
New techniques to integrate

blockchain in Internet of Things

scenarios for massive data

management.
by

Cristhian Martínez Rendón

A dissertation submitted in partial fulfillment of the

requirements for the degree of Doctor of Philosophy in

Computer Science and Technology

Universidad Carlos III de Madrid

Advisor: Prof. Jesús Carretero

2023

This thesis is distributed under license “Creative Commons Attribution -

Non Commercial - Non Derivatives”.

A mis padres y abuelos,

por ser mi inspiración constante

en este camino hacia el logro de mis metas.

"Allí donde haya alguien luchando por asentarse en algún lugar,

o por un trabajo decente o una mano amiga,

allá donde haya alguien que luche por la libertad,

mira en sus ojos mamá porque allí estaré yo..."

Las uvas de la ira (1940)

ACKNOWLEDGEMENTS

Resulta difícil estar lejos de casa. Sin embargo, es alentador y motivador

el hecho de saber que a pesar del tiempo y la distancia, la familia y seres

queridos perduran. Esta tesis, es un reflejo del amor y apoyo incondicional

que ustedes me han brindado a lo largo de mi vida. Gracias a cada uno de

ustedes por su voz de aliento y constante apoyo.

A mis padres, gracias por los valores inculcados, enseñarme a perseverar

en los momentos difíciles, brindarme las herramientas necesarias para

enfrentar la vida y ser el mejor apoyo donde quiera que esté. A mi madre,

por ser mi principal fuente de inspiración, gracias por tu entrega y amor

incondicional. A mis abuelos por su eterno amor, en especial mi abuelo,

que aunque tu enfermedad se ha llevado gran parte de nuestros buenos

recuerdos, conservo como un tesoro cada uno de tus consejos e historias

que siempre me contabas. Tu nobleza y bondad siempre serán mi guía y

ejemplo a seguir.

A mi familia paternal y maternal, gracias por todo el apoyo brindado y sus

manifestaciones de cariño desde la distancia, por sus consejos e historias

que me han servido de inspiración y guía. A mis primos, quienes, a pesar de

los años, siempre me hacen sentir como un niño de nuevo y logran hacerme

olvidar cómo se sentiría el hecho de tener un hermano. También, quiero

agradecer a mi padrino, que aunque ya no estas físicamente presente con

nosotros, junto a mi madrina fueron un apoyo incondicional e invaluable en

mi vida, un ejemplo de perseverancia, disciplina, coraje y amor que forjaron

en gran medida la persona que soy hoy en dia.

A mi compañera de vida, gracias por tu apoyo incondicional en cada mo-

mento y lugar. Sin importar el destino, siempre estabas presente con tu

paciencia, amor y locuras. A mis amigos en Colombia, México y Canadá que

a pesar de la distancia me dan su voz de aliento y están presentes siempre

en los buenos y malos momentos.

Al Prof. Jesús Carretero Perez por darme la oportunidad y voto de confianza

para realizar mis estudios de doctorado. Gracias por la paciencia, dirección

y conocimientos brindados durante esta etapa de mi vida. Al igual que al

Dr. José Luis González Compeán por su voto de confianza, asesoramiento y

gran apoyo durante mi formación académica.

Al grupo de investigación ARCOS y compañeros de trabajo por su paciencia,

enseñanzas y conocimientos brindados. En especial, a mis compañeros

Diego, Eduardo, Dante y los Doctores Felix y Alex que me apoyaron en

momentos difíciles de mis estudios y que hicieron parte de la realización

de este trabajo de tesis. A los Doctores Tom y Orcun, por la oportunidad

brindada y apoyo recibido durante mi estancia de investigación. También a

ustedes, gran parte de este trabajo no hubiera sido posible.

A cada uno de ustedes y los que he pasado por alto, gracias por su apoyo.

This work has been partially supported by the project "CABAHLA-CM: Con-

vergencia Big data-Hpc: de los sensores a las Aplicaciones" S2018/TCS-4423

from Madrid Regional Government.

Published and Submitted Content

During the process of researching and writing this dissertation, the results

of this study have been presented and published in a variety of academic

conferences and journals for review and evaluation by the academic com-

munity.

1. Martinez-Rendon, C., González-Compeán, J. L., Sánchez-Gallegos, D.

D., & Carretero, J. (2023). CD/CV: Blockchain-based schemes for con-

tinuous verifiability and traceability of IoT data for edge–fog–cloud.

Information Processing & Management, 60(1), 103155. Q1.

• DOI: https://doi.org/10.1016/j.ipm.2022.103155

• URL: https://www.sciencedirect.com/science/article/

pii/S0306457322002564

• Note: The material contained in this article has been partially

included in Chapter 3 of this thesis. The content of this item has

not been singled out with typographical means and references

throughout this thesis.

2. Martinez-Rendon, C., Camarmas-Alonso, D., Carretero, J., & Gonzalez-

Compean, J. L. (2022). On the continuous contract verification using

blockchain and real-time data. Cluster Computing, 1-23. Q1.

