (3.20) using M = 10, 000 replications.

Exercise 3.17. Adapt the function kde_level_set to:

a. Receive as main arguments a sample x and a bandwidth h, in-
stead of a density object.

b. Use internally ks::kde instead of density.
c. Receive an α, instead of c, and internally determine ĉα.
d. Retain the functionality of kde_level_set and return also

c_alpha_hat.

Call this new function kde_level_set2 and validate it with the
examples seen so far.

Bivariate and trivariate level sets

The computation of bivariate and trivariate level sets is concep-
tually similar, but their parametrization and graphical display are
more challenging. In R2, the level sets are simply obtained from the
contour levels of f̂ (·; H), which is done easily with the ks package.

# Simulated sample from a mixture of normals

n <- 200

set.seed(123456)

mu <- c(2, 2)

Sigma1 <- diag(c(2, 2))

Sigma2 <- diag(c(1, 1))

samp <- rbind(mvtnorm::rmvnorm(n = n / 2, mean = mu, sigma = Sigma1),

mvtnorm::rmvnorm(n = n / 2, mean = -mu, sigma = Sigma2))

# Level set of the true density at levels c

c <- c(0.01, 0.03)

x <- seq(-5, 5, by = 0.1)

xx <- as.matrix(expand.grid(x, x))

contour(x, x, 0.5 * matrix(mvtnorm::dmvnorm(xx, mean = mu, sigma = Sigma1) +

mvtnorm::dmvnorm(xx, mean = -mu, sigma = Sigma2),

nrow = length(x), ncol = length(x)),

levels = c)

# Plot of the contour level

H <- ks::Hpi(x = samp)

kde <- ks::kde(x = samp, H = H)

plot(kde, display = "slice", abs.cont = c, add = TRUE, col = 4) # Argument

# "abs.cont" for specifying c rather than (1 - alpha) * 100 in "cont"

legend("topleft", lwd = 2, col = c(1, 4),

legend = expression(L * "(" * f * ";" * c * ")",

L * "(" * hat(f) * "(" %.% ";" * H * "), " * c *")"))

# Computation of the probability accumulated in the level sets by numerical

# integration

ks::contourSizes(kde, abs.cont = c)

## [1] 35.865815 7.321872

Exercise 3.18. Compute the level set containing the 50% of the
data of the following bivariate datasets: faithful, data(unicef,
package = "ks"), and iris[, 1:2].
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34 Identifying outlying observations in
Rp is much more challenging than in
R, and several statistical techniques
have been proposed for that purpose.
Indeed, the precise definition of what
an outlier is in Rp admits several
approaches. Here we just consider
outliers as the points observed in
low-density regions.
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35 A set C is convex in Rp if all the
paths that interpolate two points x, y ∈
C are contained in C. Mathematically,
C is convex if, for all x, y ∈ C, tx + (1 −
t)y ∈ C, for all t ∈ (0, 1).

In R3, the level sets are more challenging to visualize, as it is
required to combine three-dimensional contours and the use of
transparencies.

# Simulate a sample from a mixture of normals

n <- 5e2

set.seed(123456)

mu <- c(2, 2, 2)

Sigma1 <- rbind(c(1, 0.5, 0.2),

c(0.5, 1, 0.5),

c(0.2, 0.5, 1))

Sigma2 <- rbind(c(1, 0.25, -0.5),

c(0.25, 1, 0.5),

c(-0.5, 0.5, 1))

samp <- rbind(mvtnorm::rmvnorm(n = n / 2, mean = mu, sigma = Sigma1),

mvtnorm::rmvnorm(n = n / 2, mean = -mu, sigma = Sigma2))

# Plot of the contour level, changing the color palette

H <- ks::Hns(x = samp)

kde <- ks::kde(x = samp, H = H)

plot(kde, cont = 100 * c(0.99, 0.95, 0.5), col.fun = viridis::viridis,

drawpoints = TRUE, col.pt = 1, theta = 20, phi = 20)

# Simulate a large sample from a single normal

n <- 5e4

set.seed(123456)

mu <- c(0, 0, 0)

Sigma <- rbind(c(1, 0.5, 0.2),

c(0.5, 1, 0.5),

c(0.2, 0.5, 1))

samp <- mvtnorm::rmvnorm(n = n, mean = mu, sigma = Sigma)

# Plot of the contour level

H <- ks::Hns(x = samp)

kde <- ks::kde(x = samp, H = H)

plot(kde, cont = 100 * c(0.75, 0.5, 0.25), xlim = c(-2.5, 2.5),

ylim = c(-2.5, 2.5), zlim = c(-2.5, 2.5))

Support estimation and outlier detection

In addition to the highest density regions that accumulate 1 −
α probability, for a relatively large α > 0.5, it is also interesting
to set α ≈ 0, as this gives an estimation of the effective support
(excluding α probability) of f . The estimated effective support of
X gives valuable graphical insight into the structure of X and is
helpful, for example, to determine the plausible region for data
points coming from f and then flag as outliers observations that fall
outside the region, for arbitrary dimension.34

The following code chunk shows how to compute estimates of
the support in R2 via ks::ksupp.

# Compute kde of unicef dataset

data(unicef, package = "ks")

kde <- ks::kde(x = unicef)

# ks::ksupp evaluates whether the points in the grid spanned by ks::kde belong

# to the level set for alpha = 0.05 and then returns the points that belong to

# the level set (when convex.hull = FALSE)

supp <- as.matrix(ks::ksupp(fhat = kde, cont = 95, convex.hull = FALSE))

plot(supp) # Effective support except for a 5% of data

When dealing with sets defined by points on Rp, it is useful to
consider the convex hull of the set of points, which is defined as the



90 eduardo garcía-portugués

0 50 100 150 200 250

4
0

5
0

6
0

7
0

Var1

V
a
r2

0 50 100 150 200 250

4
0

5
0

6
0

7
0

Var1

V
a
r2

36 Since version 0.4.0.
37 Obviously, the accuracy of this
approximation depends on how
convex is L( f̂ (·; H); c).

minor convex35 set that contains all the points. The convex hull in
R2 is computed with chull or by setting convex.hull = TRUE in
ks::ksupp.

# The convex hull boundary of the level set can be computed with chull()

# It returns the indexes of the points passed that form the corners of the

# polygon of the convex hull

ch <- chull(supp)

plot(supp)

# One extra point for closing the polygon

lines(supp[c(ch, ch[1]), ], col = 2, lwd = 2)

# Alternatively, use convex.hull = TRUE (default)

plot(supp)

plot(ks::ksupp(fhat = kde, cont = 95, convex.hull = TRUE),

border = 3, lwd = 2)

# The plotting method of ks::ksupp calls to polygon()

The convex hull may be seen as a conservative estimate of the
effective support, since it may enlarge the level set estimation con-
siderably. Another disadvantage is that it merges the individual
components of unconnected supports. However, convex hulls pose
interesting advantages: they can be computed in Rp via convex
polyhedrons and then it is possible to check if a given point belongs
to them. Thus, they give a handle to parametrize unknown-form
level sets in Rp.

These two functionalities are available in the geometry package36

and have an interesting application: rather than evaluating if x ∈
L( f̂ (·; H); c), it is possible to just37 check if x ∈ conv({x1, . . . , xN}),
where conv denotes the convex hull operator and {x1, . . . , xN} is
a collection of points that roughly determines L( f̂ (·; H); c). For
example, the output of ks::ksupp in R2 or some points that belong
to L( f̂ (·; H); c) for Rp, p ≥ 2.

# Compute the convex hull of supp via geometry::convhulln()

C <- geometry::convhulln(p = supp)

# The output of geometry::convhulln() is different from chull()

# The geometry::inhulln() allows to check if points are inside the convex hull

geometry::inhulln(ch = C, p = rbind(c(50, 50), c(150, 50)))

## [1] FALSE TRUE

# The convex hull works as well in Rˆp. An example in which the level set is

# evaluated by Monte Carlo and then the convex hull of the points in the level

# set is computed

# Sample

set.seed(2134)

samp <- mvtnorm::rmvnorm(n = 1e2, mean = rep(0, 3))

# Evaluation sample: random data in [-3, 3]ˆ3

M <- 1e3

eval_set <- matrix(runif(n = 3 * M, -3, 3), M, 3)

# Kde of samp, evaluated at eval_set

H <- ks::Hns.diag(samp)

kde <- ks::kde(x = samp, H = H, eval.points = eval_set)
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Figure 3.6: An outlier (green point)
in R2 that is not an outlier in any
of the two marginals. The contour
levels represent the joint density
of a N2(0, Σ), where Σ is such that
σ2

11 = σ2
22 = 1 and σ12 = 0.8. The black

points are sampled from that normal.
The red and blue lines represent the
1 − α probability intervals (−zα/2, zα/2)
for α = 0.01.

38 Computing f̂i(X̃i ; ĤNS) for evaluat-
ing the outlyingness of X̃i , rather than
computing f̂ (X̃; ĤNS), is important. In
f̂i(X̃i ; ĤNS), the estimated density at
X̃i is computed with X1, . . . , Xn1 , X̃i ,
so “the contribution of X̃i to itself”,

1
n1+1 KĤNS

(0), is present in the kde.
Which is exactly the same situa-
tion that happens when computing
f̂ (X1; ĤNS), . . . , f̂ (Xn1 ; ĤNS) for es-
timating ĉα, and so the comparison
f̂i(X̃i ; ĤNS) < ĉα is “fair”.

# Convex hull of points in the level set for a given c

c <- 0.01

C <- geometry::convhulln(p = eval_set[kde$estimate > c, ])

# We can test if a new point belongs to the level set by just checking if

# it belongs to the convex hull, which is much more efficient as it avoids

# re-evaluating the kde

new_points <- rbind(c(1, 1, 1), c(2, 2, 2))

geometry::inhulln(ch = C, p = new_points)

## [1] TRUE FALSE

ks::kde(x = samp, H = H, eval.points = new_points)$estimate > c

## [1] TRUE FALSE

# # Performance evaluation

# microbenchmark::microbenchmark(

# geometry::inhulln(ch = C, p = new_points),

# ks::kde(x = samp, H = H, eval.points = new_points)$estimate > c)

Detecting multivariate outliers in Rp is more challenging than
in R, and, unfortunately, the mere inspection of the marginals in
the search for extreme values is not enough for successful outlier-
hunting. A simple example in R2 is given in Figure 3.6.

The next exercise shows an application of a level set estimation
to outlier detection.

Exercise 3.19. Megaloblastic anemia is a kind of anemia that pro-
duces abnormally large red blood cells. Among others, indicators
of megaloblastic anemia are low levels of: vitamin B12 (reference
values: 178 − 1, 100 pg/ml), Folic Acid (FA; reference values: > 5.4
ng), Mean Corpuscular Volume (MCV; reference values: 78 − 100
fL), Hemoglobin (H; reference values: 13 − 17 g/dL), and Iron (I;
reference values: 60 − 160 µg/dL). However, none can diagnose
megaloblastic anemia by itself.

The dataset healthy-patients.txt contains realistically simu-
lated data from n1 = 5, 835 blood analysis that include measure-
ments for X = (B12, FA, MCV, H, I), that is, a sample X1, . . . , Xn1 . On
the other hand, the dataset new-patients.txt contains observations
of X for n2 = 117 new patients, for which the presence of mega-
loblastic anemia is unknown. This sample is denoted by X̃1, . . . , X̃n2 .

Our aim is to identify outliers in this second dataset with respect
to the first, in order to identify potential manifestations of mega-
loblastic anemia. To do so, we follow the following steps:

1. Obtain the normal scale bandwidth ĤNS for the sample X1, . . . , Xn1 .
2. Obtain the level ĉα such that 0.995 of the estimated probability of

X is contained in L( f̂ (·; H); ĉα). Hint: recall how ĉα was defined.
3. Evaluate the kde f̂i(X̃i; ĤNS), i = 1, . . . , n2, for the new sample

X̃1, . . . , X̃n2 , where f̂i(·; ĤNS) stands for the kde of X1, . . . , Xn1 , X̃i.38

4. Check if f̂i(X̃i; ĤNS) < ĉα, i = 1, . . . , n, and flag X̃i as an outlier if
the condition holds.

Are there outliers? Do the observations flagged as outliers have
the measurements inside the reference values?

Exercise 3.20. The wines.txt dataset contains chemical analyses
of wines grown in Piedmont (Italy) coming from three different

https://raw.githubusercontent.com/egarpor/handy/master/datasets/healthy-patients.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/new-patients.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/wines.txt
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39 Notice that W(Cj) can be seen as
the sample variance, since W(Cj) =

1
|Cj | ∑i,i′∈Cj

∥Xi − X̄Cj + X̄Cj − Xi′∥2 =

2
|Cj | ∑i∈Cj

∥Xi − X̄Cj∥
2, where X̄Cj :=

1
|Cj | ∑i∈Cj

Xi is the sample mean of

the observations in Cj. Therefore,
W(Cj) = 2S2

Cj
, where S2

Cj
is the

trace of the sample covariance matrix
1

|Cj | ∑i∈Cj
(Xi − X̄Cj )(Xi − X̄Cj )

′.

40 It is possible to build a population
formulation of k-means. That can be
seen, e.g., in Cuesta-Albertos et al.
(1997), a paper that introduces a
trimmed variant of k-means.
41 The population view of k-means is
conceptually more involved and less
insightful than, as seen subsequently,
mode clustering. The latter has an
elegant simple connection with the
(population) concept of mode.
42 For example, what are the clusters of
the “claw” density nor1mix::MW.nm10?

vintages: Nebbiolo, Barberas, and Grignolino. Perform a PCA after
removing the vintage variable and standardizing the variables.

a. Considering the three first PCs, what is the smallest set that con-
tains the 90% of the probability? Represent the set graphically.

b. Is the point x1 = (0,−1.5, 0) inside the level set? Could it be
considered an outlier (remember the previous exercise)?

c. What about x2 = (2,−1.5, 2)?
d. And what about x3 = (3,−3, 3)?
e. Visualize the locations of x1, x2, and x3 to interpret the previous

results

We conclude the section by highlighting a useful fact about the
computation of areas under normal densities that is helpful to
determine exactly the density levels for given probabilities. The
density level cα that contains 1 − α probability for X ∼ Np(µ, Σ) can
be computed exactly by

1 − α = P[ϕΣ(X − µ) ≥ c] = P
[
χ2

p ≤ −2 log
(
|Σ|1/2(2π)p/2c

)]
,

since (X − µ)′Σ−1(X − µ) ∼ χ2
p. Therefore, for a given α ∈ (0, 1)

cα = |Σ|−1/2(2π)−p/2e−χ2
p;α/2, (3.21)

where χ2
p;α is the α-upper quantile of a χ2

p. The following code
shows the computation of (3.21).

alpha <- 0.4

p <- 2

c_alpha <- exp(-0.5 * qchisq(p = 1 - alpha, df = p)) /

(sqrt(det(Sigma)) * (2 * pi)ˆ(p / 2))

3.5.2 Mean shift clustering

Perhaps one of the best-known clustering methods is k-means.
Given a sample X1, . . . , Xn in Rp, k-means is defined as the prob-
lem of finding the clusters C1, . . . , Ck such that the within-cluster
variation is as small as possible:

min
C1,...,Ck

{
k

∑
j=1

W(Cj)

}

where the within-cluster variation39 of Cj is defined as

W(Cj) :=
1

|Cj| ∑
i,i′∈Cj

∥Xi − Xi′∥2

with |Cj| := #{i = 1, . . . , n : Xi ∈ Cj} denoting the number of
observations in the j-th cluster.

Behind the usefulness and simplicity of k-means hides an im-
portant drawback inherent to many clustering techniques: it is a
method mostly defined on a sample basis40 and for which a pop-
ulation analogue (in terms of the distribution of X) is not clearly
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Figure 3.7: k-means partitions for a
two-dimensional dataset with k =
1, 2, 3, 4. The center of each cluster is
displayed with an asterisk.

43 Which is the right amount of clusters
for the “claw” density?
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Figure 3.8: k-means partitions for
10, 000 observations sampled from the
claw density for k = 5. Notice how
despite the density’s having 5 clear
modes, the clusters are not associated
with them (the blue on the right hand
side captures the data on the right
tail), even for the large sample size
considered.

evident.41 This has an important consequence: the somehow subjec-
tive concept of “cluster” depends on the observed sample, and thus
there is no immediate objective definition in terms of the popula-
tion.42 This implies that there is no clear population reference with
which to compare the performance of a given sample clustering,
that precise indications on the difficulty of performing clustering on
a certain scenario are harder to make, and that there is no notice-
able ground truth on what should be the right number of clusters
for a given population.43

In the following, we study a principled population approach to
clustering that tries to bypass these issues.

A population approach to clustering

The general goal of clustering, to find clusters of data with low
within-cluster variation, can be regarded as the task of determin-
ing data-rich regions on the sample. From the density perspective,
data-rich regions have a precise definition: modes and high-density
regions. Therefore, modes are going to be crucial for defining popu-
lation clusters in the sense introduced by Chacón (2015).

Given the random vector X in Rp with pdf f , we denote the
modes of f by ξ1, . . . , ξm. These are the local maxima of f , i.e.,
D f (ξ j) = 0, j = 1, . . . , m. Intuitively, we can think of the population
clusters as the regions of Rp that are “associated” with each of
the modes of f . This “association” can be visualized, for example,
by a gravitational analogy: if ξ1, . . . , ξm denote fixed equal-mass
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Figure 3.9: Sketch of the gravity vector
field associated with three equal-mass
planets (black points). The vector
field is computed as the gradient of
a mixture of three bivariate normals
centered at the black points and
having covariance matrices 1

2 I2. The
direction of the arrows denotes the
direction of the gravity field, and their
color, the strength of the gravity force.
44 Technically, excluding sets of zero
Lebesgue measure.
45 The superscript s stands for stable
manifold and the subscript + em-
phasizes that the positive gradient is
considered.

planets distributed on the space, then the population clusters can be
thought of as the regions that determine the domains of attraction of
each planet for an object x in the space that has zero initial speed.
If x is attracted by ξ1, then x belongs to the cluster defined by ξ1.
In our setting, the role of the gravity attraction is played by the
gradient of the density f , D f : Rp −→ Rp, which forms a vector field
over Rp.

The code below illustrates the previous analogy and serves to
present the function numDeriv::grad.

# Planets

th <- 2 * pi / 3

r <- 2

xi_1 <- r * c(cos(th + 0.5), sin(th + 0.5))

xi_2 <- r * c(cos(2 * th + 0.5), sin(2 * th + 0.5))

xi_3 <- r * c(cos(3 * th + 0.5), sin(3 * th + 0.5))

# Gravity force

gravity <- function(x) {

(mvtnorm::dmvnorm(x = x, mean = xi_1, sigma = diag(rep(0.5, 2))) +

mvtnorm::dmvnorm(x = x, mean = xi_2, sigma = diag(rep(0.5, 2))) +

mvtnorm::dmvnorm(x = x, mean = xi_3, sigma = diag(rep(0.5, 2)))) / 3

}

# Compute numerically the gradient of an arbitrary function

attraction <- function(x) numDeriv::grad(func = gravity, x = x)

# Evaluate the vector field

x <- seq(-4, 4, l = 20)

xy <- expand.grid(x = x, y = x)

dir <- apply(xy, 1, attraction)

# Scale arrows to unit length for better visualization

len <- sqrt(colSums(dirˆ2))

dir <- 0.25 * scale(dir, center = FALSE, scale = len)

# Colors of the arrows according to their original magnitude

brk <- quantile(len, probs = seq(0, 1, length.out = 21))

cuts <- cut(x = len, breaks = brk)

cols <- viridis::viridis(20)[cuts]

# Vector field plot

plot(0, 0, type = "n", xlim = c(-4, 4), ylim = c(-4, 4),

xlab = "x", ylab = "y")

arrows(x0 = xy$x, y0 = xy$y,

x1 = xy$x + dir[1, ], y1 = xy$y + dir[2, ],

angle = 10, length = 0.1, col = cols, lwd = 2)

points(rbind(xi_1, xi_2, xi_3), pch = 19, cex = 1.5)

The previous idea can be mathematically formalized as fol-
lows. We seek to partition44 Rp in a collection of disjoint subsets
Ws

+(ξ1), . . . , Ws
+(ξm)

45 defined as

Ws
+(ξ) :=

{
x ∈ Rp : lim

t→∞
ϕx(t) = ξ

}
where ϕx : R −→ Rp is a curve in Rp parametrized by t ∈ R that
satisfies the following Ordinal Differential Equation (ODE):

d
dt

ϕx(t) = D f (ϕx(t)), ϕx(0) = x. (3.22)
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46 Notice that (3.22) forces the deriva-
tive of ϕx at t to coincide with the
gradient of f at ϕx(t).

47 Observe that the iterative scheme
will converge to a stationary point
when D f (xt) ≈ 0, that is, when xt
approaches ξ such that D f (ξ) = 0.

This ODE admits a clear interpretation: the flow curve ϕx is the
path that, originated at x, describes x when reaching ξ j through the
direction of maximum ascent.46 The ODE can be solved through dif-
ferent numerical schemes. For example, observing that d

dt ϕx(t) =

limh→0
ϕx(t+h)−ϕx(t)

h , the Euler method considers the approximation

ϕx(t + h) ≈ ϕx(t) + hD f (ϕx(t)) if h ≈ 0, (3.23)

which motivates the iterative scheme47xt+1 = xt + hD f (xt), t = 0, . . . , N,

x0 = x,
(3.24)

for a step h > 0 and a number of maximum iterations N.
The following chunk of code illustrates the implementation of

the Euler method (3.22) and gives insight into the paths ϕx. The
code implements the exact gradient of a multivariate normal given
in (3.9).

# Mixture parameters

mu_1 <- rep(1, 2)

mu_2 <- rep(-1.5, 2)

Sigma_1 <- matrix(c(1, -0.75, -0.75, 3), nrow = 2, ncol = 2)

Sigma_2 <- matrix(c(2, 0.75, 0.75, 3), nrow = 2, ncol = 2)

Sigma_1_inv <- solve(Sigma_1)

Sigma_2_inv <- solve(Sigma_2)

w <- 0.45

# Density

f <- function(x) {

w * mvtnorm::dmvnorm(x = x, mean = mu_1, sigma = Sigma_1) +

(1 - w) * mvtnorm::dmvnorm(x = x, mean = mu_2, sigma = Sigma_2)

}

# Gradient (caution: only works adequately for x a vector, it is not

# vectorized; observe that in the Sigma_inv %*% (x - mu) part the subtraction

# of mu and premultiplication by Sigma_inv are specific to a *single* point x)

Df <- function(x) {

-(w * mvtnorm::dmvnorm(x = x, mean = mu_1, sigma = Sigma_1) *
Sigma_1_inv %*% (x - mu_1) +

(1 - w) * mvtnorm::dmvnorm(x = x, mean = mu_2, sigma = Sigma_2) *
Sigma_2_inv %*% (x - mu_2))

}

# Plot density

ks::plotmixt(mus = rbind(mu_1, mu_2), Sigmas = rbind(Sigma_1, Sigma_2),

props = c(w, 1 - w), display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-5, 5), ylim = c(-5, 5),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis)

# Euler solution

x <- c(-2, 2)

# x <- c(-4, 0)

# x <- c(-4, 4)

N <- 1e3

h <- 0.5

phi <- matrix(nrow = N + 1, ncol = 2)

phi[1, ] <- x

for (t in 1:N) {

phi[t + 1, ] <- phi[t, ] + h * Df(phi[t, ])# / f(phi[t, ])

}
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lines(phi, type = "l")

points(rbind(x), pch = 19)

text(rbind(x), labels = "x", pos = 3)

# Mean of the components

points(rbind(mu_1, mu_2), pch = 16, col = 4)

text(rbind(mu_1, mu_2), labels = expression(mu[1], mu[2]), pos = 4, col = 4)

# The modes are different from the mean of the components! -- see the gradients

cbind(Df(mu_1), Df(mu_2))

## [,1] [,2]

## [1,] -0.005195479 1.528460e-04

## [2,] -0.002886377 7.132814e-05

# Modes

xi_1 <- optim(par = mu_1, fn = function(x) sum(Df(x)ˆ2))$par

xi_2 <- optim(par = mu_2, fn = function(x) sum(Df(x)ˆ2))$par

points(rbind(xi_1, xi_2), pch = 16, col = 2)

text(rbind(xi_1, xi_2), labels = expression(xi[1], xi[2]), col = 2, pos = 2)
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Figure 3.10: The curve ϕx computed
by the Euler method, in black. The
population density is the mixture of
bivariate normals wϕΣ1 (· − µ1) + (1 −
w)ϕΣ2 (· − µ2), where µ1 = (1, 1)′, µ2 =
(−1.5,−1.5)′, Σ1 = (1,−0.75;−0.75, 3),
Σ2 = (2, 0.75; 0.75, 3), and w = 0.45.
The component means µ1 and µ2
are shown in blue, whereas the two
modes ξ1 and ξ2 of the density are
represented in red. Note that the
modes and the component means may
be different.

Exercise 3.21. Inspect the code generating Figure 3.10. Then:

1. Experiment with different values for the initial point x and in-
spect the resulting flow curves. What happens if x is in a low-
density region?

2. Change the step h to larger and smaller values. What happens?
Has h an influence on the convergence to a mode?

3. Does the “adequate” step h depend on x?

Clustering a sample: kernel mean shift clustering

From the previous example, it is clear how to assign a point x to
a population cluster: compute its associated flow curve and assign
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48 Recall: once the population setting
is well-defined, the sample version
becomes immediately clear.

49 Both inspired by the original mean
shift recurrence relation proposed by
Fukunaga and Hostetler (1975).

50 Notice that, on the one hand, the
normalized gradient is automatically
magnified if the density at x is low,
avoiding very slow movements in low-
density regions. On the other hand,
the normalizing gradient is decreased
automatically at high-density regions,
avoiding the “overshooting” of the
local maximum.
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Figure 3.11: Comparison between
unnormalized and normalized gra-
dient vector fields. Observe how the
unnormalized gradient almost van-
ishes at regions with low density and
“overshoots” close to the modes. The
normalized gradient gently adapts to
the density region, boosting and slow-
ing ascent as required. Both gradients
have been standardized so that the
norm of the maximum gradient is 2,
therefore enabling their comparison.
51 Because it can be seen that a fac-
tor H−1 appears in the expansion of
η̂(xt; H) after taking derivatives, a
factor that is canceled when premulti-
plied by H if A = H.

the j-th cluster label if x ∈ Ws
+(ξ j). More importantly, once the

population view of clustering is clear, performing clustering for a
sample is conceptually trivial: just replace f in (3.24) with its kde
f̂ (·; H)!48 By doing so, it results thatxt+1 = xt + hD f̂ (xt; H), t = 0, . . . , N,

x0 = x.
(3.25)

A couple49 more tweaks are required to turn (3.25) into a more
practical relation. The first tweak boosts the travel through low-
density regions and decreases the ascent at high-density regions (see
Figure 3.11) by adapting the step size taken at xt+1 by the density
at xt. In version (3.24), this amounts to considering the normalized
gradient50

η(x) :=
D f (x)

f (x)

instead of the unnormalized gradient. Considering the normalized
gradient can be seen as a replacement in (3.25) of the constant step
h by the variable step h(x) := a/ f (x), a > 0.

The second tweak replaces a in the variable step with a positive
definite matrix A to premultiply η(x) and allow for more generality.
This apparent innocuous change gives a convenient51 choice for A
and hence for the step in Euler’s method: A = H.

Joining the previous two tweaks, it results the recurrence relation
of kernel mean shift clustering:

xt+1 = xt + Hη̂(xt; H), η̂(x; H) :=
D f̂ (x; H)

f̂ (x; H)
. (3.26)

The recipe for clustering a sample X1, . . . , Xn is now simple:

1. Select a “suitable” bandwidth Ĥ.
2. For each element Xi, iterate the recurrence relation (3.26) “until

convergence” to a given yi, i = 1, . . . , n.
3. Find the set of “unique” end points {ξ1, . . . , ξm} (the modes)

among {y1, . . . , yn}.
4. Label Xi as j if it is associated with the j-th mode ξ j.

Some practical details are important when implementing the
previous algorithm. First and more importantly, a “suitable” band-
width Ĥ has to be considered in order to carry out (3.26). Observe
the crucial role of the bandwidth:

• A large bandwidth Ĥ will oversmooth the data and underes-
timate the number of modes. In the most extreme case, it will
merge all the possible clusters into a single one positioned close
to the sample mean X̄.

• A small bandwidth Ĥ will undersmooth the data, thus overes-
timating the number of modes. In the most extreme case, it will
detect as many modes as data points.
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52 Observe that this is key to determine
how many different modes, therefore
clusters, the algorithm has found.
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53 This is a very appealing benefit of
kernel mean shift clustering that is not
possible in a principled form in other
clustering methods.

The kind of bandwidth selectors recommended are the ones de-
signed for gradient density estimation (see Sections 3.1 and 3.4),
since (3.26) critically depends on estimating adequately the gradi-
ent (see discussion in Section 6.2.2 in Chacón and Duong (2018)).
These bandwidth selectors yield larger bandwidths than the ones
designed for density estimation (compare (3.18) with (3.17)).

In addition, both the iteration “until convergence” and the
“uniqueness” of the end points52 have to be evaluated in prac-
tice with adequate numerical tolerances. The function ks::kms

implements kernel mean shift clustering and automatically employs
tested choices for numerical tolerances and convergence criteria.

# A simulated example for which the population clusters are known

# Extracted from ?ks::dmvnorm.mixt

mus <- rbind(c(-1, 0), c(1, 2 / sqrt(3)), c(1, -2 / sqrt(3)))

Sigmas <- 1/25 * rbind(ks::invvech(c(9, 63/10, 49/4)),

ks::invvech(c(9, 0, 49/4)),

ks::invvech(c(9, 0, 49/4)))

props <- c(3, 3, 1) / 7

# Sample the mixture

set.seed(123456)

x <- ks::rmvnorm.mixt(n = 1000, mus = mus, Sigmas = Sigmas, props = props)

# Kernel mean shift clustering. If H is not specified, then

# H = ks::Hpi(x, deriv.order = 1) is employed. Its computation may take some

# time, so it is advisable to compute it separately for later reuse

H <- ks::Hpi(x = x, deriv.order = 1)

kms <- ks::kms(x = x, H = H)

# Plot clusters

plot(kms, col = viridis::viridis(kms$nclust), pch = 19, xlab = "x", ylab = "y")

# Summary

summary(kms)

## Number of clusters = 3

## Cluster label table = 521 416 63

## Cluster modes =

## V1 V2

## 1 1.0486466 0.96316436

## 2 -1.0049258 0.08419048

## 3 0.9888924 -1.43852908

# Objects in the kms object

kms$nclust # Number of clusters found

## [1] 3

kms$nclust.table # Sizes of clusters

##

## 1 2 3

## 521 416 63

kms$mode # Estimated modes

## [,1] [,2]

## [1,] 1.0486466 0.96316436

## [2,] -1.0049258 0.08419048

## [3,] 0.9888924 -1.43852908

# With keep.path = TRUE the ascending paths are returned

kms <- ks::kms(x = x, H = H, keep.path = TRUE)

cols <- viridis::viridis(kms$nclust, alpha = 0.5)[kms$label]

plot(x, col = cols, pch = 19, xlab = "x", ylab = "y")

for (i in 1:nrow(x)) lines(kms$path[[i]], col = cols[i])

points(kms$mode, pch = 8, cex = 2, lwd = 2)
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The partition of the whole space53 (not just the sample) can be
done with ks::kms.part, whereas ks::mvnorm.mixt.part allows to
partition the population if this is a mixture of normals.

# Partition of the whole sample space

kms_part <- ks::kms.part(x = x, H = H, xmin = c(-3, -3), xmax = c(3, 4),

gridsize = c(150, 150))

plot(kms_part, display = "filled.contour2", col = viridis::viridis(kms$nclust),

xlab = "x", ylab = "y")

points(kms_part$mode, pch = 8, cex = 2, lwd = 2)

# Partition of the population

mixt_part <- ks::mvnorm.mixt.part(mus = mus, Sigmas = Sigmas, props = props,

xmin = c(-3, -3), xmax = c(3, 4),

gridsize = c(150, 150))

plot(mixt_part, display = "filled.contour2", col = viridis::viridis(kms$nclust),

xlab = "x", ylab = "y")

# Obtain the modes of a mixture of normals automatically

modes <- ks::mvnorm.mixt.mode(mus = mus, Sigmas = Sigmas, props = props)

points(modes, pch = 8, cex = 2, lwd = 2)

modes

## [,1] [,2]

## [1,] -0.9975330 0.002125069

## [2,] 0.9898321 1.153091638

## [3,] 0.9999969 -1.119886815

mus

## [,1] [,2]

## [1,] -1 0.000000

## [2,] 1 1.154701

## [3,] 1 -1.154701

Finally, the ks::kms function is applied to the iris[, 1:3]

dataset to illustrate a three-dimensional example.

# Obtain PI bandwidth

H <- ks::Hpi(x = iris[, 1:3], deriv.order = 1)

# Many (8) clusters: probably due to the repetitions in the data

kms_iris <- ks::kms(x = iris[, 1:3], H = H)

summary(kms_iris)

## Number of clusters = 8

## Cluster label table = 47 3 25 11 55 3 3 3

## Cluster modes =

## Sepal.Length Sepal.Width Petal.Length

## 1 5.065099 3.442888 1.470614

## 2 5.783786 3.975575 1.255177

## 3 6.726385 3.026522 4.801402

## 4 5.576415 2.478507 3.861941

## 5 6.081276 2.884925 4.710959

## 6 6.168988 2.232741 4.310609

## 7 6.251387 3.375452 5.573491

## 8 7.208475 3.596510 6.118948

# Force to only find clusters that contain at least 10% of the data

# kms merges internally the small clusters with the closest ones

kms_iris <- ks::kms(x = iris[, 1:3], H = H, min.clust.size = 15)

summary(kms_iris)

## Number of clusters = 3

## Cluster label table = 50 31 69

## Cluster modes =

## Sepal.Length Sepal.Width Petal.Length

## 1 5.065099 3.442888 1.470614



100 eduardo garcía-portugués

Sepal.Length

2
.0

2
.5

3
.0

3
.5

4
.0

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

2.0 2.5 3.0 3.5 4.0

Sepal.Width

4
.5

5
.0

5
.5

6
.0

6
.5

7
.0

7
.5

8
.0

1 2 3 4 5 6 7

1
2

3
4

5
6

7

Petal.Length

## 2 6.726385 3.026522 4.801402

## 3 5.576415 2.478507 3.861941

# Pairs plot -- good match of clustering with Species

plot(kms_iris, pch = as.numeric(iris$Species) + 1,

col = viridis::viridis(kms_iris$nclust))

# See ascending paths

kms_iris <- ks::kms(x = iris[, 1:3], H = H, min.clust.size = 15,

keep.path = TRUE)

cols <- viridis::viridis(kms_iris$nclust)[kms_iris$label]

rgl::plot3d(kms_iris$x, col = cols)

for (i in 1:nrow(iris)) rgl::lines3d(kms_iris$path[[i]], col = cols[i])

rgl::points3d(kms_iris$mode, size = 5)

rgl::rglwidget()

Exercise 3.22. The dataset la-liga-2015-2016.xlsx contains team
statistics for La Liga season 2015/2016.

a. How many clusters are detected for the variables Yellow.cards

and Red.cards? And for Yellow.cards, Red.cards, and Fouls.made?
Interpret the results.

b. Standardize the previous variables (divide them by their stan-
dard deviation) and recompute a. Are the results the same?
Why? Does kmeans have a similar behavior?

c. Run a PCA on the dataset after removing Points and Matches

and standardizing the variables. Then perform a clustering on
the scores of as many PCs as to explain the 85% of the variance.
How many clusters are detected? What teams are associated
with each of them? Are the clusters interpretable? Do you see
something strange?

d. Run kmeans on the data used in c with k = 3, 4, 5 and compare
the results graphically.

Exercise 3.23. Load the wines.txt dataset and perform a PCA re-
moving the vintage variable and after standardizing the variables.

a. How many clusters are detected using three PCs? What happens
if min.clust.size is set such that the minimum cluster contains
more than 5% of the sample? Does it seem like a sensible choice
to set such value of min.clust.size?

b. Using the same min.clust.size, consider six PCs. How many
clusters are detected? Perform a pairs scatterplot and identify the
PCs that are useful to identify clusters and the ones that seem to
be adding noise.

c. Using the same min.clust.size, do the clustering with two PCs.
How many clusters are now detected? Compare the clustering
with two and three PCs. Why do you think there are fewer clus-
ters in the latter? Hint: observe that the incremental information
is on the scores of PC1 vs. PC3 and PC2 vs. PC3.

d. Compare the cluster made in part a with the variable vintages.
e. Run kmeans on the data used in part a with k = 3, 4 and compare

the results graphically.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/la-liga-2015-2016.xlsx
https://raw.githubusercontent.com/egarpor/handy/master/datasets/wines.txt
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54 Observe that, since we are interested
in the argument j that maximizes
P[Y = j|X = x], we do not care about
the standardization by ∑m

j=1 πj f j(x)
in (3.28), as this is a constant common
factor for all j = 1, . . . , m.

Exercise 3.24. Consider the MNIST dataset described in Exercise 2.25.
Investigate the different ways of writing the digit “3” using kernel
mean shift clustering. Follow the next steps:

a. Consider the t-SNE (van der Maaten and Hinton, 2008) scores
y_tsne of the class “3”. Use only the first 2, 000 t-SNE scores for
the class “3” for the sake of computational expediency.

b. Compute the normal scale bandwidth matrix that is appropriate
for performing kernel mean shift clustering with the first 2, 000
t-SNE scores.

c. Do kernel mean shift clustering on that subset using the previ-
ously obtained bandwidth and obtain the modes ξ j, j = 1, . . . , M,
that cluster the t-SNE scores.

d. Determine the M images that have the closest t-SNE scores,
using the Euclidean distance, to the modes ξ j.

e. Show the closest images associated with the modes. Do they
represent different forms of drawing the digit “3”?

3.5.3 Classification

We assume in this section that X has a categorical random variable
Y as a companion, the labels of Y indicating one out of m possi-
ble classes within the population X, and that we have a sample
(X1, Y1), . . . , (Xn, Yn).

Let’s denote f j to the conditional pdf of X|Y = j and πj to the
value of the probability mass function of Y at j, i.e., P[Y = j] = πj,
for j = 1, . . . , m. In this framework, the unconditional pdf f of X is a
mixture of the conditional pdfs. This is just a direct application of
the law of the total probability:

f (x) =
m

∑
j=1

f j(x)πj. (3.27)

The problem of assigning an observation x of X to each of the
classes of Y can be tackled by maximizing the conditional probabil-
ity

P[Y = j|X = x] =
f j(x)P[Y = j]

f (x)

=
πj f j(x)

∑m
j=1 πj f j(x)

, (3.28)

where a simple application of the Bayes’ rule involving pdfs and
probabilities has been done in the first equality and (3.27) has been
called in the second. The Bayes classifier exploits this idea of “as-
signing x to the most likely class j”:54

γBayes(x) := arg max
j=1,...,m

πj f j(x). (3.29)

The Bayes classifier enjoys the minimum possible error rate among
all possible classifiers. But, since it depends on the unknown
f1, . . . , fm, π1, . . . , πm, it can not be readily computed.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/MNIST-tSNE.RData
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55 Notice that one could also choose Hj,
j = 1, . . . , m, to maximize classification
accuracy directly, rather than to
estimate accurately f j, j = 1, . . . , m.
This would be a more complicated
procedure, though, as it will involve
optimizing a classification criterion
over (vech(H1)

′, . . . , vech(Hm)′)′ ∈
Rmp(p−1)/2, as opposed to select m
bandwidth matrices separately. As vec,
the vech operator stacks the columns
of any matrix into a long vector, but
vech first removes the lower diagonal
matrix.

The solution now is evident: plug-in estimates for the unknown
terms in (3.29) from the observed sample (X1, Y1), . . . , (Xn, Yn).
Estimating the class probabilities πj is simple: just consider their
relative frequencies π̂j :=

nj
n , where nj := #{i = 1, . . . , n : Yi = j}.

Estimating f j can be done by a kde for the subsample {Xi : Yi =

j, i = 1, . . . , n}, which we denote f̂ j(·; Hj). Plugging these estimates
into (3.29) gives the kernel classifier

γ̂(x; H1, . . . , Hm) := arg max
j=1,...,m

π̂j f̂ j(x; Hj). (3.30)

Application of (3.30) is often referred to as kernel discriminant
analysis (kda).

The kernel classifier needs to be fed by the bandwidths H1, . . . , Hm,
each of them to be selected from each of the m subsamples. How-
ever, these can be chosen by any of the procedures described in
Section 3.4, as an adequate estimation of the conditional densities
f j will yield sensible classification errors.55 The main advantage of
(3.30) with respect to classical LDA or QDA is the high flexibility
induced by the natural nonlinearity of the classification frontier,
which can capture any arbitrarily complicated form (yet retaining a
conceptually simple formulation).

The ks::kda function implements kernel discriminant analysis.
It essentially calls m times to ks::kde in order to compute (3.30). In
what follows the usage of ks::kda is illustrated, for p = 1, 2, 3, in
the iris dataset.

# Univariate example

x <- iris$Sepal.Length

groups <- iris$Species

# By default, the ks::hpi bandwidths are computed

kda_1 <- ks::kda(x = x, x.group = groups)

# Manual specification of bandwidths via ks::hkda (we have univariate data)

hs <- ks::hkda(x = x, x.group = groups, bw = "plugin")

kda_1 <- ks::kda(x = x, x.group = groups, hs = hs)

# Estimated class probabilities

kda_1$prior.prob

## [1] 0.3333333 0.3333333 0.3333333

# Classification

head(kda_1$x.group.estimate)

## [1] setosa setosa setosa setosa setosa setosa

## Levels: setosa versicolor virginica

# (Training) classification error

ks::compare(x.group = kda_1$x.group, est.group = kda_1$x.group.estimate)

## $cross

## setosa (est.) versicolor (est.) virginica (est.) Total

## setosa (true) 45 5 0 50

## versicolor (true) 6 28 16 50

## virginica (true) 1 10 39 50

## Total 52 43 55 150

##

## $error

## [1] 0.2533333

# Classification of new observations
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Figure 3.12: Discriminant regions
classifying iris$Species from
iris$Sepal.Length.
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Figure 3.13: Discriminant re-
gions classifying iris$Species

from iris$Sepal.Length and
iris$Sepal.Width. Observe that the
second plot removes the artifacts of the
former due to numerically-unstable
divisions in low-density regions.

ind_1 <- c(5, 55, 105)

newx <- x[ind_1]

predict(kda_1, x = newx)

## [1] setosa virginica virginica

## Levels: setosa versicolor virginica

groups[ind_1] # Reality

## [1] setosa versicolor virginica

## Levels: setosa versicolor virginica

# Classification regions (points on the bottom)

plot(kda_1, xlab = "Sepal length", drawpoints = TRUE, col = rainbow(3))

legend("topright", legend = c("Setosa", "Versicolor", "Virginica"),

lwd = 2, col = rainbow(3))

Exercise 3.25. Experiment with the code above by changing the
variable Sepal.Length and the bandwidth selectors to see how the
classification regions and errors change.

# Bivariate example

x <- iris[, 1:2]

groups <- iris$Species

# By default, the ks::Hpi bandwidths are computed

kda_2 <- ks::kda(x = x, x.group = groups)

# Manual specification of bandwidths via ks::Hkda

Hs <- ks::Hkda(x = x, x.group = groups, bw = "plugin")

kda_2 <- ks::kda(x = x, x.group = groups, Hs = Hs)

# Classification of new observations

ind_2 <- c(5, 55, 105)

newx <- x[ind_2, ]

predict(kda_2, x = newx)

## [1] setosa virginica virginica

## Levels: setosa versicolor virginica

groups[ind_2] # Reality

## [1] setosa versicolor virginica

## Levels: setosa versicolor virginica

# Classification error

ks::compare(x.group = kda_2$x.group, est.group = kda_2$x.group.estimate)

## $cross

## setosa (est.) versicolor (est.) virginica (est.) Total

## setosa (true) 50 0 0 50

## versicolor (true) 0 37 13 50

## virginica (true) 0 11 39 50

## Total 50 48 52 150

##

## $error

## [1] 0.16

# Plot of classification regions

plot(kda_2, col = rainbow(3), lwd = 2, col.pt = 1, cont = seq(5, 85, by = 20),

col.part = rainbow(3, alpha = 0.25), drawpoints = TRUE)

# The artifacts on the corners (low-density regions) are caused by

# numerically-unstable divisions close to 0/0

# The artifacts can be avoided by enlarging the effective support of the normal

# kernel that ks considers with supp (by default it is 3.7). Setting supp to

# a larger value (~10) will avoid the normal kernel to reach the value 0

# exactly (but it may be required that the default gridsize has to be enlarged

# to display the surface adequately if supp is quite large). This is a useful

# practical tweak!

kda_2 <- ks::kda(x = x, x.group = groups, Hs = Hs, supp = 10)

plot(kda_2, col = rainbow(3), lwd = 2, col.pt = 1, cont = seq(5, 85, by = 20),

col.part = rainbow(3, alpha = 0.25), drawpoints = TRUE)
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Exercise 3.26. Experiment with the previous code by changing the
variables to see how the classification regions and errors change.

# Trivariate example

x <- iris[, 1:3]

groups <- iris$Species

# Normal scale bandwidths to avoid undersmoothing

Hs <- rbind(ks::Hns(x = x[groups == "setosa", ]),

ks::Hns(x = x[groups == "versicolor", ]),

ks::Hns(x = x[groups == "virginica", ]))

kda_3 <- ks::kda(x = x, x.group = groups, Hs = Hs)

# Classification of new observations

ind_3 <- c(5, 55, 105)

newx <- x[ind_3, ]

predict(kda_3, x = newx)

## [1] setosa versicolor virginica

## Levels: setosa versicolor virginica

groups[ind_3] # Reality

## [1] setosa versicolor virginica

## Levels: setosa versicolor virginica

# Classification regions

plot(kda_3, drawpoints = TRUE, col.pt = c(2, 3, 4), cont = seq(5, 85, by = 20),

phi = 10, theta = 10)

There was a bug in ks prior to 1.11.5, making ks::kda to work
with equal-size classes only. Although the bug has been fixed, if
you are experiencing problems applying ks::kda you can always
apply several times ks::kde and compute (3.30) directly.

Exercise 3.27. Section 4.6.1 in James et al. (2013) considers the
problem of classifying Direction from Lag1 and Lag2 (bivariate ex-
ample) in data(Smarket, package = "ISLR") by logistic regression,
LDA, and QDA.

a. Perform a kda and represent the classification regions. Do you
think the classes can be separated effectively?

b. Split the dataset into train (Year < 2005) and test subsets. Ob-
tain the global classification error rates on the test sample given
by LDA and QDA (use MASS::lda and MASS::qda).

c. Obtain the global classification error rate on the test sample
given by kda. Use directly the Bayes rule for performing classifi-
cation.

d. Summarize the conclusions.

Use supp = 10 to avoid numerical artifacts.

Exercise 3.28. Load the wines.txt dataset and perform a PCA after
removing the vintage variable and standardizing the variables.
Then:

a. Perform a kda on the three classes of wines. First, use just the
PC1 as covariate. Then, consider (PC1, PC2). Do you think the
classes be separated effectively? With which information?

b. Compare the kda global classification error rates with those of
LDA and QDA (use MASS::lda and MASS::qda).

https://raw.githubusercontent.com/egarpor/handy/master/datasets/wines.txt
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c. Split the dataset into two thirds for training and one third for
testing. Then compare the global classification error rates on the
test sample for kda, LDA, and QDA. Again, first use just the PC1

as covariate, then consider (PC1, PC2).
d. Summarize the conclusions.

Exercise 3.29. Consider the MNIST dataset described in Exercise
2.25. Classify the digit images, via the t-SNE (van der Maaten and
Hinton, 2008) scores y_tsne, into the digit labels:

a. Split the dataset into the training sample, comprised of the first
50, 000 t-SNE scores and their associated labels, and the test
sample (rest of the sample).

b. Using the training sample, compute the plug-in bandwidth
matrices for all the classes.

c. Use these plug-in bandwidths to perform kernel discriminant
analysis.

d. Plot the contours of the kernel density estimator of each class
and overlay the t-SNE scores as points. Use coherent colors be-
tween contours and points, and add a legend.

e. Obtain the successful classification rate of the kernel discrimi-
nant analysis.

Exercise 3.30. Load the ovals.RData file.

a. Split the dataset into the training sample, comprised of the first
2, 000 observations, and the test sample (rest of the sample). Plot
the dataset with colors for its classes. What can you say about
the classification problem?

b. Using the training sample, compute the plug-in bandwidth
matrices for all the classes.

c. Use these plug-in bandwidths to perform kernel discriminant
analysis.

d. Plot the contours of the kernel density estimator of each class
and the classes partitions. Use coherent colors between contours
and points.

e. Predict the class for the test sample and compare with the true
classes. Then report the successful classification rate.

f. Compare the successful classification rate with the one given by
LDA. Is it better than kernel discriminant analysis?

g. Repeat f with QDA.

3.5.4 Density ridge estimation

PCA is a very well-known linear dimension-reduction technique
that describes the main features of the data. From a population
perspective, PCA is just an eigendecomposition of the covariance
matrix Σ of a random vector X:

Σ = UΛU′, (3.31)

https://raw.githubusercontent.com/egarpor/handy/master/datasets/MNIST-tSNE.RData
https://raw.githubusercontent.com/egarpor/handy/master/datasets/ovals.RData
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56 Meaning that its expectation µ is
zero. Otherwise, the principal direc-
tions given in U and corresponding to
{cui : c ∈ R}, i = 1, . . . , p, need to be
shifted by µ, i.e., {µ + cui : c ∈ R},
i = 1, . . . , p, which is inconvenient.
This requirement is not restrictive, as it
is trivial to center a random vector and
a sample.

57 Because the moment and maximum
likelihood estimators for (µ, Σ) in
Np(µ, Σ) coincide.
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Figure 3.14: Principal directions of
N2(0, Σ) with Σ = (1,−0.71;−0.71, 1).
Red stands for PC1 and blue for PC2.

58 Compare it, e.g., with a zig-zagged
ascending path: the rate of change
of its slope varies significantly at its
bends.
59 A long, narrow raised part of a
surface, especially a high edge along a
mountain.

where Λ = diag(λ1, . . . , λp), λ1 ≥ . . . ≥ λp ≥ 0, and U =(
u1, . . . , up

)
is an orthogonal matrix containing the principal compo-

nents as column vectors. When X is centered,56 the principal com-
ponents give the directions of maximal projected variance of X. There-
fore, PCA can always be computed for any random vector X with a
proper covariance matrix Σ.

It is however when X ∼ Np(0, Σ) that PCA is especially mean-
ingful. In that case, the eigendecomposition in (3.31) is related to
the geometry of ϕΣ by the search of the major and minor axes of
the elliptical density contours. The relation between PCA and the
normal distribution is not only geometrical, but also probabilistic:
the principal components U can be reliably estimated by maximum
likelihood, which amounts to performing the eigendecomposi-
tion (3.31) with Σ replaced with the sample covariance matrix57 S.
Therefore, for an arbitrary sample, performing PCA can be regarded
as a three-step process: (i) fit a normal distribution with estimated
variance S; (ii) perform the eigendecomposition of S; and (iii) at-
tempt to reduce the dimensionality of the sample by discarding
the principal components with smallest eigenvalues or projected
variances.

The takeaway of the previous discussion is that a popular dimension-
reduction technique like PCA is closely related to the normal den-
sity; indeed, PCA can be regarded as a technique that rests on an
assumption of normality for its accuracy. We next aim to remove
this dependence of PCA on normality and to come up with a con-
cept that extends the first principal direction shown in Figure 3.14

in a flexible way, giving a principal curve describing the main charac-
teristics of any pdf f .

Density ridges

Approaching the example in Figure 3.14 from the three-dimensional
views given in Figure 3.15 we can obtain a highly valuable insight
for the PC1: it coincides with an “ascent path” to the “summit” (the
mode) of the N2(0, Σ)’s pdf that is direct (no unnecessary detours),
yet it is neither the steepest (the PC2 ascent is steeper) nor the one
with fastest changes in the path’s slope.58 That route follows the
ridge59 of the “mountain” given by ϕΣ. Density ridges are a gen-
eralization of the concept of modes (indeed, any mode belongs to
a density ridge) that may be relevant for summarizing the main
features of a density.

We define next what a density ridge is mathematically. We begin
by considering the eigendecomposition of the Hessian matrix of a
density function f on Rp, p ≥ 2, that is evaluated at x ∈ Rp:

H f (x) = U(x)Λ(x)U(x)′,

where U(x) =
(
u1(x), . . . , up(x)

)
and Λ(x) = diag(λ1(x), . . . , λp(x)),

λ1(x) ≥ . . . ≥ λp(x). We denote U(p−1)(x) :=
(
u2(x), . . . , up(x)

)
and define the projected gradient onto {u2(x), . . . , up(x)} as

D(p−1) f (x) := U(p−1)(x)U(p−1)(x)
′D f (x),
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Figure 3.15: PC1 “ascent path” (red) to
the “summit” of a N2(0, Σ)’s pdf. The
path precisely follows the ridge of ϕΣ.
Blue stands for the PC2 “ascent path”.

60 Curvature can be positive or nega-
tive!

61 Because U(x) is an orthogonal
matrix.

62 Observe that the “maximum curva-
ture” is understood in a signed form,
and not in an absolute form. That is, 1
is a larger signed curvature than −3.

which is a mapping D(p−1) f : Rp −→ Rp. The density ridge of f (or
1-ridge of f ), as defined by Genovese et al. (2014) (see also Section
6.3 in Chacón and Duong (2018)), consists of the set

R1( f ) :=
{

x ∈ Rp : ∥D(p−1) f (x)∥ = 0, λ2(x) < 0
}

. (3.32)

This set may be comprised by the union of disjoint sets.
The intuition behind (3.32) as the precise definition for a density

ridge is the following:

• Ridges happen at regions that are locally maximal in certain di-
rections, yet they may not necessarily be formed by local maxima
(recall Figure 3.15). As a consequence, H f (x) is seminegative def-
inite near a ridge, and so all the eigenvalues are non-positive:
λp(x) ≤ . . . ≤ λ1(x) ≤ 0. Therefore, if λ1(x) ≤ 0, the direction
with largest negative curvature60 is up, and u1 is the one with the
least negative curvature.

• D(p−1) f (x) is the gradient projected onto the directions with
largest negative curvatures (since we exclude u1(x)). When
D(p−1) f (x) = 0, then either (1) D f (x) = 0 or (2) D f (x) is or-
thogonal to U(p−1)(x)U(p−1)(x)′.

1. If D f (x) = 0, then x is a relative extreme of f , which could
be a local maximum or a saddlepoint, since λp(x) ≤ . . . ≤
λ2(x) < 0, depending on the sign of λ1(x). Modes and saddle-
points are actually part of ridges.

2. If D f (x) is orthogonal to U(p−1)(x)U(p−1)(x)′ then, in other
words, it is parallel61 to u1(x): D f (x) ∝ u1(x). Hence, the
directions of maximum ascent and “maximum curvature” at
x coincide.62

The visualization of the construction of the vector field D(p−1) f
gives very valuable insights. In the following code, we rely on the
functions grad_norm (computes DϕΣ(· − µ)) and Hess_norm (com-
putes HϕΣ(· − µ)) defined on Section 3.2 to obtain proj_grad_norm

(computes D(p−1)ϕΣ(· − µ)).
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# Projected gradient into the Hessian s-th eigenvector subspace

proj_grad_norm <- function(x, mu, Sigma, s = 2) {

# Gradient

grad <- grad_norm(x = x, mu = mu, Sigma = Sigma)

# Hessian

Hess <- Hess_norm(x = x, mu = mu, Sigma = Sigma)

# Eigenvectors Hessian

eig_Hess <- t(apply(Hess, 3, function(A) {

eigen(x = A, symmetric = TRUE)$vectors[, s]

}))

# Projected gradient

proj_grad <- t(sapply(1:nrow(eig_Hess), function(i) {

tcrossprod(eig_Hess[i, ]) %*% grad[i, ]

}))

# As an array

return(proj_grad)

}

With the above functions, we can visualize the four vector fields
u1, u2, D f , D(p−1) f : Rp −→ Rp, in p = 2, that are critical to
construct density ridges.

# Compute vector fields

mu <- c(0, 0)

Sigma <- matrix(c(1, -0.71, -0.71, 3), nrow = 2, ncol = 2)

x <- seq(-3.5, 3.5, l = 12)

xx <- as.matrix(expand.grid(x, x))

H <- Hess_norm(x = xx, Sigma = Sigma, mu = mu)

eig_val_1 <- t(apply(H, 3, function(A)

eigen(x = A, symmetric = TRUE)$values[1]))

eig_val_2 <- t(apply(H, 3, function(A)

eigen(x = A, symmetric = TRUE)$values[2]))

eig_vec_1 <- t(apply(H, 3, function(A)

eigen(x = A, symmetric = TRUE)$vectors[, 1]))

eig_vec_2 <- t(apply(H, 3, function(A)

eigen(x = A, symmetric = TRUE)$vectors[, 2]))

grad <- grad_norm(x = xx, mu = mu, Sigma = Sigma)

grad_proj <- proj_grad_norm(x = xx, mu = mu, Sigma = Sigma)

# Standardize directions for nicer plots

r <- 0.5

eig_vec_1 <- r * eig_vec_1

eig_vec_2 <- r * eig_vec_2

grad <- r * grad / sqrt(rowSums(gradˆ2))

grad_proj <- r * grad_proj / sqrt(rowSums(grad_projˆ2))

par(mfrow = c(2, 2))

ks::plotmixt(mus = mu, Sigmas = Sigma, props = 1, display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-4, 4), ylim = c(-4, 4),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis,

main = expression(bold(u)[1]))

arrows(x0 = xx[, 1], y0 = xx[, 2],

x1 = xx[, 1] + eig_vec_1[, 1], y1 = xx[, 2] + eig_vec_1[, 2],

length = 0.1, angle = 10, col = 1)

points(xx, pch = ifelse(eig_val_1 >= 0, "+", "-"),

col = ifelse(eig_val_1 >= 0, 2, 4))

ks::plotmixt(mus = mu, Sigmas = Sigma, props = 1, display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-4, 4), ylim = c(-4, 4),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis,

main = expression(bold(u)[2]))

arrows(x0 = xx[, 1], y0 = xx[, 2],
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x1 = xx[, 1] + eig_vec_2[, 1], y1 = xx[, 2] + eig_vec_2[, 2],

length = 0.1, angle = 10, col = 1)

points(xx, pch = ifelse(eig_val_2 >= 0, "+", "-"),

col = ifelse(eig_val_2 >= 0, 2, 4))

ks::plotmixt(mus = mu, Sigmas = Sigma, props = 1, display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-4, 4), ylim = c(-4, 4),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis,

main = expression(plain(D) * f))

arrows(x0 = xx[, 1], y0 = xx[, 2],

x1 = xx[, 1] + grad[, 1], y1 = xx[, 2] + grad[, 2],

length = 0.1, angle = 10, col = 1)

ks::plotmixt(mus = mu, Sigmas = Sigma, props = 1, display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-4, 4), ylim = c(-4, 4),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis,

main = expression(plain(D)[(p - 1)] * f))

arrows(x0 = xx[, 1], y0 = xx[, 2],

x1 = xx[, 1] + grad_proj[, 1], y1 = xx[, 2] + grad_proj[, 2],

length = 0.1, angle = 10, col = 1)

The construction of R1( f ) can be generalized to higher dimen-
sions. The density s-ridge, 1 ≤ s ≤ p − 1, is defined as

Rs( f ) = {x ∈ Rp : ∥D(p−s) f (x)∥ = 0, λs+1(x) < 0},

where D(p−s) f (x) := U(p−s)(x)U(p−s)(x)′D f (x) and U(p−s) :=(
us+1(x), . . . , up(x)

)
. The density s-ridge allows to summarize the

main features of f by surfaces of dimension s, similarly to how the
plane spanned by PC1 and PC2 describes most of the variability of
a three-dimensional random variable X.

We conclude by proving that, indeed, the density 1-ridge of a
Np(0, Σ) is very related to the first principal direction PC1.

Proposition 3.1. Let Σ as in (3.31). Then {cu1 : c ∈ R} ⊂ R1 (ϕΣ) .

Proof. Consider (3.9) and (3.10) with µ = 0:

DϕΣ(x) = −ϕΣ(x)Σ−1x,

HϕΣ(x) = ϕΣ(x)
(
(Σ−1x)(Σ−1x)′ − Σ−1

)
.

Let’s take x = cu1, c ∈ R, and show that D(p−1) f (cu1) = 0 and
that the second eigenvalue of HϕΣ(cu1) is negative.

Since Σ = ∑
p
i=1 λiuiu′

i and Σ−1 = ∑
p
i=1 λ−1

i uiu′
i, then

DϕΣ(cu1) =− ϕΣ(cu1)cλ−1
1 u1, (3.33)

HϕΣ(cu1) = ϕΣ(cu1)
(

c2λ−2
1 u1u′

1 − Σ−1
)

=
(

ϕΣ(cu1)λ
−1
1 (c2λ−1

1 − 1)
)

u1u′
1

−
p

∑
i=2

(
ϕΣ(cu1)λ

−1
i

)
uiu′

i. (3.34)

Therefore, HϕΣ evaluated at x = cu1 admits the eigendecomposi-
tion

HϕΣ(cu1) = UΛ(cu1)U′
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Figure 3.16: Representation of the
vector fields u1, u2, D f , D(p−1) f :
Rp −→ Rp. Observe how the field D f
pushes towards the mode but D(p−1) f
pushes towards the ridge, following
the direction given by u2. The field
of u1 goes roughly right-to-left and
parallel to the ridge, whereas the field
of u2 goes roughly up-to-down and
perpendicular to the ridge. The red
plus (respectively, blue minus) indicate
positive (negative) eigenvalue λi(x)
associated with ui , i = 1, 2. The vector
fields are normalized so that the norm
of each vector is always the same.
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63 Additionally, this removes the
necessity of computing complicated
normalizing constants for f , as they
will cancel out in the normalized
gradient.

with

Λ(cu1) = ϕΣ(cu1)diag
(

λ−1
1 (c2λ−1

1 − 1),−λ−1
2 , . . . ,−λ−1

p

)
.

And then, as a consequence, all but the first eigenvalue of HϕΣ(cu1)

are negative. Finally, joining (3.33) and (3.34),

D(p−1)(cu1) = U(p−1)U
′
(p−1)D f (cu1)

= U(p−1)U
′
(p−1)(−ϕΣ(cu1)cλ−1

1 )u1

= 0,

which concludes the proof.

Density ridges from mean shift clustering

The definition (3.32) paves the way to determine the density
ridges in an exactly analogous way to how modes were located in
mean shift clustering: by flowing with the gradient. Figure 3.16 illus-
trates that now this flowing has to be done using the projected gradi-
ent flow D(p−1) f until attaining x ∈ Rp such that D(p−1) f (x) = 0.

More precisely, (3.32) can be parametrized as

R1( f ) =
{

x ∈ Rp : lim
t→∞

ϕx0
(t) = x, x0 ∈ Rp

}
,

where ϕx0
: R −→ Rp is a curve in Rp that satisfies the ODE

d
dt

ϕx0
(t) = D(p−1) f (ϕx0

(t)), ϕx0
(0) = x0, (3.35)

where x0 is any point in Rp. As done in (3.22), (3.35) can be numeri-
cally approached through the Euler method:

xt+1 = xt + hD(p−1) f (xt), t = 0, . . . , N, (3.36)

for a step h > 0 and a number of maximum iterations N. Consider-
ing the normalized gradient in (3.36)

η(p−1)(x) :=
D(p−1) f (x)

f (x)
,

instead of the unnormalized gradient, helps adapting the step size h
conveniently.63

The following chunk of code illustrates the implementation of
the Euler method (3.35), showing the paths ϕx0

for different x0.

mu <- c(0, 0)

Sigma <- matrix(c(1, -0.71, -0.71, 2), nrow = 2, ncol = 2)

ks::plotmixt(mus = mu, Sigmas = Sigma, props = 1, display = "filled.contour2",

gridsize = rep(251, 2), xlim = c(-5, 5), ylim = c(-5, 5),

cont = seq(0, 90, by = 10), col.fun = viridis::viridis)

# Euler solution

x0 <- as.matrix(expand.grid(seq(-3, 3, l = 12), seq(-3, 3, l = 12)))

x <- matrix(NA, nrow = nrow(x0), ncol = 2)

N <- 500

h <- 0.5

phi <- matrix(nrow = N + 1, ncol = 2)
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eps <- 1e-4

for (i in 1:nrow(x0)) {

# Move along the flow curve

phi[1, ] <- x0[i, ]

for (t in 1:N) {

# Euler update

phi[t + 1, ] <- phi[t, ] +

h * proj_grad_norm(phi[t, ], mu = mu, Sigma = Sigma) /

mvtnorm::dmvnorm(x = phi[t, ], mean = mu, sigma = Sigma)

# Stopping criterion (to save computing time!)

abs_tol <- max(abs(phi[t + 1, ] - phi[t, ]))

rel_tol <- abs_tol / max(abs(phi[t, ]))

if (abs_tol < eps | rel_tol < eps) break

}

# Save final point

x[i, ] <- phi[t + 1, , drop = FALSE]

# Plot lines and x0

lines(phi[1:(t + 1), ], type = "l")

points(x0[i, , drop = FALSE], pch = 19)

}

# Plot final points

points(x, pch = 19, col = 2)

# Join the ridge points with lines in an automatic and sensible way:

# an Euclidean Minimum Spanning Tree (EMST) problem!

emst <- emstreeR::ComputeMST(x = x, verbose = FALSE)

segments(x0 = x[emst$from, 1], y0 = x[emst$from, 2],

x1 = x[emst$to, 1], y1 = x[emst$to, 2], col = 2, lwd = 2)
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Figure 3.17: Curves ϕx0
computed

by the Euler method, in black. The
population density is ϕΣ(· − µ), where
µ = (0, 0)′ and Σ = (1,−0.71;−0.71, 2).
The initial points x0 are shown in
black, whereas ridge points x are
represented in red and are joined by
the Euclidean minimum spanning tree
(red line).
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64 Can you imagine what the PC1

description of such densities would
be?

Of course, we can compute the ridges of arbitrary density func-
tions using (3.36). Figure 3.18 shows the density ridges of several
heavily non-normal densities.64 The figure also illustrates some
practical problems that may appear when computing density
ridges, even at the population level.

# "Oval" density

f_oval <- function(x, mu = 2, sigma = 0.35,

Sigma = rbind(c(1, -0.71), c(-0.71, 2))) {

# x always as a matrix

x <- rbind(x)

# Rotate x with distortion

Sigma_inv_sqrt <- solve(chol(Sigma))

x <- x %*% Sigma_inv_sqrt

# Polar coordinates

r <- sqrt(rowSums(xˆ2))

# Density as conditional * marginal

f_theta <- 1 / (2 * pi)

f_r_theta <- dnorm(x = r, mean = mu, sd = sigma)

jacobian <- det(Sigma_inv_sqrt) / r

f <- f_r_theta * f_theta * jacobian

return(f)

}

# "Croissant" density

f_crois <- function(x, mu = 2, sigma = 0.5, mu_theta = pi / 2, kappa = 1) {

# x always as a matrix

x <- rbind(x)

# Polar coordinates

theta <- atan2(x[, 2], x[, 1])

r <- sqrt(rowSums(xˆ2))

# Density as conditional * marginal

f_theta <- exp(kappa * cos(theta - mu_theta)) /

(2 * pi * besselI(kappa, nu = 0))

f_r_theta <- dnorm(x = r, mean = mu, sd = sigma)

jacobian <- 1 / r

f <- f_r_theta * f_theta * jacobian

return(f)

}

# "Sin" density

f_sin <- function(x, a = 0.5, b = 1.75, sigma_x = 2, sigma_y = 0.5) {

# x always as a matrix

x <- rbind(x)

# Density as conditional * marginal

f_y <- dnorm(x = x[, 1], mean = 0, sd = sigma_x)

f_x_y <- dnorm(x = x[, 2], mean = a * (1 + x[, 1]) * sin(b * x[, 1]),

sd = sigma_y)

f <- f_x_y * f_y

return(f)

}

Exercise 3.31. Implement the Euler method for f being f_oval,
f_crois, and f_sin, in order to reproduce Figure 3.18. You will
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Figure 3.18: Highly non-normal
densities and the construction of their
density ridges. In blue, the points x0
that lie on low-density regions and
are skipped from the Euler algorithm
(longer running times and not useful
output). In red, the final points x that
lie on ridges on high-density regions
(thus excluding ill-defined ridges). The
red line is the Euclidean minimum
spanning tree of the final points.
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65 ∥x∥∞ := max1≤j≤p |xj|.

66 For example, run the step only if
x0,j ∈ L( f̂ (·; H); ĉα), for α close to zero.

have to:

• Implement the gradient and Hessian of f . To avoid comput-
ing the analytical form, you can rely on numDeriv::grad and
numDeriv::hessian to evaluate numerically D f and H f (al-
though this will run slower than the analytical form).

• Skip initial values x0 such that f (x0) < δ, so that the Euler
method is not run for them. This saves computational time.

• Stop the iteration in the Euler method if absolute or relative
convergence is attained. Precisely, stop if ∥xt+1 − xt∥∞ < ε 65 or
∥xt+1 − xt∥∞/∥xt∥∞ < ε. This saves computational time.

• Disregard final values x from the density ridge if f (x) < 50δ.
This avoids spurious solutions.

• Join points automatically using the Euclidean minimum span-
ning tree algorithm.

• Tune the selection of h, N, ε, and δ. You can start with h = 0.25,
N = 100, ε = 10−4, and δ = 10−3.

Estimating density ridges

Once the population view of density ridges is clear, estimating
density ridges from a sample is conceptually trivial: just replace
f in (3.36) with its kde f̂ (·; H) and then apply the two tweaks em-
ployed in kernel mean shift clustering (3.26): replace the gradient
with the normalized gradient and the step h by H. By doing so, it
results

xt+1 = xt + Hη̂(p−1)(xt; H), η̂(p−1)(x; H) :=
D(p−1) f̂ (x; H)

f̂ (x; H)
, (3.37)

where

D(p−1) f̂ (x; H) := Û(p−1)(x; H)Û(p−1)(x; H)′D f̂ (x; H) (3.38)

and Û(p−1)(x; H) stems from the eigendecomposition of the esti-
mated Hessian: H f̂ (x; H) = Û(x; H)Λ̂(x; H)Û(x; H)′.

The recipe for estimating density ridges from a sample X1, . . . , Xn

is now simple:

1. Select a “suitable” bandwidth Ĥ.
2. For each grid element {x0,1, . . . , x0,m}, iterate the recurrence

relation (3.37) “until convergence” to a given xj, j = 1, . . . , m.
Skip this step for x0,j such that f̂ (x0,j; H) is not larger than a
“certain threshold”.66

3. Set R̂1( f ) := {x1, . . . , xm}.

The kind of bandwidth selectors recommended are the ones
designed for Hessian density estimation (see Sections 3.1 and 3.4),
since (3.37) critically depends on adequately estimating the Hes-
sian for computing the projection into its second eigenvector (see
discussion in Section 6.3 in Chacón and Duong (2018)). These band-
width selectors yield larger bandwidths than the ones designed for
density estimation (and also density gradient estimation).
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In addition, both the iteration “until convergence” and the “cer-
tain threshold” have to be evaluated in practice with adequate
numerical tolerances. The function ks::kdr implements kernel den-
sity ridge estimation and automatically employs tested choices for
numerical tolerances, convergence criteria, and other tuning pa-
rameters. The following chunk of code shows its basic use in the
examples of the “oval”, “croissant”, and “sin” densities.

# Simulation from the "oval" density

r_oval <- function(n, mu = 2, sigma = 0.35,

Sigma = rbind(c(1, -0.71), c(-0.71, 2))) {

# Sampling in polar coordinates

r <- rnorm(n = n, mean = mu, sd = sigma)

theta <- runif(n, 0, 2 * pi)

x <- r * cbind(cos(theta), sin(theta))

# Data rotation

Sigma_sqrt <- chol(Sigma)

return(x %*% Sigma_sqrt)

}

# Simulation from the "croissant" density

r_crois <- function(n, mu = 2, sigma = 0.5, mu_theta = pi / 2, kappa = 1) {

# Sampling in polar coordinates as conditional * marginal

theta <- circular:::RvonmisesRad(n = n, mu = mu_theta, kappa = kappa)

r <- rnorm(n = n, mean = mu, sd = sigma)

x <- r * cbind(cos(theta), sin(theta))

return(x)

}

# Simulation from the "sin" density

r_sin <- function(n, a = 0.5, b = 1.75, sigma_x = 2, sigma_y = 0.5) {

# Sampling as conditional * marginal

x <- rnorm(n = n, mean = 0, sd = sigma_x)

y <- rnorm(n = n, mean = a * (1 + x) * sin(b * x), sd = sigma_y)

return(cbind(x, y))

}

# Oval

set.seed(123456)

samp_oval <- r_oval(n = 1e3)

kdr_oval <- ks::kdr(x = samp_oval)

plot(samp_oval)

col <- rainbow(max(kdr_oval$end.points$segment))[kdr_oval$end.points$segment]

points(kdr_oval$end.points[, 1:2], col = col)

emst <- emstreeR::ComputeMST(x = kdr_oval$end.points[, 1:2], verbose = FALSE)

segments(x0 = kdr_oval$end.points[emst$from, 1],

y0 = kdr_oval$end.points[emst$from, 2],

x1 = kdr_oval$end.points[emst$to, 1],

y1 = kdr_oval$end.points[emst$to, 2], lwd = 2)

# The $end.points$segment output of ks::kdr is very useful, as it allows

# handling the components of the ridges easily

# Croissant

set.seed(526123)

samp_crois <- r_crois(n = 1e3)

kdr_crois <- ks::kdr(x = samp_crois)

plot(samp_crois)
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H given, default y
xmin/xmax/gridsize/H given
y given, default H

col <- rainbow(max(kdr_crois$end.points$segment))[kdr_crois$end.points$segment]

points(kdr_crois$end.points[, 1:2], col = col)

emst <- emstreeR::ComputeMST(x = kdr_crois$end.points[, 1:2], verbose = FALSE)

segments(x0 = kdr_crois$end.points[emst$from, 1],

y0 = kdr_crois$end.points[emst$from, 2],

x1 = kdr_crois$end.points[emst$to, 1],

y1 = kdr_crois$end.points[emst$to, 2], lwd = 2)

# Sin

set.seed(123456)

samp_sin <- r_sin(n = 1e3)

kdr_sin <- ks::kdr(x = samp_sin)

plot(samp_sin)

col <- rainbow(max(kdr_sin$end.points$segment))[kdr_sin$end.points$segment]

points(kdr_sin$end.points[, 1:2], col = col)

emst <- emstreeR::ComputeMST(x = kdr_sin$end.points[, 1:2], verbose = FALSE)

segments(x0 = kdr_sin$end.points[emst$from, 1],

y0 = kdr_sin$end.points[emst$from, 2],

x1 = kdr_sin$end.points[emst$to, 1],

y1 = kdr_sin$end.points[emst$to, 2], lwd = 2)

Further options of ks::kdr are described below.

# The initial values are chosen automatically, but they can be specified,

# gives faster computations

y <- expand.grid(seq(-3, 3, l = 20), seq(-4, 4, l = 20))

# Use y and save paths

kdr_oval_1 <- ks::kdr(x = samp_oval, y = y, keep.path = TRUE)

plot(samp_oval)

paths <- kdr_oval_1$path

points(kdr_oval_1$y, col = 4, pch = 19, cex = 0.5)

for (i in seq_along(paths)) {

lines(paths[[i]], col = 4, cex = 0.5)

}

points(kdr_oval_1$end.points, col = 2, pch = 19)

length(paths) # Ascent done only for 235 out of the 400 y's

## [1] 201

# By default, ks::kdr employs H = ks::Hpi(..., deriv.order = 2). It can be

# precomputed to reduce the computational cost of ks::kdr(). But care is needed:

# if H is provided, ks::kdr() needs to be called with pre = FALSE to avoid an

# internal scaling of the sample that will result in H being not adequate for

# the scaled sample

H <- ks::Hpi(x = samp_oval, deriv.order = 2)

kdr_oval_1a <- ks::kdr(x = samp_oval, H = H, pre = FALSE, keep.path = TRUE)

# There is a bug in ks 1.13.3 that prevents using pre = FALSE and y at the same

# time. A partial fix is to specify xmin/xmax and gridsize, which will determine

# y, but keeping in mind that these parameters will also affect the precision of

# the Hessian estimation (so if they are too small to save computing time, the

# accuracy of the ridge estimation will decrease)

kdr_oval_1b <- ks::kdr(x = samp_oval, H = H, xmin = c(-3, -4), xmax = c(3, 4),

gridsize = c(20, 20), pre = FALSE, keep.path = TRUE)

# Compare different approaches -- same main structure, different end points

# and spurious ridges depending on the size of the initial grid

plot(samp_oval, ylim = c(-4, 6))

points(kdr_oval_1a$end.points[, 1:2], col = 2, pch = 19, cex = 1)

points(kdr_oval_1b$end.points[, 1:2], col = 3, pch = 19, cex = 0.25)

points(kdr_oval_1$end.points[, 1:2], col = 4, pch = 19, cex = 0.25)

legend("topright", legend = c("H given, default y",

"xmin/xmax/gridsize/H given",

"y given, default H"), col = 2:4, lwd = 2)
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length(kdr_oval_1$path) # y given, default H

## [1] 201

length(kdr_oval_1a$path) # H given, default y

## [1] 9419

length(kdr_oval_1b$path) # xmin/xmax/gridsize/H given

## [1] 201

# If we want to get rid of the points outside the oval, we can identify

# them using the density level set for alpha = 0.15

plot(samp_oval)

points(kdr_oval_1$end.points, col = 2, pch = 19)

alpha <- 0.15

supp <- ks::ksupp(fhat = ks::kde(x = samp_oval, H = H),

cont = (1 - alpha) * 100, convex.hull = FALSE)

points(supp, col = 3, cex = 0.5)

# Two ways of excluding the "spurious" ridges: via convex hull and via

# fhat < c_alpha

C <- geometry::convhulln(p = supp)

out_chull <- !geometry::inhulln(ch = C, p =

as.matrix(kdr_oval_1$end.points)[, 1:2])

c_alpha <- quantile(ks::kde(x = samp_oval, H = H,

eval.points = samp_oval)$estimate, probs = alpha)

out_kde <- ks::kde(x = samp_oval, H = H, eval.points =

kdr_oval_1$end.points[, 1:2])$estimate < c_alpha

points(kdr_oval_1$end.points[out_chull, 1:2], col = 4, cex = 0.75, pch = 19)

points(kdr_oval_1$end.points[out_kde, 1:2], col = 5, cex = 0.75, pch = 19)

# The initial grid can also be specified with xmax, xmin, and gridsize

# (pre = FALSE because H is precomputed)

kdr_oval_2 <- ks::kdr(x = samp_oval, H = H, xmin = c(-3, -3), xmax = c(3, 3),

gridsize = c(20, 20), keep.path = TRUE, pre = FALSE)

plot(samp_oval)

points(kdr_oval_2$end.points[, 1:2], col = 2, pch = 19)

paths <- kdr_oval_2$path

points(kdr_oval_2$y, col = 4, pch = 19, cex = 0.5)

for (i in seq_along(paths)) {

lines(paths[[i]], col = 4, cex = 0.5)

}

# Save also computing time by increasing density.cutoff

alpha <- 0.5

c_alpha <- quantile(ks::kde(x = samp_oval, H = H,

eval.points = samp_oval)$estimate, probs = alpha)

kdr_oval_3 <- ks::kdr(x = samp_oval, y = y, H = H, density.cutoff = c_alpha)

plot(samp_oval)

points(kdr_oval_3$y, col = 4, pch = 19, cex = 0.5)

points(kdr_oval_3$end.points[, 1:2], col = 2, pch = 19)

We conclude by showing a real data application of density ridges
in the context of earthquakes. The snippet of code adapts the exam-
ple in the documentation of ks::kdr.

# Load data

data(quake, package = "ks") # Earthquakes locations

data(plate, package = "ks") # Tectonic plate boundaries

# Select the Pacific Ring of Fire and disregard other variables

# except location of craters

quake <- quake[quake$prof == 1, c("long", "lat")]

# Fix negative longitude
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quake$long[quake$long < 0] <- quake$long[quake$long < 0] + 360

# Select relevant plates

plate <- plate[plate$long < -20 | plate$long > 20, ]

plate$long[plate$long < 0 & !is.na(plate$long)] <-

plate$long[plate$long < 0 & !is.na(plate$long)] + 360

# Display raw data

maps::map("world2", xlim = c(85, 305), ylim = c(-70, 70),

mar = c(0, 0, 0, 0), interior = FALSE, lty = 2)

lines(plate[, 1:2], col = 3, lwd = 2)

points(quake, cex = 0.5, pch = 16, col = 2)

# Density ridges

kdr_quake <- ks::kdr(x = quake, xmin = c(70, -70), xmax = c(310, 80))

points(kdr_quake$end.points[, 1:2], cex = 0.5, pch = 16, col = 4)

Figure 3.19: Estimated density ridges
for the quake dataset. Observe how
the density ridges (blue) of the earth-
quakes locations (red) reveal the
relation between earthquakes and
tectonic plate boundaries (green).

Exercise 3.32. Apply ks::kdr to the msds.RData dataset. Investi-
gate the effect of different bandwidths selectors on the resulting
estimated ridges trying ĤNS,r and ĤPI,r, for r = 0, 1, 2. Beware! The
dataset is large. You may want to precompute bandwidths (use pre

= FALSE in ks::kdr() if H is supplied) and be careful on the selec-
tion of the initial grid. Are you able to reproduce the main features
of the data? Which ones are easier to catch?

https://raw.githubusercontent.com/egarpor/handy/master/datasets/msds.RData




1 For the sake of introducing the
main concepts in kernel regression
estimation. On Chapter 5 we will see
more general situations with several
predictors, possibly non-continuous.
2 Formally, the response Y does not
need to be continuous. We implicitly
assume Y is continuous to use (4.2)
as a motivation for (4.5), but the
subsequent derivations in the chapter
are also valid for non-continuous
responses.

3 Observe that in the third equality
we use that (X, Y) is continuous
to motivate the construction of the
estimator.

4
Kernel regression estimation I

The relation between two random variables X and Y can be com-
pletely characterized by their joint cdf F or, equivalently, by their
joint pdf f if (X, Y) is continuous. In the regression setting, we
are interested in predicting/explaining the response Y by means of
the predictor X from a sample (X1, Y1), . . . , (Xn, Yn). The role of the
variables is not symmetric: X is used to predict/explain Y.

We first consider the simplest situation1: a single continuous pre-
dictor X to predict a response Y.2 In this case, recall that the com-
plete knowledge about Y when X = x is given by the conditional
pdf fY|X=x(y) = f (x,y)

fX(x) . While this pdf provides full knowledge
about Y|X = x, estimating it is also challenging: for each x we have
to estimate a different curve! A simpler approach, yet still challeng-
ing, is to estimate the conditional mean (a scalar) for each x through
the so-called regression function

m(x) := E[Y|X = x] =
∫

y dFY|X=x(y) =
∫

y fY|X=x(y)dy. (4.1)

As we will see, this density-based view of the regression function is
very useful to motivate estimators.

4.1 Kernel regression estimation

4.1.1 Nadaraya–Watson estimator

Our objective is to estimate the regression function m : R −→ R

nonparametrically. Due to its definition, we can rewrite m in (4.1)
as3

m(x) =E[Y|X = x]

=
∫

y fY|X=x(y)dy

=

∫
y f (x, y)dy

fX(x)
. (4.2)

Exercise 4.1. Prove that E[m(X)] = E[Y] using Proposition 1.1.

Expression (4.2) shows an interesting point: the regression func-
tion can be computed from the joint density f and the marginal fX .
Therefore, given a sample (X1, Y1), . . . , (Xn, Yn), a nonparametric
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4 Notice that the estimator does not
depend on h2; rather, it depends
on h1, the bandwidth employed for
smoothing X.
5 Termed due to the coetaneous
proposals by Nadaraya (1964) and
Watson (1964). Also known as the
local-constant estimators for reasons
explained next.
6 The change of the sum in the denom-
inator from ∑n

i=1 to ∑n
j=1 is aimed to

avoid confusions with the numerator.

estimate of m may follow by replacing the previous densities with
their kernel density estimators. From the previous section, we know
how to do this using the multivariate and univariate kde’s given in
(2.7) and (3.1), respectively.

For the multivariate kde, we can consider the kde (3.2) based
on product kernels for the two-dimensional case and bandwidths
h = (h1, h2)

′, that is, the estimate

f̂ (x, y; h) =
1
n

n

∑
i=1

Kh1(x − Xi)Kh2(y − Yi) (4.3)

of the joint pdf of (X, Y). Besides, considering the same bandwidth
h1 for the kde of fX , we have

f̂X(x; h1) =
1
n

n

∑
i=1

Kh1(x − Xi). (4.4)

We can therefore define the estimator of m that results from
replacing f and fX in (4.2) with (4.3) and (4.4), respectively:∫

y f̂ (x, y; h)dy
f̂X(x; h1)

=

∫
y 1

n ∑n
i=1 Kh1(x − Xi)Kh2(y − Yi)dy

1
n ∑n

i=1 Kh1(x − Xi)

=
1
n ∑n

i=1 Kh1(x − Xi)
∫

yKh2(y − Yi)dy
1
n ∑n

i=1 Kh1(x − Xi)

=
1
n ∑n

i=1 Kh1(x − Xi)Yi
1
n ∑n

i=1 Kh1(x − Xi)

=
n

∑
i=1

Kh1(x − Xi)

∑n
i=1 Kh1(x − Xi)

Yi.

The resulting estimator4 is the so-called Nadaraya–Watson5 estima-
tor of the regression function:

m̂(x; 0, h) :=
n

∑
i=1

Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

Yi =
n

∑
i=1

W0
i (x)Yi, (4.5)

where6

W0
i (x) :=

Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

.

The Nadaraya–Watson estimator can be seen as a weighted
average of Y1, . . . , Yn by means of the set of weights {Wi(x)}n

i=1
(they always add to one). The set of varying weights depends on the
evaluation point x. That means that the Nadaraya–Watson estimator
is a local mean of Y1, . . . , Yn about X = x (see Figure 4.2).

Exercise 4.2. Is it true that the unconditional expectation of m̂(x; 0, h),
for any x, is E[Y]? That is, is it true that E[m̂(x; 0, h)] = E[Y]? Prove
or disprove the equality.

Let’s implement the Nadaraya–Watson estimator from scratch to
get a feeling of how it works in practice.
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# A naive implementation of the Nadaraya-Watson estimator

nw <- function(x, X, Y, h, K = dnorm) {

# Arguments

# x: evaluation points

# X: vector (size n) with the predictor

# Y: vector (size n) with the response variable

# h: bandwidth

# K: kernel

# Matrix of size n x length(x) (rbind() is called for ensuring a matrix

# output if x is a scalar)

Kx <- rbind(sapply(X, function(Xi) K((x - Xi) / h) / h))

# Weights

W <- Kx / rowSums(Kx) # Column recycling!

# Means at x ("drop" to drop the matrix attributes)

drop(W %*% Y)

}

# Generate some data to test the implementation

set.seed(12345)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ2 * cos(x)

# m <- function(x) x - xˆ2 # Works equally well for other regression function

X <- rnorm(n, sd = 2)

Y <- m(X) + eps

x_grid <- seq(-10, 10, l = 500)

# Bandwidth

h <- 0.5

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(x_grid, nw(x = x_grid, X = X, Y = Y, h = h), col = 2)

legend("top", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)

Exercise 4.3. Implement in R your own version of the Nadaraya–
Watson estimator and compare it with the nw function. Focus only
on the normal kernel. You may reduce the accuracy of the final
computation up to 1e-7 to achieve better efficiency. How much are
you able to improve the speed of nw? Use the microbenchmark::microbenchmark

function to measure the running times for a sample of size n =

10, 000.

Similarly to kernel density estimation, in the Nadaraya–Watson
estimator the bandwidth has a prominent effect on the shape of the
estimator, whereas the kernel is clearly less important. The code be-
low illustrates the effect of varying h using the manipulate::manipulate

function.

# Simple plot of N-W for varying h's

manipulate::manipulate({

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)
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Figure 4.1: The Nadaraya–Watson
estimator of an arbitrary regres-
sion function m. Observe how the
Nadaraya–Watson estimator is able
to estimate the nonlinear form of the
regression function without prior
knowledge about its shape.

7 Obviously, avoiding the spurious
perfect fit attained with m̂(Xi) := Yi ,
i = 1, . . . , n.

lines(x_grid, m(x_grid), col = 1)

lines(x_grid, nw(x = x_grid, X = X, Y = Y, h = h), col = 2)

legend("topright", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)

}, h = manipulate::slider(min = 0.01, max = 10, initial = 0.5, step = 0.01))

4.1.2 Local polynomial estimator

The Nadaraya–Watson estimator can be seen as a particular case
of a wider class of nonparametric estimators, the so-called local
polynomial estimators. Specifically, Nadaraya–Watson is the one that
corresponds to performing a local constant fit. Let’s see this wider
class of nonparametric estimators and their advantages with respect
to the Nadaraya–Watson estimator.

A motivation for the local polynomial fit comes from attempting
to find an estimator m̂ of m that “minimizes”7 the RSS

n

∑
i=1

(Yi − m̂(Xi))
2 (4.6)

without assuming any particular form for the underlying m. This
is not achievable directly, since no knowledge about m is available.
Recall that what it was done in parametric models, such as linear
regression (see Section B.1), was to assume a parametrization for m
(e.g., mβ(x) = β0 + β1x for the simple linear model) which allowed
tackling the minimization of (4.6) by means of solving

mβ̂(x) := arg min
β

n

∑
i=1

(Yi − mβ(Xi))
2.
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8 Here we employ p to denote the or-
der of the Taylor expansion (Theorem
1.11) and, correspondingly, the order
of the associated polynomial fit. Do
not confuse p with the number of orig-
inal predictors for explaining Y – there
is one predictor only, X. However,
with a local polynomial fit we expand
this predictor to p predictors based on
(X1, X2, . . . , Xp).

9 See (B.4) in Section B.1.1.

10 The rationale is simple: (Xi , Yi)
should be more informative about
m(x) than (Xj, Yj) if x and Xi are
closer than x and Xj.

When m has no parametrization available and can adopt any
mathematical form, an alternative approach is required. The first
step is to induce a local parametrization on m. By a p-th8 order Taylor
expression it is possible to obtain that, for x close to Xi,

m(Xi) ≈m(x) + m′(x)(Xi − x) +
m′′(x)

2
(Xi − x)2

+ · · ·+ m(p)(x)
p!

(Xi − x)p. (4.7)

Then, plugging (4.7) in the population version of (4.6) that replaces
m̂ with m, we have that

n

∑
i=1

(
Yi −

p

∑
j=0

m(j)(x)
j!

(Xi − x)j

)2

. (4.8)

This expression is still not workable: it depends on m(j)(x), j =

0, . . . , p, which of course are unknown, as m is unknown. The key
idea now is:

Set β j := m(j)(x)
j! and turn (4.8) into a linear regression problem where

the unknown parameters are precisely β = (β0, β1, . . . , βp)′.

Simply rewriting (4.8) using this idea gives

n

∑
i=1

(
Yi −

p

∑
j=0

β j(Xi − x)j

)2

. (4.9)

Now, estimates for β automatically produce estimates for m(j)(x),
j = 0, . . . , p. In addition, we know how to obtain an estimate β̂ that
minimizes (4.9), since this is precisely the least squares problem
studied in linear models.9 The final touch is to weight the contri-
butions of each datum (Xi, Yi) to the estimation of m(x) according
to the proximity of Xi to x.10 We can achieve this precisely with
kernels:

β̂h := arg min
β∈Rp+1

n

∑
i=1

(
Yi −

p

∑
j=0

β j(Xi − x)j

)2

Kh(x − Xi). (4.10)

Solving (4.10) is easy once the proper notation is introduced. To
that end, denote

X :=


1 X1 − x · · · (X1 − x)p

...
...

. . .
...

1 Xn − x · · · (Xn − x)p


n×(p+1)

and

W := diag(Kh(X1 − x), . . . , Kh(Xn − x)), Y :=


Y1
...

Yn


n×1

.
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11 Recall that the entries
of β̂h are estimating β =(

m(x), m′(x), m′′(x)
2 , . . . , m(p)(x)

p!

)′
,

so we are indeed estimating m(x) (first
entry) and, in addition, its derivatives
up to order p.
12 An alternative and useful view is
that, by minimizing (4.10), we are
fitting the linear model m̂x(t) :=
β̂h,0 + β̂h,1(t − x) + · · ·+ β̂h,p(t − x)p

that is centered about x. Then, we
employ this model to predict Y for
X = t = x, resulting β̂h,0.
13 That is, the entries of ei are all zero
except for the i-th one, which is 1.
14 Which is not a weighted mean in
general, only if p = 0; see Exercise 4.6.

Then we can re-express (4.10) into a weighted least squares problem,
which has an exact solution:

β̂h = arg min
β∈Rp+1

(Y − Xβ)′W(Y − Xβ) (4.11)

= (X′WX)−1X′WY. (4.12)

The estimate11 of m(x) is therefore computed as12

m̂(x; p, h) := β̂h,0

= e′1(X
′WX)−1X′WY

=
n

∑
i=1

Wp
i (x)Yi, (4.13)

where

Wp
i (x) := e′1(X

′WX)−1X′Wei

and ei is the i-th canonical vector.13 Just as the Nadaraya–Watson
was, the local polynomial estimator is a weighted linear combina-
tion of the responses.14

Two cases on (4.13) deserve special attention:

• p = 0 is the local constant estimator, previously referred to as
the Nadaraya–Watson estimator. In this situation, the estimator
has explicit weights, as we saw before:

W0
i (x) =

Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

. (4.14)

• p = 1 is the local linear estimator, which has weights equal to

W1
i (x) =

1
n

ŝ2(x; h)− ŝ1(x; h)(Xi − x)
ŝ2(x; h)ŝ0(x; h)− ŝ1(x; h)2 Kh(x − Xi), (4.15)

where ŝr(x; h) := 1
n ∑n

i=1(Xi − x)rKh(x − Xi).

Exercise 4.4. Show that (4.12) is the solution of (4.11), β̂h. To do so,
first prove Exercise B.1.

Exercise 4.5. Show that the local polynomial estimator yields the
Nadaraya–Watson estimator when p = 0. Use (4.12) to obtain (4.5).

Exercise 4.6. Prove that:

1. ∑n
i=1 W0

i (x) = 1 and W0
i (x) ≥ 0 for all i = 1, . . . , n (weighted

mean).
2. ∑n

i=1 W1
i (x) = 1 and W1

i (x) ̸≥ 0 for all i = 1, . . . , n (not
a weighted mean). Give an example of positive and negative
weights.

Exercise 4.7. Obtain the weight expressions (4.15) of the local linear
estimator using the matrix inversion formula for 2 × 2 matrices:(

a b
c d

)−1

= (ad − bc)−1

(
d −b
−c a

)
.
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15 The lowess estimator, related to
loess, is the one employed in R’s
panel.smooth, which is the function
in charge of displaying the smooth fits
in lm and glm regression diagnostics
(employing a prefixed and not data-
driven smoothing span of 2/3 – which
makes it inevitably a bad choice for
certain data patterns).

Remark. The local polynomial fit is computationally more expen-
sive than the local constant fit: m̂(x; p, h) is obtained as the solution
of a weighted linear problem, whereas m̂(x; 0, h) can directly be
computed as a weighted mean of the responses. Even if the explicit
form (4.15) is available when p = 1, (4.15) is roughly three times
more costly than (4.14) (recall the ŝr(x; h), r = 0, 1, 2). The computa-
tional demand escalates with p, since computing m̂(x; p, h) requires
inverting the p × p matrix X′WX.

The local polynomial estimator m̂(·; p, h) of m performs a se-
ries of weighted polynomial fits, as many as points x on which
m̂(·; p, h) is to be evaluated.

Figure 4.2 illustrates the construction of the local polynomial
estimator (up to cubic degree) and shows how β̂0 = m̂(x; p, h), the
intercept of the local fit, estimates m at x by constructing a local
polynomial fit in the neighborhood of x.

Figure 4.2: Construction of the local
polynomial estimator. The animation
shows how local polynomial fits in a
neighborhood of x are combined to
provide an estimate of the regression
function, which depends on the
polynomial degree, bandwidth, and
kernel (gray density at the bottom).
The data points are shaded according
to their weights for the local fit at x.
Application available here.

An inefficient implementation of the local polynomial estimator
can be done relatively straightforwardly from the previous insights
and from expression (4.12). However, several R packages provide
implementations, such as KernSmooth::locpoly and R’s loess15

(but this one has a different control of the bandwidth plus a set of
other modifications). Below are some examples of their use.

# Generate some data

set.seed(123456)

n <- 100

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ3 * sin(x)

X <- rnorm(n, sd = 1.5)

Y <- m(X) + eps

https://shinyserv.es/shiny/kreg/
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x_grid <- seq(-10, 10, l = 500)

# KernSmooth::locpoly fits

h <- 0.25

lp0 <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = 0,

range.x = c(-10, 10), gridsize = 500)

lp1 <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = 1,

range.x = c(-10, 10), gridsize = 500)

# Provide the evaluation points through range.x and gridsize

# loess fits

span <- 0.25 # The default span is 0.75, which works very bad in this scenario

lo0 <- loess(Y ~ X, degree = 0, span = span)

lo1 <- loess(Y ~ X, degree = 1, span = span)

# loess employs a "span" argument that plays the role of a variable bandwidth

# "span" gives the proportion of points of the sample that are taken into

# account for performing the local fit about x and then uses a triweight kernel

# (not a normal kernel) for weighting the contributions. Therefore, the final

# estimate differs from the definition of local polynomial estimator, although

# the principles in which are based are the same

# Prediction at x = 2

x <- 2

lp1$y[which.min(abs(lp1$x - x))] # Prediction by KernSmooth::locpoly

## [1] 5.445975

predict(lo1, newdata = data.frame(X = x)) # Prediction by loess

## 1

## 5.379652

m(x) # True regression

## [1] 7.274379

# Plot data

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(lp0$x, lp0$y, col = 2)

lines(lp1$x, lp1$y, col = 3)

lines(x_grid, predict(lo0, newdata = data.frame(X = x_grid)), col = 2, lty = 2)

lines(x_grid, predict(lo1, newdata = data.frame(X = x_grid)), col = 3, lty = 2)

legend("bottom", legend = c("True regression", "Local constant (locpoly)",

"Local linear (locpoly)", "Local constant (loess)",

"Local linear (loess)"),

lwd = 2, col = c(1:3, 2:3), lty = c(rep(1, 3), rep(2, 2)))

Exercise 4.8. Perform the following tasks:

a. Implement your own version of the local linear estimator. The
function must take a sample X, a sample Y, the points x at which
the estimate is to be obtained, the bandwidth h, and the kernel K.

b. Test its correct behavior by estimating an artificial dataset (e.g.,
the one considered in Exercise 4.16) that follows a linear model.

As with the Nadaraya–Watson, the local polynomial estimator
heavily depends on h.

# Simple plot of local polynomials for varying h's

manipulate::manipulate({

# Plot data

lpp <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h, degree = p,

range.x = c(-10, 10), gridsize = 500)

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(lpp$x, lpp$y, col = p + 2)
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16 We do not address the analysis of
the general case in which p ≥ 1. The
reader is referred to, for example,
Theorem 3.1 in Fan and Gijbels (1996)
for the full analysis.

17 In linear models, homoscedasticity
is one of the key assumptions for
performing inference (Section B.1.2).

legend("bottom", legend = c("True regression", "Local polynomial fit"),

lwd = 2, col = c(1, p + 2))

}, p = manipulate::slider(min = 0, max = 4, initial = 0, step = 1),

h = manipulate::slider(min = 0.01, max = 10, initial = 0.5, step = 0.01))

A more sophisticated framework for performing nonparamet-
ric estimation of the regression function is the np package, which
is introduced in detail in Section 4.5. This package will be the ap-
proach chosen for the more challenging situation in which sev-
eral predictors are present, since the former implementations
(KernSmooth::locpoly, loess, and our own implementations) do
not scale well for more than one predictor.

Exercise 4.9. Perform the following tasks:

a. Code your own implementation of the local cubic estimator. The
function must take as input the vector of evaluation points x, the
sample data, and the bandwidth h. Use the normal kernel. The
result must be a vector of the same length as x containing the
estimator evaluated at x.

b. Test the implementation by estimating the regression function
in the location model Y = m(X) + ε, where m(x) = (x − 1)2,
X ∼ N (1, 1), and ε ∼ N (0, 0.5). Do it for a sample of size
n = 500.

4.2 Asymptotic properties

The asymptotic properties of the local polynomial estimator give
us valuable insights into its performance. In particular, they allow
answering, precisely, the following questions:

What affects the performance of the local polynomial estimator? Is
local linear estimation better than local constant estimation? What is
the effect of h on the estimates?

The asymptotic analysis of the local linear and local constant esti-
mators16 is achieved, as done in Sections 2.3 and 3.3, by examining
the asymptotic bias and variance.

In order to establish a framework for the analysis, we consider
the so-called location-scale model for Y and its predictor X:

Y = m(X) + σ(X)ε,

where

σ2(x) := Var[Y|X = x]

is the conditional variance of Y given X, and ε is such that E[ε] = 0
and Var[ε] = 1. Recall that, since the conditional variance is not
forced to be constant, we are implicitly allowing for heteroskedastic-
ity.17

Note that for the derivation of the Nadaraya–Watson estimator
and the local polynomial estimator we did not assume any par-
ticular assumption, beyond the (implicit) differentiability of m up
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18 Recall that these are the only as-
sumptions done in the model so far.
Compared with the ones linear models
or generalized linear models make,
they are extremely mild. Recall Y is
not assumed to be continuous.
19 This assumption requires certain
smoothness of the regression function,
allowing thus for Taylor expansions
to be performed. This assumption is
important in practice: m̂(·; p, h) is in-
finitely differentiable if the considered
kernels K are so too.
20 It avoids the situation in which Y is a
degenerated random variable.
21 It avoids the degenerate situation
in which m is estimated at regions
without observations of the predictors
(such as holes in the support of X).
22 Meaning that there exists a positive
lower bound for f .
23 Mild assumption inherited from the
kde.
24 Key assumption for reducing the
bias and variance of m̂(·; p, h) simulta-
neously.

to order p for the local polynomial estimator. The following as-
sumptions18 are the only requirements to perform the asymptotic
analysis of the estimator:

• A1.19 m is twice continuously differentiable.
• A2.20 σ2 is continuous and positive.
• A3.21 f , the marginal pdf of X, is continuously differentiable and

bounded away from zero.22

• A4.23 The kernel K is a symmetric and bounded pdf with finite
second moment and is square integrable.

• A5.24 h = hn is a deterministic sequence of bandwidths such
that, when n → ∞, h → 0 and nh → ∞.

The bias and variance are studied in their conditional versions
on the predictor’s sample X1, . . . , Xn. The reason for analyzing
the conditional instead of the unconditional versions is to avoid
technical difficulties that integration with respect to the unknown
predictor’s density may pose. This is in the spirit of what was done
in parametric inference (observe Sections B.1.2 and B.2.2).

The main result follows. It provides useful insights into the effect
of p, m, f (standing from now on for the marginal pdf of X), and σ2

in the performance of m̂(·; p, h) for p = 0, 1.

Theorem 4.1. Under A1–A5, the conditional bias and variance of the
local constant (p = 0) and local linear (p = 1) estimators are

Bias[m̂(x; p, h)|X1, . . . , Xn] = Bp(x)h2 + oP(h2), (4.16)

Var[m̂(x; p, h)|X1, . . . , Xn] =
R(K)

nh f (x)
σ2(x) + oP((nh)−1), (4.17)

where

Bp(x) :=


µ2(K)

2

{
m′′(x) + 2 m′(x) f ′(x)

f (x)

}
, if p = 0,

µ2(K)
2 m′′(x), if p = 1.

Remark. The little-oPs in (4.16) and (4.17) appear (instead of little-
os as in Theorem 2.1) because Bias[m̂(x; p, h)|X1, . . . , Xn] and
Var[m̂(x; p, h)|X1, . . . , Xn] are random variables. Then, the asymptotic
expansions of these random variables have stochastic remainders
that converge to zero in probability at specific rates.

The bias and variance expressions (4.16) and (4.17) yield very
interesting insights:

1. Bias:

• The bias decreases with h quadratically for both p = 0, 1.
That means that small bandwidths h give estimators with
low bias, whereas large bandwidths provide largely biased
estimators.

• For p = 1, the bias at x is directly proportional to m′′(x).
Therefore:
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25 Recall that this makes perfect sense:
low-density regions of X imply less
information available about m.
26 The same happened in the linear
model with the error variance σ2.

27 The variance of an unweighted
mean is reduced by a factor n−1 when
n observations are employed. To
compute m̂(x; p, h), n observations
are used but in a weighted fashion that
roughly amounts to considering nh
unweighted observations.

28 Since the variance increases as ν
does, not as p does.

– The bias is negative in regions where m is concave, i.e., {x ∈
R : m′′(x) < 0}. These regions correspond to peaks and local
maxima of m.

– Conversely, the bias is positive in regions where m is convex,
i.e., {x ∈ R : m′′(x) > 0}. These regions correspond to
valleys and local minima of m.

– All in all, the “wilder” the curvature of m, the larger the
bias and the harder to estimate m.

• For p = 0, the bias at x is more convoluted and is affected by
m′′(x), m′(x), f ′(x), and f (x):

– The quantities m′(x), f ′(x), and f (x) are not present in the
bias when p = 1. Precisely, for the local constant estimator,
the lower the density f (x), the larger the bias (in absolute
value). Also, the faster m and f change at x (derivatives),
the larger the bias. Thus the bias of the local constant es-
timator is much more sensitive to m(x) and f (x) than the
local linear (which is sensitive to m′′(x) only). Particularly,
the fact that it depends on f ′(x) and f (x) is referred to as
the design bias since it depends merely on the predictor’s
distribution.

– As for p = 1, m′′(x) contributes to the bias when p = 0,
this contribution being negative in regions corresponding
to peaks and local maxima of m, and positive in the valleys
and local minima of m. In general, the “wilder” the cur-
vature of m, the larger its contribution to the bias and the
harder to estimate m.

2. Variance:

• The main term of the variance is the same for p = 0, 1. In

addition, it depends directly on σ2(x)
f (x) . As a consequence, the

lower the density, the more variable m̂(x; p, h) is.25 Also, the
larger the conditional variance at x, σ2(x), the more variable
m̂(x; p, h) is.26

• The variance decreases as a factor of (nh)−1. This is related to
the so-called effective sample size nh, which can be thought of as
the amount of data in the neighborhood of x that is employed
for performing the regression.27

All in all, the main takeaway of the analysis of p = 0 vs. p = 1 is:

p = 1 has, in general, smaller bias than that of p = 0 (but of the
same order) while keeping the same variance as p = 0.

An extended version of Theorem 4.1, given in Theorem 3.1 in
Fan and Gijbels (1996), shows that this phenomenon extends to
higher orders: odd order (p = 2ν + 1, ν ∈ N) polynomial fits
introduce an extra coefficient for the polynomial fit that allows
them to reduce the bias, while maintaining the same variance of
the precedent28 even order (p = 2ν). So, for example, local cubic fits
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29 m(x) = c for all x ∈ R and given
c ∈ R.
30 m(x) = ax + b for all x ∈ R and
given a, b ∈ R.

are preferred to local quadratic fits. This motivates the claim that
local polynomial fitting is an odd world (Fan and Gijbels (1996)).

Finally, we have the asymptotic pointwise normality of the es-
timator, an analogous result to Theorem 2.2 which is helpful to
obtain pointwise confidence intervals for m afterwards.

Theorem 4.2. Assume that E[(Y − m(x))2+δ|X = x] < ∞ for some
δ > 0. Then, under A1–A5,

√
nh(m̂(x; p, h)− E[m̂(x; p, h)|X1, . . . , Xn])

d−→ N
(

0,
R(K)σ2(x)

f (x)

)
,

(4.18)
√

nh
(

m̂(x; p, h)− m(x)− Bp(x)h2
)

d−→ N
(

0,
R(K)σ2(x)

f (x)

)
. (4.19)

Exercise 4.10. Theorem 4.1 gives some additional insights with
respect to Bp(x), the dominating term of the bias:

1. If m is constant29, then B0(x) = 0.
2. If m is linear30, then B1(x) = 0.

That is, for each of these two cases, Bias[m̂(x; p, h)|X1, . . . , Xn] =

oP(h2). The local constant and local linear estimators are actually
exactly unbiased when estimating constant and linear regression
functions, respectively. That is, Ec[m̂(x; 0, h)|X1, . . . , Xn] = c and
Ea,b[m̂(x; 1, h)|X1, . . . , Xn] = ax + b, where Ec[·|X1, . . . , Xn] and
Ea,b[·|X1, . . . , Xn] represent the conditional expectations under the
constant and linear models, respectively. Prove these two results.

4.3 Bandwidth selection

Bandwidth selection, as for kernel density estimation, is of key
practical importance for kernel regression estimation. Several band-
width selectors have been proposed for kernel regression by fol-
lowing plug-in and cross-validatory ideas that are similar to the
ones seen in Section 2.4. For the sake of simplicity, we first briefly
overview the plug-in analogues for local linear regression for a sin-
gle continuous predictor. Then, the main focus will be placed on
Least Squares Cross-Validation (LSCV; simply referred to as CV),
as the cross-validation methodology readily generalizes to the more
complex settings to be seen in Section 5.1.

As in the kde case, the first step for performing bandwidth
selection is to define an error criterion suitable for the estimator
m̂(·; p, h). The density-weighted ISE of m̂(·; p, h),

ISE[m̂(·; p, h)] :=
∫
(m̂(x; p, h)− m(x))2 f (x)dx,

is often considered. Observe that this definition is very similar
to the kde’s ISE, except for the fact that f appears weighting the
quadratic difference: what matters is to minimize the estimation
error on the regions where the density of X is higher. As a conse-
quence, this definition does not give any importance to the errors



notes for nonparametric statistics 133

31 Estimating m at regions with no
data is an extrapolation problem.
This kind of estimation makes better
sense if a specific structure for m is
assumed (which is not done with
a nonparametric estimate of m), so
that this structure can determine the
estimate of m at the regions with no
data.
32 The conditioning is on the sample of
the predictor, as it is usually done in
a regression setting. The reason why
this conditioning is done is to avoid
the analysis of the randomness of X.

made by m̂(·; p, h) when estimating m at regions with virtually no
data.31

The ISE of m̂(·; p, h) is a random quantity that directly depends
on the sample (X1, Y1), . . . , (Xn, Yn). In order to avoid this nuisance,
the conditional32 MISE of m̂(·; p, h) is often employed:

MISE[m̂(·; p, h)|X1, . . . , Xn]

:=E [ISE[m̂(·; p, h)]|X1, . . . , Xn]

=
∫

E
[
(m̂(x; p, h)− m(x))2|X1, . . . , Xn

]
f (x)dx

=
∫

MSE [m̂(x; p, h)|X1, . . . , Xn] f (x)dx.

Clearly, the goal is to find the bandwidth that minimizes this error,

hMISE := arg min
h>0

MISE[m̂(·; p, h)|X1, . . . , Xn],

but this is an untractable problem because of the lack of explicit
expressions. However, since the MISE follows by integrating the
conditional MSE, explicit asymptotic expressions can be found.

In the case of local linear regression, the conditional MSE follows
by the conditional squared bias (4.16) and the variance (4.17) given
in Theorem 4.1. This produces the conditional AMISE for m̂(·; p, h),
p = 0, 1:

AMISE[m̂(·; p, h)|X1, . . . , Xn] = h4
∫

Bp(x)2 f (x)dx

+
R(K)

nh

∫
σ2(x)dx. (4.20)

If p = 1, the resulting optimal AMISE bandwidth is

hAMISE =

[
R(K)

∫
σ2(x)dx

µ2
2(K)θ22(m)n

]1/5

, (4.21)

where

θ22(m) :=
∫
(m′′(x))2 f (x)dx

acts as the “density-weighted curvature of m” and completely re-
sembles the curvature term R( f ′′) that appeared in Section 2.4.

Exercise 4.11. Obtain AMISE[m̂(·; p, h)|X1, . . . , Xn] in (4.20) from
Theorem 4.1.

Exercise 4.12. Obtain the expression for hAMISE in (4.21) from
AMISE[m̂(·; 1, h)|X1, . . . , Xn]. Then, obtain the corresponding
AMISE optimal bandwidth for m̂(·; 0, h).

As happened in the density setting, the AMISE-optimal band-
width can not be readily employed, as knowledge about the cur-
vature of m, θ22(m), is required. To make things worse, (4.21) also
depends on the integrated conditional variance

∫
σ2(x)dx, which is

unknown too.
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33 In general, a polynomial fit of order
p + 3 can be considered, but we are
restricting to p = 1. The motivation
for this order is that it has to be able to
estimate the (p + 1)-th derivative of m
at x, m(p+1)(x), with certain flexibility,
and a polynomial fit of order p + 3
would be able to do so by a quadratic
polynomial.

34 Notice that the n − 5 in the de-
nominator appears because the
degrees of freedom of the residuals
in a polynomial fit of order p + 3 is
n − p − 4, and we are considering
p = 1. Hence, σ̂2

Q is an unbiased es-
timator of σ2

Q = VarQ[Y|X = x] =
E[(Y − mQ(X))2|X = x].

35 This is a slightly different adaptation
from Fan and Gijbels (1996), where∫

σ2(x)w0(x)dx is considered and
therefore the estimate σ̂2

Q
∫

w0(x)dx
naturally follows. This weight w0,
however, can be an indicator of the
support of X, which gives in that case
the selector described here.

4.3.1 Plug-in rules

A possibility to estimate θ22(m) and
∫

σ2(x)dx, in the spirit of the
normal scale bandwidth selector (or zero-stage plug-in selector)
seen in Section 2.4.1, is presented in Section 4.2 in Fan and Gijbels
(1996). There, a global parametric fit based on a fourth-order33 poly-
nomial is employed:

m̂Q(x) = α̂0 +
4

∑
j=1

α̂jxj,

where α̂ is obtained from (X1, Y1), . . . , (Xn, Yn). The second deriva-
tive of this quartic fit is

m̂′′
Q(x) = 2α̂2 + 6α̂3x + 12α̂4x2.

Besides, θ22(m) can be written in terms of an expectation, which
motivates its estimation by Monte Carlo:

θ22(m) = E[(m′′(X))2] ≈ 1
n

n

∑
i=1

(m′′(Xi))
2 =: θ̂22(m).

Therefore, combining both estimations we can substitute θ22(m)

with θ̂22(m̂Q) in (4.21).
It remains to estimate

∫
σ2(x)dx, which we can do by assuming

homoscedasticity and then estimating the common variance by34

σ̂2
Q :=

1
n − 5

n

∑
i=1

(Yi − m̂Q(Xi))
2.

In addition, if we assume that the variance is zero outside the sup-
port of X (where there is no data), we can replace

∫
σ2(x)dx with

the estimate (X(n) − X(1))σ̂
2
Q

35 and obtain the Rule-of-Thumb
bandwidth selector (RT)

ĥRT =

[
R(K)(X(n) − X(1))σ̂

2
Q

µ2
2(K)θ̂22(m̂Q)n

]1/5

.

The following code illustrates how to implement this simple selec-
tor.

# Evaluation grid

x_grid <- seq(0, 5, l = 500)

# Quartic-like regression function

m <- function(x) 5 * dnorm(x, mean = 1.5, sd = 0.25) - x

# # Highly nonlinear regression function

# m <- function(x) x * sin(2 * pi * x)

# # Quartic regression function (but expressed in a orthogonal polynomial)

# coefs <- attr(poly(x_grid / 5 * 3, degree = 4), "coefs")

# m <- function(x) 20 * poly(x, degree = 4, coefs = coefs)[, 4]

# # Seventh orthogonal polynomial

# coefs <- attr(poly(x_grid / 5 * 3, degree = 7), "coefs")

# m <- function(x) 20 * poly(x, degree = 7, coefs = coefs)[, 7]
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Figure 4.3: Local linear estimator
with ĥRT bandwidth and the quartic
global fit. Observe how the local linear
estimator behaves erratically at regions
with no data – a fact due to the strong
dependence of the locally weighted
linear regression on few observations.
36 See Section 5.8 in Wand and Jones
(1995) for a quick introduction.

# Generate some data

set.seed(123456)

n <- 250

eps <- rnorm(n)

X <- abs(rnorm(n))

Y <- m(X) + eps

# Rule-of-thumb selector

h_RT <- function(X, Y) {

# Quartic fit

mod_Q <- lm(Y ~ poly(X, raw = TRUE, degree = 4))

# Estimates of unknown quantities

int_sigma2_hat <- diff(range(X)) * sum(mod_Q$residualsˆ2) / mod_Q$df.residual

theta_22_hat <- mean((2 * mod_Q$coefficients[3] +

6 * mod_Q$coefficients[4] * X +

12 * mod_Q$coefficients[5] * Xˆ2)ˆ2)

# h_RT

R_K <- 0.5 / sqrt(pi)

((R_K * int_sigma2_hat) / (theta_22_hat * length(X)))ˆ(1 / 5)

}

# Selected bandwidth

(h_ROT <- h_RT(X = X, Y = Y))

## [1] 0.1111711

# Local linear fit

lp1_RT <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h_ROT, degree = 1,

range.x = c(0, 10), gridsize = 500)

# Quartic fit employed

mod_Q <- lm(Y ~ poly(X, raw = TRUE, degree = 4))

# Plot data

plot(X, Y, ylim = c(-6, 8))

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(lp1_RT$x, lp1_RT$y, col = 2)

lines(x_grid, mod_Q$coefficients[1] +

poly(x_grid, raw = TRUE, degree = 4) %*% mod_Q$coefficients[-1],

col = 3)

legend("topright", legend = c("True regression", "Local linear (RT)",

"Quartic fit"),

lwd = 2, col = 1:3)

The ĥRT selector strongly depends on how well the curvature of
m is approximated by the quartic fit. In addition, it assumes that
the conditional variance is constant, which may be unrealistic. The
exercise below intends to illustrate these limitations.

Exercise 4.13. Explore in the code above the effect of the regres-
sion function, and visualize how poor quartic fits tend to give poor
nonparametric fits. Then, adapt the sampling mechanism to intro-
duce heteroskedasticity on Y and investigate the behavior of the
nonparametric estimator based on ĥRT.

The rule-of-thumb selector is a zero-stage plug-in selector. An
ℓ-stage plug-in selector was proposed by Ruppert et al. (1995)36

and shares the same spirit of the DPI bandwidth selector seen in
Section 2.4.1. As a consequence, the DPI selector for kre turns (4.21)
into an usable selector by following a known agenda: it employs a
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37 Notice that this approach does not
guarantee the continuity of the final
estimate, but since the goal is on
estimating the curvature this is not
relevant.
38 So that, if σ2(x) is constant,∫

σ2(x)dx is finite because we in-
tegrate on a compact set.

39 In particular, the construction of
block polynomial fits may be challeng-
ing to extend to Rp.
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series of optimal nonparametric estimations of θ22(m) that depend
on high-order curvature terms θrs(m) :=

∫
m(r)(x)m(s)(x) f (x)dx,

ending this iterative procedure with a parametric estimation of a
higher-order curvature.

The kind of parametric fit employed is a “block quartic fit”. This
is a series of N different quartic fits m̂Q,1, . . . , m̂Q,N of the regression
function m that are done in N blocks of the data. These blocks are
defined by sorting the sample X1, . . . , Xn and then partitioning it
into approximately N blocks of equal size n/N. The purpose of
the block quartic fit is to achieve more flexibility on the estima-
tion of the curvature37 terms θ22(m) and θ24(m). The estimation of∫

σ2(x)dx is carried out by pooling the individual estimates of the
conditional variance in the N blocks, σ̂2

Q,1, . . . , σ̂2
Q,N , and by assum-

ing a compactly supported density f .38 The selection of N can be
done in a data-driven way by relying on a model selection criterion
(see Ruppert et al. (1995)), such as the AIC or BIC.

The resulting bandwidth selector, ĥDPI, has a much faster con-
vergence rate to hMISE than cross-validatory selectors. However, it is
notably more convoluted, and as a consequence it is less straightfor-
ward to extend to more complex settings.39

The DPI selector for the local linear estimator is implemented in
KernSmooth::dpill.

# Generate some data

set.seed(123456)

n <- 250

eps <- rnorm(n)

X <- abs(rnorm(n))

m <- function(x) x * sin(2 * pi * x)

Y <- m(X) + eps

# Selected bandwidth

(h_ROT <- h_RT(X = X, Y = Y))

## [1] 0.3489934

# DPI selector

(h_DPI <- KernSmooth::dpill(x = X, y = Y))

## [1] 0.05172781

# Fits

lp1_RT <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h_ROT, degree = 1,

range.x = c(0, 10), gridsize = 500)

lp1_DPI <- KernSmooth::locpoly(x = X, y = Y, bandwidth = h_DPI, degree = 1,

range.x = c(0, 10), gridsize = 500)

# Plot data

plot(X, Y, ylim = c(-6, 8))

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(lp1_DPI$x, lp1_DPI$y, col = 2)

lines(lp1_RT$x, lp1_RT$y, col = 3)

legend("topleft", legend = c("True regression", "Local linear (DPI)",

"Local linear (RT)"), lwd = 2, col = 1:3)

4.3.2 Cross-validation

Following an analogy with the fit of the linear model (see Section
B.1.1), an obvious possibility is to select an adequate bandwidth h
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40 Excluding colinear dispositions of
the data and assuming that n > p.
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41 In this case, when h → 0,
m̂−i(Xi ; p, h) ̸→ Yi because (Xi , Yi)
does not belong to the sample em-
ployed for computing m̂−i(·; p, h).
Notice that m̂−i(Xj; p, h) → Yj
when h → 0 if j ̸= i, but this
is not problematic because in
∑n

i=1(Yi − m̂−i(Xi ; p, h))2 the leave-
one-out estimate is different for each
i = 1, . . . , n.

for m̂(·; p, h) that minimizes a Residual Sum of Squares (RSS) of the
form

1
n

n

∑
i=1

(Yi − m̂(Xi; p, h))2. (4.22)

However, this is a bad idea. Contrarily to what happened in the
linear model, where it was almost40 impossible to perfectly fit the
data due to the limited flexibility of the model, the infinite flexibil-
ity of the local polynomial estimator allows interpolating the data
if h → 0. As a consequence, attempting to minimize (4.22) always
leads to h ≈ 0, which results in a useless interpolation that misses
the target of the estimation, m.

# Grid for representing (4.22)

h_grid <- seq(0.1, 1, l = 200)ˆ2

error <- sapply(h_grid, function(h) {

mean((Y - nw(x = X, X = X, Y = Y, h = h))ˆ2)

})

# Error curve

plot(h_grid, error, type = "l")

rug(h_grid)

abline(v = h_grid[which.min(error)], col = 2)

The root of the problem is the comparison of Yi with m̂(Xi; p, h),
since there is nothing that forbids that, when h → 0, m̂(Xi; p, h) →
Yi. We can change this behavior if we compare Yi with m̂−i(Xi; p, h) 41,
the leave-one-out estimate of m computed without the i-th datum
(Xi, Yi), yielding the least squares cross-validation error

CV(h) :=
1
n

n

∑
i=1

(Yi − m̂−i(Xi; p, h))2 (4.23)

and then choose

ĥCV := arg min
h>0

CV(h).

The optimization of (4.23) might seem to be very expensive com-
putationally, since computing n regressions for just a single evalua-
tion of the cross-validation function is required. There is, however,
a simple and neat theoretical result that vastly reduces the compu-
tational complexity, at the price of increasing the memory demand.
This trick allows computing, with a single fit, the cross-validation
function evaluated at h.

Proposition 4.1. For any p ≥ 0, the weights of the leave-one-out estima-
tor m̂−i(x; p, h) = ∑n

j=1
j ̸=i

Wp
−i,j(x)Yj can be obtained from m̂(x; p, h) =

∑n
i=1 Wp

i (x)Yi:

Wp
−i,j(x) =

Wp
j (x)

∑n
k=1
k ̸=i

Wp
k (x)

=
Wp

j (x)

1 − Wp
i (x)

. (4.24)

This implies that

CV(h) =
1
n

n

∑
i=1

(
Yi − m̂(Xi; p, h)

1 − Wp
i (Xi)

)2

. (4.25)
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42 Indeed, for any other linear smoother
of the response, the result will also
hold.
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The result can be proved by recalling that m̂(x; p, h) is a linear
combination42 of the responses {Yi}n

i=1.

Exercise 4.14. Consider the Nadaraya–Watson estimator (p = 0).
Then, show (4.24) using (4.14). From there, conclude the proof of
Proposition 4.1.

Exercise 4.15. Prove the second equality in (4.24) for the local linear
estimator (p = 1). From there, prove (4.25). Use (4.15).

Remark. Observe that computing (4.25) requires evaluating the
local polynomial estimator at the sample {Xi}n

i=1 and obtaining
{Wp

i (Xi)}n
i=1 (which are needed to evaluate m̂(Xi; p, h)). Both tasks

can be achieved simultaneously from the n × n matrix
(
Wp

i (Xj)
)

ij
and, if p = 0, directly from the symmetric n×n matrix

(
Kh(Xi − Xj)

)
ij ,

for which the storage cost is O((n2 − n)/2) (the diagonal is con-
stant).

Let’s implement ĥCV employing (4.25) for the Nadaraya–Watson
estimator.

# Generate some data to test the implementation

set.seed(12345)

n <- 200

eps <- rnorm(n, sd = 2)

m <- function(x) xˆ2 + sin(x)

X <- rnorm(n, sd = 1.5)

Y <- m(X) + eps

x_grid <- seq(-10, 10, l = 500)

# Objective function

cv_nw <- function(X, Y, h, K = dnorm) {

sum(((Y - nw(x = X, X = X, Y = Y, h = h, K = K)) /

(1 - K(0) / colSums(K(outer(X, X, "-") / h))))ˆ2)

}

# Find optimum CV bandwidth, with sensible grid

bw_cv_grid <- function(X, Y,

h_grid = diff(range(X)) * (seq(0.05, 0.5, l = 200))ˆ2,

K = dnorm, plot_cv = FALSE) {

# Minimize the CV function on a grid

obj <- sapply(h_grid, function(h) cv_nw(X = X, Y = Y, h = h, K = K))

h <- h_grid[which.min(obj)]

# Add plot of the CV loss

if (plot_cv) {

plot(h_grid, obj, type = "o")

rug(h_grid)

abline(v = h, col = 2, lwd = 2)

}

# CV bandwidth

return(h)

}

# Bandwidth

h <- bw_cv_grid(X = X, Y = Y, plot_cv = TRUE)
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h

## [1] 0.3173499

# Plot result

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(x_grid, nw(x = x_grid, X = X, Y = Y, h = h), col = 2)

legend("top", legend = c("True regression", "Nadaraya-Watson"),

lwd = 2, col = 1:2)

An important warning when computing cross-validation band-
widths is that the objective function can be challenging to minimize
and may present several local minima. Therefore, if possible, it is
always advisable to graphically inspect the CV loss curve and to
run an exhaustive search. When employing an automatic optimiza-
tion procedure, it is recommended to use several starting values.

The following chunk of code presents the inefficient implemen-
tation of ĥCV (based on the definition) and evidences its poorer
performance.

# Slow objective function

cv_nw_slow <- function(X, Y, h, K = dnorm) {

sum((Y - sapply(1:length(X), function(i) {

nw(x = X[i], X = X[-i], Y = Y[-i], h = h, K = K)

}))ˆ2)

}

# Optimum CV bandwidth, with sensible grid

bw_cv_grid_slow <- function(X, Y, h_grid =

diff(range(X)) * (seq(0.05, 0.5, l = 200))ˆ2,

K = dnorm, plot_cv = FALSE) {

# Minimize the CV function on a grid

obj <- sapply(h_grid, function(h) cv_nw_slow(X = X, Y = Y, h = h, K = K))

h <- h_grid[which.min(obj)]

# Add plot of the CV loss

if (plot_cv) {

plot(h_grid, obj, type = "o")

rug(h_grid)

abline(v = h, col = 2, lwd = 2)

}

# CV bandwidth

return(h)

}

# Same bandwidth

h <- bw_cv_grid_slow(X = X, Y = Y, plot_cv = TRUE)

h

## [1] 0.3173499

# # Time comparison, a factor 10 difference

# microbenchmark::microbenchmark(bw_cv_grid(X = X, Y = Y),

# bw_cv_grid_slow(X = X, Y = Y),

# times = 10)
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43 For example, in astronomy, check
Figure 3.2.17 in Vol. 1 in ESA (1997).

44 Equivalently, the naive den-
sity estimator f̂N(x; h) =

1
2nh ∑n

i=1 1{x−h<Xi<x+h} instead of
the kde.
45 Observe that (4.27) is defined only
for x such that |N(x; h)| > 0. It is
perfectly possible to have |N(x; h)| = 0
in practice. This does not happen for
non-compactly supported kernels, for
which N(x; h) = R for any x, h, and
sample arrangement.

Finally, the following chunk of code illustrates the estimation
of the regression function of the weight on the mpg in data(Auto,

package = "ISLR"), using a cross-validation bandwidth.

# Data -- nonlinear trend

data(Auto, package = "ISLR")

X <- Auto$weight

Y <- Auto$mpg

plot(X, Y, xlab = "weight", ylab = "mpg", pch = 16)

# CV bandwidth

h <- bw_cv_grid(X = X, Y = Y, plot_cv = TRUE)

h

## [1] 110.0398

# Add regression

x_grid <- seq(1600, 5200, by = 10)

plot(X, Y, xlab = "weight", ylab = "mpg", pch = 16)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, nw(x = x_grid, X = X, Y = Y, h = h), col = 2)

4.4 Regressogram

The regressogram is the adaptation of the histogram to the regres-
sion setting. Historically, it has received attention in several applied
areas.43 This and its connection with the histogram are the reasons
for its inclusion in the notes, since its performance to estimate m is
definitely inferior to that of m̂(·; p, h) (see Figure 4.4). The construc-
tion described below can be regarded as the opposite path to the
one followed in Sections 2.1–2.2 for constructing the kde from the
histogram: now we deconstruct the Nadaraya–Watson estimator to
obtain the regressogram.

Based on (4.2), the Nadaraya–Watson estimator was constructed
by plugging kdes for the joint density of (X, Y) and the marginal
density of X. This resulted in

m̂(x; 0, h) = ∑n
i=1 Kh(x − Xi)Yi

∑n
i=1 Kh(x − Xi)

=
1
n ∑n

i=1 Kh(x − Xi)Yi

f̂ (x; h)
, (4.26)

which clearly emphasizes the connection between the kde f̂ (x; h) =
1
n ∑n

i=1 Kh(x − Xi) and m̂(x; 0, h). Evidently, this approach gives
a smooth estimator for the regression function if the kernels em-
ployed in the kde are smooth.

Within (4.26), a possibility is to consider the uniform kernel
K(z) = 1

2 1{−1<x<1} in the kde44, which results in

m̂N(x; h) :=
∑n

i=1 1{Xi−h<x<Xi+h}Yi

∑n
i=1 1{Xi−h<x<Xi+h}

=
1

|N(x; h)| ∑
i∈N(x;h)

Yi, (4.27)

where N(x; h) := {i = 1, . . . , n : |Xi − x| < h} is the set of the
indexes of the sample within the neighborhood of x and |N(x; h)|
denotes its size.45 Estimator (4.27), a naive regression estimator, is

https://www.cosmos.esa.int/documents/532822/552851/vol1_all.pdf/99adf6e3-6893-4824-8fc2-8d3c9cbba2b5
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precisely the regression analogue of the moving histogram or naive
density estimator. Its second expression in (4.27) reveals that it is
just a sample mean in different blocks (or neighborhoods) of the
data. As a consequence, it is discontinuous.

Another alternative to the kde in (4.26) is to employ the his-
togram f̂H(x; t0, h) = 1

nh ∑n
i=1 1{Xi∈Bk :x∈Bk}, where {Bk = [tk, tk+1) :

tk = t0 + hk, k ∈ Z} (recall Section 2.1.1). This yields the regresso-
gram of m:

m̂R(x; h) :=
∑n

i=1 1{Xi∈Bk}Yi

∑n
i=1 1{Xi∈Bk}

=
1

|B(k; h)| ∑
i∈B(k;h)

Yi, if x ∈ Bk, (4.28)

where B(k; h) := {i = 1, . . . , n : Xi ∈ Bk} and |B(k; h)| stands for
its size (denoted by vk in Section 2.1.1). The difference of the regres-
sogram with respect to the naive regression estimator is that the
former pre-defines fixed bins in which to compute the bin means,
producing a final estimator that, for the same bandwidth h, is no-
tably more rigid (it is constant on each bin Bk; see Figure 4.4).
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Figure 4.4: The Nadaraya–Watson
estimator, the naive regression esti-
mator, and the regressogram. Notice
that the naive regression estimator
and the regressogram are not defined
everywhere – only for those regions
in which there are nearby observa-
tions of X. All the estimators share the
bandwidth h = 0.5, a fair compari-
son since the scaled uniform kernel,
K̃(z) = 1

2
√

3
1{−

√
3<z<

√
3}, is employed

for the naive estimator. The regresso-
gram employs t0 = 0. The regression
setting is explained in Exercise 4.16.

Exercise 4.16. Implement in R your own version of the naive regres-
sion estimator (4.27). It must be a function that takes as inputs:

• a vector with the evaluation points x,
• a sample (X1, Y1), . . . , (Xn, Yn),
• a bandwidth h,

and that returns (4.27) evaluated for each x. Test the implementation
by estimating the regression function m(x) = 1 + x for the regres-
sion model Y = m(X) + ε, where X ∼ N (0, 1) and ε ∼ N (0, 2)
using n = 50 observations. This is the setting used in Figure 4.4.
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Exercise 4.17. Perform Exercise 4.16 by implementing in R the
regressogram (4.28) instead of the naive regression estimator. The R
function must now have an additional argument t0.

4.5 Kernel regression estimation with np

The np package (Hayfield and Racine, 2008) provides a complete
framework for performing a more sophisticated nonparametric re-
gression estimation for local constant and linear estimators, and for
computing cross-validation bandwidths. The two workhorse func-
tions for these tasks are np::npreg and np::npregbw, which they
illustrate the philosophy behind the np package: first, a suitable
bandwidth for the nonparametric method is found (via np::npregbw)
and stored in an rbandwidth object; then, a fitting function (np::npreg)
is called on that rbandwidth object, which contains all the needed
information.

# Data -- nonlinear trend

data(Auto, package = "ISLR")

X <- Auto$weight

Y <- Auto$mpg

# np::npregbw computes by default the least squares CV bandwidth associated

# with a local *constant* fit and admits a formula interface (to be exploited

# more in multivariate regression)

bw0 <- np::npregbw(formula = Y ~ X)

## Multistart 1 of 1 |Multistart 1 of 1 |Multistart 1 of 1 |Multistart 1 of 1 /Multistart 1 of 1 |Multistart 1 of 1 |

# The spinner can be omitted with

options(np.messages = FALSE)

# Multiple initial points can be employed for minimizing the CV function (for

# one predictor, defaults to 1) and avoiding local minima

bw0 <- np::npregbw(formula = Y ~ X, nmulti = 2)

# The "rbandwidth" object contains useful information, see ?np::npregbw for

# all the returned objects

bw0

##

## Regression Data (392 observations, 1 variable(s)):

##

## X

## Bandwidth(s): 110.1476

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Y ~ X

## Bandwidth Type: Fixed

## Objective Function Value: 17.66388 (achieved on multistart 2)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

head(bw0)

## $bw

## [1] 110.1476

##

## $regtype

## [1] "lc"

##

## $pregtype

## [1] "Local-Constant"

##
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## $method

## [1] "cv.ls"

##

## $pmethod

## [1] "Least Squares Cross-Validation"

##

## $fval

## [1] 17.66388

# Recall that the fit is very similar to h_CV

# Once the bandwidth is estimated, np::npreg can be directly called with the

# "rbandwidth" object (it encodes the regression to be made, the data, the kind

# of estimator considered, etc). The hard work goes on np::npregbw, not on

# np::npreg

kre0 <- np::npreg(bws = bw0)

kre0

##

## Regression Data: 392 training points, in 1 variable(s)

## X

## Bandwidth(s): 110.1476

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

# Plot directly the fit via plot() -- it employs as evaluation points the

# (unsorted!) sample

plot(kre0, col = 2, type = "o")

points(X, Y)

rug(X, side = 1); rug(Y, side = 2)

# lines(kre0$eval$X, kre0$mean, col = 3)

The type of local regression (local constant or local linear – no
further local polynomial fits are implemented) is controlled by
the argument regtype in np::npregbw: regtype = "ll" stands for
“local linear” and regtype = "lc" for “local constant”.

# Local linear fit -- find first the CV bandwidth

bw1 <- np::npregbw(formula = Y ~ X, regtype = "ll")

# Fit

kre1 <- np::npreg(bws = bw1)

# Plot

plot(kre1, col = 2, type = "o")

points(X, Y)

rug(X, side = 1); rug(Y, side = 2)

The following code shows in more detail the output object asso-
ciated with np::npreg and how to change the evaluation points.

# Summary of the npregression object

summary(kre0)

##

## Regression Data: 392 training points, in 1 variable(s)

## X

## Bandwidth(s): 110.1476

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

## Residual standard error: 4.10312

## R-squared: 0.7230723



144 eduardo garcía-portugués

1500 2000 2500 3000 3500 4000 4500 5000

1
0

2
0

3
0

4
0

X

Y

Nadaraya-Watson
Local linear

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

# Evaluation points (a data.frame) -- by default the sample (unsorted!)

head(kre0$eval)

## X

## 1 3504

## 2 3693

## 3 3436

## 4 3433

## 5 3449

## 6 4341

# The estimation of the regression function at the evaluation points

head(kre0$mean)

## [1] 18.35364 17.10311 18.70083 18.71652 18.63411 14.23660

# The evaluation points can be changed using "exdat"

x_grid <- seq(1000, 5500, by = 5)

kre0 <- np::npreg(bws = bw0, exdat = x_grid)

kre1 <- np::npreg(bws = bw1, exdat = x_grid)

# Notice how $eval is a data.frame containing x_grid

head(kre0$eval)

## x_grid

## 1 1000

## 2 1005

## 3 1010

## 4 1015

## 5 1020

## 6 1025

# This allows to compare estimators in a more transparent form

plot(X, Y)

lines(kre0$eval$x_grid, kre0$mean, col = 2)

lines(kre1$eval$x_grid, kre1$mean, col = 3)

rug(X, side = 1); rug(Y, side = 2)

legend("top", legend = c("Nadaraya-Watson", "Local linear"),

lwd = 2, col = 2:3)

Now that we know how to effectively compute local constant
and linear estimators, two insights with practical relevance become
apparent:

• The adequate bandwidths for the local linear estimator are usu-
ally larger than the adequate bandwidths for the local constant
estimator. The reason is the extra flexibility that m̂(·; 1, h) has,
which allows faster adaptation to variations in m, whereas
m̂(·; 0, h) can achieve this adaptability only by shrinking the
neighborhood about x by means of a smaller h.

• Both estimators behave erratically at regions with low predic-
tor’s density. This includes possible “holes” in the support of
X. In the absence of close data, the local constant estimator in-
terpolates to a constant function that takes the value Yi of the
closest Xi to x. However, the local linear estimator m̂(x; 1, h)
takes the value of the local linear regression β̂h,0 + β̂h,1(· − x) that
is determined by the two observations (Xi, Yi) with the closest
Xi’s to x. Hence, the local linear estimator extrapolates a line at
regions with low X-density. This may have the undesirable con-
sequence of yielding large spikes at these regions, which sharply
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Figure 4.5: Estimated density for the
local constant and local linear CV
bandwidths, for the setting described
in Exercise 4.18. The vertical bars
denote the median CV bandwidths.
Observe how local linear bandwidths
tend to be larger than local constant
ones.
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Figure 4.6: Local constant and linear
estimators of the regression function in
the setting described in Exercise 4.19.
The support of the predictor X has a
“hole”, which makes both estimators
to behave erratically at that region. The
local linear estimator, driven by a local
linear fit, may deviate stronger from m
than the local constant.
46 The interested reader is referred to
Chapter 14 in Li and Racine (2007) and
references therein.

contrasts with the “conservative behavior” of the local constant
estimator.

The next two exercises are meant to evidence these two insights.

Exercise 4.18. Perform the following simulation study:

1. Simulate n = 100 observations from the regression model Y =

m(X)+ ε, where X is distributed according to a nor1mix::MW.nm2,
m(x) = x cos(x), and ε + 1 ∼ Exp(1).

2. Compute the CV bandwidths for the local constant and linear
estimators.

3. Repeat Steps 1–2 M = 1, 000 times. Trick: use txtProgressBar()

and setTxtProgressBar to have an indication of the progress of
the simulation.

Compare graphically the two samples of CV bandwidths. To do so,
show in a plot the log-transformed kdes for the two samples and
imitate the display given in 4.5.

Exercise 4.19. Perform the following simulation study for each of
the local constant and local linear estimators.

1. Plot the regression function m(x) = x cos(x).
2. Simulate n = 100 observations from the regression model Y =

m(X)+ ε, where 1
2 X is distributed according to a nor1mix::MW.nm7

and ε ∼ N (0, 1).
3. Compute the CV bandwidths and the fit associated with this

bandwidth.
4. Plot the fit as a line. Trick: adjust the transparency of each line

for better visualization.
5. Repeat Steps 2–4 M = 75 times.

The two outputs should be similar to Figure 4.6.

There are more sophisticated options for bandwidth selection
available in np::npregbw. For example, the argument bwtype allows
estimating data-driven variable bandwidths ĥ(x) that depend on
the evaluation point x, rather than fixed bandwidths ĥ, as we have
considered so far. Roughly speaking, these variable bandwidths
are related to the variable bandwidth ĥk(x) that is necessary to
contain the k nearest neighbors X1, . . . , Xk of x in the neighborhood
(x − ĥk(x), x + ĥk(x)). There is an interesting potential gain in em-
ploying variable bandwidths, as the local polynomial estimator can
adapt the amount of smoothing according to the density of the pre-
dictor, therefore avoiding the aforementioned problems related to
“holes” in the support of X (see the code below). The extra flexibil-
ity of variable bandwidths change the asymptotic properties of the
local polynomial estimator. We do not investigate this approach in
detail46 but rather point out to its implementation via np.

# Generate some data with bimodal density

set.seed(12345)



146 eduardo garcía-portugués

-3 -2 -1 0 1 2 3

-5
0

5

X

Y

True regression
Fixed
Generalized NN
Adaptive NN

n <- 100

eps <- rnorm(2 * n, sd = 2)

m <- function(x) xˆ2 * sin(x)

X <- c(rnorm(n, mean = -2, sd = 0.5), rnorm(n, mean = 2, sd = 0.5))

Y <- m(X) + eps

x_grid <- seq(-10, 10, l = 500)

# Constant bandwidth

bwc <- np::npregbw(formula = Y ~ X, bwtype = "fixed",

regtype = "ll")

krec <- np::npreg(bwc, exdat = x_grid)

# Variable bandwidths

bwg <- np::npregbw(formula = Y ~ X, bwtype = "generalized_nn",

regtype = "ll")

kreg <- np::npreg(bwg, exdat = x_grid)

bwa <- np::npregbw(formula = Y ~ X, bwtype = "adaptive_nn",

regtype = "ll")

krea <- np::npreg(bwa, exdat = x_grid)

# Comparison

plot(X, Y)

rug(X, side = 1); rug(Y, side = 2)

lines(x_grid, m(x_grid), col = 1)

lines(krec$eval$x_grid, krec$mean, col = 2)

lines(kreg$eval$x_grid, kreg$mean, col = 3)

lines(krea$eval$x_grid, krea$mean, col = 4)

legend("top", legend = c("True regression", "Fixed", "Generalized NN",

"Adaptive NN"),

lwd = 2, col = 1:4)

# Observe how the fixed bandwidth may yield a fit that produces serious

# artifacts in the low-density region. At that region the NN-based bandwidths

# expand to borrow strength from the points in the high-density regions,

# whereas in the high-density regions they shrink to adapt faster to the

# changes of the regression function

Exercise 4.20. Repeat Exercise 4.19 replacing Step 3 with:

3. Compute the variable bandwidths bwtype = "generalized_nn"

and bwtype = "adaptive_nn" and the fits associated with them.

Describe the obtained results. Are they qualitatively different from
those based on fixed bandwidths, given in Figure 4.6? Do the fits
improve with variable bandwidths?

Exercise 4.21. Consider the data(sunspots_births, package =

"rotasym") dataset. Then:

a. Filter the dataset to account only for the 23rd cycle.
b. Inspect the graphical relation between dist_sun_disc (response)

and log10(total_area + 1) (predictor).
c. Compute the CV bandwidth for the above regression, for the

local constant estimator.
d. Compute and plot the local constant estimator using CV band-

width. Comment on the fit.
e. Repeat c and d for the local linear estimator.
f. Are your conclusions in part e the same for the 21st and 22nd

cycles?



1 Local polynomial estimators also
“work” with discrete responses,
with a varying degree of adequacy.
For example, if Y is binary, then
m̂h(x; 0, h) ∈ [0, 1], for any x ∈ R

and h > 0, since m̂h(x; 0, h) is an
x-weighted mean (or a convex linear
combination) of Y1, . . . , Yn ∈ [0, 1].
Then, the regression function
m : R −→ [0, 1] is always properly
estimated. However, a local linear esti-
mator may yield improper estimators
of m, since m̂h(x; 1, h) is an x-weighted
linear combination of Y1, . . . , Yn ∈ [0, 1]
and consequently m̂h(x; 1, h) may
“spike” outside [0, 1].

2 Here q denotes the order of the
polynomial fit, since p stands for the
number of predictors.

3 In particular, the consideration of
Taylor expansions of m : Rp −→ R for
more than two orders that involve the
vector of partial derivatives D⊗sm(x),
formed by ∂sm(x)

∂x
s1
1 ···∂x

sp
p

, where s =

s1 + · · ·+ sp; see Section 3.1.
4 Observe that in the second equality
we assume that Y|X = x is continuous.

5 Assuming that (X, Y) is continuous
to motivate the construction of the
estimator.

5
Kernel regression estimation II

In Chapter 4 we studied the simplest situation for performing non-
parametric estimation of the regression function: a single, continuous
predictor X is available for explaining Y, a numerical response that
is implicitly assumed to be continuous.1 This served to introduce the
main concepts without the additional technicalities associated with
more complex predictors.

The purpose of this chapter is to extend nonparametric regres-
sion when

1. there are multiple predictors X1, . . . , Xp,
2. some predictors possibly are non-continuous, i.e., they are cate-

gorical or discrete, and
3. the response Y is not continuous.

We concentrate first on the first two points, as the third presents
a change of paradigm from the kernel regression estimator studied
in Chapter 4.

5.1 Kernel regression with mixed multivariate data

5.1.1 Multivariate kernel regression

We start by addressing the first generalization:

How to extend the local polynomial estimator m̂(·; q, h) 2 to deal with
p continuous predictors?

Although this can be done for q ≥ 0, we focus on the local con-
stant and linear estimators (q = 0, 1) to avoid excessive technical
complications.3

The initial step is to state what the population object to be esti-
mated is, which is now the function m : Rp −→ R given by4

m(x) := E[Y|X = x] =
∫

y fY|X=x(y)dy, (5.1)

where X = (X1, . . . , Xp)′ denotes the random vector of the predic-
tors. Hence, despite having a form slightly different from (4.1), (4.1)
and (5.1) are conceptually equal. As a consequence, the density-
based view5 of m holds:
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6 The fact that the kde for (X, Y) has a
product kernel between the variables
X and Y is not fundamental for con-
structing the Nadaraya–Watson estima-
tor, but it simplifies the computation
of the integral of the denominator
of (5.2). The fact that the bandwidth
matrices for estimating the X-part of
f and the marginal fX are equal, is
fundamental to ensure an estimator
for m that is a weighted average (with
weights adding one) of the responses
Y1, . . . , Yn.

7 Which increases at the order O(p2).

8 Observe that (Xi − x)j are replaced
with (Xij − xj), since we only consider
a linear fit and now the predictors
have p components.
9 Observe that, in an abuse of notation,
we denote both the random vector
(X1, . . . , Xp) and the design matrix by
X. However, the specific meaning of X
should be clear from the context.

m(x) =
∫

y f (x, y)dy
fX(x)

, (5.2)

where f is the joint density of (X, Y) and fX is the marginal pdf of
X.

Therefore, given a sample (X1, Y1), . . . , (Xn, Yn), we can estimate
f and fX, analogously to how we did in Section 4.1.1, by the kde’s6

f̂ (x, y; H, h) =
1
n

n

∑
i=1

KH(x − Xi)Kh(y − Yi), (5.3)

f̂X(x; H) =
1
n

n

∑
i=1

KH(x − Xi). (5.4)

Plugging these estimators in (5.2), we readily obtain the Nadaraya–
Watson estimator for multivariate predictors:

m̂(x; 0, H) :=
n

∑
i=1

KH(x − Xi)

∑n
j=1 KH(x − Xj)

Yi =
n

∑
i=1

W0
i (x)Yi, (5.5)

where

W0
i (x) :=

KH(x − Xi)

∑n
i=1 KH(x − Xi)

.

Exercise 5.1. Derive (5.5) by plugging (5.3) and (5.4) into (5.2).

Usually, to avoid a quick escalation of the number of smooth-
ing bandwidths7, it is customary to consider product kernels
for smoothing X, that is, to consider a diagonal bandwidth H =

diag(h2
1, . . . , h2

p) = diag(h2), which gives the estimator implemented
by the np package:

m̂(x; 0, h) :=
n

∑
i=1

W0
i (x)Yi

where

W0
i (x) =

Kh(x − Xi)

∑n
j=1 Kh(x − Xj)

,

Kh(x − Xi) = Kh1(x1 − Xi1)×
p
· · · ×Khp(xp − Xip).

As in the univariate case, the Nadaraya–Watson estimate can be
seen as a weighted average of Y1, . . . , Yn by means of the weights
{W0

i (x)}
n
i=1. Therefore, the Nadaraya–Watson estimator is a local

mean of Y1, . . . , Yn about X = x.
The derivation of the local linear estimator involves slightly

more complex arguments, but analogous to the extension of the lin-
ear model from univariate to multivariate predictors. Considering
the first-order Taylor expansion

m(Xi) ≈ m(x) + Dm(x)′(Xi − x),

instead of (4.7) it is possible to arrive to the analogue8 of (4.10),

β̂h := arg min
β∈Rp+1

n

∑
i=1

(
Yi − β′(1, (Xi − x)′)′

)2 Kh(x − Xi),
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10 Recall that now the entries of β̂h are

estimating β =

(
m(x)

Dm(x)

)
. So, β̂h gives

also an estimate of the gradient Dm
evaluated at x.

and then solve the problem in the exact same way but now consid-
ering the design matrix9

X :=


1 (X1 − x)′
...

...
1 (Xn − x)′


n×(p+1)

and

W := diag(Kh(X1 − x), . . . , Kh(Xn − x)).

The estimate10 for m(x) is therefore obtained from the solution of
the weighted least squares problem

β̂h = arg min
β∈Rp+1

(Y − Xβ)′W(Y − Xβ)

= (X′WX)−1X′WY

as

m̂(x; 1, h) := β̂h,0

= e′1(X
′WX)−1X′WY (5.6)

=
n

∑
i=1

W1
i (x)Yi,

where

W1
i (x) := e′1(X

′WX)−1X′Wei.

Therefore, the local linear estimator is a weighted linear combina-
tion of the responses. Differently to the Nadaraya–Watson estima-
tor, this linear combination is not a weighted mean in general, since
the weights W1

i (x) can be negative despite ∑n
i=1 W1

i (x) = 1.

Exercise 5.2. Implement an R function to compute m̂(x; 1, h) for an
arbitrary dimension p. The function must receive as arguments the
sample (X1, Y1), . . . , (Xn, Yn), the bandwidth vector h, and a collec-
tion of evaluation points x. Implement the function by computing
the design matrix X, the weight matrix W, the vector of responses
Y, and then applying (5.6). Test the implementation in the example
below.

The following code performs the local regression estimators with
two predictors and exemplifies how the use of np::npregbw and
np::npreg is analogous in this bivariate case.

# Sample data from a bivariate regression

n <- 300

set.seed(123456)

X <- mvtnorm::rmvnorm(n = n, mean = c(0, 0),

sigma = matrix(c(2, 0.5, 0.5, 1.5), nrow = 2, ncol = 2))

m <- function(x) 0.5 * (x[, 1]ˆ2 + x[, 2]ˆ2)

epsilon <- rnorm(n)

Y <- m(x = X) + epsilon

# Plot sample and regression function
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rgl::plot3d(x = X[, 1], y = X[, 2], z = Y, xlim = c(-3, 3), ylim = c(-3, 3),

zlim = c(-4, 10), xlab = "X1", ylab = "X2", zlab = "Y")

lx <- ly <- 50

x_grid <- seq(-3, 3, l = lx)

y_grid <- seq(-3, 3, l = ly)

xy_grid <- as.matrix(expand.grid(x_grid, y_grid))

rgl::surface3d(x = x_grid, y = y_grid,

z = matrix(m(xy_grid), nrow = lx, ncol = ly),

col = "lightblue", alpha = 1, lit = FALSE)

# Local constant fit

# An alternative for calling np::npregbw without formula

bw0 <- np::npregbw(xdat = X, ydat = Y, regtype = "lc")

kre0 <- np::npreg(bws = bw0, exdat = xy_grid) # Evaluation grid is now a matrix

rgl::surface3d(x = x_grid, y = y_grid,

z = matrix(kre0$mean, nrow = lx, ncol = ly),

col = "red", alpha = 0.25, lit = FALSE)

# Local linear fit

bw1 <- np::npregbw(xdat = X, ydat = Y, regtype = "ll")

kre1 <- np::npreg(bws = bw1, exdat = xy_grid)

rgl::surface3d(x = x_grid, y = y_grid,

z = matrix(kre1$mean, nrow = lx, ncol = ly),

col = "green", alpha = 0.25, lit = FALSE)

rgl::rglwidget()

Let’s see an application of multivariate kernel regression for the
wine.csv dataset. The objective in this dataset is to explain and
predict the quality of a vintage, measured as its Price, by means of
predictors associated with the vintage.

# Load the wine dataset

wine <- read.table(file = "datasets/wine.csv", header = TRUE, sep = ",")

# Bandwidth by CV for local linear estimator -- a product kernel with

# 4 bandwidths

# Employs 4 random starts for minimizing the CV surface

bw_wine <- np::npregbw(formula = Price ~ Age + WinterRain + AGST +

HarvestRain, data = wine, regtype = "ll")

bw_wine

##

## Regression Data (27 observations, 4 variable(s)):

##

## Age WinterRain AGST HarvestRain

## Bandwidth(s): 3616691 290170218 0.8725243 106.5079

##

## Regression Type: Local-Linear

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Price ~ Age + WinterRain + AGST + HarvestRain

## Bandwidth Type: Fixed

## Objective Function Value: 0.0873955 (achieved on multistart 4)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

# Regression

fit_wine <- np::npreg(bw_wine)

summary(fit_wine)

##

## Regression Data: 27 training points, in 4 variable(s)

## Age WinterRain AGST HarvestRain

## Bandwidth(s): 3616691 290170218 0.8725243 106.5079

##

## Kernel Regression Estimator: Local-Linear

## Bandwidth Type: Fixed

## Residual standard error: 0.2079691

https://raw.githubusercontent.com/egarpor/handy/master/datasets/wine.csv
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## R-squared: 0.8889649

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

# Plot the "marginal effects of each predictor" on the response

plot(fit_wine)

# These marginal effects are the p profiles of the estimated regression surface

# \hat{m}(x_1, ..., x_p) that are obtained by fixing the predictors to each of

# their median values. For example, the profile for Age is the curve

# \hat{m}(x, median_WinterRain, median_AGST, median_HarvestRain). The medians

# are:

apply(wine[c("Age", "WinterRain", "AGST", "HarvestRain")], 2, median)

## Age WinterRain AGST HarvestRain

## 16.0000 600.0000 16.4167 123.0000

# Therefore, conditionally on the median values of the predictors:

# - Age is positively related to Price (almost linearly)

# - WinterRain is positively related to Price (with a subtle nonlinearity)

# - AGST is positively related to Price, but now we see what it looks like a

# quadratic pattern

# - HarvestRain is negatively related to Price (almost linearly)

The many options for the plot method for np::npreg can be
seen at ?np::npplot. We illustrate as follows some of them with a
view to enhancing the interpretability of the marginal effects.

# The argument "xq" controls the conditioning quantile of the predictors, by

# default the median (xq = 0.5). But xq can be a vector of p quantiles, for

# example (0.25, 0.5, 0.25, 0.75) for (Age, WinterRain, AGST, HarvestRain)

plot(fit_wine, xq = c(0.25, 0.5, 0.25, 0.75))

# With "plot.behavior = data" the plot() function returns a list with the data

# for performing the plots

res <- plot(fit_wine, xq = 0.5, plot.behavior = "data")

str(res, 1)

## List of 4

## $ r1:List of 35

## ..- attr(*, "class")= chr "npregression"

## $ r2:List of 35

## ..- attr(*, "class")= chr "npregression"

## $ r3:List of 35

## ..- attr(*, "class")= chr "npregression"

## $ r4:List of 35

## ..- attr(*, "class")= chr "npregression"

# Plot the marginal effect of AGST ($r3) alone

head(res$r3$eval) # All the predictors are constant (medians, except AGST)

## V1 V2 V3 V4

## 1 16 600 14.98330 123

## 2 16 600 15.03772 123

## 3 16 600 15.09214 123

## 4 16 600 15.14657 123

## 5 16 600 15.20099 123

## 6 16 600 15.25541 123

plot(res$r3$eval$V3, res$r3$mean, type = "l", xlab = "AGST",

ylab = "Marginal effect")

# Plot the marginal effects of AGST for varying quantiles in the rest of

# predictors (all with the same quantile)

tau <- seq(0.1, 0.9, by = 0.1)
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11 Ŷi := m̂(Xi ; q, h), i = 1, . . . , n; see
Section 5.3.
12 Because it is not guaranteed that
Ȳ = ¯̂Y, what it is required to turn
R2 into that squared correlation
coefficient.

13 Although in practice it is not re-
quired for the kernel to integrate one
for performing regression, as the con-
stants of the kernels cancel out in the
quotients in m̂(·; q, h).

14 Recall Kh(x − Xi).

res <- plot(fit_wine, xq = tau[1], plot.behavior = "data")

col <- viridis::viridis(length(tau))

plot(res$r3$eval$V3, res$r3$mean, type = "l", xlab = "AGST",

ylab = "Marginal effect", col = col[1], ylim = c(6, 9),

main = "Marginal effects of AGST for varying quantiles in the predictors")

for (i in 2:length(tau)) {

res <- plot(fit_wine, xq = tau[i], plot.behavior = "data")

lines(res$r3$eval$V3, res$r3$mean, col = col[i])

}

legend("topleft", legend = latex2exp::TeX(paste0("$\\tau =", tau, "$")),

col = col, lwd = 2)

# These quantiles are

apply(wine[c("Age", "WinterRain", "HarvestRain")], 2, quantile, prob = tau)

## Age WinterRain HarvestRain

## 10% 5.6 419.2 65.2

## 20% 8.2 508.8 86.2

## 30% 10.8 567.8 94.6

## 40% 13.4 576.2 114.4

## 50% 16.0 600.0 123.0

## 60% 18.6 609.2 156.8

## 70% 21.2 691.4 173.6

## 80% 23.8 716.4 187.0

## 90% 26.8 785.4 255.0

The summary of np::npreg returns an R2. This statistic is defined
as

R2 :=
(∑n

i=1(Yi − Ȳ)(Ŷi − Ȳ))2

(∑n
i=1(Yi − Ȳ)2)(∑n

i=1(Ŷi − Ȳ)2)

and is neither the squared correlation coefficient between Y1, . . . , Yn

and Ŷ1, . . . , Ŷn
11,12 nor “the percentage of variance explained” by

the model – this interpretation makes sense within the linear model
context only. It is however a quantity in [0, 1] that attains R2 = 1
whenever the fit is perfect (zero variability about the curve), so
it can give an idea of how explicative the estimated regression
function is.

5.1.2 Kernel regression with mixed data

Non-continuous predictors can also be taken into account in non-
parametric regression. The key to do so is an adequate definition
of a suitable kernel function for any random variable X, not just
continuous. Therefore, we need to find

a positive function that is a pdf13 on the support of X and that allows
to assign more weight to observations of the random variable that are
close to a given point.

If such kernel is adequately defined, then it can be readily em-
ployed in the weights of the linear combinations that form m̂(·; q, h).

We analyze next the two main possibilities for non-continuous
variables:

• Categorical or unordered discrete variables. For example, iris$species
and Auto$origin are categorical variables in which ordering
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15 Notice that this kernel does not inte-
grate one! To normalize it we should
take the specific support of Xd into ac-
count, which, e.g., could be {0, 1, 2, 3}
or N. This is slightly cumbersome,
so we avoid it because there is no
difference between normalized and un-
normalized kernels for regression: the
kernel normalizing constants cancel
out in the computation of the weights
(5.8).
16 Importantly, note that this kernel
is assumming that the levels are
equally-separated! Care is needed
in applications when dealing with
unequally-separated ordinal variables
and using ordered with the default
levels specification.

does not make any sense. Categorical variables are specified in
base R by factor. Due to the lack of ordering, the basic mathe-
matical operation behind a kernel, a distance computation14, is
delicate. This motivates the Aitchison and Aitken (1976) kernel.

Assume that the categorical random variable Xd has ud different
levels. These levels can be represented as Ud := {0, 1, . . . , ud − 1}.
For xd, Xd ∈ Ud, the Aitchison and Aitken (1976) unordered
discrete kernel is

lu(xd, Xd; λ) :=

1 − λ, if xd = Xd,
λ

ud−1 , if xd ̸= Xd,

where λ ∈ [0, (ud − 1)/ud] is the bandwidth. Observe that this
kernel is constant if xd ̸= Xd: since the levels of the variable are
unordered, there is no sense of proximity between them. In other
words, the kernel only distinguishes if two levels are equal or not
to assign weight. If λ = 0, then no weight is assigned if xd ̸= Xd

and no information is borrowed from different levels; hence,
nonparametrically regressing Y onto Xd is equivalent to doing ud

separate nonparametric regressions. If λ = (ud − 1)/ud, then all
levels are assigned the same weight, regardless of xd; hence, Xd

is irrelevant for explaining Y.

• Ordinal or ordered discrete variables. For example, wine$Year and
Auto$cylinders are discrete variables with clear orders, but they
are not continuous. These variables are specified by ordered (an
ordered factor in base R). Despite the existence of an ordering,
the possible distances between the observations of these variables
are discrete.

Assume that the ordered discrete random variable Xd takes
values in a set Od. For xd, Xd ∈ Od, a possible (Li and Racine,
2007) ordered discrete kernel is15

lo(xd, Xd; η) := η|xd−Xd |,

where η ∈ [0, 1] is the bandwidth.16 If η = 0, 1, then

lo(xd, Xd; 0) =

0, xd ̸= Xd,

1, xd = Xd,
lo(xd, Xd; 1) = 1.

Hence, if η = 0, nonparametrically regressing Y onto Xd is
equivalent to doing separate nonparametric regressions for each
of the levels of Xd. If η = 1, Xd is irrelevant for explaining Y.

Exercise 5.3. Show that, for any Xd ∈ Ud and any λ ∈ [0, (ud −
1)/ud], the kernel x 7→ lu(x, Xd; λ) “integrates” one over Ud.

Once we have defined the suitable kernels for ordered and
unordered discrete variables, we can “aggregate” information
from nearby observations of mixed data. Assume that, among the
p = pc + pu + po predictors, the first pc are continuous, the next pu
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are discrete unordered (or categorical), and the last po are discrete
ordered (or ordinal). The Nadaraya–Watson for mixed multivariate
data is defined as

m̂(x; 0, (hc, λu, ηo)) :=
n

∑
i=1

W0
i (x)Yi, (5.7)

with the weights of the estimator being

W0
i (x) =

LΠ(x, Xi)

∑n
j=1 LΠ(x, Xj)

. (5.8)

The weights are based on the mixed product kernel

LΠ(x, Xi) :=
pc

∏
j=1

Khj
(xj − Xij)

pu

∏
k=1

lu(xk, Xik; λk)
po

∏
ℓ=1

lo(xℓ, Xiℓ; ηℓ),

which features the vectors of bandwidths hc = (h1, . . . , hpc)
′, λu =

(λ1, . . . , λpu)
′, and ηo = (η1, . . . , ηpo )

′ for each cluster of equal-type
predictors.

The adaptation of the local linear estimator is conceptually simi-
lar to that of the local constant, but it is more cumbersome as linear
approximations make sense for quantitative variables, but not for
unordered predictors. Therefore, the local linear estimator with
mixed predictors is skipped in these notes.

The np package employs a variation of the previous kernels
and implements the local constant and linear estimators for mixed
multivariate data.

# Bandwidth by CV for local linear estimator

# Recall that Species is a factor!

bw_iris <- np::npregbw(formula = Petal.Length ~ Sepal.Width + Species,

data = iris)

bw_iris

##

## Regression Data (150 observations, 2 variable(s)):

##

## Sepal.Width Species

## Bandwidth(s): 0.1900724 9.149043e-09

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: Petal.Length ~ Sepal.Width + Species

## Bandwidth Type: Fixed

## Objective Function Value: 0.1564197 (achieved on multistart 2)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

# Product kernel with 2 bandwidths

# Regression

fit_iris <- np::npreg(bw_iris)

summary(fit_iris)

##

## Regression Data: 150 training points, in 2 variable(s)

## Sepal.Width Species

## Bandwidth(s): 0.1900724 9.149043e-09

##
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## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

## Residual standard error: 0.3715506

## R-squared: 0.9554132

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

# Plot marginal effects (for quantile 0.5) of each predictor on the response

par(mfrow = c(1, 2))

plot(fit_iris, plot.par.mfrow = FALSE)
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# Options for the plot method for np::npreg can be seen at ?np::npplot

# Plot marginal effects (for quantile 0.9) of each predictor on the response

par(mfrow = c(1, 2))

plot(fit_iris, xq = 0.9, plot.par.mfrow = FALSE)
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The following is an example from ?np::npreg: the modeling
of the GDP growth of a country from economic indicators. The
predictors contain a mix of unordered, ordered, and continuous
variables.

# Load data

data(oecdpanel, package = "np")

# Bandwidth by CV for local constant -- use only two starts to reduce the

# computation time

bw_OECD <- np::npregbw(formula = growth ~ oecd + ordered(year) +

initgdp + popgro + inv + humancap, data = oecdpanel,

regtype = "lc", nmulti = 2)

bw_OECD

##

## Regression Data (616 observations, 6 variable(s)):

##

## oecd ordered(year) initgdp popgro inv humancap

## Bandwidth(s): 0.01206227 0.8794879 0.3329921 0.0597245 0.1594767 0.9407897

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation
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## Formula: growth ~ oecd + ordered(year) + initgdp + popgro + inv + humancap

## Bandwidth Type: Fixed

## Objective Function Value: 0.0006358702 (achieved on multistart 2)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

##

## Ordered Categorical Kernel Type: Li and Racine

## No. Ordered Categorical Explanatory Vars.: 1

# Recall that ordered(year) is doing an in-formula transformation of year,

# which is *not* codified as an ordered factor in the oecdpanel dataset

# Therefore, if ordered() was not present, year would have been treated

# as continuous, as illustrated below

np::npregbw(formula = growth ~ oecd + year + initgdp + popgro +

inv + humancap, data = oecdpanel, regtype = "lc", nmulti = 2)

##

## Regression Data (616 observations, 6 variable(s)):

##

## oecd year initgdp popgro inv humancap

## Bandwidth(s): 0.01644512 7.481232 0.3486883 0.05860077 0.1639842 0.8371089

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: growth ~ oecd + year + initgdp + popgro + inv + humancap

## Bandwidth Type: Fixed

## Objective Function Value: 0.0006338394 (achieved on multistart 1)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 5

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

# A cleaner approach to avoid doing the in-formula transformation, which

# may be problematic when using predict() or np_pred_CI(), is to directly

# change in the dataset the nature of the factor/ordered variables that are

# not codified as such. For example:

oecdpanel$year <- ordered(oecdpanel$year)

bw_OECD <- np::npregbw(formula = growth ~ oecd + year + initgdp + popgro +

inv + humancap, data = oecdpanel,

regtype = "lc", nmulti = 2)

bw_OECD

##

## Regression Data (616 observations, 6 variable(s)):

##

## oecd year initgdp popgro inv humancap

## Bandwidth(s): 0.01206276 0.8794881 0.332989 0.05972475 0.1594737 0.9408023

##

## Regression Type: Local-Constant

## Bandwidth Selection Method: Least Squares Cross-Validation

## Formula: growth ~ oecd + year + initgdp + popgro + inv + humancap

## Bandwidth Type: Fixed

## Objective Function Value: 0.0006358702 (achieved on multistart 2)

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

##

## Ordered Categorical Kernel Type: Li and Racine

## No. Ordered Categorical Explanatory Vars.: 1

# Regression
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fit_OECD <- np::npreg(bw_OECD)

summary(fit_OECD)

##

## Regression Data: 616 training points, in 6 variable(s)

## oecd year initgdp popgro inv humancap

## Bandwidth(s): 0.01206276 0.8794881 0.332989 0.05972475 0.1594737 0.9408023

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

## Residual standard error: 0.01737053

## R-squared: 0.7143326

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 4

##

## Unordered Categorical Kernel Type: Aitchison and Aitken

## No. Unordered Categorical Explanatory Vars.: 1

##

## Ordered Categorical Kernel Type: Li and Racine

## No. Ordered Categorical Explanatory Vars.: 1

# Plot marginal effects of each predictor on the response

par(mfrow = c(2, 3))

plot(fit_OECD, plot.par.mfrow = FALSE)
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Exercise 5.4. Obtain the local constant estimator of the regression
of mpg on cylinders (ordered discrete), horsepower, weight, and
origin in the data(Auto, package = "ISLR") dataset. Summarize
the model and plot the marginal effects of each predictor on the
response (for the quantile 0.5).
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5.2 Bandwidth selection

Cross-validatory bandwidth selection, as studied in Section 4.3,
extends neatly to the mixed multivariate case. For the fully con-
tinuous case, the least-squares cross validation selector is defined
as

CV(h) :=
1
n

n

∑
i=1

(Yi − m̂−i(Xi; q, h))2,

ĥCV := arg min
h1,...,hp>0

CV(h).

The cross-validation objective function becomes more challenging
to minimize as p grows. This is the reason why employing several
starting values for optimizing it (as np does) is advisable.

The mixed case is defined in a completely analogous manner by
just replacing continuous kernels Kh(·) with categorical lu(·, ·; λ) or
ordered discrete lo(·, ·; η) kernels.

Importantly, the trick described in Proposition 4.1 holds with
obvious modifications. It also holds for the mixed case and the
Nadaraya–Watson estimator.

Proposition 5.1. For q = 0, 1, the weights of the leave-one-out estimator
m̂−i(x; q, h) = ∑n

j=1
j ̸=i

Wq
−i,j(x)Yj can be obtained from m̂(x; q, h) =

∑n
i=1 Wq

i (x)Yi:

Wq
−i,j(x) =

Wq
j (x)

∑n
k=1
k ̸=i

Wq
k (x)

=
Wq

j (x)

1 − Wq
i (x)

. (5.9)

This implies that

CV(h) =
1
n

n

∑
i=1

(
Yi − m̂(Xi; q, h)

1 − Wq
i (Xi)

)2

. (5.10)

Remark. As in the univariate case, computing (5.10) requires eval-
uating the local polynomial estimator at the sample {Xi}n

i=1 and
obtaining {Wq

i (Xi)}n
i=1 (which are needed to evaluate m̂(Xi; q, h)).

Both tasks can be achieved simultaneously from the n × n matrix(
Wq

i (Xj)
)

ij. Evaluating m̂−i(x; q, h), because of (5.9), can be done

with the weights {Wq
i (x)}

n
i=1.

Exercise 5.5. Implement an R function to compute (5.10) for the lo-
cal constant estimator with multivariate (continuous) predictor. The
function must receive as arguments the sample (X1, Y1), . . . , (Xn, Yn)

and the bandwidth vector h. Use the normal kernel. Test your im-
plementation by:

1. Simulating a random sample from a regression model with two
predictors.

2. Computing its cross-validation bandwidths via np::npregbw.
3. Plotting a contour of the function (h1, h2) 7→ CV(h1, h2) and

checking that the minimizers and minimum of this surface coin-
cide with the solution given by np::npregbw.
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17 Precisely, the ones associated with
the asymptotic normality of m̂(x; q, h)
and that are collected in Theorem 4.2
for the case of a single continuous
predictor.

5.3 Prediction and confidence intervals

Prediction via the conditional expectation m(x) = E[Y|X = x]
reduces to evaluate m̂(x; q, h). The fitted values are, therefore, Ŷi :=
m̂(Xi; q, h), i = 1, . . . , n. The np package has methods to perform
these operations via the predict and fitted functions.

More interesting is the discussion about the uncertainty of m̂(x; q, h)
and, as a consequence, of the predictions. Differently to what hap-
pened in parametric models, in nonparametric regression there is
no parametric distribution of the response that can help to carry
out the inference and, consequently, to address the uncertainty
of the estimation. Because of this, it is required to resort to some-
what convoluted asymptotic expressions17 that rely on plugging-in
estimates for the unknown terms on the asymptotic bias and vari-
ance. The next code chunk exemplifies how to compute asymptotic
confidence intervals with np, both for the marginal effects and the
conditional expectation m(x). In the latter case, the confidence inter-
vals are (m̂(x; q, h)± zα/2ŝe(m̂(x; q, h))), where ŝe(m̂(x; q, h)) is the
asymptotic estimation of the standard deviation of m̂(x; q, h).

# Asymptotic confidence bands for the marginal effects of each predictor on

# the response

par(mfrow = c(2, 3))

plot(fit_OECD, plot.errors.method = "asymptotic", common.scale = FALSE,

plot.par.mfrow = FALSE, col = 2)
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# The asymptotic standard errors associated with the regression evaluated at

# the evaluation points are in $merr

head(fit_OECD$merr)
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18 As usable asymptotic approxima-
tions are hampered by two factors: (i)
the slow convergence speed towards
the asymptotic distribution (recall
the effective sample size in Theorem
4.2); and (ii) the need to estimate the
unknown terms in the asymptotic
bias and variance, which leads to an
endless cycle (similar to that in Section
2.4.1).

19 This is the same as randomly ac-
cessing n times the rows of the matrix

X11 . . . X1p Y1
...

. . .
...

...
Xn1 . . . Xnp Yn


n×(p+1)

.

## [1] 0.007982761 0.006815515 0.002888752 0.002432522 0.005004411 0.008483572

# Recall that in $mean we had the regression evaluated at the evaluation points,

# by default the sample of the predictors, so in this case it is the same as

# the fitted values

head(fit_OECD$mean)

## [1] 0.02213477 0.02460647 0.03216185 0.04167737 0.01068088 0.04456299

# Fitted values

head(fitted(fit_OECD))

## [1] 0.02213477 0.02460647 0.03216185 0.04167737 0.01068088 0.04456299

# Prediction for the first 3 points + asymptotic standard errors

pred <- predict(fit_OECD, newdata = oecdpanel[1:3, ], se.fit = TRUE)

# Predictions

pred$fit

## [1] 0.02213477 0.02460647 0.03216185

# Manual computation of the asymptotic 100 * (1 - alpha)% confidence intervals

# for the conditional mean of the first 3 points

alpha <- 0.05

z_alpha2 <- qnorm(1 - alpha / 2)

cbind(pred$fit - z_alpha2 * pred$se.fit, pred$fit + z_alpha2 * pred$se.fit)

## [,1] [,2]

## [1,] 0.00648885 0.03778070

## [2,] 0.01124831 0.03796464

## [3,] 0.02649999 0.03782370

# Recall that z_alpha2 is almost 2

z_alpha2

## [1] 1.959964

A non-asymptotic alternative to approximate the sampling dis-
tribution of m̂(x; q, h) is a bootstrap resampling procedure. Indeed,
bootstrap approximations of confidence intervals for m(x), if per-
formed adequately, are generally more trustworthy than asymptotic
approximations.18 Naive bootstrap resampling is np’s default boot-
strap procedure to compute confidence intervals for m(x) using the
estimator m̂(x; q, h). This procedure is summarized as follows:

1. Compute m̂(x; q, h) = ∑n
i=1 Wq

i (x)Yi from the original sample
(X1, Y1), . . . , (Xn, Yn).

2. Enter the “bootstrap world”. For b = 1, . . . , B:

i. Obtain the bootstrap sample (X∗b
1 , Y∗b

1 ), . . . , (X∗b
n , Y∗b

n ) by draw-
ing, with replacement, random observations from the set
{(X1, Y1), . . . , (Xn, Yn)}.19

ii. Compute m̂∗b(x; q, h) = ∑n
i=1 Wq, ∗b

i (x)Y∗b
i from (X∗b

1 , Y∗b
1 ), . . . ,

(X∗b
n , Y∗b

n ).

3. From m̂(x; q, h) and {m̂∗b(x; q, h)}B
b=1, compute a bootstrap

100(1 − α)%-confidence interval for m(x). The two most com-
mon approaches for doing so are:

• Normal approximation ("standard"):
(
m̂(x; q, h)± zα/2ŝe∗(m̂(x; q, h))

)
,

where ŝe∗(m̂(x; q, h)) is the sample standard deviation of
{m̂∗b(x; q, h)}B

b=1.
• Quantile-based ("quantile"):

(
m∗

α/2, m∗
1−α/2

)
, where m∗

α is the
(lower) sample α-quantile of {m̂∗b(x; q, h)}B

b=1.
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20 Although this might be confus-
ing, since Hayfield and Racine (2008)
states that “Specifying the type of
bootstrapping as ‘inid’ admits gen-
eral heteroskedasticity of unknown
form via the wild bootstrap (Liu,
1988), though it does not allow for
dependence.” but, as of version 0.60-
10, the naive bootstrap is run when
plot.errors.boot.method = "inid"

(see code).

Bootstrap standard errors are entirely computed by np::npplot

(and neither by np::npreg nor predict, as for asymptotic standard
errors). The default method, plot.errors.boot.method = "inid",
implements the naive bootstrap to approximate the confidence
intervals of the marginal effects.20

# Bootstrap confidence bands (using naive bootstrap, the default)

# They take more time to compute because a resampling + refitting takes place

B <- 200

par(mfrow = c(2, 3))

plot(fit_OECD, plot.errors.method = "bootstrap", common.scale = FALSE,

plot.par.mfrow = FALSE, plot.errors.boot.num = B, random.seed = 42,

col = 2)
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# plot.errors.boot.num is B and defaults to 399

# random.seed fixes the seed to always get the same bootstrap errors. It

# defaults to 42 if not specified

The following chunk of code helps extracting the information
about the bootstrap confidence intervals from the call to np::npplot

and illustrates further bootstrap options.

# Univariate local constant regression with CV bandwidth

bw1 <- np::npregbw(formula = growth ~ initgdp, data = oecdpanel, regtype = "lc")

fit1 <- np::npreg(bw1)

summary(fit1)

##

## Regression Data: 616 training points, in 1 variable(s)

## initgdp

## Bandwidth(s): 0.2774471

##

## Kernel Regression Estimator: Local-Constant

## Bandwidth Type: Fixed

## Residual standard error: 0.02907224

https://github.com/JeffreyRacine/R-Package-np/blob/c0bd98e818825d10a2765f0c43a1752aa358c17c/R/np.plot.R#L125
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## R-squared: 0.08275453

##

## Continuous Kernel Type: Second-Order Gaussian

## No. Continuous Explanatory Vars.: 1

# Asymptotic (not bootstrap) standard errors

head(fit1$merr)

## [1] 0.002229093 0.002342670 0.001712938 0.002210457 0.002390530 0.002333956

# Normal approximation confidence intervals + extraction of errors

npplot_std <- plot(fit1, plot.errors.method = "bootstrap",

plot.errors.type = "standard", plot.errors.boot.num = B,

plot.errors.style = "bar", plot.behavior = "plot-data",

lwd = 2)

lines(npplot_std$r1$eval[, 1], npplot_std$r1$mean + npplot_std$r1$merr[, 1],

col = 2, lty = 2)

lines(npplot_std$r1$eval[, 1], npplot_std$r1$mean + npplot_std$r1$merr[, 2],

col = 2, lty = 2)

# These bootstrap standard errors are different from the asymptotic ones

head(npplot_std$r1$merr)

## [,1] [,2]

## [1,] -0.017509208 0.017509208

## [2,] -0.015174698 0.015174698

## [3,] -0.012930989 0.012930989

## [4,] -0.010925377 0.010925377

## [5,] -0.009276906 0.009276906

## [6,] -0.008031584 0.008031584

# Quantile confidence intervals + extraction of errors

npplot_qua <- plot(fit1, plot.errors.method = "bootstrap",

plot.errors.type = "quantiles", plot.errors.boot.num = B,

plot.errors.style = "bar", plot.behavior = "plot-data")

lines(npplot_qua$r1$eval[, 1], npplot_qua$r1$mean + npplot_qua$r1$merr[, 1],

col = 2, lty = 2)

lines(npplot_qua$r1$eval[, 1], npplot_qua$r1$mean + npplot_qua$r1$merr[, 2],

col = 2, lty = 2)

# These bootstrap standard errors are different from the asymptotic ones,

# and also from the previous bootstrap errors (different confidence

# interval method)

head(npplot_qua$r1$merr)

## [,1] [,2]

## [1,] -0.016923716 0.017015321

## [2,] -0.015649920 0.015060896

## [3,] -0.012913035 0.012441999

## [4,] -0.010752339 0.009864879

## [5,] -0.008496998 0.008547620

## [6,] -0.006912847 0.007220871

# There is no predict() method featuring bootstrap confidence intervals,

# it has to be coded manually!

# Function to predict and compute confidence intervals for m(x). Takes as main

# arguments a np::npreg object (npfit) and the values of the predictors where

# to carry out prediction (exdat). Requires that exdat is a data.frame of the

# same type than the one used for the predictors (e.g., there will be an error

# if one variable appears as a factor for computing npfit and then is passed

# as a numeric in exdat)

np_pred_CI <- function(npfit, exdat, B = 200, conf = 0.95,

type_CI = c("standard", "quantiles")[1]) {

# Extract predictors

xdat <- npfit$eval
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# Extract response, using a trick from np::npplot.rbandwidth

tt <- terms(npfit$bws)

tmf <- npfit$bws$call[c(1, match(c("formula", "data"),

names(npfit$bws$call)))]

tmf[[1]] <- as.name("model.frame")

tmf[["formula"]] <- tt

tmf <- eval(tmf, envir = environment(tt))

ydat <- model.response(tmf)

# Predictions

m_hat <- np::npreg(txdat = xdat, tydat = ydat, exdat = exdat,

bws = npfit$bws)$mean

# Function for performing Step 3

boot_function <- function(data, indices) {

np::npreg(txdat = xdat[indices,], tydat = ydat[indices],

exdat = exdat, bws = npfit$bws)$mean

}

# Carry out Step 3

m_hat_star <- boot::boot(data = data.frame(xdat), statistic = boot_function,

R = B)$t

# Confidence intervals

alpha <- 1 - conf

if (type_CI == "standard") {

z <- qnorm(p = 1 - alpha / 2)

se <- apply(m_hat_star, 2, sd)

lwr <- m_hat - z * se

upr <- m_hat + z * se

} else if (type_CI == "quantiles") {

q <- apply(m_hat_star, 2, quantile, probs = c(alpha / 2, 1 - alpha / 2))

lwr <- q[1, ]

upr <- q[2, ]

} else {

stop("Incorrect type_CI")

}

# Return evaluation points, estimates, and confidence intervals

return(data.frame("exdat" = exdat, "m_hat" = m_hat, "lwr" = lwr, "upr" = upr))

}

# Obtain predictions and confidence intervals along a fine grid, using the

# same seed employed by np::npplot for proper comparison

set.seed(42)

ci1 <- np_pred_CI(npfit = fit1, B = B, exdat = seq(5, 10, by = 0.01),

type_CI = "quantiles")

# Reconstruction of np::npplot's figure -- the curves coincide perfectly

plot(fit1, plot.errors.method = "bootstrap", plot.errors.type = "quantiles",

plot.errors.boot.num = B, plot.errors.style = "bar", lwd = 3)

lines(npplot_qua$r1$eval[, 1], npplot_qua$r1$mean + npplot_qua$r1$merr[, 1],

col = 2, lwd = 3)

lines(npplot_qua$r1$eval[, 1], npplot_qua$r1$mean + npplot_qua$r1$merr[, 2],

col = 2, lwd = 3)

lines(ci1$exdat, ci1$m_hat, col = 3)

lines(ci1$exdat, ci1$lwr, col = 4)

lines(ci1$exdat, ci1$upr, col = 4)
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# But np_pred_CI is also valid for regression models with several predictors!

# An example with bivariate local linear regression with CV bandwidth

bw2 <- np::npregbw(formula = growth ~ initgdp + popgro, data = oecdpanel,

regtype = "ll")

fit2 <- np::npreg(bw2)

# Predictions and confidence intervals along a bivariate grid

L <- 50

x_initgdp <- seq(5.5, 10, l = L)

x_popgro <- seq(-3.2, -2.3, l = L)

exdat <- expand.grid(x_initgdp, x_popgro)

ci2 <- np_pred_CI(npfit = fit2, exdat = exdat)

# Regression surface. Observe the extrapolatory artifacts for

# low-density regions

m_hat <- matrix(ci2$m_hat, nrow = L, ncol = L)

filled.contour(x_initgdp, x_popgro, m_hat, nlevels = 20,

color.palette = viridis::viridis,

xlab = "initgdp", ylab = "popgro",

plot.axes = {

axis(1); axis(2);

points(popgro ~ initgdp, data = oecdpanel, pch = 16)

})

# Length of the 95%-confidence intervals for the regression. Observe how

# they grow for low-density regions

ci_dif <- matrix(ci2$upr - ci2$lwr, nrow = L, ncol = L)

filled.contour(x_initgdp, x_popgro, ci_dif, nlevels = 20,

color.palette = function(n) viridis::viridis(n, direction = -1),

xlab = "initgdp", ylab = "popgro",

plot.axes = {

axis(1); axis(2);

points(popgro ~ initgdp, data = oecdpanel, pch = 16)

})

Exercise 5.6. Split the data(Auto, package = "ISLR") dataset by
taking set.seed(12345); ind_train <- sample(nrow(Auto), size

= nrow(Auto) - 12) as the index for the training dataset and use
the remaining observations for the validation dataset. Then, for the
regression problem described in Exercise 5.4:

a. Fit the local constant and linear estimators with CV bandwidths
by taking the nature of the variables into account. Hint: remem-
ber using ordered and factor if necessary.

b. Interpret the nonparametric fits via marginal effects (for the
quantile 0.5) and bootstrap confidence intervals.

c. Obtain the mean squared prediction error on the validation
dataset for the two fits. Which estimate gives the lowest error?

d. Compare the errors with the ones made by a linear estimation.
Which approach gives lowest errors?

Exercise 5.7. The data(ChickWeight) dataset in R contains 578
observations of the weight, Time, and Diet of chicks.

a. Consider the regression weight ~ Time + Diet. Fit the local
linear estimator with CV bandwidths by taking the nature of the
variables into account.
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21 For example, the golden section binary
variable defined by P[V = 1 − ϕ] = p
and P[V = ϕ] = 1 − p, with ϕ =
(1 +

√
5)/2 and p = (ϕ + 2)/5.

b. Plot the marginal effects of Time for the four possible types of
Diet. Overlay the four samples and use different colors. Explain
your interpretations.

c. Obtain the bootstrap 90%-confidence intervals of the expected
weight of a chick on the 20th day, for each of the four types of
diets (take B = 500). With a 90% confidence, state which diet
dominates in terms of weight the other diets, and which are
comparable.

d. Produce a plot that shows the extrapolation of the expected
weight, for each of the four diets, from the 20th to the 30th day.
Add bootstrap 90%-confidence bands. Explain your interpreta-
tions.

Exercise 5.8. Investigate the accuracy of the naive bootstrap confi-
dence intervals implemented in np::npplot. To do so:

1. Simulate M = 500 samples of size n = 100 from the regression
model Y = m(X) + ε, where m(x) = 0.25x2 − 0.75x + 3, X ∼
N (0, 1.52), and ε ∼ N (0, 0.752).

2. Compute the 95%-confidence intervals for m(x) along x <-

seq(-5, 5, by = 0.1), for each of the M samples. Do it for the
normal approximation and quantile-based confidence intervals.

3. Check if m(x) belongs to each of the confidence intervals, for
each x.

4. Approximate the actual coverage of the confidence intervals.

Once you have a working solution, increase n to n = 200, 500 and
summarize your conclusions. Use B = 500.

Naive bootstrap, although conceptually simple, does not cap-
ture the uncertainty of m̂(x; q, h) in all situations, and may severely
underestimate the variability of m̂(x; q, h). A more sophisticated
bootstrap procedure is the so-called wild bootstrap (Wu, 1986;
Liu, 1988; Hardle and Marron, 1991), as it is a resampling strategy
particularly well-suited for regression problems with heteroskedas-
ticity. The wild bootstrap approach replaces Step 2 in the previous
bootstrap resampling with:

i. Simulate V∗b
1 , . . . , V∗b

n to be iid copies of V such that E[V] = 0
and Var[V] = 1.21

ii. Compute the perturbed residuals ε∗b
i := ε̂iV∗b

i , where ε̂i := Yi −
m̂(Xi; q, h), i = 1, . . . , n.

iii. Obtain the bootstrap sample (X1, Y∗b
1 ), . . . , (Xn, Y∗b

n ), where Y∗b
i :=

m̂(Xi; q, h) + ε∗b
i , i = 1, . . . , n.

iv. Compute m̂∗b(x; q, h) = ∑n
i=1 Wq

i (x)Y
∗b
i from (X1, Y∗b

1 ), . . . , (Xn, Y∗b
n ).

Unfortunately, np does not seem to implement the wild boot-
strap. The next exercise points to its implementation.

Exercise 5.9. Adapt the np_pred_CI function to include the argu-
ment type_boot, which can take either the value "naive" or "wild".
If type_boot = "wild", then the function must perform the wild
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22 Observe that, for the sake of easier
presentation, we come back to the
notation and setting employed in
Chapter 4, in which only one predictor
X was available for explaining Y, and
where p denoted the order of the
polynomial fit employed.

bootstrap algorithm described above, implemented from scratch
following Steps i–iv. Compare and validate the correct behavior of
the confidence intervals, for the two specifications of type_boot, in
the model considered in Exercise 5.7 (without performing the full
simulation study).

5.4 Local likelihood

We next explore an extension of the local polynomial estimator
that imitates the expansion that generalized linear models made of
linear models, allowing the former to consider non-continuous re-
sponses. This extension is aimed to estimate the regression function
by relying on the likelihood, rather than the least squares. The main
idea behind local likelihood is, therefore, to locally fit parametric
models by maximum likelihood.

We begin by seeing that local likelihood based on the linear
model is equivalent to local polynomial modeling. Theorem B.1
shows that, under the assumptions given in Section B.1.2, the maxi-
mum likelihood estimate of β in the linear model

Y|(X1, . . . , Xp) ∼ N (β0 + β1X1 + · · ·+ βpXp, σ2) (5.11)

is equivalent to the least squares estimate, β̂ = (X′X)−1X′Y. The
reason for this is the form of the conditional (on X1, . . . , Xp) log-
likelihood:

ℓ(β) =− n
2

log(2πσ2)

− 1
2σ2

n

∑
i=1

(Yi − β0 − β1Xi1 − . . . − βpXip)
2.

If there is a single predictor X, the situation on which we focus
on, a polynomial fitting of order p of the conditional mean can be
achieved by the well-known trick of identifying the j-th predictor Xj

in (5.11) by X j.22 This results in

Y|X ∼ N (β0 + β1X + · · ·+ βpXp, σ2). (5.12)

Therefore, we can define the weighted log-likelihood of the linear
model (5.12) about x as

ℓx,h(β) :=− n
2

log(2πσ2) (5.13)

− 1
2σ2

n

∑
i=1

(Yi − β0 − β1(Xi − x)− . . . − βp(Xi − x)p)2Kh(x − Xi).

Maximizing with respect to β the local log-likelihood (5.13) provides
β̂0 = m̂(x; p, h), which is precisely the local polynomial estimator,
as it was obtained in (4.10), but now obtained from a likelihood-
based perspective. The key point is to realize that the very same
idea can be applied to the family of generalized linear models, for
which linear regression (in this case manifested as a polynomial
regression) is just a particular case.



notes for nonparametric statistics 167

Figure 5.1: Construction of the local
likelihood estimator. The animation
shows how local likelihood fits in a
neighborhood of x are combined to
provide an estimate of the regression
function for binary response, which
depends on the polynomial degree,
bandwidth, and kernel (gray density
at the bottom). The data points are
shaded according to their weights for
the local fit at x. Application available
here.

23 If p = 1, then we have the usual
simple logistic model. Notice that
we are just doing the “polynomial
trick” done in linear regression, which
consisted in expanding the number
of predictors with the powers X j,
j = 1, . . . , p, of X to achieve more
flexibility in the parametric fit.

24 There is no analytical solution for
the optimization problem due to its
nonlinearity, so a numerical approach
is required.

We illustrate the local likelihood principle for the logistic regres-
sion (see Section B.2 for a quick review). In this case, the sample is
(X1, Y1), . . . , (Xn, Yn) with

Yi|Xi ∼ Ber(logistic(η(Xi))), i = 1, . . . , n,

with the polynomial term23

η(x) := β0 + β1x + · · ·+ βpxp.

The log-likelihood of β is

ℓ(β) =
n

∑
i=1

{Yi log(logistic(η(Xi))) + (1 − Yi) log(1 − logistic(η(Xi)))}

=
n

∑
i=1

ℓ(Yi, η(Xi)),

where we consider the log-likelihood addend ℓ(y, η) := yη − log(1 +

eη). For the sake of clarity in the next developments, we make ex-
plicit the dependence on η(x) of this addend; conversely, we make
its dependence on β implicit.

The local log-likelihood of β about x is then defined as

ℓx,h(β) :=
n

∑
i=1

ℓ(Yi, η(Xi − x))Kh(x − Xi). (5.14)

Maximizing24 the local log-likelihood (5.14) with respect to β pro-
vides

β̂h = arg max
β∈Rp+1

ℓx,h(β).

https://shinyserv.es/shiny/loclik/
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25 An alternative and useful view is
that, by maximizing (5.14), we are
fitting the logistic model p̂x(t) :=
logistic

(
β̂h,0 + β̂h,1(t − x) + · · · +

β̂h,p(t − x)p) that is centered about
x. Then, we employ this model to
predict Y for X = t = x, resulting
logistic

(
β̂h,0

)
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The local likelihood estimate of η(x) is the intercept of this fit,

η̂(x) := β̂h,0.

Note that the dependence of β̂0,h on x is omitted. From η̂(x), we
can obtain the local logistic regression evaluated at x as25

m̂ℓ(x; p, h) := g−1 (η̂(x)) = logistic(β̂h,0). (5.15)

Each evaluation of m̂ℓ(x; p, h) in a different x requires, thus, a
weighted fit of the underlying local logistic model.

The code below shows three different ways of implementing in R
the local logistic regression (with p = 1).

# Simulate some data

n <- 200

logistic <- function(x) 1 / (1 + exp(-x))

p <- function(x) logistic(1 - 3 * sin(x))

set.seed(123456)

X <- sort(runif(n = n, -3, 3))

Y <- rbinom(n = n, size = 1, prob = p(X))

# Set bandwidth and evaluation grid

h <- 0.25

x <- seq(-3, 3, l = 501)

# Approach 1: optimize the weighted log-likelihood through the workhorse

# function underneath glm, glm.fit

suppressWarnings(

fit_glm <- sapply(x, function(x) {

K <- dnorm(x = x, mean = X, sd = h)

glm.fit(x = cbind(1, X - x), y = Y, weights = K,

family = binomial())$coefficients[1]

})

)

# Approach 2: optimize directly the weighted log-likelihood

suppressWarnings(

fit_nlm <- sapply(x, function(x) {

K <- dnorm(x = x, mean = X, sd = h)

nlm(f = function(beta) {

-sum(K * (Y * (beta[1] + beta[2] * (X - x)) -

log(1 + exp(beta[1] + beta[2] * (X - x)))))

}, p = c(0, 0))$estimate[1]

})

)

# Approach 3: employ locfit::locfit

# CAREFUL: locfit::locfit uses a different internal parametrization for h!

# As it can be see, the bandwidths in approaches 1-2 and approach 3 do NOT

# give the same results! With h = 0.75 in locfit::locfit the fit is close

# to the previous ones (done for h = 0.25), but not exactly the same...

fit_locfit <- locfit::locfit(Y ~ locfit::lp(X, deg = 1, h = 0.75),

family = "binomial", kern = "gauss")

# Compare fits

plot(x, p(x), ylim = c(0, 1.5), type = "l", lwd = 2)

lines(x, logistic(fit_glm), col = 2)

lines(x, logistic(fit_nlm), col = 3, lty = 2)

lines(x, predict(fit_locfit, newdata = x), col = 4, lty = 2)

legend("topright", legend = c("p(x)", "glm", "nlm", "locfit"), lwd = 2,

col = c(1, 2, 3, 4), lty = c(1, 1, 2, 1))

Bandwidth selection can be done by means of likelihood cross-
validation. The objective is to maximize the local log-likelihood fit at
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26 Observe that (5.16) is equivalent to
(4.23) if the generalized linear model is
a linear model.

27 The interested reader is referred
to Sections 4.3.3 and 4.4.3 in Loader
(1999) for an approximation of (5.16)
that only requires a local likelihood fit
for a single sample.
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(Xi, Yi) but removing the influence by the datum itself. That is,

ĥLCV = arg max
h>0

LCV(h),

LCV(h) =
n

∑
i=1

ℓ(Yi, η̂−i(Xi)), (5.16)

where η̂−i(Xi) represents the local fit at Xi without the i-th datum
(Xi, Yi).26 Unfortunately, the nonlinearity of (5.15) forbids a sim-
plifying result as the one in Proposition 4.1. Thus, in principle, it is
required to fit n local likelihoods for sample size n − 1 to obtain a
single evaluation of (5.16).27

We conclude by illustrating how to compute the LCV function
and optimize it. Keep in mind that much more efficient implemen-
tations are possible!

# Exact LCV - recall that we *maximize* the LCV!

h <- seq(0.1, 2, by = 0.1)

suppressWarnings(

LCV <- sapply(h, function(h) {

sum(sapply(1:n, function(i) {

K <- dnorm(x = X[i], mean = X[-i], sd = h)

nlm(f = function(beta) {

-sum(K * (Y[-i] * (beta[1] + beta[2] * (X[-i] - X[i])) -

log(1 + exp(beta[1] + beta[2] * (X[-i] - X[i])))))

}, p = c(0, 0))$minimum

}))

})

)

plot(h, LCV, type = "o")

abline(v = h[which.max(LCV)], col = 2)

Exercise 5.10 (Adapted from Example 4.6 in Wasserman (2006)).
The dataset at http://www.stat.cmu.edu/~larry/all-of-nonpar/
=data/bpd.dat (alternative link) contains information about the
presence of bronchopulmonary dysplasia (binary response) and the
birth weight in grams (predictor) of 223 newborns.

a. Use the three approaches described above to compute the local
logistic regression (first degree) and plot their outputs for a
bandwidth that is somehow adequate.

b. Using ĥLCV, explore and comment on the resulting estimates,
providing insights into the data.

c. From the obtained fit, derive several simple diagnostic rules for
the probability of the presence of bronchopulmonary dysplasia
from the birth weight.

Exercise 5.11. The challenger.txt dataset contains information
regarding the state of the solid rocket boosters after launch for 23
shuttle flights prior the Challenger launch. Each row has, among
others, the variables fail.field (indicator of whether there was an
incident with the O-rings), nfail.field (number of incidents with
the O-rings), and temp (temperature in the day of launch, measured
in Celsius degrees). See Section 5.1 in García-Portugués (2022) for
further context on the Challenger case study.

http://www.stat.cmu.edu/~larry/all-of-nonpar/=data/bpd.dat
http://www.stat.cmu.edu/~larry/all-of-nonpar/=data/bpd.dat
https://raw.githubusercontent.com/egarpor/handy/master/datasets/bpd.txt
https://raw.githubusercontent.com/egarpor/handy/master/datasets/challenger.txt
https://bookdown.org/egarpor/PM-UC3M/glm-challenger.html
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a. Fit a local logistic regression (first degree) for fails.field ~

temp, for three choices of bandwidths: one that oversmooths, an-
other that is somehow adequate, and another that undersmooths.
Do the effects of temp on fails.field seem to be significant?

b. Obtain ĥLCV and plot the LCV function with a reasonable accu-
racy.

c. Using ĥLCV, predict the probability of an incident at tempera-
tures −0.6 (launch temperature of the Challenger) and 11.67 (vice
president of engineers’ recommended launch threshold).

d. What are the local odds at −0.6 and 11.67? Show the local logis-
tic models about these points, in spirit of Figure 5.1, and inter-
pret the results.

Exercise 5.12. Implement your own version of the local likelihood
estimator (first degree) for the Poisson regression model. To do so:

a. Derive the local log-likelihood about x for the Poisson regres-
sion (which is analogous to (5.14)). You can check Section 5.2.2 in
García-Portugués (2022) for information on the Poisson regres-
sion.

b. Code from scratch an R function, loc_pois, that maximizes
the previous local likelihood for a vector of evaluation points.
loc_pois must take as input the samples X and Y, the vector of
evaluation points x, the bandwidth h, and the kernel K.

c. Implement a cv_loc_pois function that obtains the cross-validated
bandwidth for the local Poisson regression.

d. Validate the correct behavior of loc_pois and cv_loc_pois by
sampling from Y|X = x ∼ Poisson(λ(x)), where λ(x) = esin(x)

and X is distributed according to a nor1mix::MW.nm7.
e. Compare your results with the locfit::locfit function using

family = "poisson".

https://bookdown.org/egarpor/PM-UC3M/glm-model.html#glm-model-general


1 If necessary, see Section C for an
informal review on the main concepts
involved in hypothesis testing.

2 This prior assessment is of key
importance to ensure coherency
between the real and the assumed
data distributions, as the parametric
test bases its decision on the latter.
An example to dramatize this point
follows. Let X1 ∼ N (µ, σ2) and X2 ∼
Γ(µ/σ2, µ2/σ2), for µ, σ2 > 0. The cdfs
of X1 and X2, F1 and F2, are different
for all µ, σ2 > 0. Yet E[X1] = E[X2]
and Var[X1] = Var[X2]. When testing
H0 : F1 = F2, if one assumes that
X1 and X2 are normally distributed
(which is partially true), then one can
use a t-test with unknown variances.
The t-test will believe H0 is true,
since E[X1] = E[X2] and Var[X1] =
Var[X2], thus having a rejection
rate equal to the significance level α.
However, by construction, H0 is false.
The t-test fails to reject H0 because its
parametric assumption does not match
the reality.
3 These optimal parametric tests are
often obtained by maximum likelihood
theory.
4 See, e.g., Section 6.2 in Molina-Peralta
and García-Portugués (2022).

6
Nonparametric tests

This chapter overviews some well-known nonparametric hypothe-
sis tests.1 The reviewed tests are intended for different purposes,
mostly related to: (i) the evaluation of the goodness-of-fit of a dis-
tribution model to a dataset; and (ii) the assessment of the relation
between two random variables.

A nonparametric test evaluates a null hypothesis H0 against
an alternative H1 without assuming any parametric model, on
neither H0 nor H1. Consequently, a nonparametric test is free from
the overhead of evaluating a parametric assumption that one needs
to conduct before applying a parametric test.2 More importantly, it
is quite likely that the inspection of these parametric assumptions
has a negative outcome that forbids the subsequent application
of a parametric test. The direct applicability and generality of
nonparametric tests are the reasons for their usefulness in real-data
applications.

Nonparametric tests have lower efficiency with respect to opti-
mal parametric tests for specific parametric problems.3 Statistical
inference is full of instances of such parametric tests, especially
within the context of normal populations.4 For example, given two
iid samples X11, . . . , X1n1 and X21, . . . , X2n2 from two normal popu-
lations X1 ∼ N (µ1, σ2) and X2 ∼ N (µ2, σ2), the test for the equality
of the means,

H0 : µ1 = µ2 vs. H1 : µ1 ̸= µ2,

is optimally carried out using the test statistic Tn := X̄1−X̄2
S
√

1/n1+1/n2
,

where S2 := 1
n1+n2−2

(
∑n1

i=1(X1i − X̄1)
2 + ∑n2

i=1(X2i − X̄2)
2) is

the pooled sample variance. The distribution of Tn under H0 is

tn1+n2−2, which is compactly denoted by Tn
H0∼ tn1+n2−2. For this re-

sult to hold, it is key that the two populations are indeed normally
distributed, an assumption that may be unrealistic in practice. Re-
call that, under H0, this test states the equality of distributions of X1

and X2. A nonparametric alternative therefore is the Kolmogorov–
Smirnov test for two samples, to be seen in Section 6.2. It evaluates
if the distributions of X1 ∼ F1 and X2 ∼ F2 are equal:

H0 : F1 = F2 vs. H1 : F1 ̸= F2.

https://bookdown.org/egarpor/inference/ht.html#ht-norm
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5 See González-Manteiga and Crujeiras
(2013) for an exhaustive review of the
topic.
6 For example, there are goodness-of-fit
tests for time series models, such as
ARMA(p, q) models (see, e.g., Velilla
(1994) and references therein).
7 F does not need to be continuous.
8 The fact that F = F0 is tested in full
generality against any distribution that
is different from F0 raises the omnibus
test (all-purpose test) terminology
for the kind of tests that are able to
detect all the alternatives to H0 that are
within H1.
9 That is, the tests will have a rejection
probability lower than α when H0 is
true.
10 If F and F0 were continuous, the
density approach to this problem
would compare the kde f̂ (·; h) seen in
Chapter 2 with the density f0. While
using a kde for testing H0 : F = F0
via H0 : f = f0 is a perfectly valid
approach and has certain advantages
(e.g., better detection of local violations
of H0), it is also more demanding (it
requires selecting the bandwidth h)
and limited (applicable to continuous
random variables only). The cdf
optic, although not appropriate for
visualization or for the applications
described in Section 3.5, suffices for
conducting hypothesis testing in a
nonparametric way.
11 A popular approach to goodness-of-
fit tests, not covered in these notes, is
the chi-squared test (see ?chisq.test).
This test is based on aggregating the
values of X in k classes Ii , i = 1, . . . , k,
where ∪k

i=1 Ii cover the support of X.
Worryingly, one can modify the out-
come of the test by altering the form
of these classes and the choice of k – a
sort of tuning parameter. The choice of
k also affects the quality of the asymp-
totic null distribution. Therefore,
for continuous and discrete random
variables, the chi-squared test has sig-
nificant drawbacks when compared to
the ecdf-based tests. Nevertheless, the
“chi-squared philosophy” of testing
is remarkably general: as opposed
to ecdf-based tests, it can be readily
applied to the analysis of categorical
variables and contingency tables.
12 Or the ∞-distance ∥Fn − F0∥∞ =
supx∈R |Fn(x)− F0(x)| .
13 With the addition of the

√
n factor

in order to standardize Dn in terms
of its asymptotic distribution under
H0. Many authors do not consider
this factor as a part of the test statistic
itself.

Finally, the term goodness-of-fit refers to the statistical tests
that check the adequacy of a model for explaining a sample. For
example, a goodness-of-fit test allows answering if a normal model
is “acceptable” to describe a given sample X1, . . . , Xn. Initially,
the concept of goodness-of-fit test was proposed for distribution
models, but it was later extended to regression5 and other statistical
models,6 although such extensions are not addressed in these notes.

6.1 Goodness-of-fit tests for distribution models

Assume that an iid sample X1, . . . , Xn from an arbitrary distribution
F is given.7 We next address the one-sample problem of testing a
statement about the unknown distribution F.

6.1.1 Simple hypothesis tests

We first address tests for the simple null hypothesis

H0 : F = F0 (6.1)

against the most general alternative8

H1 : F ̸= F0,

where here and henceforth “F ̸= F0” means that there exists at
least one x ∈ R such that F(x) ̸= F0(x), and F0 is a pre-specified,
not-data-dependent distribution model. This latter aspect is very
important:

If some parameters of F0 are estimated from the sample, the pre-
sented tests for (6.1) will not respect the significance level α for which
they are constructed, and as a consequence they will be highly conser-
vative.9

Recall that the ecdf (1.1) of X1, . . . , Xn, Fn(x) = 1
n ∑n

i=1 1{Xi≤x}, is
a nonparametric estimator of F, as seen in Section 1.6. Therefore, a
measure of proximity of Fn (driven by the sample) and F0 (specified
by H0) will be indicative of the veracity of (6.1): a “large” distance
between Fn and F0 evidences that H0 is likely to be false.10 ,11

The following three well-known goodness-of-fit tests arise from
the same principle: considering as the test statistic a particular type
of distance between the functions Fn and F0.

Kolmogorov–Smirnov test

• Test purpose. Given X1, . . . , Xn ∼ F, it tests H0 : F = F0 vs. H1 :
F ̸= F0 consistently against all the alternatives in H1.

• Statistic definition. The test statistic uses the supremum dis-
tance12,13 between Fn and F0:

Dn :=
√

n sup
x∈R

|Fn(x)− F0(x)| .
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14 Notice that Fn(X(i)) = i
n and

Fn(X−
(i)) =

i−1
n .

15 When the sample size n is large:
n → ∞.
16 The infinite series converges quite
fast and 50 terms are usually enough
to evaluate (6.3) with high accuracy for
x ∈ R.

17 A tie occurs when two elements
of the sample are numerically equal,
an event with probability zero if the
sample comes from a truly continuous
random variable.
18 More precisely, the pdf of Dn would
follow from the joint pdf of the sorted
sample (U(1), . . . , U(n)) that is gener-
ated from a U (0, 1) and for which the
transformation (6.2) is employed. The
exact analytical formula, for a given n,
is very cumbersome, hence the need
for an asymptotic approximation.
19 That is, if F0 is the cdf of a N (0, 1) or
the cdf of a Exp(λ), the distribution of
Dn under H0 is exactly the same.
20 Ties may appear as a consequence of
a measuring process of a continuous
quantity having low precision.
21 Which is limn→∞ P[dn > Dn] =
1 − K(dn), where dn is the observed
statistic and Dn is the random variable
(6.2).

If H0 : F = F0 holds, then Dn tends to be small. Conversely, when
F ̸= F0, larger values of Dn are expected, and the test rejects H0

when Dn is large.

• Statistic computation. The computation of Dn can be efficiently
achieved by realizing that the maximum difference between
Fn and F0 happens at x = Xi, for a certain Xi (observe Figure
6.1). From here, sorting the sample and applying the probability
transformation F0 gives14

Dn = max(D+
n , D−

n ), (6.2)

D+
n :=

√
n max

1≤i≤n

{
i
n
− U(i)

}
,

D−
n :=

√
n max

1≤i≤n

{
U(i) −

i − 1
n

}
,

where U(j) stands for the j-th sorted Ui := F0(Xi), i = 1, . . . , n.

• Distribution under H0. If H0 holds and F0 is continuous, then Dn

has an asymptotic15 cdf given by the Kolmogorov–Smirnov’s K16

function:

lim
n→∞

P[Dn ≤ x] = K(x) := 1 − 2
∞

∑
j=1

(−1)j−1e−2j2x2
. (6.3)

• Highlights and caveats. The Kolmogorov–Smirnov test is a distribution-
free test because its distribution under H0 does not depend on F0.
However, this is the case only if F0 is continuous and the sample
X1, . . . , Xn is also continuous, i.e., if the sample has no ties.17 If

these assumptions are met, then the iid sample X1, . . . , Xn
H0∼ F0

generates the iid sample U1, . . . , Un
H0∼ U (0, 1). As a consequence,

the distribution of (6.2) does not depend on F0.18 ,19 If F0 is not
continuous or there are ties on the sample, the K function is not
the true asymptotic cdf. An alternative for discrete F0 is given
below. In case there are ties on the sample, a possibility is to
slightly perturb the sample in order to remove such ties.20

• Implementation in R. For continuous data and continuous F0,
the test statistic Dn and the asymptotic p-value21 are readily
available through the ks.test function. The asymptotic cdf K is
internally coded as the pkolmogorov1x function within the source
code of ks.test. For discrete F0, see dgof::ks.test.

The construction of the Kolmogorov–Smirnov test statistic is
illustrated in the following chunk of code.

# Sample data

n <- 10

mu0 <- 2

sd0 <- 1

set.seed(54321)

samp <- rnorm(n = n, mean = mu0, sd = sd0)

# Fn vs. F0
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Figure 6.1: Computation of the
Kolmogorov–Smirnov statistic
Dn = max(D+

n , D−
n ) for a sam-

ple of size n = 10 coming from

F0(·) = Φ
(
·−µ0

σ0

)
, where µ0 = 2

and σ0 = 1. In the example shown,
Dn = D+

n .

plot(ecdf(samp), main = "", ylab = "Probability", xlim = c(-1, 6),

ylim = c(0, 1.3))

curve(pnorm(x, mean = mu0, sd = sd0), add = TRUE, col = 4)

# Add Dn+ and Dn-

samp_sorted <- sort(samp)

Ui <- pnorm(samp_sorted, mean = mu0, sd = sd0)

Dn_plus <- (1:n) / n - Ui

Dn_minus <- Ui - (1:n - 1) / n

i_plus <- which.max(Dn_plus)

i_minus <- which.max(Dn_minus)

lines(rep(samp_sorted[i_plus], 2),

c(i_plus / n, pnorm(samp_sorted[i_plus], mean = mu0, sd = sd0)),

col = 3, lwd = 2, pch = 16, type = "o", cex = 0.75)

lines(rep(samp_sorted[i_minus], 2),

c((i_minus - 1) / n, pnorm(samp_sorted[i_minus], mean = mu0, sd = sd0)),

col = 2, lwd = 2, pch = 16, type = "o", cex = 0.75)

rug(samp)

legend("topleft", lwd = 2, col = c(1, 4, 3, 2),

legend = latex2exp::TeX(c("$F_n$", "$F_0$", "$D_nˆ+$", "$D_nˆ-$")))

Exercise 6.1. Modify if the parameters mu0 and sd0 in the previous
code in order to have F ̸= F0. What happens with supx∈R |Fn(x)− F0(x)|?

Let’s see an example of the use of ks.test (also available as
stats::ks.test), the function in base R.

# Sample data from a N(0, 1)

n <- 50

set.seed(3245678)

x <- rnorm(n = n)

# Kolmogorov-Smirnov test for H_0: F = N(0, 1). Does not reject

(ks <- ks.test(x = x, y = "pnorm")) # In "y" we specify F0 as a function

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.050298, p-value = 0.9989

## alternative hypothesis: two-sided

# Structure of "htest" class

str(ks)

## List of 5

## $ statistic : Named num 0.0503

## ..- attr(*, "names")= chr "D"

## $ p.value : num 0.999

## $ alternative: chr "two-sided"

## $ method : chr "One-sample Kolmogorov-Smirnov test"

## $ data.name : chr "x"

## - attr(*, "class")= chr "htest"

# Kolmogorov-Smirnov test for H_0: F = N(0.5, 1). Rejects

ks.test(x = x, y = "pnorm", mean = 0.5)

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.24708, p-value = 0.003565

## alternative hypothesis: two-sided

# Kolmogorov-Smirnov test for H_0: F = Exp(2). Strongly rejects

ks.test(x = x, y = "pexp", rate = 1/2)

##

## One-sample Kolmogorov-Smirnov test

##

## data: x
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22 Recall that the p-value of any statis-
tical test is a random variable, since it
depends on the sample.

## D = 0.53495, p-value = 6.85e-14

## alternative hypothesis: two-sided

The following chunk of code shows how to call dgof::ks.test to
perform a correct Kolmogorov–Smirnov when F0 is discrete.

# Sample data from a Pois(5)

n <- 100

set.seed(3245678)

x <- rpois(n = n, lambda = 5)

# Kolmogorov-Smirnov test for H_0: F = Pois(5) without specifying that the

# distribution is discrete. Rejects (!?) giving a warning message

ks.test(x = x, y = "ppois", lambda = 5)

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.20596, p-value = 0.0004135

## alternative hypothesis: two-sided

# We rely on dgof::ks.test, which works as stats::ks.test if the "y" argument

# is not marked as a "stepfun" object, the way the dgof package codifies

# discrete distribution functions

# Step function containing the cdf of the Pois(5). The "x" stands for the

# location of the steps and "y" for the value of the steps. "y" needs to have

# an extra point for the initial value of the function before the first step

x_eval <- 0:20

ppois_stepfun <- stepfun(x = x_eval, y = c(0, ppois(q = x_eval, lambda = 5)))

plot(ppois_stepfun, main = "Cdf of a Pois(5)")

# Kolmogorov-Smirnov test for H_0: F = Pois(5) adapted for discrete data,

# with data coming from a Pois(5)

dgof::ks.test(x = x, y = ppois_stepfun)

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.032183, p-value = 0.9999

## alternative hypothesis: two-sided

# If data is normally distributed, the test rejects H_0

dgof::ks.test(x = rnorm(n = n, mean = 5), y = ppois_stepfun)

##

## One-sample Kolmogorov-Smirnov test

##

## data: rnorm(n = n, mean = 5)

## D = 0.38049, p-value = 5.321e-13

## alternative hypothesis: two-sided

Exercise 6.2. Implement the Kolmogorov–Smirnov test by:

1. Coding a function to compute the test statistic (6.2) from a sam-
ple X1, . . . , Xn and a cdf F0.

2. Implementing the K function (6.3).
3. Calling the previous functions from a routine that returns the

asymptotic p-value of the test.

Check that the implementations coincide with the ones of the
ks.test function when exact = FALSE for data simulated from a
U (0, 1) and any n. Note: ks.test computes Dn/

√
n instead of Dn.
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23 Recall that dF0(x) = f0(x)dx if F0 is
continuous.

The following code chunk exemplifies with a small simulation
study how the distribution of the p-values22 is uniform if H0 holds,
and how it becomes more concentrated about 0 when H1 holds.

# Simulation of p-values when H_0 is true

set.seed(131231)

n <- 100

M <- 1e4

pvalues_H0 <- sapply(1:M, function(i) {

x <- rnorm(n) # N(0, 1)

ks.test(x, "pnorm")$p.value

})

# Simulation of p-values when H_0 is false -- the data does not

# come from a N(0, 1) but from a N(0, 2)

pvalues_H1 <- sapply(1:M, function(i) {

x <- rnorm(n, mean = 0, sd = sqrt(2)) # N(0, 2)

ks.test(x, "pnorm")$p.value

})

# Comparison of p-values

par(mfrow = 1:2)

hist(pvalues_H0, breaks = seq(0, 1, l = 20), probability = TRUE,

main = latex2exp::TeX("$H_0$"), ylim = c(0, 4))

abline(h = 1, col = 2)

hist(pvalues_H1, breaks = seq(0, 1, l = 20), probability = TRUE,

main = latex2exp::TeX("$H_1$"), ylim = c(0, 4))

abline(h = 1, col = 2)
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Figure 6.2: Comparison of the dis-
tribution of p-values under H0 and
H1 for the Kolmogorov–Smirnov test.
Observe that the frequency of low
p-values, associated with the rejection
of H0, increases when H0 does not
hold. Under H0, the distribution of the
p-values is uniform.

Exercise 6.3. Modify the parameters of the normal distribution used
to sample under H1 in order to increase and decrease the deviation
from H0. What do you observe in the resulting distributions of the
p-values?

Cramér–von Mises test

• Test purpose. Given X1, . . . , Xn ∼ F, it tests H0 : F = F0 vs. H1 :
F ̸= F0 consistently against all the alternatives in H1.

• Statistic definition. The test statistic uses a quadratic distance23

between Fn and F0:

W2
n := n

∫
(Fn(x)− F0(x))2 dF0(x). (6.4)
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24 See page 10 in del Barrio (2007).

25 See, e.g., Section 5 in Stephens
(1974) or page 110 in D’Agostino
and Stephens (1986). Observe this is
only empirical evidence for certain
scenarios.

If H0 : F = F0 holds, then W2
n tends to be small. Hence, rejection

happens for large values of W2
n .

• Statistic computation. The computation of W2
n can be significantly

simplified by expanding the square in the integrand of (6.4) and
then applying the change of variables u = F0(x):

W2
n =

n

∑
i=1

{
U(i) −

2i − 1
2n

}2
+

1
12n

, (6.5)

where again U(j) stands for the j-th sorted Ui = F0(Xi), i =

1, . . . , n.

• Distribution under H0. If H0 holds and F0 is continuous, then W2
n

has an asymptotic cdf given by24

lim
n→∞

P[W2
n ≤ x] = 1 − 1

π

∞

∑
j=1

(−1)j−1Wj(x), (6.6)

Wj(x) :=
∫ 4j2π2

(2j−1)2π2

√
−√

y
sin

√
y

e−
xy
2

y
dy.

• Highlights and caveats. By a reasoning analogous to the one done
in the Kolmogorov–Smirnov test, the Cramér–von Mises test
can be seen to be distribution-free if F0 is continuous and
the sample has no ties. Otherwise, (6.6) is not the true asymp-
totic distribution. Although the Kolmogorov–Smirnov test is
the most popular ecdf-based test, empirical evidence suggests
that the Cramér–von Mises test is often more powerful than
the Kolmogorov–Smirnov test for a broad class of alternative
hypotheses.25

• Implementation in R. For continuous data, the test statistic W2
n and

the asymptotic p-value are implemented in the goftest::cvm.test

function. The asymptotic cdf (6.6) is given in goftest::pCvM

(goftest::qCvM computes its inverse). For discrete F0, see dgof::cvm.test.

The following chunk of code points to the implementation of the
Cramér–von Mises test.

# Sample data from a N(0, 1)

set.seed(3245678)

n <- 50

x <- rnorm(n = n)

# Cramér-von Mises test for H_0: F = N(0, 1). Does not reject

goftest::cvm.test(x = x, null = "pnorm")

##

## Cramer-von Mises test of goodness-of-fit

## Null hypothesis: Normal distribution

## Parameters assumed to be fixed

##

## data: x

## omega2 = 0.022294, p-value = 0.9948

# Comparison with Kolmogorov-Smirnov

ks.test(x = x, y = "pnorm")

##
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## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.050298, p-value = 0.9989

## alternative hypothesis: two-sided

# Sample data from a Pois(5)

set.seed(3245678)

n <- 100

x <- rpois(n = n, lambda = 5)

# Cramér-von Mises test for H_0: F = Pois(5) without specifying that the

# distribution is discrete. Rejects (!?) without giving a warning message

goftest::cvm.test(x = x, null = "ppois", lambda = 5)

##

## Cramer-von Mises test of goodness-of-fit

## Null hypothesis: Poisson distribution

## with parameter lambda = 5

## Parameters assumed to be fixed

##

## data: x

## omega2 = 0.74735, p-value = 0.009631

# We rely on dgof::cvm.test and run a Cramér-von Mises test for H_0: F = Pois(5)

# adapted for discrete data, with data coming from a Pois(5)

x_eval <- 0:20

ppois_stepfun <- stepfun(x = x_eval, y = c(0, ppois(q = x_eval, lambda = 5)))

dgof::cvm.test(x = x, y = ppois_stepfun)

##

## Cramer-von Mises - W2

##

## data: x

## W2 = 0.038256, p-value = 0.9082

## alternative hypothesis: Two.sided

# Plot the asymptotic null distribution function

curve(goftest::pCvM(x), from = 0, to = 1, n = 300)

Exercise 6.4. Implement the Cramér–von Mises test by:

1. Coding the Cramér–von Mises statistic (6.5) from a sample
X1, . . . , Xn and a cdf F0. Check that the implementation coincides
with the one of the goftest::cvm.test function.

2. Computing the asymptotic p-value using goftest::pCvM. Com-
pare this asymptotic p-value with the exact p-value given by
goftest::cvm.test, observing that for a large n the difference is
inappreciable.

Exercise 6.5. Verify the correctness of the asymptotic null distribu-
tion of W2

n that was given in (6.6). To do so, numerically implement
Wj(x) and compute (6.6). Validate your implementation by:

1. Simulating M = 1, 000 samples of size n = 200 under H0,
obtaining M statistics W2

n;1, . . . , W2
n;M, and plotting their ecdf.

2. Overlaying your asymptotic cdf and the one provided by goftest::pCvM.
3. Checking that the three curves approximately coincide.

Anderson–Darling test

• Test purpose. Given X1, . . . , Xn ∼ F, it tests H0 : F = F0 vs. H1 :
F ̸= F0 consistently against all the alternatives in H1.
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26 The motivation for consider-
ing w(x) = (F0(x)(1 − F0(x)))−1

stems from recalling that E[(Fn(x)−
F0(x))2]

H0= F0(x)(1 − F0(x))/n (see
Example 1.7). That is, estimating F0
on the tails is less variable than at its
center. A2

n weights (Fn(x) − F0(x))2

with its variability by incorporating w.
27 Actually, due to the allocation of
greater weight to the tails, the statistic
A2

n is somehow on the edge of exis-
tence. If F0 is continuous, the weight
function w(x) = (F0(x)(1 − F0(x)))−1

is not integrable on R. Indeed,∫
w(x)dF0(x) =

∫ 1
0 (x(1 − x))−1 dx =

∄. It is only thanks to the factor
(Fn(x) − F0(x))2 in the integrand
that A2

n is well defined.

• Statistic definition. The test statistic uses a quadratic distance
between Fn and F0 weighted by w(x) = (F0(x)(1 − F0(x)))−1:

A2
n := n

∫
(Fn(x)− F0(x))2

F0(x)(1 − F0(x))
dF0(x).

If H0 holds, then A2
n tends to be small (because of the denomina-

tor). Hence, rejection happens for large values of A2
n. Note that,

compared with W2
n , A2

n places more weight on the deviations
between Fn(x) and F0(x) that happen on the tails, that is, when
F0(x) ≈ 0 or F0(x) ≈ 1.26,27

• Statistic computation. The computation of A2
n can be significantly

simplified:

A2
n = −n − 1

n

n

∑
i=1

{
(2i − 1) log(U(i))

+ (2n + 1 − 2i) log(1 − U(i))
}

. (6.7)

• Distribution under H0. If H0 holds and F0 is continuous, then the
asymptotic cdf of A2

n is the cdf of the random variable

∞

∑
j=1

Yj

j(j + 1)
, where Yj ∼ χ2

1, j ≥ 1, are iid. (6.8)

Unfortunately, the cdf of (6.8) does not admit a simple analytical
expression. It can, however, be approximated by Monte Carlo by
sampling from the random variable (6.8).

• Highlights and caveats. As with the previous tests, the Anderson–
Darling test is also distribution-free if F0 is continuous and
there are no ties in the sample. Otherwise, the null asymp-
totic distribution is different from the one of (6.8). As for the
Cramér–von Mises test, there is also empirical evidence indi-
cating that the Anderson–Darling test is more powerful than
the Kolmogorov–Smirnov test for a broad class of alternative
hypotheses. In addition, due to its construction, the Anderson–
Darling test is able to detect better the situations in which F0 and
F differ on the tails (that is, for extreme data).

• Implementation in R. For continuous data, the test statistic A2
n and

the asymptotic p-value are implemented in the goftest::ad.test

function. The asymptotic cdf of (6.8) is given in goftest::pAD

(goftest::qAD computes its inverse). For discrete F0, see dgof::cvm.test

with type = "A2".

The following code chunk illustrates the implementation of the
Anderson–Darling test.

# Sample data from a N(0, 1)

set.seed(3245678)

n <- 50

x <- rnorm(n = n)
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# Anderson-Darling test for H_0: F = N(0, 1). Does not reject

goftest::ad.test(x = x, null = "pnorm")

##

## Anderson-Darling test of goodness-of-fit

## Null hypothesis: Normal distribution

## Parameters assumed to be fixed

##

## data: x

## An = 0.18502, p-value = 0.994

# Sample data from a Pois(5)

set.seed(3245678)

n <- 100

x <- rpois(n = n, lambda = 5)

# Anderson-Darling test for H_0: F = Pois(5) without specifying that the

# distribution is discrete. Rejects (!?) without giving a warning message

goftest::ad.test(x = x, null = "ppois", lambda = 5)

##

## Anderson-Darling test of goodness-of-fit

## Null hypothesis: Poisson distribution

## with parameter lambda = 5

## Parameters assumed to be fixed

##

## data: x

## An = 3.7279, p-value = 0.01191

# We rely on dgof::cvm.test and run an Anderson-Darling test for H_0: F = Pois(5)

# adapted for discrete data, with data coming from a Pois(5)

x_eval <- 0:20

ppois_stepfun <- stepfun(x = x_eval, y = c(0, ppois(q = x_eval, lambda = 5)))

dgof::cvm.test(x = x, y = ppois_stepfun, type = "A2")

##

## Cramer-von Mises - A2

##

## data: x

## A2 = 0.3128, p-value = 0.9057

## alternative hypothesis: Two.sided

# Plot the asymptotic null distribution function

curve(goftest::pAD(x), from = 0, to = 5, n = 300)

Exercise 6.6. Implement the Anderson–Darling test by:

1. Coding the Anderson–Darling statistic (6.7) from a sample
X1, . . . , Xn and a cdf F0. Check that the implementation coincides
with the one of the goftest::ad.test function.

2. Computing the asymptotic p-value using goftest::pAD. Com-
pare this asymptotic p-value with the exact p-value given by
goftest::ad.test, observing that for large n the difference is
inappreciable.

Exercise 6.7. Verify the correctness of the asymptotic representation
of A2

n that was given in (6.8). To do so:

1. Simulate M = 1, 000 samples of size n = 200 under H0, obtain M
statistics A2

n;1, . . . , A2
n;M, and draw its histogram.

2. Simulate M samples from the random variable (6.8) and draw its
histogram.

3. Check that the two histograms approximately coincide.
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Exercise 6.8. Let’s investigate empirically the performance of the
Kolmogorov–Smirnov, Cramér–von Mises, and Anderson–Darling
tests for a specific scenario. We consider H0 : X ∼ N (0, 1) and the
following simulation study:

• Generate M = 1, 000 samples of size n from N (µ, 1).
• For each sample, test H0 with the three tests.
• Obtain the relative frequency of rejections at level α for each test.
• Draw three histograms for the p-values in the spirit of Figure 6.3.

In order to cleanly perform the previous steps for several choices
of (n, µ, α), code a function that performs the simulation study
from those arguments and gives something similar to Figure 6.3 as
output. Then, use the following settings and accurately comment
on the outcome of each of them:

1. H0 holds.

• Take n = 25, µ = 0, and α = 0.05. Check that the relative
frequency of rejections is about α.

• Take n = 25, µ = 0, and α = 0.10.
• Take n = 100, µ = 0, and α = 0.10.

2. H0 does not hold.

• n = 25, µ = 0.25, α = 0.05. Check that the relative frequency of
rejections is above α.

• n = 50, µ = 0.25, α = 0.05.
• n = 25, µ = 0.50, α = 0.05.
• Replace N (µ, 1) with t10. Take n = 50 and α = 0.05. Which

test is clearly better? Why?
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Figure 6.3: The histograms of the
p-values and the relative rejection
frequencies for the Kolmogorov–
Smirnov, Cramér–von Mises, and
Anderson–Darling tests. The null
hypothesis is H0 : X ∼ N (0, 1) and
the sample of size n = 25 is generated
from a N (0.25, 1). The significance
level is α = 0.05.

6.1.2 Normality tests

The tests seen in the previous section have a very notable practical
limitation: they require complete knowledge of F0, the hypoth-
esized distribution for X. In practice, such a precise knowledge
about X is unrealistic. Practitioners are more interested in answer-
ing more general questions, one of them being:
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28 Importantly, recall that P1, . . . , Pn are
not independent, since X̄ and Ŝ de-
pend on the whole sample X1, . . . , Xn.
To dramatize this point, imagine that
X1 is very large. Then, it would drive
Xi−X̄

Ŝ
towards large negative values,

revealing the dependence of P2, . . . , Pn
on P1. This is a very remarkable
qualitative difference with respect to
U1, . . . , Un, which was an iid sample.
P1, . . . , Pn is an id sample, but not an
iid sample.

Is the data “normally distributed”?

With the statement “X is normally distributed” we refer to the
fact that X ∼ N (µ, σ2) for certain parameters µ ∈ R and σ ∈ R+,
possibly unknown. This statement is notably more general than “X
is distributed as a N (0, 1)” or “X is distributed as a N (0.1, 1.3)”.

The test for normality is formalized as follows. Given an iid sam-
ple X1, . . . , Xn from the distribution F, we test the null hypothesis

H0 : F ∈ FN :=
{

Φ
(
· − µ

σ

)
: µ ∈ R, σ ∈ R+

}
, (6.9)

where FN is the class of normal distributions, against the most gen-
eral alternative

H1 : F ̸∈ FN .

Comparing (6.9) with (6.1), it is evident that the former is more
general, as a range of possible values for F is included in H0. This
is the reason why H0 is called a composite null hypothesis, rather
than a simple null hypothesis, as (6.1) was.

The testing of (6.9) requires the estimation of the unknown pa-
rameters (µ, σ). Their maximum likelihood estimators are (X̄, S),

where S :=
√

1
n ∑n

i=1(Xi − X̄)2 is the sample standard deviation
Therefore, a tempting possibility is to apply the tests seen in Section
6.1.1 to

H0 : F = Φ
(
· − X̄

S

)
.

However, as warned at the beginning of Section 6.1, this naive
approach would result in seriously conservative tests that would
fail to reject H0 adequately. The intuitive explanation is simple:
when estimating (µ, σ) from the sample we are obtaining the closest
normal cdf to F, that is, Φ

(
·−X̄

S

)
. Therefore, setting F0 = Φ

(
·−X̄

S

)
and then running one of the ecdf-based tests on H0 : F = F0

will ignore this estimation step, which will bias the test decision
towards H0.

Adequately accounting for the estimation of (µ, σ) amounts to
study the asymptotic distributions under H0 of the test statistics

that are computed with the data-dependent cdf Φ
(
·−X̄

S

)
in the place

of F0. This is what is precisely done by the tests that adapt the ecdf-
based tests seen in Section 6.1.1 by

1. replacing F0 with Φ
(
·−X̄

S

)
in the formulation of the test statis-

tics;
2. replacing Ui with Pi := Φ

(
Xi−X̄

Ŝ

)
, i = 1, . . . , n, in the computa-

tional forms of the statistics;28

3. obtaining a different null asymptotic distribution that is usually
more convoluted and is approximated by tabulation or simula-
tion.
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29 H0 is rejected with significance level
α if the statistic is above the critical
value for α.

30 The precise form of f̃0 (if S stands
for the quasi-variance) can be seen in
equation (3.1) in Shao (1999).

Lilliefors test (Kolmogorov–Smirnov test for normality)

• Test purpose. Given X1, . . . , Xn, it tests H0 : F ∈ FN vs. H1 : F ̸∈
FN consistently against all the alternatives in H1.

• Statistic definition and computation. The test statistic uses the
supremum distance between Fn and Φ

(
·−X̄

S

)
:

Dn =
√

n sup
x∈R

∣∣∣∣Fn(x)− Φ
(

x − X̄
S

)∣∣∣∣ = max(D+
n , D−

n ),

D+
n =

√
n max

1≤i≤n

{
i
n
− P(i)

}
,

D−
n =

√
n max

1≤i≤n

{
P(i) −

i − 1
n

}
,

where P(j) stands for the j-th sorted Pi = Φ
(

Xi−X̄
S

)
, i = 1, . . . , n.

Clearly, if H0 holds, then Dn tends to be small. Hence, rejection
happens when Dn is large.

• Distribution under H0. If H0 holds, the critical values at level of
significance α can be obtained from Lilliefors (1967).29 Dallal and
Wilkinson (1986) provides an analytical approximation to the
null distribution.

• Highlights and caveats. The Lilliefors test is not distribution-free,
in the sense that the null distribution of the test statistic clearly
depends on the normality assumption. However, it is parameter-
free, since the distribution does not depend on the actual parame-
ters (µ, σ) for which F = Φ

(
·−µ

σ

)
is satisfied. This result comes

from the iid sample X1, . . . , Xn
H0∼ N (µ, σ2) generating the id

sample X1−X̄
S , . . . , Xn−X̄

S
H0∼ f̃0, where f̃0 is a certain pdf that does

not depend on (µ, σ).30 Therefore, P1, . . . , Pn is an id sample that
does not depend on (µ, σ).

• Implementation in R. The nortest::lillie.test function imple-
ments the test.

Cramér–von Mises normality test

• Test purpose. Given X1, . . . , Xn, it tests H0 : F ∈ FN vs. H1 : F ̸∈
FN consistently against all the alternatives in H1.

• Statistic definition and computation. The test statistic uses the
quadratic distance between Fn and Φ

(
·−X̄

S

)
:

W2
n = n

∫ (
Fn(x)− Φ

(
x − X̄

S

))2

dΦ
(

x − X̄
S

)
=

n

∑
i=1

{
P(i) −

2i − 1
2n

}2
+

1
12n

,

where P(j) stands for the j-th sorted Pi = Φ
(

Xi−X̄
S

)
, i = 1, . . . , n.

Rejection happens when W2
n is large.
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• Distribution under H0. If H0 holds, the p-values of the test can be
approximated using Table 4.9 in D’Agostino and Stephens (1986).

• Highlights and caveats. Like the Lilliefors test, the Cramér–von
Mises test is also parameter-free. Its usual power superiority over
the Kolmogorov–Smirnov also extends to the testing of normal-
ity.

• Implementation in R. The nortest::cvm.test function implements
the test.

Anderson–Darling normality test

• Test purpose. Given X1, . . . , Xn, it tests H0 : F ∈ FN vs. H1 : F ̸∈
FN consistently against all the alternatives in H1.

• Statistic definition and computation. The test statistic uses a weighted

quadratic distance between Fn and Φ
(
·−X̄

S

)
:

A2
n = n

∫ (
Fn(x)− Φ

(
x−X̄

S

))2

Φ
(

x−X̄
S

) (
1 − Φ

(
x−X̄

S

)) dΦ
(

x − X̄
S

)

= − n − 1
n

n

∑
i=1

{
(2i − 1) log(P(i)) + (2n + 1 − 2i) log(1 − P(i))

}
.

Rejection happens when A2
n is large.

• Distribution under H0. If H0 holds, the p-values of the test can be
approximated using Table 4.9 in D’Agostino and Stephens (1986).

• Highlights and caveats. The test is also parameter-free. Since the
test statistic places more weight on the tails than the Cramér–von
Mises, it is better suited for detecting heavy-tailed deviations
from normality.

• Implementation in R. The nortest::ad.test function implements
the test.

The following code chunk gives the implementation of these
normality tests.

# Sample data from a N(10, 1)

set.seed(123456)

n <- 100

x <- rnorm(n = n, mean = 10)

# Normality tests -- do not reject H0

nortest::lillie.test(x = x)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: x

## D = 0.054535, p-value = 0.6575

nortest::cvm.test(x = x)

##

## Cramer-von Mises normality test

##
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31 The Shapiro–Wilk test is imple-
mented in the shapiro.test R func-
tion. The test has the same highlights
and caveats as nortest::sf.test.

## data: x

## W = 0.032898, p-value = 0.8027

nortest::ad.test(x = x)

##

## Anderson-Darling normality test

##

## data: x

## A = 0.22888, p-value = 0.8052

# Sample data from a Student's t with 3 degrees of freedom

x <- rt(n = n, df = 3)

# Normality tests -- reject H0

nortest::lillie.test(x = x)

##

## Lilliefors (Kolmogorov-Smirnov) normality test

##

## data: x

## D = 0.08453, p-value = 0.07499

nortest::cvm.test(x = x)

##

## Cramer-von Mises normality test

##

## data: x

## W = 0.19551, p-value = 0.005965

nortest::ad.test(x = x)

##

## Anderson-Darling normality test

##

## data: x

## A = 1.2842, p-value = 0.002326

# Flawed normality tests -- do not reject because the null distribution

# that is employed is wrong!

ks.test(x = x, y = "pnorm", mean = mean(x), sd = sd(x))

##

## One-sample Kolmogorov-Smirnov test

##

## data: x

## D = 0.08453, p-value = 0.4725

## alternative hypothesis: two-sided

goftest::cvm.test(x = x, null = "pnorm", mean = mean(x), sd = sd(x))

##

## Cramer-von Mises test of goodness-of-fit

## Null hypothesis: Normal distribution

## with parameters mean = 0.0151268546198777, sd = 1.33709561396292

## Parameters assumed to be fixed

##

## data: x

## omega2 = 0.19551, p-value = 0.2766

goftest::ad.test(x = x, null = "pnorm", mean = mean(x), sd = sd(x))

##

## Anderson-Darling test of goodness-of-fit

## Null hypothesis: Normal distribution

## with parameters mean = 0.0151268546198777, sd = 1.33709561396292

## Parameters assumed to be fixed

##

## data: x

## An = 1.2842, p-value = 0.2375

Shapiro–Francia normality test

We now consider a different normality test that is not based on
the ecdf, the Shapiro–Francia normality test. This test is a modi-
fication of the wildly popular Shapiro–Wilk test, but the Shapiro–
Francia test is easier to interpret and explain.31
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32 Minor modifications of the i
n+1 -

lower quantile Φ−1
(

i
n+1

)
may be

considered.
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Figure 6.4: QQ-plot (qqnorm) for
data simulated from a N (µ, σ2) and
theoretical line y = µ + σx (red).
33 For X ∼ F, the p-th quantile xp =
F−1(p) of X is estimated through the
sample quantile x̂p := F−1

n (p). If
X ∼ f is continuous, then

√
n(x̂p − xp)

is asymptotically N
(

0, p(1−p)
f (xp)2

)
.

Therefore, the variance of x̂p grows
if p → 0, 1 and more variability is
expected in the extremes of the QQ-
plot.

34 Observe that qnorm(ppoints(x, a =

3 / 8)) is used as an approximation
to the expected ordered quantiles from
a N (0, 1), whereas qnorm(ppoints(x,

a = 1 / 2)) is employed internally in
qqplot.

The test is based on the QQ-plot of the sample X1, . . . , Xn. The
plot is comprised of the pairs

(
Φ−1

(
i

n+1

)
, X(i)

)
, for i = 1, . . . , n.32

That is, the QQ-plot plots N (0, 1)-quantiles against sample quan-
tiles.

Since the α-lower quantile of a N (µ, σ2), zα;µ,σ, verifies that

zα;µ,σ = µ + σzα;0,1, (6.10)

then, if the sample is distributed as a N (µ, σ2), the points of the
QQ-plot are expected to align about the straight line (6.10). This is
illustrated in the code below.

n <- 100

mu <- 10

sigma <- 2

set.seed(12345678)

x <- rnorm(n, mean = mu, sd = sigma)

qqnorm(x)

abline(a = mu, b = sigma, col = 2)

The QQ-plot can therefore be used as a graphical check for nor-
mality: if the data is distributed about some straight line, then it
likely is normally distributed. However, this graphical check is sub-
jective and, to complicate things further, it is usual for departures
from the diagonal to be larger in the extremes than in the center,
even under normality, although these departures are more evident
if the data is non-normal.33 Figure 6.5, generated with the code
below, depicts the uncertainty behind the QQ-plot.

M <- 1e3

n <- 100

plot(0, 0, xlim = c(-3.5, 3.5), ylim = c(-3.5, 3.5), type = "n",

xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",

main = "Confidence bands for QQ-plot")

x <- matrix(rnorm(M * n), nrow = n, ncol = M)

matpoints(qnorm(ppoints(n)), apply(x, 2, sort), pch = 19, cex = 0.5,

col = gray(0, alpha = 0.01))

abline(a = 0, b = 1)

p <- seq(0, 1, l = 1e4)

xi <- qnorm(p)

lines(xi, xi - qnorm(0.975) / sqrt(n) * sqrt(p * (1 - p)) / dnorm(xi),

col = 2, lwd = 2)

lines(xi, xi + qnorm(0.975) / sqrt(n) * sqrt(p * (1 - p)) / dnorm(xi),

col = 2, lwd = 2)

The Shapiro–Francia test evaluates how tightly distributed the
QQ plot is about the linear trend that must arise if the data is nor-
mally distributed.

• Test purpose. Given X1, . . . , Xn, it tests H0 : F ∈ FN vs. H1 : F ̸∈
FN consistently against all the alternatives in H1.

• Statistic definition and computation. The test statistic, W ′
n, is simply

the squared correlation coefficient for the sample34(
Φ−1

(
i − 3/8
n − 1/4

)
, X(i)

)
, i = 1, . . . , n.

• Distribution under H0. Royston (1993) derived a simple analytical
formula that serves to approximate the null distribution of W ′

n
for 5 ≤ n ≤ 5, 000.
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Figure 6.5: The uncertainty behind
the QQ-plot. The figure aggregates
M = 1, 000 different QQ-plots of
N (0, 1) data with n = 100, displaying
for each of them the pairs (xp, x̂p)

evaluated at p = i−1/2
n , i = 1, . . . , n

(as they result from ppoints(n)).
The uncertainty is measured by the
asymptotic 100(1 − α)% CIs for x̂p,

given by
(

xp ±
zα/2√

n

√
p(1−p)

ϕ(xp)

)
. These

curves are displayed in red for α =
0.05. Observe that the vertical strips
arise because the xp coordinate is
deterministic.

35 However, the R code of the function
allows computing the statistic and
carrying out a bootstrap-based test
as described in Section 6.1.3 for n ≥
5, 000. The shapiro.test function,
on the contrary, does not allow this
simple extraction, as the core of the
function is written in C (function
C_SWilk) and internally enforces the
condition 5 ≤ n ≤ 5, 000.

• Highlights and caveats. The test is also parameter-free, since its
distribution does not depend on the actual parameters (µ, σ) for
which the equality H0 holds.

• Implementation in R. The nortest::sf.test function implements
the test. The condition 5 ≤ n ≤ 5, 000 is enforced by the func-
tion.35

The use of the function is described below.

# Does not reject H0

set.seed(123456)

n <- 100

x <- rnorm(n = n, mean = 10)

nortest::sf.test(x)

##

## Shapiro-Francia normality test

##

## data: x

## W = 0.99336, p-value = 0.8401

# Rejects H0

x <- rt(n = n, df = 3)

nortest::sf.test(x)

##

## Shapiro-Francia normality test

##

## data: x

## W = 0.91545, p-value = 2.754e-05

# Test statistic

cor(x = sort(x), y = qnorm(ppoints(n, a = 3/8)))ˆ2

## [1] 0.9154466
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36 Notice that X∗
i is always distributed

as Fθ̂ , no matter whether H0 holds or
not.

37 With increasing precision as n → ∞.

6.1.3 Bootstrap-based approach to goodness-of-fit testing

Each normality test discussed in the previous section is an instance
of a goodness-of-fit test for a parametric distribution model. Pre-
cisely, the normality tests are goodness-of-fit tests for the normal
distribution model. Therefore, they address a specific instance of
the test of the null composite hypothesis

H0 : F ∈ FΘ := {Fθ : θ ∈ Θ ⊂ Rq} ,

where FΘ denotes a certain parametric family of distributions in-
dexed by the (possibly multidimensional) parameter θ ∈ Θ, versus
the most general alternative

H1 : F ̸∈ FΘ.

The normality case demonstrated that the goodness-of-fit tests
for the simple hypothesis were not readily applicable, and that the
null distributions were affected by the estimation of the unknown
parameters θ = (µ, σ). In addition, these null distributions tend
to be cumbersome, requiring analytical approximations that have
to be done on a test-by-test basis in order to obtain computable
p-values.

To make things worse, the derivations that were done to obtain
the asymptotic distributions of the normality test are not reusable
if FΘ is different. For example, if we wanted to test exponentiality,
that is,

H0 : F ∈ FR+ =
{

Fθ(x) = (1 − e−θx)1{x>0} : θ ∈ R+
}

, (6.11)

then new asymptotic distributions with their corresponding new
analytical approximations would need to be derived. Clearly, this is
not a very practical approach if we are to evaluate the goodness-of-
fit of several parametric models. A practical computational-based
solution is to rely on bootstrap, specifically, on parametric bootstrap.

Since the main problem is to establish the distribution of the
test statistic under H0, then a possibility is to approximate this
distribution by the distribution of the bootstrapped statistic. Precisely,
let Tn be the statistic computed from the sample

X1, . . . , Xn
H0∼ Fθ

and let T∗
n be its bootstrapped version, that is, the statistic com-

puted from the simulated sample36

X∗
1 , . . . , X∗

n ∼ Fθ̂ . (6.12)

Then, if H0 holds, the distribution of Tn is approximated37

by the one of T∗
n . In addition, since the sampling in (6.12) is com-

pletely under our control, we can approximate arbitrarily well the
distribution of T∗

n by Monte Carlo. For example, the computation
of the upper tail probability P∗[T∗

n > x], required to obtain p-values
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in all the tests we have seen, can be done by

P∗[T∗
n > x] ≈ 1

B

B

∑
b=1

1{T∗b
n >x},

where T∗1
n , . . . , T∗B

n is a sample from T∗
n obtained by simulating B

bootstrap samples from (6.12).
The whole approach can be summarized in the following bootstrap-

based procedure for performing a goodness-of-fit test for a para-
metric distribution model:

1. Estimate θ from the sample X1, . . . , Xn, obtaining θ̂ (for example,
use maximum likelihood).

2. Compute the statistic Tn from X1, . . . , Xn and θ̂.

3. Enter the “bootstrap world”. For b = 1, . . . , B:

i. Simulate a boostrap sample X∗b
1 , . . . , X∗b

n from Fθ̂ .
ii. Compute θ̂∗b from X∗b

1 , . . . , X∗b
n exactly in the same form that

θ̂ was computed from X1, . . . , Xn.
iii. Compute T∗b

n from X∗b
1 , . . . , X∗b

n and θ̂∗b.

4. Obtain the p-value approximation

p-value ≈ 1
B

B

∑
b=1

1{T∗b
n >Tn}

and emit a test decision from it. Modify it accordingly if rejection
of H0 does not happen for large values of Tn.

The following chunk of code provides a template function for
implementing the previous algorithm. The template is initialized
with the specifics for testing (6.11), for which θ̂ML = 1/X̄. The func-
tion uses the boot::boot function for carrying out the parametric
bootstrap.

# A goodness-of-fit test of the exponential distribution using the

# Cramér-von Mises statistic

cvm_exp_gof <- function(x, B = 5e3, plot_boot = TRUE) {

# Test statistic function (depends on the data only)

Tn <- function(data) {

# Maximum likelihood estimator -- MODIFY DEPENDING ON THE PROBLEM

theta_hat <- 1 / mean(data)

# Test statistic -- MODIFY DEPENDING ON THE PROBLEM

goftest::cvm.test(x = data, null = "pexp", rate = theta_hat)$statistic

}

# Function to simulate bootstrap samples X_1ˆ*, ..., X_nˆ*. Requires TWO

# arguments, one being the data X_1, ..., X_n and the other containing

# the parameter theta

r_mod <- function(data, theta) {

# Simulate from an exponential. In this case, the function only uses

# the sample size from the data argument to estimate theta -- MODIFY
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# DEPENDING ON THE PROBLEM

rexp(n = length(data), rate = 1 / theta)

}

# Estimate of theta -- MODIFY DEPENDING ON THE PROBLEM

theta_hat <- 1 / mean(x)

# Perform bootstrap resampling with the aid of boot::boot

Tn_star <- boot::boot(data = x, statistic = Tn, sim = "parametric",

ran.gen = r_mod, mle = theta_hat, R = B)

# Test information -- MODIFY DEPENDING ON THE PROBLEM

method <- "Bootstrap-based Cramér-von Mises test for exponentiality"

alternative <- "any alternative to exponentiality"

# p-value: modify if rejection does not happen for large values of the

# test statistic

pvalue <- mean(Tn_star$t > Tn_star$t0)

# Construct an "htest" result

result <- list(statistic = c("stat" = Tn_star$t0), p.value = pvalue,

theta_hat = theta_hat, statistic_boot = drop(Tn_star$t),

B = B, alternative = alternative, method = method,

data.name = deparse(substitute(x)))

class(result) <- "htest"

# Plot the position of the original statistic with respect to the

# bootstrap replicates?

if (plot_boot) {

hist(result$statistic_boot, probability = TRUE,

main = paste("p-value:", result$p.value),

xlab = latex2exp::TeX("$T_nˆ*$"))

rug(result$statistic_boot)

abline(v = result$statistic, col = 2)

}

# Return "htest"

return(result)

}

# Check the test for H0 true

set.seed(123456)

x <- rgamma(n = 100, shape = 1, scale = 1)

gof0 <- cvm_exp_gof(x = x, B = 1e3)

gof0

##

## Bootstrap-based Cramér-von Mises test for exponentiality

##

## data: x

## stat.omega2 = 0.022601, p-value = 0.979

## alternative hypothesis: any alternative to exponentiality

# Check the test for H0 false

x <- rgamma(n = 100, shape = 2, scale = 1)

gof1 <- cvm_exp_gof(x = x, B = 1e3)

gof1

##

## Bootstrap-based Cramér-von Mises test for exponentiality

##

## data: x

## stat.omega2 = 0.49536, p-value = 0.001

## alternative hypothesis: any alternative to exponentiality
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Another example is given below. It adapts the previous template
for the flexible class of mixtures of normal distributions.

# A goodness-of-fit test of a mixture of m normals using the

# Cramér-von Mises statistic

cvm_nm_gof <- function(x, m, B = 1e3, plot_boot = TRUE) {

# Test statistic function (depends on the data only)

Tn <- function(data) {

# EM algorithm for fitting normal mixtures. With trace = 0 we disable the

# default convergence messages or otherwise they will saturate the screen

# with the bootstrap loop. Be aware that this is a potentially dangerous

# practice, as we may lose important information about the convergence of

# the EM algorithm

theta_hat <- nor1mix::norMixEM(x = data, m = m, trace = 0)

# Test statistic

goftest::cvm.test(x = data, null = nor1mix::pnorMix,

obj = theta_hat)$statistic

}

# Function to simulate bootstrap samples X_1ˆ*, ..., X_nˆ*. Requires TWO

# arguments, one being the data X_1, ..., X_n and the other containing

# the parameter theta

r_mod <- function(data, theta) {

nor1mix::rnorMix(n = length(data), obj = theta)

}

# Estimate of theta

theta_hat <- nor1mix::norMixEM(x = x, m = m, trace = 0)

# Perform bootstrap resampling with the aid of boot::boot

Tn_star <- boot::boot(data = x, statistic = Tn, sim = "parametric",

ran.gen = r_mod, mle = theta_hat, R = B)

# Test information

method <- "Bootstrap-based Cramér-von Mises test for normal mixtures"

alternative <- paste("any alternative to a", m, "normal mixture")

# p-value: modify if rejection does not happen for large values of the

# test statistic

pvalue <- mean(Tn_star$t > Tn_star$t0)

# Construct an "htest" result

result <- list(statistic = c("stat" = Tn_star$t0), p.value = pvalue,

theta_hat = theta_hat, statistic_boot = drop(Tn_star$t),

B = B, alternative = alternative, method = method,

data.name = deparse(substitute(x)))

class(result) <- "htest"

# Plot the position of the original statistic with respect to the

# bootstrap replicates?

if (plot_boot) {

hist(result$statistic_boot, probability = TRUE,

main = paste("p-value:", result$p.value),

xlab = latex2exp::TeX("$T_nˆ*$"))

rug(result$statistic_boot)

abline(v = result$statistic, col = 2)

}

# Return "htest"

return(result)



192 eduardo garcía-portugués
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}

# Check the test for H0 true

set.seed(123456)

x <- c(rnorm(n = 100, mean = 2, sd = 0.5), rnorm(n = 100, mean = -2))

gof0 <- cvm_nm_gof(x = x, m = 2, B = 1e3)

gof0

##

## Bootstrap-based Cramér-von Mises test for normal mixtures

##

## data: x

## stat.omega2 = 0.018769, p-value = 0.806

## alternative hypothesis: any alternative to a 2 normal mixture

# Graphical assessment that H0 (parametric fit) and data (kde) match

plot(gof0$theta_hat, p.norm = FALSE, ylim = c(0, 0.5))

plot(ks::kde(x), col = 2, add = TRUE)

# Check the test for H0 false

x <- rgamma(n = 100, shape = 2, scale = 1)

gof1 <- cvm_nm_gof(x = x, m = 1, B = 1e3)

gof1

##

## Bootstrap-based Cramér-von Mises test for normal mixtures

##

## data: x

## stat.omega2 = 0.44954, p-value < 2.2e-16

## alternative hypothesis: any alternative to a 1 normal mixture

# Graphical assessment that H0 (parametric fit) and data (kde) do not match

plot(gof1$theta_hat, p.norm = FALSE, ylim = c(0, 0.5))

plot(ks::kde(x), col = 2, add = TRUE)

Exercise 6.9. Adapt the previous template to perform the following
tasks:

a. Test the goodness-of-fit of the Weibull distribution using the
Anderson–Darling statistic. Check with a small simulation study
that the test is correctly implemented (such that the significance
level α is respected if H0 holds).

b. Test the goodness-of-fit of the lognormal distribution using the
Anderson–Darling statistic. Check with a small simulation study
that the test is correctly implemented.

c. Apply the previous two tests to inspect if av_gray_one from
Exercise 2.25 and if temps-other.txt are distributed according to a
Weibull or lognormal. Explain the results.

6.2 Comparison of two distributions

Assume that two iid samples X1, . . . , Xn and Y1, . . . , Ym arbitrary
distributions F and G are given. We next address the two-sample
problem of comparing the unknown distributions F and G.

https://raw.githubusercontent.com/egarpor/handy/master/datasets/temps-other.txt
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38 F < G does not mean that F(x) <
G(x) for all x ∈ R. If F(x) > G(x)
for some x ∈ R and F(x) < G(x) or
F(x) = G(x) for other x ∈ R, then
H1 : F < G is true!
39 Strict because F(x) < G(x) and not
F(x) ≤ G(x). Since we will use the
strict variant of stochastic ordering,
we will omit the adjective “strict”
henceforth for the sake of simplicity.
40 Note that if F(x) < G(x), ∀x ∈ R,
then X ∼ F is stochastically greater
than Y ∼ G. The direction of stochastic
dominance is opposite to the direction
of dominance of the cdfs.
41 With this terminology, clearly global
stochastic dominance implies local
stochastic dominance, but not the
other way around.
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Figure 6.6: Pdfs and cdfs of
X ∼ N (2, 1) and Y ∼ N (0, 1). X
is stochastically greater than Y, which
is visualized in terms of the pdfs (shift
in the mean) and cdfs (domination of
Y’s cdf). The means are shown in solid
vertical lines. Note that the variances
of X and Y are common; compare this
situation with Figure 6.8.
42 Gm is the ecdf of Y1, . . . , Ym.

6.2.1 Homogeneity tests

The comparison of F and G can be done by testing their equality,
which is known as the testing for homogeneity of the samples
X1, . . . , Xn and Y1, . . . , Ym. We can therefore address the two-sided
hypothesis test

H0 : F = G vs. H1 : F ̸= G. (6.13)

Recall that, differently from the simple and composite hypothesis
that appears in goodness-of-fit problems, in the homogeneity prob-
lem the null hypothesis H0 : F = G does not specify any form for
the distributions F and G, only their equality.

The one-sided hypothesis in which H1 : F < G (or H1 : F > G)
is also very relevant. Here and henceforth “F < G” has a special
meaning:

“F < G”: there exists at least one x ∈ R such that F(x) < G(x).38

Obviously, the alternative H1 : F < G is implied if, for all x ∈ R,

F(x) < G(x) ⇐⇒ P[X ≤ x] < P[Y ≤ x]

⇐⇒ P[X > x] > P[Y > x]. (6.14)

Consequently, (6.14) means that X produces observations above
any fixed threshold x ∈ R more likely than Y. This concept is
known as (strict)39 stochastic dominance and, precisely, it is said that
X is stochastically greater than Y if (6.14) holds.40

Stochastic dominance is an intuitive concept to interpret H1 : F <

G, although it is a stronger statement on the relation of F and G. A
more accurate, yet still intuitive, way of regarding H1 : F < G is
as a local stochastic dominance: X is stochastically greater than Y
only for some specific thresholds x ∈ R.41 Figures 6.6 and 6.8 give
two examples of presence/absence of stochastic dominance where
H1 : F < G holds.

The ecdf-based goodness-of-fit tests seen in Section 6.1.1 can be
adapted to the homogeneity problem, with varying difficulty and
versatility. The two-sample Kolmogorov–Smirnov test offers the
highest simplicity and versatility, yet its power is inferior to that of
the two-sample Cramér–von Mises and Anderson–Darling tests.

Two-sample Kolmogorov–Smirnov test (two-sided)

• Test purpose. Given X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G, it tests
H0 : F = G vs. H1 : F ̸= G consistently against all the alternatives
in H1.

• Statistic definition. The test statistic uses the supremum distance
between Fn and Gm:42

Dn,m :=
√

nm
n + m

sup
x∈R

|Fn(x)− Gm(x)| .

If H0 : F = G holds, then Dn,m tends to be small. Conversely,
when F ̸= G, larger values of Dn,m are expected, and the test
rejects H0 when Dn,m is large.
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43 Asymptotic when the sample sizes n
and m are large: n, m → ∞.

• Statistic computation. The computation of Dn,m can be efficiently
achieved by realizing that the maximum difference between Fn

and Gm happens at x = Xi or x = Yj, for a certain Xi or Yj

(observe Figure 6.7). Therefore,

Dn,m = max(Dn,m,1, Dn,m,2), (6.15)

Dn,m,1 :=
√

nm
n + m

max
1≤i≤n

∣∣∣∣ i
n
− Gm(X(i))

∣∣∣∣ ,

Dn,m,2 :=
√

nm
n + m

max
1≤j≤m

∣∣∣∣Fn(Y(j))−
j

m

∣∣∣∣ .

• Distribution under H0. If H0 holds and F = G is continuous, then
Dn,m has the same asymptotic cdf as Dn (check (6.3)).43 That is,

lim
n,m→∞

P[Dn,m ≤ x] = K(x).

• Highlights and caveats. The two-sample Kolmogorov–Smirnov
test is distribution-free if F = G is continuous and the samples
X1, . . . , Xn and Y1, . . . , Ym have no ties. If these assumptions

are met, then the iid sample X1, . . . , Xn, Y1, . . . , Ym
H0∼ F = G

generates the iid sample U1, . . . , Un+m
H0∼ U (0, 1), where Ui :=

F(Xi) and Un+j := G(Yj), for i = 1, . . . , n, j = 1, . . . , m. As a
consequence, the distribution of (6.2) does not depend on F = G.
If F = G is not continuous or there are ties on the sample, the K
function is not the true asymptotic distribution.

• Implementation in R. For continuous data and continuous F = G,
the test statistic Dn,m and the asymptotic p-value are read-
ily available through the ks.test function (with its default
alternative = "two-sided"). For discrete F = G, a test im-
plementation can be achieved through the permutation approach
to be seen in Section 6.2.3.

The construction of the two-sample Kolmogorov–Smirnov test
statistic is illustrated in the following chunk of code.

# Sample data

n <- 10; m <- 10

mu1 <- 0; sd1 <- 1

mu2 <- 0; sd2 <- 2

set.seed(1998)

samp1 <- rnorm(n = n, mean = mu1, sd = sd1)

samp2 <- rnorm(n = m, mean = mu2, sd = sd2)

# Fn vs. Gm

plot(ecdf(samp1), main = "", ylab = "Probability", xlim = c(-3.5, 3.5),

ylim = c(0, 1.3))

lines(ecdf(samp2), main = "", col = 4)

# Add Dnm1

samp1_sorted <- sort(samp1)

samp2_sorted <- sort(samp2)

Dnm_1 <- abs((1:n) / n - ecdf(samp2)(samp1_sorted))

i1 <- which.max(Dnm_1)

lines(rep(samp2_sorted[i1], 2),

c(i1 / m, ecdf(samp1_sorted)(samp2_sorted[i1])),
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Figure 6.7: Kolmogorov–Smirnov
distance Dn,m = max(Dn,m,1, Dn,m,2)
for two samples of sizes n = m = 10

coming from F(·) = Φ
(
·−µ1

σ1

)
and

G(·) = Φ
(
·−µ2

σ2

)
, where µ1 = µ2 = 0,

and σ1 = 1 and σ2 =
√

2.

44 The case H1 : F > G is analogous
and not required, as the roles of F and
G can be interchanged.

45 Analogously, D+
n,m,j changes the sign

inside the maximum of D−
n,m,j, j = 1, 2,

and D+
n,m := max(D+

n,m,1, D+
n,m,2).

col = 3, lwd = 2, type = "o", pch = 16, cex = 0.75)

rug(samp1, col = 1)

# Add Dnm2

Dnm_2 <- abs(ecdf(samp1)(samp2_sorted) - (1:m) / m)

i2 <- which.max(Dnm_2)

lines(rep(samp1_sorted[i2], 2),

c(i2 / n, ecdf(samp2_sorted)(samp1_sorted[i2])),

col = 2, lwd = 2, type = "o", pch = 16, cex = 0.75)

rug(samp2, col = 4)

legend("topleft", lwd = 2, col = c(1, 4, 3, 2), legend =

latex2exp::TeX(c("$F_n$", "$G_m$", "$D_{n,m,1}$", "$D_{n,m,2}$")))

An instance of the use of the ks.test function for the two-sided
homogeneity test is given below.

# Check the test for H0 true

set.seed(123456)

x0 <- rgamma(n = 50, shape = 1, scale = 1)

y0 <- rgamma(n = 100, shape = 1, scale = 1)

ks.test(x = x0, y = y0)

##

## Two-sample Kolmogorov-Smirnov test

##

## data: x0 and y0

## D = 0.14, p-value = 0.5185

## alternative hypothesis: two-sided

# Check the test for H0 false

x1 <- rgamma(n = 50, shape = 2, scale = 1)

y1 <- rgamma(n = 75, shape = 1, scale = 1)

ks.test(x = x1, y = y1)

##

## Two-sample Kolmogorov-Smirnov test

##

## data: x1 and y1

## D = 0.35333, p-value = 0.0008513

## alternative hypothesis: two-sided

Two-sample Kolmogorov–Smirnov test (one-sided)

• Test purpose. Given X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G, it tests
H0 : F = G vs. H1 : F < G.44 Rejection of H0 in favor of H1 gives
evidence for the local stochastic dominance of X over Y (which
may or may not be global).

• Statistic definition. The test statistic uses the maximum signed
distance between Fn and Gm:

D−
n,m :=

√
nm

n + m
sup
x∈R

(Gm(x)− Fn(x)).

If H1 : F < G holds, then D−
n,m tends to have large positive values.

Conversely, when H0 : F = G or F > G holds, smaller values
of D−

n,m are expected, possibly negative. The test rejects H0 when
D−

n,m is large.

• Statistic computation. The computation of D−
n,m is analogous to

that of Dn,m given in (6.15), but removing absolute values and
changing its sign:45
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46 Confusingly, ks.test’s alternative

does not refer to the direction of
stochastic dominance, which is the
codification used in the alternative

arguments of the t.test and
wilcox.test functions.
47 Observe that ks.test also imple-
ments the one-sample Kolmogorov–
Smirnov test seen in Section 6.1.1 with
one-sided alternatives. That is, one
can conduct the test H0 : F = F0
vs. H1 : F < F0 (or H1 : F > F0)
using alternative = "less" (or
alternative = "greater").

D−
n,m = max(D−

n,m,1, D−
n,m,2),

D−
n,m,1 :=

√
nm

n + m
max

1≤i≤n

(
Gm(X(i))−

i
n

)
,

D−
n,m,2 :=

√
nm

n + m
max

1≤j≤m

(
j

m
− Fn(Y(j))

)
.

• Distribution under H0. If H0 holds and F = G is continuous, then
D−

n,m has the same asymptotic cdf as Dn,m.

• Highlights and caveats. The one-sided two-sample Kolmogorov–
Smirnov test is also distribution-free if F = G is continuous and
the samples X1, . . . , Xn and Y1, . . . , Ym have no ties.

• Implementation in R. For continuous data and continuous F = G,
the test statistic D−

n,m and the asymptotic p-value are readily
available through the ks.test function. The one-sided test is car-
ried out if alternative = "less" or alternative = "greater"

(not the defaults). The argument alternative means the direc-
tion of cdf dominance: "less" ≡ F < G; "greater" ≡ F > G.46

,47 Permutations (see Section 6.2.3) can be used for obtaining
non-asymptotic p-values and dealing with discrete samples.

# Check the test for H0 true

set.seed(123456)

x0 <- rgamma(n = 50, shape = 1, scale = 1)

y0 <- rgamma(n = 100, shape = 1, scale = 1)

ks.test(x = x0, y = y0, alternative = "less") # H1: F < G

##

## Exact two-sample Kolmogorov-Smirnov test

##

## data: x0 and y0

## Dˆ- = 0.08, p-value = 0.643

## alternative hypothesis: the CDF of x lies below that of y

ks.test(x = x0, y = y0, alternative = "greater") # H1: F > G

##

## Exact two-sample Kolmogorov-Smirnov test

##

## data: x0 and y0

## Dˆ+ = 0.14, p-value = 0.2638

## alternative hypothesis: the CDF of x lies above that of y

# Check the test for H0 false

x1 <- rnorm(n = 50, mean = 1, sd = 1)

y1 <- rnorm(n = 75, mean = 0, sd = 1)

ks.test(x = x1, y = y1, alternative = "less") # H1: F < G

##

## Exact two-sample Kolmogorov-Smirnov test

##

## data: x1 and y1

## Dˆ- = 0.52667, p-value = 2.205e-08

## alternative hypothesis: the CDF of x lies below that of y

ks.test(x = x1, y = y1, alternative = "greater") # H1: F > G

##

## Exact two-sample Kolmogorov-Smirnov test

##

## data: x1 and y1

## Dˆ+ = 1.4502e-15, p-value = 1

## alternative hypothesis: the CDF of x lies above that of y

# Interpretations:

# 1. Strong rejection of H0: F = G in favor of H1: F < G when

# alternative = "less", as in reality x1 is stochastically greater than y1.

# This outcome allows stating that "there is strong evidence supporting that
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48 Observe that F = G is not employed
to weight the integrand (6.16), as was
the case in (6.4) with dF0(x). The
reason is because F = G is unknown.
However, under H0, F = G can be
estimated better with Hn+m.
49 The Lebesgue–Stieljes integral∫

h(z)dHm+n(z) is simply the sum
1

n+m ∑n+m
k=1 h(Zk), since the pooled

ecdf Hm+n is a discrete cdf assigning
1/(n + m) probability mass to each Zk ,
k = 1, . . . , n + m.

# x1 is locally stochastically greater than y1"

# 2. No rejection ("strong acceptance") of H0: F = G versus H1: F > G when

# alternative = "greater". Even if in reality x1 is stochastically greater than

# y1 (so H0 is false), the alternative to which H0 is confronted is even less

# plausible. A p-value ~ 1 indicates one is probably conducting the test in

# the uninteresting direction alternative!

Exercise 6.10. Consider the two populations described in Figure
6.8. X ∼ F is not stochastically greater than Y ∼ G. However, Y
is locally stochastically greater than X in (−∞,−0.75). Therefore,
although hard to detect, the two-sample Kolmogorov–Smirnov test
should eventually reject H0 : F = G in favor of H1 : F > G. Conduct
a simulation study to verify how fast this rejection takes place:

1. Simulate X1, . . . , Xn ∼ F and Y1, . . . , Yn ∼ G.
2. Apply ks.test with the corresponding alternative and evalu-

ate if it rejects H0 at significance level α.
3. Repeat Steps 1–2 M = 100 times and approximate the rejection

probability by Monte Carlo.
4. Perform Steps 1–3 for n taken as seq(10, 3e2, by = 10) and

plot the curve of rejection probability as a function of n. Do this
for α = 0.10, 0.05, 0.01.

5. Once you have a working solution, increase M to M = 1, 000.
What are your conclusions?

6. Take now n as seq(50, 3e3, by = 50). Summarize your conclu-
sions.

Two-sample Cramér–von Mises test

• Test purpose. Given X1, . . . , Xn ∼ F, it tests H0 : F = G vs. H1 :
F ̸= G consistently against all the alternatives in H1.

• Statistic definition. The test statistic proposed by Anderson (1962)
uses a quadratic distance between Fn and Gm:

W2
n,m :=

nm
n + m

∫
(Fn(z)− Gm(z))2 dHn+m(z), (6.16)

where Hn+m is the ecdf of the pooled sample Z1, . . . , Zn+m, where
Zi := Xi and Zj+n := Yj, i = 1, . . . , n and j = 1, . . . , m.48

Therefore, Hn+m(z) = n
n+m Fn(z) + m

n+m Gm(z), z ∈ R, and (6.16)
equals49

W2
n,m =

nm
(n + m)2

n+m

∑
k=1

(Fn(Zk)− Gm(Zk))
2. (6.17)

• Statistic computation. The formula (6.17) is reasonably direct.
Better computational efficiency may be obtained with ranks from
the pooled sample.

• Distribution under H0. If H0 holds and F = G is continuous, then
W2

n,m has the same asymptotic cdf as W2
n (see (6.6)).
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• Highlights and caveats. The two-sample Cramér–von Mises test
is also distribution-free if F0 is continuous and the sample has
no ties. Otherwise, (6.6) is not the true asymptotic distribution.
As in the one-sample case, empirical evidence suggests that
the Cramér–von Mises test is often more powerful than the
Kolmogorov–Smirnov test. However, the Cramér–von Mises is
less versatile, since it does not admit simple modifications to test
against one-sided alternatives.

• Implementation in R. See below for the statistic implementation.
Asymptotic p-values can be obtained using goftest::pCvM. Per-
mutations (see Section 6.2.3) can be used for obtaining non-
asymptotic p-values and dealing with discrete samples.

# Two-sample Cramér-von Mises statistic

cvm2_stat <- function(x, y) {

# Sample sizes

n <- length(x)

m <- length(y)

# Pooled sample

z <- c(x, y)

# Statistic computation via ecdf()

(n * m / (n + m)ˆ2) * sum((ecdf(x)(z) - ecdf(y)(z))ˆ2)

}

# Check the test for H0 true

set.seed(123456)

x0 <- rgamma(n = 50, shape = 1, scale = 1)

y0 <- rgamma(n = 100, shape = 1, scale = 1)

cvm0 <- cvm2_stat(x = x0, y = y0)

pval0 <- 1 - goftest::pCvM(q = cvm0)

c("statistic" = cvm0, "p-value"= pval0)

## statistic p-value

## 0.1294889 0.4585971

# Check the test for H0 false

x1 <- rgamma(n = 50, shape = 2, scale = 1)

y1 <- rgamma(n = 75, shape = 1, scale = 1)

cvm1 <- cvm2_stat(x = x1, y = y1)

pval1 <- 1 - goftest::pCvM(q = cvm1)

c("statistic" = cvm1, "p-value"= pval1)

## statistic p-value

## 1.3283733333 0.0004264598

Two-sample Anderson–Darling test

• Test purpose. Given X1, . . . , Xn ∼ F, it tests H0 : F = G vs. H1 :
F ̸= G consistently against all the alternatives in H1.

• Statistic definition. The test statistic proposed by Pettitt (1976)
uses a weighted quadratic distance between Fn and Gm:

A2
n,m :=

nm
n + m

∫
(Fn(z)− Gm(z))2

Hn+m(z)(1 − Hn+m(z))
dHn+m(z), (6.18)

where Hn+m is the ecdf of Z1, . . . , Zn+m. Therefore, (6.18) equals

A2
n,m =

nm
(n + m)2

n+m

∑
k=1

(Fn(Zk)− Gm(Zk))
2

Hn+m(Zk)(1 − Hn+m(Zk))
. (6.19)
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50 Why is the minimum Z(1) not
excluded?

In (6.19), it is implicitly assumed that the largest observation
of the pooled sample, Z(n+m), is excluded from the sum, since
Hn+m(Z(n+m)) = 1.50

• Statistic computation. The formula (6.19) is reasonably direct for
computation. Better computational efficiency may be obtained
with ranks from the pooled sample. The implicit exclusion of
Z(n+m) from the sum in (6.19) can be made explicit with

A2
n,m =

nm
(n + m)2

n+m−1

∑
k=1

(Fn(Z(k))− Gm(Z(k)))
2

Hn+m(Z(k))(1 − Hn+m(Z(k)))
.

• Distribution under H0. If H0 holds and F = G is continuous, then
A2

n,m has the same asymptotic cdf as A2
n (see (6.8)).

• Highlights and caveats. The two-sample Anderson–Darling test
is also distribution-free if F0 is continuous and the sample
has no ties. Otherwise, (6.8) is not the true asymptotic distri-
bution. As in the one-sample case, empirical evidence suggests
that the Anderson–Darling test is often more powerful than
the Kolmogorov–Smirnov and Cramér–von Mises tests. The
two-sample Anderson–Darling test is also less versatile, since it
does not admit simple modifications to test against one-sided
alternatives.

• Implementation in R. See below for the statistic implementation.
Asymptotic p-values can be obtained using goftest::pAD. Per-
mutations (see Section 6.2.3) can be used for obtaining non-
asymptotic p-values and dealing with discrete samples.

# Two-sample Anderson-Darling statistic

ad2_stat <- function(x, y) {

# Sample sizes

n <- length(x)

m <- length(y)

# Pooled sample and pooled ecdf

z <- c(x, y)

z <- z[-which.max(z)] # Exclude the largest point

H <- rank(z) / (n + m)

# Statistic computation via ecdf()

(n * m / (n + m)ˆ2) * sum((ecdf(x)(z) - ecdf(y)(z))ˆ2 / ((1 - H) * H))

}

# Check the test for H0 true

set.seed(123456)

x0 <- rgamma(n = 50, shape = 1, scale = 1)

y0 <- rgamma(n = 100, shape = 1, scale = 1)

ad0 <- ad2_stat(x = x0, y = y0)

pval0 <- 1 - goftest::pAD(q = ad0)

c("statistic" = ad0, "p-value"= pval0)

## statistic p-value

## 0.8603617 0.4394751

# Check the test for H0 false

x1 <- rgamma(n = 50, shape = 2, scale = 1)

y1 <- rgamma(n = 75, shape = 1, scale = 1)
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51 Also known as Wilcoxon rank-sum
test, Mann–Whitney U test, and Mann–
Whitney–Wilcoxon test. The literature
is not unanimous in the terminol-
ogy, which can be confusing. This
ambiguity is partially explained by
the almost-coetaneity of the papers
by Wilcoxon (1945) and Mann and
Whitney (1947).
52 Also known as the signed-rank test.
53 Recall that the two-sample t-test for
H0 : µX = µY vs. H1 : µX ̸= µY
(one-sided versions: H1 : µX >
µY , H1 : µX < µY) is actually a
nonparametric test for comparing means
of arbitrary random variables, possibly
non-normal, if employed for large
sample sizes. Indeed, due to the CLT,

(X̄ − Ȳ)/
√
(Ŝ2

X/n + Ŝ2
Y/m)

d−→
N (0, 1) as n, m → ∞, irrespective
of how X and Y are distributed.
Here Ŝ2

X and Ŝ2
Y represent the quasi-

variances of X1, . . . , Xn and Y1, . . . , Ym,
respectively. Equivalently, the one-
sample t-test for H0 : µX = µ0
vs. H1 : µX ̸= µ0 (one-sided versions:
H1 : µX > µ0, H1 : µX < µ0) is also
nonparametric if employed for large

sample sizes: X̄/(Ŝ/
√

n) d−→ N (0, 1)
as n → ∞. The function t.test in R
implements one/two-sample tests for
two/one-sided alternatives.

ad1 <- ad2_stat(x = x1, y = y1)

pval1 <- 1 - goftest::pAD(q = ad1)

c("statistic" = ad1, "p-value"= pval1)

## statistic p-value

## 6.7978295422 0.0004109238

Exercise 6.11. Verify the correctness of the asymptotic null distribu-
tions of W2

n,m and A2
n,m. To do so:

1. Simulate M = 1, 000 pairs of samples of sizes n = 200 and
m = 150 under H0.

2. Obtain the statistics W2
n,m;1, . . . , W2

n,m;M and plot their ecdf.
3. Overlay the asymptotic cdf of Wn,m, provided by goftest::pCvM

for the one-sample test.
4. Repeat Steps 2–3 for A2

n,m.

Exercise 6.12. Implement in R a single function to properly conduct
either the two-sample Cramér–von Mises test or the two-sample
Anderson–Darling test. The function must return a tidied "htest"

object. Is your implementation of W2
n,m and A2

n,m able to improve
cvm2_stat and ad2_stat in speed? Measure the running times for
n = 300 and m = 200 with the microbenchmark::microbenchmark

function.

6.2.2 Specific tests for distribution shifts

Among the previous ecdf-based tests of homogeneity, only the two-
sample Kolmogorov–Smirnov test was able to readily deal with
one-sided alternatives. However, this test is often more conservative
than the Cramér–von Mises and the Anderson–Darling, so it is
apparent that there is room for improvement. We next see two
nonparametric tests, the Wilcoxon–Mann–Whitney test51 and the
Wilcoxon signed-rank test,52 which are designed to detect one-sided
alternatives related to X being stochastically greater than Y. Both
tests are more powerful than the one-sided Kolmogorov–Smirnov.

In a very vague and imprecise form, these tests can be inter-
preted as “nonparametric t-tests” for unpaired and paired data.53

The rationale is that, very often, the aforementioned one-sided al-
ternatives are related to differences in the distributions produced by
a shift in their main masses of probability. However, as we will see,
there are many subtleties and sides to the previous interpretation.
Unfortunately, these nuances are usually ignored in the literature
and, as a consequence, the Wilcoxon–Mann–Whitney and Wilcoxon
signed-rank tests are massively misunderstood and misused.

Wilcoxon–Mann–Whitney test

The Wilcoxon–Mann–Whitney test addresses the hypothesis
testing of

H0 : F = G vs. H1 : P[X ≥ Y] > 0.5.

The alternative hypothesis H1 requires special care:
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54 Recall the strict inequality in H1; see
Exercise 6.14 for more details.

55 Recall that the exact meaning of
“F < G” was that F(x) < G(x) for some
x ∈ R, not for all x ∈ R.
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Figure 6.8: Pdfs and cdfs of X ∼
N (2, 4) and Y ∼ N (0, 0.25). X is not
stochastically greater than Y, as the
cdfs cross, but P[X ≥ Y] = 0.834. Y is
locally stochastically greater than X in
(−∞,−0.75). The means are shown in
vertical lines. Note that the variances
of X and Y are not common; recall the
difference with respect to the situation
in Figure 6.6.
56 Observe that P[Y ≥ X] =∫

FX(x)dFY(x) and how this probabil-
ity is complementary of (6.20) when X
or Y are absolutely continuous.
57 Due to the easier interpretation of
the Wilcoxon–Mann–Whitney test for
symmetric populations, this particular
case is sometimes included as an
assumption of the test. This simplified
presentation of the test unnecessarily
narrows its scope.

• That P[X ≥ Y] > 0.5 intuitively means that the main mass of
probability of X is above that of Y : it is more likely to observe
X ≥ Y than X < Y.

• H1 is related to X being stochastically greater than Y. Precisely, H1

is essentially54 implied by the latter:

F(x) < G(x) for all x ∈ R =⇒ P[X ≥ Y] ≥ 0.5.

The converse implication is false (see Figure 6.8). Hence, H1 :
P[X ≥ Y] > 0.5 is more specific than “X is stochastically greater
than Y”. H1 neither implies nor is implied by the two-sample
Kolmogorov–Smirnov’s alternative H′

1 : F < G (which can be
regarded as local stochastic dominance).55

• In general, H1 does not directly inform on the medians/means
of X and Y. Thus, in general, the Wilcoxon–Mann–Whitney test
does not compare medians/means. The probability in H1 is, in
general, exogenous to medians/means:56

P[X ≥ Y] =
∫

FY(x)dFX(x). (6.20)

Only in very specific circumstances H1 is related to medians/means.
If X ∼ F and Y ∼ G are symmetric random variables with me-
dians mX and mY (if the means exist, they equal the medians),
then

P[X ≥ Y] > 0.5 ⇐⇒ mX > mY. (6.21)

This characterization informs on the closest the Wilcoxon–Mann–
Whitney test gets to a nonparametric version of the t-test.57

However, as the two counterexamples in Figures 6.9 and 6.10

respectively illustrate, (6.21) is not true in general, neither for
means nor for medians. It may happen that: (i) P[X ≥ Y] > 0.5
but µX < µY; or (ii) P[X ≥ Y] > 0.5 but mX < mY.

We are now ready to see the main concepts of the Wilcoxon–
Mann–Whitney test:

• Test purpose. Given X1, . . . , Xn ∼ F and Y1, . . . , Ym ∼ G, it tests
H0 : F = G vs. H1 : P[X ≥ Y] > 0.5.

• Statistic definition. On the one hand, the test statistic proposed by
Mann and Whitney (1947) directly targets P[X ≥ Y]58 with the
(unstandardized) estimator

Un,m;MW =
n

∑
i=1

m

∑
j=1

1{Xi>Yj}. (6.22)

Values of Un that are significantly larger than (nm)/2, the ex-
pected value under H0, indicate evidence in favor of H1. On the
other hand, the test statistic proposed by Wilcoxon (1945) is

Un,m;W =
n

∑
i=1

rankX,Y(Yi), (6.23)
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Figure 6.9: Pdfs and cdfs of X and
Y ∼ 0.8N (−3, 1) + 0.2N (5, 4),
where X is distributed as the mixture
nor1mix::MW.nm3 but with its standard
deviations multiplied by 5. P[X ≥
Y] = 0.5356 but µX < µY , since
µX = −1.9189 and µY = −1.4. The
means are shown in solid vertical
lines; the dashed vertical lines stand
for the medians mX = −2.4944 and
mY = −2.6814.

where rankX,Y(Yi) := nFn(Yi) + mGm(Yi) is the rank of Yi on the
pooled sample X1, . . . , Xn, Y1, . . . , Ym. It happens that the tests
based on either (6.22) or (6.23) are equivalent59 when there are
no ties on the samples of X and Y, since

Un,m;MW = nm +
m(m + 1)

2
− Un,m;W. (6.24)

• Statistic computation. Computing (6.23) is easier than (6.22).

• Distribution under H0. The test statistic (6.22) is a non-degenerate
U-statistic. Therefore, since E[Un,m;MW] = (nm)/2 and Var[Un,m;MW] =

nm(n + m + 1)/12, under H0 and with F = G continuous, when
n, m → ∞,

Un,m;MW − (nm)/2√
nm(n + m + 1)/12

d−→ N (0, 1).

• Highlights and caveats. The Wilcoxon–Mann–Whitney test is often
regarded as a “nonparametric t-test” or as a “nonparametric test
for comparing medians”. This interpretation is only correct if
both X and Y are symmetric. In this case, it is a nonparametric
analogue to the t-test. Otherwise, it is a nonparametric extension
of the t-test that evaluates if there is a shift in the main mass of
probability of X or Y. In any case, H1 : P[X ≥ Y] > 0.5 is related
to X being stochastically greater than Y, though it is less strict,
and it is not comparable to the one-sided Kolmogorov–Smirnov’s
alternative H′

1 : F < G. The test is distribution-free.

• Implementation in R. The test statistic Un,m;MW (implemented
using (6.24)) and the exact/asymptotic p-value are readily
available through the wilcox.test function. One must spec-
ify alternative = "greater" to test H0 against H1 : P[X ≥
Y] > 0.5.60 The exact cdf of Un,m;MW under H0 is available in
pwilcoxon.

The following code demonstrates how to carry out the Wilcoxon–
Mann–Whitney test.

# Check the test for H0 true

set.seed(123456)

n <- 50

m <- 100

x0 <- rgamma(n = n, shape = 1, scale = 1)

y0 <- rgamma(n = m, shape = 1, scale = 1)

wilcox.test(x = x0, y = y0) # H1: P[X >= Y] != 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x0 and y0

## W = 2403, p-value = 0.7004

## alternative hypothesis: true location shift is not equal to 0

wilcox.test(x = x0, y = y0, alternative = "greater") # H1: P[X >= Y] > 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x0 and y0

## W = 2403, p-value = 0.6513
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Figure 6.10: Pdfs and cdfs of X ∼
0.55N (−1.5, 1.252) + 0.45N (7, 0.752)
and Y ∼ 0.4N (−5, 1) + 0.6N (5, 1).
P[X ≥ Y] = 0.6520 but mX < mY , since
mX = 0.169 and mY = 4.0326. The
medians are shown in dashed vertical
lines; the means are µX = 2.325 and
µY = 1.
58 Under continuity of X and Y.
59 Hence the terminology Wilcoxon–
Mann–Whitney. Why are the tests
based on (6.22) and (6.23) equivalent?
60 Observe that wilcox.test also
implements the one-sided alternative
H1 : P[X ≤ Y] > 0.5 if alternative
= "less" (rejection for small values
of (6.22)) and the two equivalent two-
sided alternatives H1 : P[X ≥ Y] ̸= 0.5
or H1 : P[X ≤ Y] ̸= 0.5 if alternative
= "two.sided" (default; rejection for
large and small values of (6.22)).
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## alternative hypothesis: true location shift is greater than 0

wilcox.test(x = x0, y = y0, alternative = "less") # H1: P[X <= Y] > 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x0 and y0

## W = 2403, p-value = 0.3502

## alternative hypothesis: true location shift is less than 0

# Check the test for H0 false

x1 <- rnorm(n = n, mean = 0, sd = 1)

y1 <- rnorm(n = m, mean = 1, sd = 2)

wilcox.test(x = x1, y = y1) # H1: P[X >= Y] != 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x1 and y1

## W = 1684, p-value = 0.001149

## alternative hypothesis: true location shift is not equal to 0

wilcox.test(x = x1, y = y1, alternative = "greater") # H1: P[X >= Y] > 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x1 and y1

## W = 1684, p-value = 0.9994

## alternative hypothesis: true location shift is greater than 0

wilcox.test(x = x1, y = y1, alternative = "less") # H1: P[X <= Y] > 0.5

##

## Wilcoxon rank sum test with continuity correction

##

## data: x1 and y1

## W = 1684, p-value = 0.0005746

## alternative hypothesis: true location shift is less than 0

# Exact pmf versus asymptotic pdf

# Beware! dwilcox considers (m, n) as the sample sizes of (X, Y)

x <- seq(1500, 3500, by = 100)

plot(x, dwilcox(x = x, m = n, n = m), type = "h", ylab = "Density")

curve(dnorm(x, mean = n * m / 2, sd = sqrt((n * m * (n + m + 1)) / 12)),

add = TRUE, col = 2)

Exercise 6.13. Prove (6.21) for:

a. Continuous random variables.
b. Random variables.

Exercise 6.14. Derive (6.20) and, using it, prove that

FX(x) < FY(x) for all x ∈ R =⇒ P[X ≥ Y] ≥ 0.5.

Show that P[X ≥ Y] > 0.5 is verified if, in addition, FX(x) < FY(x)
for x ∈ D, where P[X ∈ D] > 0 or P[Y ∈ D] > 0. You can assume X
and Y are absolutely continuous variables.

Exercise 6.15. Derive additional counterexamples, significantly
different from those in Figures 6.9 and 6.10, for the erroneous claims

a. µX > µY =⇒ P[X ≥ Y] > 0.5;
b. mX > mY =⇒ P[X ≥ Y] > 0.5.

Exercise 6.16. Verify (6.24) numerically in R with X and Y being
continuous random variables. Do so by implementing functions for
the test statistics Un,m;MW and Un,m;W. Check also that (6.24) is not
satisfied when the samples of X and Y have ties.
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61 Again, under continuity.

62 Equivalently, it evaluates if the main
mass of probability of X − Y is located
further from 0.

63 One- and two-sided alternatives
are also possible, analogously to the
unpaired case.

Wilcoxon signed-rank test

Wilcoxon signed-rank test adapts the Wilcoxon–Mann–Whitney
test for paired measurements (X, Y) arising from the same individ-
ual.

• Test purpose. Given (X1, Y1), . . . , (Xn, Yn) ∼ F, it tests H0 : FX =

FY vs. H1 : P[X ≥ Y] > 0.5, where FX and FY are the marginal
cdfs of X and Y.

• Statistic definition. Wilcoxon (1945)’s test statistic directly tar-
gets P[X ≥ Y],61 now using the paired observations, with the
(unstandardized) estimator

Sn :=
n

∑
i=1

1{Xi>Yi}. (6.25)

Values of Sn that are significantly larger than n/2, the expected
value under H0, indicate evidence in favor of H1.

• Statistic computation. Computing (6.25) is straightforward.

• Distribution under H0. Under H0, it follows trivially that Sn ∼
B(n, 0.5).

• Highlights and caveats. The Wilcoxon signed-rank test shares the
same highlights and caveats as its unpaired counterpart. It can
be regarded as a “nonparametric paired t-test” if both X and Y
are symmetric. In this case, it is a nonparametric analogue to the
paired t-test. Otherwise, it is a nonparametric extension of the
paired t-test that evaluates if there is a shift in the main mass
of probability of X or Y when both are related.62 The test is
distribution-free.

• Implementation in R. The test statistic Sn and the exact p-value are
available through the wilcox.test function. One must specify
alternative = "greater" to test H0 against H1 : P[X ≥ Y] >
0.5.63 The exact cdf of Sn under H0 is available in psignrank.

The following code exemplifies how to carry out the Wilcoxon
signed-rank test.

# Check the test for H0 true

set.seed(123456)

x0 <- rgamma(n = 50, shape = 1, scale = 1)

y0 <- x0 + rnorm(n = 50)

wilcox.test(x = x0, y = y0, paired = TRUE) # H1: P[X >= Y] != 0.5

##

## Wilcoxon signed rank test with continuity correction

##

## data: x0 and y0

## V = 537, p-value = 0.3344

## alternative hypothesis: true location shift is not equal to 0

wilcox.test(x = x0, y = y0, paired = TRUE, alternative = "greater")

##

## Wilcoxon signed rank test with continuity correction

##

## data: x0 and y0
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## V = 537, p-value = 0.8352

## alternative hypothesis: true location shift is greater than 0

# H1: P[X >= Y] > 0.5

wilcox.test(x = x0, y = y0, paired = TRUE, alternative = "less")

##

## Wilcoxon signed rank test with continuity correction

##

## data: x0 and y0

## V = 537, p-value = 0.1672

## alternative hypothesis: true location shift is less than 0

# H1: P[X <= Y] > 0.5

# Check the test for H0 false

x1 <- rnorm(n = 50, mean = 0, sd = 1)

y1 <- x1 + rnorm(n = 50, mean = 1, sd = 2)

wilcox.test(x = x1, y = y1, paired = TRUE) # H1: P[X >= Y] != 0.5

##

## Wilcoxon signed rank test with continuity correction

##

## data: x1 and y1

## V = 255, p-value = 0.0002264

## alternative hypothesis: true location shift is not equal to 0

wilcox.test(x = x1, y = y1, paired = TRUE, alternative = "greater")

##

## Wilcoxon signed rank test with continuity correction

##

## data: x1 and y1

## V = 255, p-value = 0.9999

## alternative hypothesis: true location shift is greater than 0

# H1: P[X >= Y] > 0.5

wilcox.test(x = x1, y = y1, paired = TRUE, alternative = "less")

##

## Wilcoxon signed rank test with continuity correction

##

## data: x1 and y1

## V = 255, p-value = 0.0001132

## alternative hypothesis: true location shift is less than 0

# H1: P[X <= Y] > 0.5

Exercise 6.17. Explore by Monte Carlo the power of the follow-
ing two-sample tests: one-sided Kolmogorov–Smirnov, Wilcoxon–
Mann–Whitney, and t-test. Take δ = 0:3 as the “deviation strength
from H0” for the following scenarios:

a. X ∼ N (0.25δ, 1) and Y ∼ N (0, 1).
b. X ∼ t3 + 0.25δ and Y ∼ t1.
c. X ∼ 0.5N (−δ, (1 + 0.25δ)2) + 0.5N (δ, (1 + 0.25δ)2) and Y ∼

N (0, 2).

For each scenario, plot the power curves of the three tests for n =

seq(10, 200, by = 10). Use α = 0.05. Consider first M = 100 to
have a working solution, then increase it to M = 1, 000. To visualize
all the results effectively, you may want to build a Shiny app that,
pre-caching the Monte Carlo study, displays the three power curves
with respect to n, for a choice of δ, scenario, and tests to display.
Summarize your conclusions in separated points (you may want to
visualize first the models a–b).

6.2.3 Permutation-based approach to comparing distributions

Under the null hypothesis of homogeneity, the iid samples X1, . . . , Xn ∼
F and Y1, . . . , Ym ∼ G have the same distributions. Therefore, since
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64 We postpone until the end of the
section the treatment of the paired
sample case.

65 If repetitions were allowed, the
distributions would be degenerate.
For example, if X1, X2, X3 are iid,
the distribution of (X1, X1, X2) is
degenerate.

66 If N = 60, there are 8.32 × 1081 N-
permutations. This number is already
10 times larger than the estimated
number of atoms in the observable
universe.

both samples are assumed to be independent from each other,64

they are exchangeable under H0 : F = G. This means that, for
example, the random vector (X1, . . . , Xmin(n,m))

′ has the same dis-
tribution as (Y1, . . . , Ymin(n,m))

′ under H0. More generally, each of
the p! random subvectors of length p ≤ n + m that can be extracted
without repetitions from (X1, . . . , Xn, Y1, . . . , Ym)′ have the exact
same distribution under H0.65 This revelation motivates a resam-
pling procedure that is similar in spirit to the bootstrap seen in
Section 6.1.3, yet it is much simpler as it does not require paramet-
ric estimation: permutations.

We consider a N-permutation function σ : {1, . . . , N} −→
{1, . . . , N}. This function is such that σ(i) = j, for certain i, j ∈
{1, . . . , N}. The number of N-permutations quickly becomes ex-
tremely large, as there are N! of them.66 As an example, if N = 3,
there exist 3! = 6 possible 3-permutations σ1, . . . , σ6:

i σ1(i) σ2(i) σ3(i) σ4(i) σ5(i) σ6(i)

1 1 1 2 2 3 3
2 2 3 1 3 1 2
3 3 2 3 1 2 1

Using permutations, it is simple to precise that, for any (n + m)-
permutation σ, under H0,

(Zσ(1), . . . , Zσ(n+m))
d
= (Z1, . . . , Zn+m), (6.26)

where we use the standard notation for the pooled sample, Zi = Xi

and Zj+n = Yj for i = 1, . . . , n and j = 1, . . . , m. A very important
consequence of (6.26) is that, under H0,

Tn,m(Zσ(1), . . . , Zσ(n+m))
d
= Tn,m(Z1, . . . , Zn+m)

for any proper test statistic Tn,m for H0 : F = G. Therefore, denoting
Tn,m ≡ Tn,m(Z1, . . . , Zn+m) and Tσ

n,m ≡ Tn,m(Zσ(1), . . . , Zσ(n+m)), it
happens that P[Tn,m ≤ x] = P[Tσ

n,m ≤ x]. Hence, it readily follows
that

P[Tn,m ≤ x] =
1

(n + m)!

(n+m)!

∑
k=1

P[Tσk
n,m ≤ x], (6.27)

where σk is the k-th out of (n + m)! permutations.
We can now exploit (6.27) to approximate the distribution of

Tn,m under H0. The key insight is to realize that, conditionally on the
observed sample Z1, . . . , Zn+m, we know whether or not Tσk

n,m ≤ x is
true. We can then replace P[Tσk

n,m ≤ x] with its estimation 1{
T

σk
n,m≤x

}
in (6.27). However, the evaluation of the sum of (n + m)! terms
is often impossible. Instead, an estimation of its value is obtained
by considering B randomly-chosen (n + m)-permutations of the
pooled sample. Joining these two considerations, it follows that

P[Tn,m ≤ x] ≈ 1
B

B

∑
b=1

1{
T

σ̂b
n,m≤x

}, (6.28)

https://en.wikipedia.org/wiki/Observable_universe#Matter_content%E2%80%94number_of_atoms
https://en.wikipedia.org/wiki/Observable_universe#Matter_content%E2%80%94number_of_atoms
https://en.wikipedia.org/wiki/Observable_universe#Matter_content%E2%80%94number_of_atoms
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67 Since N! = (n + m)! quickly becomes
extremely large, the probability of
obtaining at least one duplicated per-
mutation among B randomly-extracted
permutations (with replacement) is
very small. Precisely, the probabil-
ity is pbirthday(n = B, classes =

factorial(N)). If B = 104 and N = 18!
(n = m = 9), this probability is
7.81 × 10−9.

68 This sampling is done by extracting,
without replacement, elements from the
pooled sample z <- c(x, y). This can
be simply done with sample(z).

where σ̂b, b = 1, . . . , B, denote the B randomly-chosen (n + m)-
permutations.67

The null distribution of Tn,m can be approximated through (6.28).
We summarize next the whole permutation-based procedure for
performing a homogeneity test that rejects H0 for large values of
the test statistic:

1. Compute Tn,m ≡ Tn,m(Z1, . . . , Zn+m).

2. Enter the “permutation world”. For b = 1, . . . , B:

i. Simulate a randomly-permuted sample Z∗b
1 , . . . , Z∗b

n+m from
{Z1, . . . , Zn+m}.68

ii. Compute T∗b
n,m ≡ Tn,m(Z∗b

1 , . . . , Z∗b
n+m).

3. Obtain the p-value approximation

p-value ≈ 1
B

B

∑
b=1

1{T∗b
n,m>Tn,m}

and emit a test decision from it. Modify it accordingly if rejection
of H0 does not happen for large values of Tn,m.

The following chunk of code provides a template function for
implementing the previous algorithm. It is illustrated with an ap-
plication of the two-sample Anderson–Darling test to discrete data
(using the function ad2_stat).

# A homogeneity test using the Anderson-Darling statistic

perm_comp_test <- function(x, y, B = 1e3, plot_boot = TRUE) {

# Sizes of x and y

n <- length(x)

m <- length(y)

# Test statistic function. Requires TWO arguments, one being the original

# data (X_1, ..., X_n, Y_1, ..., Y_m) and the other containing the random

# index for permuting the sample

Tn <- function(data, perm_index) {

# Permute sample by perm_index

data <- data[perm_index]

# Split into two samples

x <- data[1:n]

y <- data[(n + 1):(n + m)]

# Test statistic -- MODIFY DEPENDING ON THE PROBLEM

ad2_stat(x = x, y = y)

}

# Perform permutation resampling with the aid of boot::boot

Tn_star <- boot::boot(data = c(x, y), statistic = Tn,

sim = "permutation", R = B)

# Test information -- MODIFY DEPENDING ON THE PROBLEM

method <- "Permutation-based Anderson-Darling test of homogeneity"

alternative <- "any alternative to homogeneity"

# p-value: modify if rejection does not happen for large values of the
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p-value: 0.186
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69 This sampling is done by switching,
randomly for each row, the columns of
the sample. If z <- cbind(x, y), this
can be simply done with ind_perm <-

runif(n) > 0.5; z[ind_perm, ] <-

z[ind_perm, 2:1].

# test statistic

pvalue <- mean(Tn_star$t > Tn_star$t0)

# Construct an "htest" result

result <- list(statistic = c("stat" = Tn_star$t0), p.value = pvalue,

statistic_perm = drop(Tn_star$t),

B = B, alternative = alternative, method = method,

data.name = deparse(substitute(x)))

class(result) <- "htest"

# Plot the position of the original statistic with respect to the

# permutation replicates?

if (plot_boot) {

hist(result$statistic_perm, probability = TRUE,

main = paste("p-value:", result$p.value),

xlab = latex2exp::TeX("$T_{n,m}ˆ*$"))

rug(result$statistic_perm)

abline(v = result$statistic, col = 2)

}

# Return "htest"

return(result)

}

# Check the test for H0 true

set.seed(123456)

x0 <- rpois(n = 75, lambda = 5)

y0 <- rpois(n = 75, lambda = 5)

comp0 <- perm_comp_test(x = x0, y = y0, B = 1e3)

comp0

##

## Permutation-based Anderson-Darling test of homogeneity

##

## data: x0

## stat = 1.5077, p-value = 0.186

## alternative hypothesis: any alternative to homogeneity

# Check the test for H0 false

x1 <- rpois(n = 50, lambda = 3)

y1 <- rpois(n = 75, lambda = 5)

comp1 <- perm_comp_test(x = x1, y = y1, B = 1e3)

comp1

##

## Permutation-based Anderson-Darling test of homogeneity

##

## data: x1

## stat = 8.3997, p-value < 2.2e-16

## alternative hypothesis: any alternative to homogeneity

In a paired sample (X1, Y1), . . . , (Xn, Yn) ∼ F, differently to
the unpaired case, there is no independence between the X- and
Y-components. Therefore, a variation on the previous permutation
algorithm is needed, as the permutation has to be done within
the individual observations, and not across individuals. This is
achieved by replacing Step i in the previous algorithm with:

i. Simulate a randomly-permuted sample (X∗b
1 , Y∗b

1 ), . . . , (X∗b
n , Y∗b

n ),
where, for each i = 1, . . . , n, (X∗b

i , Y∗b
i ) is randomly extracted

from {(Xi, Yi), (Yi, Xi)}.69
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70 Approaches to independence testing
through the ecdf perspective are also
possible (see, e.g., Blum et al. (1961)),
since the independence of X and Y
happens if and only if the joint cdf
FX,Y factorizes as FX FY , the product of
marginal cdfs. These approaches go
along the lines of Sections 6.1.1 and
6.2.
71 A popular approach to indepen-
dence and homogeneity testing, not
covered in these notes, is the chi-
squared test for contingency tables
k × m (see ?chisq.test). This test is
applied to a table that contains the
observed frequencies of (X, Y) in
km classes Ii × Jj, where ∪k

i=1 Ii and
∪m

j=1 Jj cover the supports of X and Y,
respectively. As with the chi-squared
goodness-of-fit test, one can modify
the outcome of the test by altering the
form of these classes and the choice
of (k, m) – a sort of tuning parame-
ter. The choice of (k, m) also affects
the quality of the asymptotic null
distribution. Therefore, for continu-
ous and discrete random variables,
the chi-squared test has significant
drawbacks when compared to the
ecdf-based tests. However, as opposed
to the latter, chi-squared tests can be
readily applied to the comparison of
categorical variables, where the choice
of (k, m) is often more canonical.

Exercise 6.18. The F-statistic F = Ŝ2
1/Ŝ2

2 is employed to test H0 :
σ2

1 = σ2
2 vs. H1 : σ2

1 > σ2
2 in normal populations X1 ∼ N (µ1, σ2

1 )

and X2 ∼ N (µ2, σ2
2 ). Under H0, F is distributed as a Snedecor’s F

distribution with degrees of freedom n1 − 1 and n2 − 1. The F-test is
fully parametric. It is implemented in var.test.

The grades.txt dataset contains grades of two exams (e1 and
e2) in a certain subject. The group of 41 students contains two
subgroups in mf.

a. Compute avg, the variable with the average of e1 and e2. Per-
form a kda of avg for the classes in mf. Then, compare the kde’s
of e1 and e2.

b. Compare the variances of avg for each of the subgroups in mf.
Which group has larger sample variance? Perform a permutation-
based F-test to check if the variance of that group is significantly
larger. Compare your results with var.test. Are they coherent?

c. Compare the variances of e1 and e2. Which exam has larger
sample variance? Implement a permutation-based paired F-test
to assess if there are significant differences in the variances. Do
it without relying on boot::boot. Compare your results with the
unpaired test from b and with var.test. Are they coherent?

6.3 Independence tests

Assume that a bivariate iid sample (X1, Y1), . . . , (Xn, Yn) from an
arbitrary distribution FX,Y is given. We next address the indepen-
dence problem of testing the existence of possible dependence
between X and Y.

Differently to the previous sections, we will approach this prob-
lem through the use of coefficients that capture, up to different
extension, the degree of dependence between X and Y.70,71

6.3.1 Concordance-based tests

Concordance measures

The random variables X and Y are concordant if “large” val-
ues of one tend to be associated with “large” values of the other
and, analogously, “small” values of one with “small” values of the
other. More precisely, given (xi, yi) and (xj, yj), two observations of
(X, Y), we say that:

• (xi, yi) and (xj, yj) are concordant if xi < xj and yi < yj, or if
xi > xj and yi > yj.

• (xi, yi) and (xj, yj) are discordant if xi > xj and yi < yj, or if
xi < xj and yi > yj.

Alternatively, (xi, yi) and (xj, yj) are concordant/discordant de-
pending on whether (xi − xj)(yi − yj) is positive or negative. There-
fore, the concordance concept is similar to the correlation concept,
but with a main foundational difference: the former does not use

https://raw.githubusercontent.com/egarpor/handy/master/datasets/grades.txt
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72 The copula CX,Y of a continuous
random vector (X, Y) ∼ FX,Y is the
bivariate function (u, v) ∈ [0, 1]2 7→
CX,Y(u, v) = FX,Y(F−1

X (u), F−1
Y (v)) ∈

[0, 1], where FX and FY are the
marginal cdfs of X and Y, respectively.
73 That CX,Y ≥ CW,Z means that
CX,Y(u, v) ≥ CW,Z(u, v) for all (u, v) ∈
[0, 1]2.

74 The assumption is slightly stronger

than asking that (Xn, Yn)
d−→ (X, Y);

recall Definition 1.1.

75 It does not suffice if only Y is per-
fectly predictable from X, such as in
the case Y = X2.
76 So the function can be inverted
almost everywhere, as opposed to the
function g(x) = x2 from the previous
note.

the value of (xi − xj)(yi − yj), only its sign. Consequently, whether X
and Y are concordant or discordant will not be driven by its linear
association, as happens with positive/negative correlation.

We say that X and Y are concordant/discordant if the “major-
ity” of the observations of (X, Y) are concordant/discordant. This
“majority” is quantified by a certain concordance measure. Many
concordance measures exist, with different properties and interpre-
tations. Scarsini (1984) gave an axiomatic definition of the prop-
erties that any valid concordance measure for continuous random
variables must satisfy.

Definition 6.1 (Concordance measure). A measure κ of dependence
between two continuous random variables X and Y is a concordance
measure if it satisfies the following axioms:

i. Domain: κ(X, Y) is defined for any (X, Y) with continuous cdf.
ii. Symmetry: κ(X, Y) = κ(Y, X).
iii. Coherence: κ(X, Y) is monotone in CX,Y (the copula of (X, Y)).72

That is, if CX,Y ≥ CW,Z, then κ(X, Y) ≥ κ(W, Z).73

iv. Range: −1 ≤ κ(X, Y) ≤ 1.
v. Independence: κ(X, Y) = 0 if X and Y are independent.
vi. Change of sign: κ(−X, Y) = −κ(X, Y).
vii. Continuity: if (X, Y) ∼ H and (Xn, Yn) ∼ Hn, and if Hn

converges pointwise to H (and Hn and H continuous), then
limn→∞ κ(Xn, Yn) = κ(X, Y).74

The next theorem, less technical, gives direct insight into what
a concordance measure brings on top of correlation: characterize
if (X, Y) is such that one variable can be “perfectly predicted”
from the other.75 Perfect prediction can only be achieved if each
continuous variable is a monotone function g of the other.76

Theorem 6.1. Let κ be a concordance measure for two continuous random
variables X and Y:

i. If Y = g(X) (almost surely) and g is an increasing function, then
κ(X, Y) = 1.

ii. If Y = g(X) (almost surely) and g is a decreasing function, then
κ(X, Y) = −1.

iii. If α and β are strictly monotonic functions almost everywhere in the
supports of X and Y, then κ(α(X), β(Y)) = κ(X, Y).

Remark. Correlation is not a concordance measure. For example,
it fails to verify the third property of Theorem 6.1: Cor[X, Y] =

Cor[α(X), β(Y)] is true only if α and β are linear functions.

Important for our interests is Axiom v: independence implies a
zero concordance measure, for any proper concordance measure.
Note that the converse is false. However, since dependence often
manifests itself in concordance patterns, testing independence by
testing zero concordance is a useful approach with a more informa-
tive rejection of H0.
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77 Beware that, here and henceforth, the
random variable X′ (and not a random
vector) is not the transpose of X.
78 (X′, Y′) is an iid copy of (X, Y)

if (X′, Y′)
d
= (X, Y) and (X′, Y′) is

independent from (X, Y).

79 An equivalent definition is ρ(X, Y) =
3
{

P[(X − X′′)(Y − Y′) > 0]− P[(X −
X′′)(Y − Y′) < 0]

}
.

80 Consequently, Spearman’s rho coin-
cides with Pearson’s linear correlation
coefficient for uniform variables.

Figure 6.11: Feasible region for (τ, ρ)
given by Theorem 6.2.

Kendall’s tau and Spearman’s rho

The two most famous measures of concordance for (X, Y) are
Kendall’s tau and Spearman’s rho. Both can be regarded as general-
izations of Cor[X, Y] that are not driven by linear relations; rather,
they look into the concordance of (X, Y) and the monotone relation
between X and Y.

The Kendall’s tau of (X, Y), denoted by τ(X, Y), is defined as

τ(X, Y) :=P[(X − X′)(Y − Y′) > 0]

− P[(X − X′)(Y − Y′) < 0], (6.29)

where (X′, Y′) is an iid copy of (X, Y).77,78 That is, τ(X, Y) is the dif-
ference of the concordance and discordance probabilities between
two random observations of (X, Y).

The Spearman’s rho of (X, Y), denoted by ρ(X, Y), is defined as

ρ(X, Y) := 3
{

P[(X − X′)(Y − Y′′) > 0]

− P[(X − X′)(Y − Y′′) < 0]
}

, (6.30)

where (X′, Y′) and (X′′, Y′′) are two iid copies from (X, Y).79 Re-
call that (X′, Y′′) is a random vector that, by construction, has in-
dependent components with marginals equal to those of (X, Y).
Hence, (X′, Y′′) is the “independence version” of (X, Y). There-
fore, ρ(X, Y) is proportional to the difference of the concordance
and discordance probabilities between two random observations,
one from (X, Y) and another from its independence version.

A neater interpretation of the Spearman’s rho follows from the
following other equivalent definition:

ρ(X, Y) = Cor[FX(X), FY(Y)], (6.31)

where FX and FY are the marginal cdfs of X and Y, respectively.
Expression (6.31) hides the concordance view of ρ(X, Y), but it
states that the Spearman’s rho between two random variables is
the correlation between their probability transforms.80

Exercise 6.19. Obtain (6.31) from (6.30). Hint: prove first the equal-
ity for X ∼ U (0, 1) and Y ∼ U (0, 1).

Although different, Kendall’s tau and Spearman’s rho are heavily
related. For example, it is impossible to have τ(X, Y) = −0.5 and
ρ(X, Y) = 0.5 for the same continuous random vector (X, Y). Their
relation can be precisely visualized in Figure 6.11, which shows the
feasibility region for (τ, ρ) given by Theorem 6.2. The region is the
optimal possible and cannot be narrowed.

Theorem 6.2. Let X and Y be two continuous random variables with
τ ≡ τ(X, Y) and ρ ≡ ρ(X, Y). Then,

3τ − 1
2

≤ ρ ≤ 1 + 2τ − τ2

2
, τ ≥ 0,

τ2 + 2τ − 1
2

≤ ρ ≤ 1 + 3τ

2
, τ ≤ 0.
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81 One-sided versions of the tests
replace the alternatives by H1 : τ > 0
and H1 : ρ > 0, or by H1 : τ < 0 and
H1 : ρ < 0.

Kendall’s tau and Spearman’s rho tests of no concordance

• Tests purpose. Given (X1, Y1), . . . , (Xn, Yn) ∼ FX,Y, test H0 : τ = 0
vs. H1 : τ ̸= 0, and H0 : ρ = 0 vs. H1 : ρ ̸= 0.81

• Statistics definition. The tests are based on the sample versions of
(6.31) and (6.31):

τ̂ :=
c − d
(n

2)
=

2(c − d)
n(n − 1)

, (6.32)

ρ̂ :=
∑n

i=1(Ri − R̄)(Si − S̄)√
∑n

i=1(Ri − R̄)2 ∑n
i=1(Si − S̄)2

, (6.33)

where c = ∑n
i,j=1
i<j

1{(Xi−Xj)(Yi−Yj)>0} denotes the number of

concordant pairs in the sample, d = (n
2) − c is the number

of discordant pairs, and Ri := rankX(Xi) = nFX,n(Xi) and
Si := rankY(Yi) = nFY,n(Yi), i = 1, . . . , n are the ranks of the
samples of X and Y.

Large positive (negative) values of τ̂ and ρ̂ indicate presence of
concordance (discordance) between X and Y. The two-sided tests
reject H0 for large absolute values of τ̂ and ρ̂.

• Statistics computation. Formulae (6.32) and (6.33) are reasonably
explicit, but the latter can be improved to

ρ̂ = 1 − 6
n(n2 − 1)

n

∑
i=1

(Ri − Si)
2.

The naive computation of τ̂ involves O(n2) operations, hence it
escalates to large sample sizes worse than ρ̂. A faster implemen-
tation of O(n log(n)) is available through pcaPP::cor.fk.

• Distributions under H0. The asymptotic null distributions of τ̂ and
ρ̂ follow from√

9n(n − 1)
2(2n + 5)

τ̂
d−→ N (0, 1),

√
n − 1ρ̂

d−→ N (0, 1)

under H0. Exact distributions are available for small n’s.

• Highlights and caveats. Both τ = 0 and ρ = 0 do not characterize
independence. Therefore, absence of rejection does not guaran-
tee lack of evidence in favor of dependence. Rejection of H0 does
guarantee the existence of significant dependence, in the form of
concordance (positive values of τ̂ and ρ̂) or discordance (negative
values). Both tests are distribution-free.

• Implementation in R. The test statistics τ̂ and ρ̂ and the exact/asymptotic
p-values are available through the cor.test function, specify-
ing method = "kendall" or method = "spearman". The default
alternative = "two.sided" carries out the two-sided tests for
H1 : τ ̸= 0 and H1 : ρ ̸= 0. The one-sided alternatives follows
with alternative = "greater" (> 0) and alternative = "less"

(< 0).
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The following chunk of code illustrates the use of cor.test. It
also gives some examples of the advantages of τ̂ and ρ̂ over the
correlation coefficient.

# Outliers fool correlation, but do not fool concordance

set.seed(123456)

n <- 200

x <- rnorm(n)

y <- rnorm(n)

y[n] <- x[n] <- 1e4

cor.test(x, y, method = "pearson") # Close to 1 due to outlier

##

## Pearson's product-moment correlation

##

## data: x and y

## t = 6731, df = 198, p-value < 2.2e-16

## alternative hypothesis: true correlation is not equal to 0

## 95 percent confidence interval:

## 0.9999971 0.9999983

## sample estimates:

## cor

## 0.9999978

cor.test(x, y, method = "kendall") # Close to 0, as it should

##

## Kendall's rank correlation tau

##

## data: x and y

## z = -0.89189, p-value = 0.3725

## alternative hypothesis: true tau is not equal to 0

## sample estimates:

## tau

## -0.04241206

cor.test(x, y, method = "spearman") # Close to 0, as it should

##

## Spearman's rank correlation rho

##

## data: x and y

## S = 1419086, p-value = 0.3651

## alternative hypothesis: true rho is not equal to 0

## sample estimates:

## rho

## -0.06434111

cor(rank(x), rank(y)) # Spearman's rho

## [1] -0.06434111

# Outliers fool the sign of correlation, but do not fool concordance

x <- rnorm(n)

y <- x

x[n] <- 1e3

y[n] <- -1e4

cor.test(x, y, method = "pearson", alternative = "greater") # Change of sign!

##

## Pearson's product-moment correlation

##

## data: x and y

## t = -958.47, df = 198, p-value = 1

## alternative hypothesis: true correlation is greater than 0

## 95 percent confidence interval:

## -0.9999148 1.0000000

## sample estimates:

## cor

## -0.9998923

cor.test(x, y, method = "kendall", alternative = "greater") # Fine

##

## Kendall's rank correlation tau

##

## data: x and y

## z = 20.608, p-value < 2.2e-16
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## alternative hypothesis: true tau is greater than 0

## sample estimates:

## tau

## 0.98

cor.test(x, y, method = "spearman", alternative = "greater") # Fine

##

## Spearman's rank correlation rho

##

## data: x and y

## S = 39800, p-value < 2.2e-16

## alternative hypothesis: true rho is greater than 0

## sample estimates:

## rho

## 0.9701493

However, as previously said, concordance measures do not char-
acterize independence. Below are some dependence situations that
are undetected by τ̂ and ρ̂.

# Non-monotone dependence fools concordance

set.seed(123456)

n <- 200

x <- rnorm(n)

y <- abs(x) + rnorm(n)

cor.test(x, y, method = "kendall")

##

## Kendall's rank correlation tau

##

## data: x and y

## z = -1.5344, p-value = 0.1249

## alternative hypothesis: true tau is not equal to 0

## sample estimates:

## tau

## -0.07296482

cor.test(x, y, method = "spearman")

##

## Spearman's rank correlation rho

##

## data: x and y

## S = 1473548, p-value = 0.1381

## alternative hypothesis: true rho is not equal to 0

## sample estimates:

## rho

## -0.1051886

# Dependence in terms of conditional variance fools concordance

x <- rnorm(n)

y <- rnorm(n, sd = abs(x))

cor.test(x, y, method = "kendall")

##

## Kendall's rank correlation tau

##

## data: x and y

## z = 1.0271, p-value = 0.3044

## alternative hypothesis: true tau is not equal to 0

## sample estimates:

## tau

## 0.04884422

cor.test(x, y, method = "spearman")

##

## Spearman's rank correlation rho

##

## data: x and y

## S = 1251138, p-value = 0.3857

## alternative hypothesis: true rho is not equal to 0

## sample estimates:

## rho

## 0.06162304
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82 This new type of correlation belongs
to a wide class of new statistics that
are referred to as energy statistics; see
the reviews by Rizzo and Székely
(2016) (lighter introduction with R
examples), Székely and Rizzo (2013),
and Székely and Rizzo (2017) (the
latter two being deeper reviews).
Energy statistics generate tests alter-
native to the classical approaches to
test goodness-of-fit, normality, ho-
mogeneity, independence, and other
hypotheses.

6.3.2 Distance correlation tests

A characterization of independence

No-concordance tests based on τ̂ and ρ̂ are easy to interpret
and carry out, but they are not omnibus for testing independence:
they do not detect all kinds of dependence between X and Y, only
those expressible with τ ̸= 0 and ρ ̸= 0. Therefore, and as ev-
idenced previously, Kendall’s tau and Spearman’s rho may not
detect dependence patterns in the form of non-monotone relations
or heteroskedasticity.

The handicap of concordance measures on not being able to de-
tect all kinds of dependence has been recently solved by Székely
et al. (2007) with the introduction of a new type of correlation mea-
sure that completely characterizes independence.82 This new type
of correlation is not a correlation between values of (X, Y). Rather,
it is related to the correlation between pairwise distances of X and
Y. The following definitions, adapted from Section 7.1 in Székely
and Rizzo (2017), give the precise form of distance covariance and
distance variance between two random variables X and Y, which are
the pillars of a distance correlation.

Definition 6.2 (Distance covariance and variance). The distance
covariance (dCov) between two random variables X and Y with
E[|X|] < ∞ and E[|Y|] < ∞ is the non-negative number V(X, Y)
with square equal to

V2(X, Y) :=E
[
|X − X′||Y − Y′|

]
+ E

[
|X − X′|

]
E
[
|Y − Y′|

]
− 2E

[
|X − X′||Y − Y′′|

]
(6.34)

=Cov
[
|X − X′|, |Y − Y′|

]
− 2Cov

[
|X − X′|, |Y − Y′′|

]
, (6.35)

where (X′, Y′) and (X′′, Y′′) are iid copies of (X, Y). The distance
variance (dVar) of X is defined as

V2(X) :=V2(X, X)

=Var
[
|X − X′|

]
− 2Cov

[
|X − X′|, |X − X′′|

]
. (6.36)

Some interesting points implicit in Definition 6.2 are:

• dCov is unsigned: dCov does not inform on the “direction” of
the dependence between X and Y.

• From (6.34), it is clear that V(X, Y) = 0 if X and Y are indepen-
dent, as in that case E [|X − X′||Y − Y′|] = E [|X − X′|]E [|Y − Y′|] =
E [|X − X′||Y − Y′′|] .

• Equation (6.34) is somehow reminiscent of Spearman’s rho (see
(6.30)) and uses (X′, Y′′), the independence version of (X, Y).

• As (6.35) points out, dCov is not the covariance between pairwise
distances of X and Y, Cov [|X − X′|, |Y − Y′|] . However, V2(X, Y)
is related to such covariances: it can be regarded as a covariance
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Figure 6.12: Mapping ρ 7→
R(X(ρ), Y(ρ)) (in black) for the nor-
mally distributed vector (X(ρ), Y(ρ))
such that Cor[X(ρ), Y(ρ)] = ρ. In red,
the absolute value function ρ 7→ |ρ|.

between pairwise distances that is “centered” by the covariances
of the “independent versions” of the pairwise distances:

V2(X, Y) =Cov
[
|X − X′|, |Y − Y′|

]
− Cov

[
|X − X′|, |Y − Y′′|

]
− Cov

[
|X − X′′|, |Y − Y′|

]
.

Distance correlation is defined analogously to how correlation is
defined from covariance and variance.

Definition 6.3 (Distance correlation). The distance correlation (dCor)
between two random variables X and Y with E[|X|] < ∞ and
E[|Y|] < ∞ is the non-negative number R(X, Y) with square equal
to

R2(X, Y) :=
V2(X, Y)√
V2(X)V2(Y)

(6.37)

if V2(X)V2(Y) > 0. If V2(X)V2(Y) = 0, then R2(X, Y) := 0.

The following theorem collects useful properties of dCov, dVar,
and dCor. Some of them are related to the properties of standard
covariance (recall, e.g., (1.3)) and (unsigned) correlation. However,
as anticipated, Property iv gives the clear edge of dCor over concor-
dance measures on completely characterizing independence.

Theorem 6.3 (Properties of dCov, dVar, and dCor). Let X and Y be
two random variables with E[|X|] < ∞ and E[|Y|] < ∞. Then:

i. V(a + bX, c + dY) =
√
|bd|V(X, Y) for all a, b, c, d ∈ R.

ii. V(a + bX) = |b|V(X) for all a, b ∈ R.
iii. If V(X) = 0, then X = E[X] almost surely.
iv. R(X, Y) = V(X, Y) = 0 if and only if X and Y are independent.
v. 0 ≤ R(X, Y) ≤ 1.
vi. If R(X, Y) = 1, then there exist a, b ∈ R, b ̸= 0, such that Y =

a + bX.
vii. If (X, Y) is normally distributed and is such that Cor[X, Y] = ρ,

−1 ≤ ρ ≤ 1, then

R2(X, Y) =
ρ sin−1(ρ) +

√
1 − ρ2 − ρ sin−1(ρ/2)−

√
4 − ρ2 + 1

1 + π/3 −
√

3

and R(X, Y) ≤ |ρ|.

Two important simplifications have been done on the previous
definitions and theorem for the sake of a simplified exposition.
Precisely, dCov admits a more general definition that addresses two
generalizations, the first one being especially relevant for practical
purposes:

1. Multivariate extensions. dCov, dVar, and dCor can be straight-
forwardly extended to account for multivariate vectors X and Y
supported on Rp and Rq. It is as simple as replacing the absolute
values | · | in Definition 6.2 with the Euclidean norms ∥ · ∥p and
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83 In comparison, there are pq (linear)
correlations between the entries of X
and Y.

84 Recall that the characteristic function
is a complex-valued function that
offers an alternative to the cdf for
characterizing the behavior of any
random variable.

85 Two random variables X and Y are
independent if and only if f̂X,Y(s, t) =
f̂X(s) f̂Y(t), for all s, t ∈ R.
86 The characteristic function of a
random vector X is the function
s ∈ Rp 7→ f̂X(s) := E[eis′X] ∈ C.

∥ · ∥q for Rp and Rq, respectively. The properties stated in The-
orem 6.3 hold once suitably adapted. For example, for X and Y
such that E[∥X∥p] < ∞ and E[∥Y∥q] < ∞, dCov is defined as the
square root of

V2(X, Y) :=Cov
[
∥X − X′∥p, ∥Y − Y′∥q

]
− 2Cov

[
∥X − X′∥p, ∥Y − Y′′∥q

]
and dVar as V2(X) = V2(X, X). Recall that both dCov and dVar
are scalars, whereas Var[X] is a p × p matrix. Consequently, the
dCor of X and Y is also a scalar that condenses all the dependen-
cies between X and Y.83

2. Characteristic-function view of dCov. dCov does not require
E[|X|] < ∞ and E[|Y|] < ∞ to be defined. It can be defined,
without resorting to expectations, through the characteristic func-
tions84 of X, Y, and (X, Y):

f̂X(s) := E[eisX ], f̂Y(t) := E[eitY], f̂X,Y(s, t) := E[ei(sX+tY)],

where s, t ∈ R. Indeed,

V2(X, Y) =
1
c2

1

∫
R2

∣∣ f̂X,Y(s, t)− f̂X(s) f̂Y(t)
∣∣2 dt ds
|t|2|s|2 , (6.38)

where cp := π(p+1)/2/Γ((p + 1)/2) and | · | represents the modu-
lus of a complex number. The alternative definition (6.38) shows
that V2(X, Y) can be regarded as a weighted squared distance
between the joint and marginal characteristic functions.85 This
alternative view also holds for the multivariate case, where (6.38)
becomes86

V2(X, Y) =
1

cpcq

∫
Rp

∫
Rq

∣∣ f̂X,Y(s, t)− f̂X(s) f̂Y(t)
∣∣2 dt ds

∥t∥q+1
q ∥s∥p+1

p
.

Distance correlation test

Independence tests for (X, Y) can be constructed by evaluating if
R(X, Y) or V(X, Y) = 0 holds. To do so, we first need to consider
the empirical versions of dCov and dCor. These follow from (6.34)
and (6.37).

Definition 6.4 (Empirical distance covariance and variance). The
dCov for the random sample (X1, Y1), . . . , (Xn, Yn) is the non-
negative number Vn(X, Y) with square equal to

V2
n(X, Y) :=

1
n2

n

∑
k,ℓ=1

AkℓBkℓ, (6.39)

where

Akℓ := akℓ − āk• − ā•ℓ + ā••, akℓ := |Xk − Xℓ|,

āk• :=
1
n

n

∑
l=1

akℓ, ā•ℓ :=
1
n

n

∑
k=1

akℓ, ā•• :=
1
n2

n

∑
k,ℓ=1

akℓ,

and Bkℓ := bkℓ − b̄k• − b̄•ℓ + b̄•• is defined analogously for bkℓ :=
|Yk −Yℓ|. The dVar of X1, . . . , Xn is defined as V2

n(X) := 1
n2 ∑n

k,ℓ=1 A2
kℓ.
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87 A related bias-corrected estimator
of V2(X, Y) has been seen to involve
O(n log n) computations (see the
discussion in Section 7.2 in Székely
and Rizzo (2017)).

Definition 6.5 (Empirical distance correlation). The dCor for the
random sample (X1, Y1), . . . , (Xn, Yn) is the non-negative number
Rn(X, Y) with square equal to

R2
n(X, Y) :=

V2
n(X, Y)√

V2
n(X)V2

n(Y)
(6.40)

if V2
n(X)V2

n(Y) > 0. If V2
n(X)V2

n(Y) = 0, then R2
n(X, Y) := 0.

Remark. The previous empirical versions of dCov, dVar, and dCor
also allow for multivariate versions. These are based on akℓ :=
∥Xk − Xℓ∥p and bkℓ := ∥Yk − Yℓ∥q.

We next introduce the independence tests based on (6.39)–(6.40).

• Test purpose. Given (X1, Y1), . . . , (Xn, Yn) ∼ FX,Y, test H0 : FX,Y =

FX FY vs. H1 : FX,Y ̸= FX FY consistently against all the alternatives
in H1.

• Statistic definition. The dCov test rejects H0 for large values of
the test statistic nV2

n(X, Y) (not the dCov!), which indicates a
departure from independence. The dCor test uses as test statistic
R2

n(X, Y) and rejects H0 for large values of it.

• Statistic computation. Formulae (6.39) and (6.40) are directly im-
plementable, yet they involve O(n2) computations.87

• Distribution under H0. If H0 holds, then the asymptotic cdf of
nV2

n(X, Y) is the cdf of the random variable

∞

∑
j=1

λjYj, where Yj ∼ χ2
1, j ≥ 1, are iid (6.41)

and {λj}∞
j=1 are certain non-negative constants that depend on

FX,Y. As with (6.8), the cdf of (6.41) does not admit a simple
analytical expression. In addition, it is mostly unusable in prac-
tice, since {λj}∞

j=1 are unknown. The asymptotic distribution
for R2

n(X, Y) is related to that of nV2
n(X, Y). However, both test

statistics can be calibrated by permutations (see Section 6.3.3).

• Highlights and caveats. On the positive side, the dCov/dCor test
is much more general than concordance-based tests: (i) it is an
omnibus test for independence; and (ii) it can be applied to
multivariate data. On the negative side, the dCov/dCor test is
not distribution-free, so fast asymptotic p-values are not avail-
able. Besides, the rejection of the dCov/dCor tests does not in-
form on the kind of dependence between X and Y. The dCov and
dCor tests perform similarly and their computational burdens
are roughly equivalent. The dCor test offers the edge of having
an absolute scale for its test statistic, since R2

n(X, Y) ∈ [0, 1].

• Implementation in R. The energy package implements both tests
through the energy::dcov.test and energy::dcor.test func-
tions, which compute the test statistics and give p-values approx-
imated by permutations (see Section 6.3.3).
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The use of energy::dcov.test and energy::dcor.test for test-
ing the independence between X and Y is shown in the following
chunk of code.

# Distance correlation detects non-monotone dependence

set.seed(123456)

n <- 200

x <- rnorm(n)

y <- abs(x) + rnorm(n)

# Distance covariance and correlation tests. R is the number of permutations

# and needs to be specified (the default is R = 0 -- no test is produced)

energy::dcov.test(x, y, R = 1e3)

##

## dCov independence test (permutation test)

##

## data: index 1, replicates 1000

## nVˆ2 = 6.4595, p-value = 0.001998

## sample estimates:

## dCov

## 0.1797145

energy::dcor.test(x, y, R = 1e3)

##

## dCor independence test (permutation test)

##

## data: index 1, replicates 1000

## dCor = 0.26188, p-value = 0.000999

## sample estimates:

## dCov dCor dVar(X) dVar(Y)

## 0.1797145 0.2618840 0.6396844 0.7361771

# Distance correlation detects conditional variance as dependence

x <- rnorm(n)

y <- rnorm(n, sd = abs(x))

# Distance covariance and correlation tests

energy::dcov.test(x, y, R = 1e3)

##

## dCov independence test (permutation test)

##

## data: index 1, replicates 1000

## nVˆ2 = 3.5607, p-value = 0.001998

## sample estimates:

## dCov

## 0.1334296

energy::dcor.test(x, y, R = 1e3)

##

## dCor independence test (permutation test)

##

## data: index 1, replicates 1000

## dCor = 0.25031, p-value = 0.004995

## sample estimates:

## dCov dCor dVar(X) dVar(Y)

## 0.1334296 0.2503077 0.6152985 0.4618172

Testing the independence of two random vectors X and Y is also
straightforward, as the code below illustrates.

# A multivariate case with independence

set.seed(123456)

n <- 200

p <- 5

x <- matrix(rnorm(n * p), nrow = n, ncol = p)

y <- matrix(rnorm(n * p), nrow = n, ncol = p)

energy::dcov.test(x, y, R = 1e3)

##

## dCov independence test (permutation test)
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##

## data: index 1, replicates 1000

## nVˆ2 = 8.5627, p-value = 0.7493

## sample estimates:

## dCov

## 0.2069139

energy::dcor.test(x, y, R = 1e3)

##

## dCor independence test (permutation test)

##

## data: index 1, replicates 1000

## dCor = 0.28323, p-value = 0.7732

## sample estimates:

## dCov dCor dVar(X) dVar(Y)

## 0.2069139 0.2832256 0.7163536 0.7450528

# A multivariate case with dependence

y <- matrix(0.2 * rnorm(n = n * p, mean = c(x)) +

rnorm(n * p, sd = 1.25), nrow = n, ncol = p)

energy::dcov.test(x, y, R = 1e3)

##

## dCov independence test (permutation test)

##

## data: index 1, replicates 1000

## nVˆ2 = 14.592, p-value = 0.01099

## sample estimates:

## dCov

## 0.2701076

energy::dcor.test(x, y, R = 1e3)

##

## dCor independence test (permutation test)

##

## data: index 1, replicates 1000

## dCor = 0.32299, p-value = 0.007992

## sample estimates:

## dCov dCor dVar(X) dVar(Y)

## 0.2701076 0.3229851 0.7163536 0.9762951

Exercise 6.20. Illustrate with a simulation study the performance
of the independence tests for (X, Y) based on Spearman’s rho and
distance covariance. To that end, use four simulation scenarios and
build a 4 × 3 plot such that:

• The first column contains illustrative scatterplots of the gener-
ated data.

• The second row shows a histogram of the p-values of Spear-
man’s rho test in that scenario.

• The third row is analogous to the second, but for the distance
covariance test.

For the four scenarios, consider: (1) independence; (2) a non-
linear scenario for which Spearman’s rho is optimal; (3) a scenario
for which both tests perform similarly; (4) an undetectable alter-
native by Spearman’s rho. Choose the scenarios originally and in
such a way the histogram of the p-values are not completely ex-
treme. Use M = 1, 000 Monte Carlo replicates and set n at your
convenience. Explain the obtained results.



notes for nonparametric statistics 221

88 Intuitively: once you have the two
components permuted, sort the ob-
servations in such a way that the first
component matches the original sam-
ple. Sorting the sample must not affect
any proper independence test statistic
(we are in the iid case).

89 This sampling is done by extracting,
without replacement, random elements
from {Y1, . . . , Yn}.

6.3.3 Permutation-based approach to testing independence

The calibration of a test of independence can be approached by per-
mutations, in an analogous way as that carried out in Section 6.2.3
for tests of homogeneity. None of the permutation strategies pre-
viously seen is adequate, though, since the independence problem,
expressed as

H0 : FX,Y = FX FY vs. H1 : FX,Y ̸= FX FY,

is substantially different from (6.13). Here, FX,Y represents the joint
cdf of (X, Y), FX and FY stand for the corresponding marginal cdfs,
and “FX,Y ̸= FX FY” denotes that there exists at least one (x, y) ∈ R2

such that FX,Y(x, y) ̸= FX(x)FY(y).
In the unpaired homogeneity case, the elements of the sam-

ples X1, . . . , Xn and Y1, . . . , Ym are randomly exchanged using
the pooled sample. In the paired case, the components of each pair
(X1, Y1), . . . , (Xn, Yn) are randomly exchanged. When testing for in-
dependence, each of the two sample components of (X1, Y1), . . . , (Xn, Yn)

are separately and randomly exchanged. That the resampling is
conducted separately for each component is a direct consequence of
the null hypothesis of independence.

Precisely, for any two n-permutations σ1 and σ2, under indepen-
dence, it happens that

Tn((Xσ1(1), Yσ2(1)), . . . , (Xσ1(n), Yσ2(n)))
d
= Tn((X1, Y1), . . . , (Xn, Yn))

for any proper independence test statistic Tn. Furthermore, it is
reasonably evident that

Tn((Xσ1(1), Yσ2(1)), . . . , (Xσ1(n), Yσ2(n))) = Tn((X1, Yσ3(1)), . . . , (Xn, Yσ3(n)))

for σ3(i) := σ2(σ
−1
1 (i)), i ∈ {1, . . . , n}.88 That is, any “dou-

ble permutation” amounts to “single permutation” and it suf-
fices to permute the second component of the sample (leaving
the first component fixed) to attain any of the possible values of
Tn((Xσ1(1), Yσ2(1)), . . . , (Xσ1(n), Yσ2(n))). From the previous argu-
ments, it follows that

P[Tn ≤ x] =
1
n!

n!

∑
k=1

P[Tσk
n ≤ x] ≈ 1

B

B

∑
b=1

1{
T

σ̂b
n ≤x

},

where Tσ
n ≡ Tn((X1, Yσ(1)), . . . , (Xn, Yσ(n))) and σ̂b, b = 1, . . . , B,

denote the B randomly-chosen n-permutations.
The whole permutation-based procedure for performing an

independence test that rejects H0 for large values of the test statistic
is summarized below:

1. Compute Tn ≡ Tn((X1, Y1), . . . , (Xn, Yn)).

2. Enter the “permutation world”. For b = 1, . . . , B:

i. Simulate a randomly-permuted sample Y∗b
1 , . . . , Y∗b

n from
{Y1, . . . , Yn}.89
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ii. Compute T∗b
n ≡ Tn((X1, Y∗b

1 ), . . . , (Xn, Y∗b
n )).

3. Obtain the p-value approximation

p-value ≈ 1
B

B

∑
b=1

1{T∗b
n >Tn}

and emit a test decision from it. Modify it accordingly if rejection
of H0 does not happen for large values of Tn.

The following chunk of code provides a template for implement-
ing the previous permutation algorithm.

# A no-association test using the absolute value of Spearman's rho statistic

perm_ind_test <- function(x, B = 1e3, plot_boot = TRUE) {

# Test statistic function. Requires TWO arguments, one being the original

# data (X_1, Y_1), ..., (X_n, Y_n) and the other containing the random

# index for permuting the second component of sample

Tn <- function(data, perm_index) {

# Permute sample by perm_index -- only permute the second component

data[, 2] <- data[, 2][perm_index]

# Test statistic -- MODIFY DEPENDING ON THE PROBLEM

abs(cor(x = data[, 1], y = data[, 2], method = "spearman"))

}

# Perform permutation resampling with the aid of boot::boot

Tn_star <- boot::boot(data = x, statistic = Tn, sim = "permutation", R = B)

# Test information -- MODIFY DEPENDING ON THE PROBLEM

method <- "Permutation-based Spearman's rho test of no concordance"

alternative <- "Spearman's rho is not zero"

# p-value: modify if rejection does not happen for large values of the

# test statistic

pvalue <- mean(Tn_star$t > Tn_star$t0)

# Construct an "htest" result

result <- list(statistic = c("stat" = Tn_star$t0), p.value = pvalue,

statistic_perm = drop(Tn_star$t),

B = B, alternative = alternative, method = method,

data.name = deparse(substitute(x)))

class(result) <- "htest"

# Plot the position of the original statistic with respect to the

# permutation replicates?

if (plot_boot) {

hist(result$statistic_perm, probability = TRUE,

main = paste("p-value:", result$p.value),

xlab = latex2exp::TeX("$T_nˆ*$"))

rug(result$statistic_perm)

abline(v = result$statistic, col = 2)

}

# Return "htest"

return(result)

}

# Check the test for H0 true

set.seed(123456)
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x0 <- mvtnorm::rmvnorm(n = 100, mean = c(0, 0), sigma = diag(c(1:2)))

ind0 <- perm_ind_test(x = x0, B = 1e3)

ind0

##

## Permutation-based Spearman's rho test of no concordance

##

## data: x0

## stat = 0.032439, p-value = 0.751

## alternative hypothesis: Spearman's rho is not zero

# Check the test for H0 false

x1 <- mvtnorm::rmvnorm(n = 100, mean = c(0, 0), sigma = toeplitz(c(1, 0.5)))

ind1 <- perm_ind_test(x = x1, B = 1e3)

ind1

##

## Permutation-based Spearman's rho test of no concordance

##

## data: x1

## stat = 0.52798, p-value < 2.2e-16

## alternative hypothesis: Spearman's rho is not zero





1 For example, E[ f̂ (x; h)] = (Kh ∗ f )(x).

A
Confidence intervals for the density function

Obtaining a Confidence Interval (CI) for f (x) is a challenging task.
Thanks to the bias results1 seen in Section 2.3, we know that the
kde is biased for finite sample sizes and it is only asymptotically
unbiased when h → 0. This bias is called the smoothing bias and,
in essence, complicates the obtention of CIs for f (x), but not for
(Kh ∗ f )(x). Let’s see the differences between these two objects with
an illustrative example.

Some well-known facts for normal densities (see Appendix C in
Wand and Jones (1995)) are:

(ϕσ1(· − µ1) ∗ ϕσ2(· − µ2))(x) = ϕ(σ2
1+σ2

2 )
1/2(x − µ1 − µ2), (A.1)∫

ϕσ1(x − µ1)ϕσ2(x − µ2)dx = ϕ(σ2
1+σ2

2 )
1/2(µ1 − µ2), (A.2)

ϕσ(x − µ)r =
1

σr−1 (2π)(1−r)/2ϕσ/r1/2(x − µ)
1

r1/2 .

(A.3)

Consequently, if K = ϕ (i.e., Kh = ϕh) and f (·) = ϕσ(· − µ):

(Kh ∗ f )(x) = ϕ(h2+σ2)1/2(x − µ), (A.4)

(K2
h ∗ f )(x) =

(
1

(2π)1/2h
ϕh/21/2 /21/2 ∗ f

)
(x)

=
1

2π1/2h
(
ϕh/21/2 ∗ f

)
(x)

=
1

2π1/2h
ϕ(h2/2+σ2)1/2(x − µ). (A.5)

Thus, the exact expectation of the kde for estimating the density of
a N (µ, σ2) is precisely the density of a N (µ, σ2 + h2). Clearly, when
h → 0, we can see how the bias disappears. Removing this finite-
sample size bias is not simple: if the bias is expanded, f ′′ appears.
Hence, to attempt to unbias f̂ (·; h) we have to estimate f ′′, which
is a harder task than estimating f . As seen in Section 3.2, taking
second derivatives on the kde does not work out-of-the-box, since
the bandwidths for estimating f and f ′′ scale differently.

The previous deadlock can be solved if we limit our ambitions.
Rather than constructing a confidence interval for f (x), we can
construct it for E[ f̂ (x; h)] = (Kh ∗ f )(x). There is nothing wrong
with this change of view, as long as we are explicitly report the CI
as that for (Kh ∗ f )(x) and not for f (x).
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2 If we wanted to obtain a CI with the
second result in Theorem 2.2 we would
need to estimate f ′′(x).

The building block for the CI for E[ f̂ (x; h)] = (Kh ∗ f )(x) is the
first result2 in Theorem 2.2, which concludes that

√
nh( f̂ (x; h)− E[ f̂ (x; h)]) d−→ N (0, R(K) f (x)).

Plugging f̂ (x; h) = f (x) + OP

(
h2 + (nh)−1/2) = f (x)(1 + oP(1))

(see Exercise 2.10) as an estimate for f (x) in the variance, we have
by the Slutsky’s theorem that√

nh
R(K) f̂ (x; h)

( f̂ (x; h)− E[ f̂ (x; h)])

=

√
nh

R(K) f (x)
( f̂ (x; h)− E[ f̂ (x; h)])(1 + oP(1))

d−→ N (0, 1).

Therefore, an asymptotic 100(1 − α)% confidence interval for
E[ f̂ (x; h)] that can be straightforwardly computed is

I =

 f̂ (x; h)± zα/2

√
R(K) f̂ (x; h)

nh

 . (A.6)

Remark. Several points regarding (A.6) require proper awareness:

1. As announced, the CI is meant for E[ f̂ (x; h)] = (Kh ∗ f )(x), not
f (x), as it does not account for the smoothing bias.

2. This is a pointwise CI: P
[
E[ f̂ (x; h)] ∈ I

]
≈ 1 − α for each x ∈ R.

That is, P
[
E[ f̂ (x; h)] ∈ I, ∀x ∈ R

]
̸= 1 − α.

3. The CI relies on an approximation of f (x) in the variance, done
by f̂ (x; h) = f (x) + OP

(
h2 + (nh)−1/2). Additionally, the con-

vergence to a normal distribution happens at rate
√

nh. Hence,
both h and nh need to be small and large, respectively, for a good
coverage.

4. The CI is built using a deterministic bandwidth h (i.e., not data-
driven), which is not usually the case in practice. If a bandwidth
selector is employed, the coverage may be affected, especially for
small n.

We illustrate the construction of the CI in (A.6) for the situation
where the reference density is a N (µ, σ2) and the normal kernel is
employed. This allows to use (A.4) and (A.5), in combination with
(2.12) and (2.13), to obtain

E[ f̂ (x; h)] = ϕ(h2+σ2)1/2(x − µ),

Var[ f̂ (x; h)] =
1
n

(
ϕ(h2/2+σ2)1/2(x − µ)

2π1/2h
− (ϕ(h2+σ2)1/2(x − µ))2

)
.

These exact results are useful to benchmark (A.6) with the asymp-
totic CI that employs the exact variance of f̂ (x; h):(

f̂ (x; h)± zα/2

√
Var[ f̂ (x; h)]

)
. (A.7)
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The following chunk of code evaluates the proportion of times
that E[ f̂ (x; h)] belongs to I for each x ∈ R, both with estimated or
known variance in the asymptotic distribution.

# R(K) for a normal

Rk <- 1 / (2 * sqrt(pi))

# Generate a sample from a N(mu, sigmaˆ2)

n <- 100

mu <- 0

sigma <- 1

set.seed(123456)

x <- rnorm(n = n, mean = mu, sd = sigma)

# Compute the kde (NR bandwidth)

kde <- density(x = x, from = -4, to = 4, n = 1024, bw = "nrd")

# Selected bandwidth

h <- kde$bw

# Estimate the variance

var_kde_hat <- kde$y * Rk / (n * h)

# True expectation and variance (because the density is a normal)

E_kde <- dnorm(x = kde$x, mean = mu, sd = sqrt(sigmaˆ2 + hˆ2))

var_kde <- (dnorm(kde$x, mean = mu, sd = sqrt(hˆ2 / 2 + sigmaˆ2)) /

(2 * sqrt(pi) * h) - E_kdeˆ2) / n

# CI with estimated variance

alpha <- 0.05

z_alpha2 <- qnorm(1 - alpha / 2)

ci_low_1 <- kde$y - z_alpha2 * sqrt(var_kde_hat)

ci_up_1 <- kde$y + z_alpha2 * sqrt(var_kde_hat)

# CI with known variance

ci_low_2 <- kde$y - z_alpha2 * sqrt(var_kde)

ci_up_2 <- kde$y + z_alpha2 * sqrt(var_kde)

# Plot estimate, CIs and expectation

plot(kde, main = "Density and CIs", ylim = c(0, 1))

lines(kde$x, ci_low_1, col = "gray")

lines(kde$x, ci_up_1, col = "gray")

lines(kde$x, ci_low_2, col = "gray", lty = 2)

lines(kde$x, ci_up_2, col = "gray", lty = 2)

lines(kde$x, E_kde, col = "red")

legend("topright", legend = c("Estimate", "CI estimated var",

"CI known var", "Smoothed density"),

col = c("black", "gray", "gray", "red"), lwd = 2, lty = c(1, 1, 2, 1))

The above experiment shows the CI, but it does not give any in-
sight into the effective coverage of the CI. The following simulation
exercise precisely addresses this issue. As seen from Figure A.2, the
estimation of the kde’s variance has a considerable impact in the
coverage of the CI in the low-density regions, and it is reasonable
fine for the higher density regions.

# Simulation setting

n <- 200; h <- 0.15

mu <- 0; sigma <- 1 # Normal parameters

M <- 5e2 # Number of replications in the simulation

n_grid <- 512 # Number of x's for computing the kde

alpha <- 0.05; z_alpha2 <- qnorm(1 - alpha / 2) # alpha for CI

# Compute expectation and variance

kde <- density(x = 0, bw = h, from = -4, to = 4, n = n_grid) # Just for kde$x

E_kde <- dnorm(x = kde$x, mean = mu, sd = sqrt(sigmaˆ2 + hˆ2))
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Figure A.1: The CIs (A.6) and (A.7) for
E[ f̂ (x; h)] with estimated and known
variances.

var_kde <- (dnorm(kde$x, mean = mu, sd = sqrt(hˆ2 / 2 + sigmaˆ2)) /

(2 * sqrt(pi) * h) - E_kdeˆ2) / n

# For storing if the mean is inside the CI

inside_ci_1 <- inside_ci_2 <- matrix(nrow = M, ncol = n_grid)

# Simulation

set.seed(12345)

for (i in 1:M) {

# Sample & kde

x <- rnorm(n = n, mean = mu, sd = sigma)

kde <- density(x = x, bw = h, from = -4, to = 4, n = n_grid)

sd_kde_hat <- sqrt(kde$y * Rk / (n * h))

# CI with estimated variance

ci_low_1 <- kde$y - z_alpha2 * sd_kde_hat

ci_up_1 <- kde$y + z_alpha2 * sd_kde_hat

# CI with known variance

ci_low_2 <- kde$y - z_alpha2 * sqrt(var_kde)

ci_up_2 <- kde$y + z_alpha2 * sqrt(var_kde)

# Check if for each x the mean is inside the CI

inside_ci_1[i, ] <- E_kde > ci_low_1 & E_kde < ci_up_1

inside_ci_2[i, ] <- E_kde > ci_low_2 & E_kde < ci_up_2

}

# Plot results

plot(kde$x, colMeans(inside_ci_1), ylim = c(0.25, 1), type = "l",

main = "Empirical coverage of CIs", xlab = "x", ylab = "Coverage")

lines(kde$x, colMeans(inside_ci_2), col = 4)

abline(h = 1 - alpha, col = 2)
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abline(h = 1 - alpha + c(-1, 1) * qnorm(0.975) *
sqrt(alpha * (1 - alpha) / M), col = 2, lty = 2)

legend(x = "bottom", legend = c("CI estimated var", "CI known var",

"Nominal level",

"95% CI for the nominal level"),

col = c(1, 4, 2, 2), lwd = 2, lty = c(1, 1, 1, 2))
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Figure A.2: Empirical coverage of the
CIs (A.6) and (A.7) for E[ f̂ (x; h)] with
estimated and known variances.

Exercise A.1. Explore the coverage of the asymptotic CI for vary-
ing values of h. To that end, adapt the previous code to work in a
manipulate environment like the example given below.

# Sample

x <- rnorm(100)

# Simple plot of kde for varying h

manipulate::manipulate({

kde <- density(x = x, from = -4, to = 4, bw = h)

plot(kde, ylim = c(0, 1), type = "l", main = "")

curve(dnorm(x), from = -4, to = 4, col = 2, add = TRUE)

rug(x)

}, h = manipulate::slider(min = 0.01, max = 2, initial = 0.5, step = 0.01))

Exercise A.2 (Exercise 6.9.5 in Wasserman (2006)). Data on the
salaries of the chief executive officer of 60 companies is available
at http://lib.stat.cmu.edu/DASL/Datafiles/ceodat.html (al-
ternative link). Investigate the distribution of salaries using a kde.
Use ĥLSCV to choose the amount of smoothing. Also, consider ĥRT.
There appear to be a few bumps in the density. Are they real? Use

http://lib.stat.cmu.edu/DASL/Datafiles/ceodat.html
https://raw.githubusercontent.com/egarpor/handy/master/datasets/ceodat.txt
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confidence bands to address this question. Finally, comment on the
resulting estimates.



1 Not to confuse with a sample!

Figure B.1: The regression plane (blue)
of Y on X1 and X2, and its relation
with the regression lines (green lines)
of Y on X1 (left) and of Y on X2 (right).
The red points represent the sample
for (X1, X2, Y) and the black points
the projections for (X1, X2) (bottom),
(X1, Y) (left), and (X2, Y) (right). Note
that the regression plane is not a direct
extension of the marginal regression
lines.

B
Review on parametric regression

We review now a couple of useful parametric regression models
that will be used in the construction of nonparametric estimators.

B.1 Linear regression

B.1.1 Model formulation and least squares

The multiple linear regression employs multiple predictors X1, . . . , Xp
1

for explaining a single response Y by assuming that a linear relation
of the form

Y = β0 + β1X1 + · · ·+ βpXp + ε (B.1)

holds between the predictors X1, . . . , Xp and the response Y. In
(B.1), β0 is the intercept and β1, . . . , βp are the slopes, respectively.
ε is a random variable with mean zero and independent from
X1, . . . , Xp. Another way of looking at (B.1) is

E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp, (B.2)

since E[ε|X1 = x1, . . . , Xp = xp] = 0. Therefore, the expectation
of Y is changing in a linear fashion with respect to the values of
X1, . . . , Xp. Hence the interpretation of the coefficients:

• β0: is the expectation of Y when X1 = · · · = Xp = 0.
• β j, 1 ≤ j ≤ p: is the additive increment in expectation of Y for

an increment of one unit in Xj = xj, provided that the remaining
variables do not change.

Figure B.1 illustrates the geometrical interpretation of a multiple
linear model: a plane in the (p + 1)-dimensional space. If p = 1,
the plane is the regression line for simple linear regression. If p = 2,
then the plane can be visualized in a three-dimensional plot.

The estimation of β0, β1, . . . , βp is done by minimizing the so-
called Residual Sum of Squares (RSS). We first need to introduce
some helpful notation for this and the next section:

• A sample of (X1, . . . , Xp, Y) is denoted by (X11, . . . , X1p, Y1), . . . ,
(Xn1, . . . , Xnp, Yn), where Xij denotes the i-th observation of the
j-th predictor Xj. We denote with Xi = (Xi1, . . . , Xip)

′ to the i-th
observation of (X1, . . . , Xp), so the sample is (X1, Y1), . . . , (Xn, Yn).
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2 If that were the case, we would
consider perpendicular distances,
which yield Principal Component
Analysis (PCA).

Figure B.2: The least squares regres-
sion plane y = β̂0 + β̂1x1 + β̂2x2 and
its dependence on the kind of squared
distance considered. Application
available here.

• The design matrix contains all the information of the predictors
and a column of ones

X =


1 X11 · · · X1p
...

...
. . .

...
1 Xn1 · · · Xnp


n×(p+1)

.

• The vector of responses Y, the vector of coefficients β, and the vector
of errors are, respectively,

Y =


Y1
...

Yn


n×1

, β =


β0

β1
...

βp


(p+1)×1

, and ε =


ε1
...

εn


n×1

.

Thanks to the matrix notation, we can turn the sample version of
the multiple linear model, namely

Yi = β0 + β1Xi1 + . . . + βpXip + εi, i = 1, . . . , n,

into something as compact as

Y = Xβ + ε.

The RSS for the multiple linear regression is

RSS(β) :=
n

∑
i=1

(Yi − β0 − β1Xi1 − . . . − βpXip)
2

= (Y − Xβ)′(Y − Xβ). (B.3)

RSS(β) aggregates the squared vertical distances from the data to
a regression plane given by β. Note that the vertical distances are
considered because we want to minimize the error in the prediction
of Y. Thus, the treatment of the variables is not symmetrical2; see
Figure B.2. The least squares estimators are the minimizers of (B.3):

β̂ := arg min
β∈Rp+1

RSS(β).

Luckily, thanks to the matrix form of (B.3), it is simple to com-
pute a closed-form expression for the least squares estimates:

β̂ = (X′X)−1X′Y. (B.4)

Exercise B.1. β̂ can be obtained by differentiating (B.3). Prove it
using that ∂Ax

∂x = A and ∂ f (x)′g(x)
∂x = f (x)′ ∂g(x)

∂x + g(x)′ ∂ f (x)
∂x for two

vector-valued functions f and g.

Let’s check that indeed the coefficients given by R’s lm are the
ones given by (B.4) in a toy linear model.

# Generates 50 points from a N(0, 1): predictors and error

set.seed(34567)

x1 <- rnorm(50)

x2 <- rnorm(50)

https://shinyserv.es/shiny/least-squares-3D/
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x3 <- x1 + rnorm(50, sd = 0.05) # Make variables dependent

eps <- rnorm(50)

# Responses

y_lin <- -0.5 + 0.5 * x1 + 0.5 * x2 + eps

y_qua <- -0.5 + x1ˆ2 + 0.5 * x2 + eps

y_exp <- -0.5 + 0.5 * exp(x2) + x3 + eps

# Data

data_animation <- data.frame(x1 = x1, x2 = x2, y_lin = y_lin,

y_qua = y_qua, y_exp = y_exp)

# Call lm

# lm employs formula = response ~ predictor1 + predictor2 + ...

# (names according to the data frame names) for denoting the regression

# to be done

mod <- lm(y_lin ~ x1 + x2, data = data_animation)

summary(mod)

##

## Call:

## lm(formula = y_lin ~ x1 + x2, data = data_animation)

##

## Residuals:

## Min 1Q Median 3Q Max

## -2.37003 -0.54305 0.06741 0.75612 1.63829

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) -0.5703 0.1302 -4.380 6.59e-05 ***
## x1 0.4833 0.1264 3.824 0.000386 ***
## x2 0.3215 0.1426 2.255 0.028831 *
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.9132 on 47 degrees of freedom

## Multiple R-squared: 0.276, Adjusted R-squared: 0.2452

## F-statistic: 8.958 on 2 and 47 DF, p-value: 0.0005057

# mod is a list with a lot of information

# str(mod) # Long output

# Coefficients

mod$coefficients

## (Intercept) x1 x2

## -0.5702694 0.4832624 0.3214894

# Application of formula (3.4)

# Matrix X

X <- cbind(1, x1, x2)

# Vector Y

Y <- y_lin

# Coefficients

beta <- solve(t(X) %*% X) %*% t(X) %*% Y

beta

## [,1]

## -0.5702694

## x1 0.4832624

## x2 0.3214894

Exercise B.2. Compute β for the regressions y_lin ~ x1 + x2,
y_qua ~ x1 + x2, and y_exp ~ x2 + x3 using equation (B.4) and
the function lm. Check that the fitted plane and the coefficient esti-
mates are coherent.
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Figure B.3: The key concepts of the
simple linear model. The blue den-
sities denote the conditional density
of Y for each cut in the X axis. The
yellow band denotes where the 95%
of the data is, according to the model.
The red points represent a sample
following the model.
3 We assume that the randomness is on
the response only.

Once we have the least squares estimates β̂, we can define the
following two concepts:

• The fitted values Ŷ1, . . . , Ŷn, where

Ŷi := β̂0 + β̂1Xi1 + · · ·+ β̂pXip, i = 1, . . . , n.

They are the vertical projections of Y1, . . . , Yn into the fitted line
(see Figure B.2). In a matrix form, inputting (B.3)

Ŷ = Xβ̂ = X(X′X)−1X′Y = HY,

where H := X(X′X)−1X′ is called the hat matrix because it “puts
the hat into Y”. What it does is to project Y into the regression
plane (see Figure B.2).

• The residuals (or estimated errors) ε̂1, . . . , ε̂n, where

ε̂i := Yi − Ŷi, i = 1, . . . , n.

They are the vertical distances between actual and fitted data.

B.1.2 Model assumptions

Observe that β̂ was derived from purely geometrical arguments,
not probabilistic ones. That is, we have not made any probabilistic
assumption on the data generation process. However, some prob-
abilistic assumptions are required to infer the unknown population
coefficients β from the sample (X1, Y1), . . . , (Xn, Yn).

The assumptions of the multiple linear model are:

i. Linearity: E[Y|X1 = x1, . . . , Xp = xp] = β0 + β1x1 + · · ·+ βpxp.
ii. Homoscedasticity: Var[εi] = σ2, with σ2 constant for i =

1, . . . , n.
iii. Normality: εi ∼ N (0, σ2) for i = 1, . . . , n.
iv. Independence of the errors: ε1, . . . , εn are independent.

A good one-line summary of the linear model is the following
(independence is assumed):

Y|(X1 = x1, . . . , Xp = xp) ∼ N (β0 + β1x1 + · · ·+ βpxp, σ2). (B.5)

Inference on the parameters β and σ can be done, conditionally3

on X1, . . . , Xn, from (B.5). We do not explore this further, referring
the interested reader to, e.g., Section 2.4 in García-Portugués (2022).
Instead, we remark the connection between least squares estimation
and the maximum likelihood estimator derived from (B.5).

First, note that (B.5) is the population version of the linear model
(it is expressed in terms of the random variables). The sample ver-
sion that summarizes assumptions i–iv is

Y|X ∼ Nn(Xβ, σ2In).

https://bookdown.org/egarpor/PM-UC3M/lm-i-inference.html
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4 Recall that ϕΣ(· − µ) and ϕσ(· − µ)
denote the pdf of a Np(µ, Σ) and a
N (µ, σ2), respectively.

5 Since |σ2In|1/2 = σn.

6 Recall that E[B(1, p)] = P[B(1, p) =
1] = p.

Using this result, it is easy to obtain the log-likelihood function of
Y1, . . . , Yn conditionally on X1, . . . , Xn as4

ℓ(β) = log ϕσ2In
(Y − Xβ) =

n

∑
i=1

log ϕσ(Yi − (Xβ)i). (B.6)

Finally, the following result justifies the consideration of the least
squares estimate: it equals the maximum likelihood estimator de-
rived under assumptions i–iv.

Theorem B.1. Under assumptions i–iv, the maximum likelihood estima-
tor of β is the least squares estimate (B.4):

β̂ML = arg max
β∈Rp+1

ℓ(β) = (X′X)−1XY.

Proof. Expanding the first equality at (B.6) gives5

ℓ(β) = − log((2π)n/2σn)− 1
2σ2 (Y − Xβ)′(Y − Xβ).

Optimizing ℓ does not require knowledge on σ2, since differentiat-
ing with respect to β and equating to zero gives (see Exercise B.1)
1

σ2 (Y − Xβ)′X = 0. Solving the equation gives the form for β̂ML.

Exercise B.3. Conclude the proof of Theorem B.1.

B.2 Logistic regression

B.2.1 Model formulation

When the response Y can take two values only, codified for conve-
nience as 1 (success) and 0 (failure), Y is called a binary variable. A
binary variable, known also as a Bernoulli variable, is a B(1, p).6

If Y is a binary variable and X1, . . . , Xp are predictors associated
with Y, the purpose in logistic regression is to estimate

p(x1, . . . , xp) :=P[Y = 1|X1 = x1, . . . , Xp = xp]

=E[Y|X1 = x1, . . . , Xp = xp], (B.7)

this is, how the probability of Y = 1 is changing according to par-
ticular values, denoted by x1, . . . , xp, of the predictors X1, . . . , Xp.
A tempting possibility is to consider a linear model for (B.7),
p(x1, . . . , xp) = β0 + β1x1 + · · · + βpxp. However, such a model
will run into serious problems inevitably: negative probabilities and
probabilities greater than one will arise.

A solution is to consider a function to encapsulate the value of
z = β0 + β1x1 + · · ·+ βpxp, in R, and map it back to [0, 1]. There
are several alternatives to do so, based on distribution functions
F : R −→ [0, 1] that deliver y = F(z) ∈ [0, 1]. Different choices
of F give rise to different models, the most common one being the
logistic distribution function:

logistic(z) :=
ez

1 + ez =
1

1 + e−z .
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7 For example, if a horse Y has a
probability p = 2/3 of winning a
race (Y = 1), then the odds of the
horse is odds = p

1−p = 2/3
1/3 = 2. This

means that the horse has a probability
of winning that is twice larger than
the probability of losing. This is
sometimes written as a 2 : 1 or 2 × 1
(spelled “two-to-one”).
8 For example, if the odds of the horse
was 5, that would correspond to a
probability of winning p = 5/6.

Its inverse, F−1 : [0, 1] −→ R, known as the logit function, is

logit(p) := logistic−1(p) = log
p

1 − p
.

This is a link function, that is, a function that maps a given space (in
this case [0, 1]) onto R. The term link function is used in generalized
linear models, which follow exactly the same philosophy of the lo-
gistic regression – mapping the domain of Y to R in order to apply
there a linear model. As said above, different link functions are pos-
sible, but we will concentrate here exclusively on the logit as a link
function.

The logistic model is defined as the next parametric form for (B.7):

p(x1, . . . , xp) = logistic(β0 + β1x1 + · · ·+ βpxp)

=
1

1 + e−(β0+β1x1+···+βpxp)
. (B.8)

The linear form inside the exponent has a clear interpretation:

• If β0 + β1x1 + · · ·+ βpxp = 0, then p(x1, . . . , xp) =
1
2 (Y = 1 and

Y = 0 are equally likely).
• If β0 + β1x1 + · · ·+ βpxp < 0, then p(x1, . . . , xp) <

1
2 (Y = 1 less

likely).
• If β0 + β1x1 + · · ·+ βpxp > 0, then p(x1, . . . , xp) >

1
2 (Y = 1 more

likely).

To be more precise on the interpretation of the coefficients
β0, . . . , βp we need to introduce the concept of odds. The odds is
an equivalent form of expressing the distribution of probabilities in
a binary variable. Since P[Y = 1] = p and P[Y = 0] = 1 − p, both
the success and failure probabilities can be inferred from p. Instead
of using p to characterize the distribution of Y, we can use

odds(Y) =
p

1 − p
=

P[Y = 1]
P[Y = 0]

. (B.9)

The odds is the ratio between the probability of success and the prob-
ability of failure. It is extensively used in betting due to its better
interpretability.7 Conversely, if the odds of Y is given, we can eas-
ily know what is the probability of success p, using the inverse8 of
(B.9):

p = P[Y = 1] =
odds(Y)

1 + odds(Y)
.

Remark. Recall that the odds is a number in [0,+∞]. The 0 and +∞
values are attained for p = 0 and p = 1, respectively. The log-odds
(or logit) is a number in [−∞,+∞].

We can rewrite (B.8) in terms of the odds (B.9). If we do so, then

odds(Y|X1 = x1, . . . , Xp = xp)

=
p(x1, . . . , xp)

1 − p(x1, . . . , xp)

= eβ0+β1x1+···+βpxp

= eβ0 eβ1x1 . . . eβpxp .
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Figure B.4: The key concepts of the
logistic model. The blue bars repre-
sent the conditional distribution of
probability of Y for each cut in the X
axis. The red points represent a sample
following the model.
9 An equivalent way of stating this
assumption is p(x) = logistic(β0 +
β1x1 + · · ·+ βpxp).

Figure B.5: The logistic regression fit
and its dependence on β0 (horizontal
displacement) and β1 (steepness of the
curve). Recall the effect of the sign of
β1 on the curve: if positive, the logistic
curve has an “s” form; if negative, the
form is a reflected “s”. Application
available here.

This provides the following interpretation of the coefficients:

• eβ0 : is the odds of Y = 1 when X1 = · · · = Xp = 0.
• eβ j , 1 ≤ j ≤ k: is the multiplicative increment of the odds for an

increment of one unit in Xj = xj, provided that the remaining
variables do not change. If the increment in Xj is of r units, then
the multiplicative increment in the odds is (eβ j)r.

B.2.2 Model assumptions and estimation

Some probabilistic assumptions are required to perform inference
on the model parameters β from a sample (X1, Y1), . . . , (Xn, Yn).
These assumptions are somehow simpler than the ones for linear
regression.

The assumptions of the logistic model are the following:

i. Linearity in the logit9: logit(p(x)) = log p(x)
1−p(x) = β0 + β1x1 +

· · ·+ βpxp.
ii. Binariness: Y1, . . . , Yn are binary variables.
iii. Independence: Y1, . . . , Yn are independent.

A good one-line summary of the logistic model is the following
(independence is assumed):

Y|(X1 = x1, . . . , Xp = xp) ∼ Ber
(
logistic(β0 + β1x1 + · · ·+ βpxp)

)
= Ber

(
1

1 + e−(β0+β1x1+···+βpxp)

)
.

Since Yi ∼ Ber(p(Xi)), i = 1, . . . , n, the log-likelihood of β is

ℓ(β) =
n

∑
i=1

log
(

p(Xi)
Yi (1 − p(Xi))

1−Yi
)

=
n

∑
i=1

{Yi log(p(Xi)) + (1 − Yi) log(1 − p(Xi))} . (B.10)

Unfortunately, due to the nonlinearity of the optimization prob-
lem, there are no explicit solutions for β̂. These have to be obtained
numerically by means of an iterative procedure, which may run
into problems in low-sample situations with perfect classification.
Unlike in the linear model, inference is not exact from the assump-
tions, but rather approximate in terms of maximum likelihood the-
ory. We do not explore this further and refer the interested reader
to, e.g., Section 5.3 in García-Portugués (2022).

Figure B.5 shows how the log-likelihood changes with respect
to the values for (β0, β1) in three data patterns. The data of the
illustration has been generated with the following code.

# Data

set.seed(34567)

x <- rnorm(50, sd = 1.5)

y1 <- -0.5 + 3 * x

y2 <- 0.5 - 2 * x

y3 <- -2 + 5 * x

y1 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y1)))

https://shinyserv.es/shiny/log-maximum-likelihood/
https://bookdown.org/egarpor/PM-UC3M/glm-inference.html
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y2 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y2)))

y3 <- rbinom(50, size = 1, prob = 1 / (1 + exp(-y3)))

# Data

data_mle <- data.frame(x = x, y1 = y1, y2 = y2, y3 = y3)

Let’s check that indeed the coefficients given by R’s glm are the
ones that maximize the likelihood of the animation of Figure B.5.
We do so for y ~ x1.

# Call glm

# glm employs formula = response ~ predictor1 + predictor2 + ...

# (names according to the data frame names) for denoting the regression

# to be done. We need to specify family = "binomial" to make a

# logistic regression

mod <- glm(y1 ~ x, family = "binomial", data = data_mle)

summary(mod)

##

## Call:

## glm(formula = y1 ~ x, family = "binomial", data = data_mle)

##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -2.47853 -0.40139 0.02097 0.38880 2.12362

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -0.1692 0.4725 -0.358 0.720274

## x 2.4282 0.6599 3.679 0.000234 ***
## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## (Dispersion parameter for binomial family taken to be 1)

##

## Null deviance: 69.315 on 49 degrees of freedom

## Residual deviance: 29.588 on 48 degrees of freedom

## AIC: 33.588

##

## Number of Fisher Scoring iterations: 6

# mod is a list with a lot of information

# str(mod) # Long output

# Coefficients

mod$coefficients

## (Intercept) x

## -0.1691947 2.4281626

# Plot the fitted regression curve

x_grid <- seq(-5, 5, l = 200)

y_grid <- 1 / (1 + exp(-(mod$coefficients[1] + mod$coefficients[2] * x_grid)))

plot(x_grid, y_grid, type = "l", col = 2, xlab = "x", ylab = "y")

points(x, y1)

Exercise B.4. For the regressions y ~ x2 and y ~ x3, do the follow-
ing:

a. Check that β is indeed maximizing the likelihood as compared
with Figure B.5.

b. Plot the fitted logistic curve and compare it with the one in
Figure B.5.



1 That is not intended to replace a
formal introduction to hypothesis
tests. The interested reader can find
one, e.g., in Chapter 6 in Molina-
Peralta and García-Portugués (2022).

2 The masculin pronoun in no case
indicates gender ascription. It is
used as a neutral form and could be
substituted for any personal pronoun.

3 Think about phenomena that may
randomly support defendant’s innon-
cence or guilt, irrespective of his true
condition. For example: spurious coin-
cidences (“happen to be in the wrong
place at the wrong time”), loss of ev-
idence during the case, previous past
statemets of the defendant, dubious
identification by witness, imprecise
witness testimonies, unverificable alibi,
etc.
4 Usually simply referred to as statistic.
5 As the judge must have the power
of condemning a guilty defendant.
Setting α = 0 (no innocents are
declared guilty) would result in a
judge that systematically declares
everybody not guilty. Therefore, a
compromise is needed.

C
Informal review on hypothesis testing

The process of hypothesis testing has an interesting analogy with
a trial. The analogy helps to understand the elements present in a
formal hypothesis test in an intuitive way.1 2

2
3

3
4

4
5

5

Hypothesis test Trial

Null hypothesis H0 The defendant: an individual accused of
committing a crime. He2 is backed up by
the presumption of innocence, which
means that he is not guilty until there is
enough evidence to support his guilt.

Sample X1, . . . , Xn Collection of evidence supporting
innocence and guilt of the defendant.
This evidence contains a certain degree
of uncontrollable randomness due to
how it is collected and the context
regarding the case3.

Test statistic4 Tn Summary of the evidence presented by
the prosecutor and defense lawyer.

Distribution of Tn

under H0

The judge conducting the trial. He
evaluates and measures the evidence
presented by both sides and presents a
verdict for the defendant.

Significance level α 1 − α is the strength of the evidence
required by the judge for condemning
the defendant. The judge allows
evidence that, on average, condemns
100α% of the innocents, due to the
randomness inherent to the evidence
collection process. α = 0.05 is considered
to be a reasonable level5.

https://bookdown.org/egarpor/inference/ht.html
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Hypothesis test Trial

p-value Decision of the judge that measures the
degree of compatibility, in a scale 0–1, of
the presumption of innocence with the
summary of the evidence presented. If
p-value < α, the defendant is declared
guilty. Otherwise, he is declared not
guilty.

H0 is rejected The defendant is declared guilty: there is
strong evidence supporting his guilt.

H0 is not rejected The defendant is declared not guilty:
either he is innocent or there is not
enough evidence supporting his guilt.

More formally, the p-value of a hypothesis test about H0 is de-
fined as:

The p-value is the probability of obtaining a test statistic more unfa-
vorable to H0 than the observed, assuming that H0 is true.

Therefore, if the p-value is small (smaller than the chosen level
α), it is unlikely that the evidence against H0 is due to random-
ness. As a consequence, H0 is rejected. If the p-value is large (larger
than α), then it is more possible that the evidence against H0 is
merely due to the randomness of the data. In this case, we do not
reject H0.

If H0 holds, then the p-value (which is a random variable) is
distributed uniformly in (0, 1). If H0 does not hold, then the distri-
bution of the p-value is not uniform but concentrated at 0 (where
the rejections of H0 take place).
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