• DOI: https://doi.org/10.1016/j.ipm.2022.103155

• URL: https://link.springer.com/article/10.1007/s105

86-021-03252-0

vii

https://doi.org/10.1016/j.ipm.2022.103155
https://www.sciencedirect.com/science/article/pii/S0306457322002564
https://www.sciencedirect.com/science/article/pii/S0306457322002564
https://doi.org/10.1016/j.ipm.2022.103155
https://link.springer.com/article/10.1007/s10586-021-03252-0
https://link.springer.com/article/10.1007/s10586-021-03252-0

• Note: The material contained in this article has been partially

included in Chapter 4 of this thesis. The content of this item has

not been singled out with typographical means and references

throughout this thesis.

3. Carretero, J. and Martinez-Rendon, C.: Blockchain-based schemes

for continuous verifiability and traceability of IoT data. Workshop

BDCSA2023: Big Data Convergence: from Sensors to Applications.

31st Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP 2023). March 1-3, Naples, Italy.

4. Martinez-Rendon, C., Sánchez-Gallegos, D., Carretero, J., González-

Compeán, J. L., Rubio-Montero, A. J. & Asorey, H. Calibración y evalu-

ación experimental del Gestor CD/CV. Workshop CABAHLA. Jornadas

Sarteco 2022. Alicante. 21 al 23 de septiembre de 2022.

5. Carretero, J.,Martinez-Rendon, C., González-Compeán, J. L., & Sánchez-

Gallegos, D. D. CD/CV: Blockchain-based schemes for continuous

verifiability and traceability of IoT data for edge-fog-cloud. Informa-

tion Processing & Management Conference 2022. 20-21 October 2022.

Wuhan. China. Online presentation.

viii

Other research merits

Throughout the period of my research on this dissertation, I had the oppor-

tunity to collaborate with other authors on various publications, which are

not incorporated in this present document.

1. Yang, D., Martinez, C., Visuña, L., Khandhar, H., Bhatt, C., & Carretero,

J. (2021). Detection and analysis of COVID-19 in medical images using

deep learning techniques. Scientific Reports, 11(1), 19638. Q1.

• DOI: https://doi.org/10.1038/s41598-021-99015-3

• URL: https://www.nature.com/articles/s41598-021-990

15-3

2. Lopez-Arevalo, I., Gonzalez-Compean, J. L., Hinojosa-Tijerina, M.,

Martinez-Rendon, C., Montella, R., & Martinez-Rodriguez, J. L. (2021).

A wot-based method for creating digital sentinel twins of iot devices.

Sensors, 21(16), 5531. Q1.

• DOI: https://doi.org/10.3390/s21165531

• URL: https://www.mdpi.com/1424-8220/21/16/5531

Research Stay

1. Argonne National Laboratory - Lemont, IL, USA

• Supervisor: Tom Peterka and Orçun Yildiz

• Research group: Mathematics and Computer Science Division

(MCS)

ix

https://doi.org/10.1038/s41598-021-99015-3
https://www.nature.com/articles/s41598-021-99015-3
https://www.nature.com/articles/s41598-021-99015-3
https://doi.org/10.3390/s21165531
https://www.mdpi.com/1424-8220/21/16/5531

• Research project: Triple Convergence of HPC, BD, and AI through

ASCR In Situ Workflow Tools

• Period: 07/08/2022 - 07/11/2022

x

UNIVERSITY CARLOS III OF MADRID

Abstract
School of Engineering

Computer Science and Engineering Department

Ph.D. in Computer Science and Technology

Title

by Cristhian MARTÍNEZ RENDÓN

Nowadays, regardless of the use case, most IoT data is processed using

workflows that are executed on different infrastructures (edge-fog-cloud),

which produces dataflows from the IoT through the edge to the fog/cloud.

In many cases, they also involve several actors (organizations and users),

which poses a challenge for organizations to establish verification of the

transactions performed by the participants in the dataflows built by the

workflow engines and pipeline frameworks. It is essential for organizations,

not only to verify that the execution of applications is performed in the

strict sequence previously established in a D AG by authenticated partici-

pants, but also to verify that the incoming and outgoing IoT data of each

stage of a workflow/pipeline have not been altered by third parties or by the

users associated to the organizations participating in a workflow/pipeline.

Blockchain technology and its mechanism for recording immutable trans-

actions in a distributed and decentralized manner, characterize it as an

ideal technology to support the aforementioned challenges and challenges

xi

http://www.uc3m.es
http://inf.uc3m.es

since it allows the verification of the records generated in a secure manner.

However, the integration of blockchain technology with workflows for IoT

data processing is not trivial considering that it is a challenge not to lose

the generalization of workflows and/or pipeline engines, which must be

modified to include the embedded blockchain module. The main objective

of this doctoral research was to create new techniques to use blockchain

in the Internet of Things (IoT). Thus, we defined the main goal of this the-

sis is to develop new techniques to integrate blockchain in Internet of

Things scenarios for massive data management in edge-fog-cloud en-

vironments. To fulfill this general objective, we have designed a content

delivery model for processing big IoT data in Edge-Fog-Cloud computing

by using micro/nanoservice composition, a continuous verification model

based on blockchain to register significant events from the continuous de-

livery model, selecting techniques to integrate blockchain in quasi-real sys-

tems that allow ensuring traceability and non-repudiation of data obtained

from devices and sensors. The evaluation proposed has been thoroughly

evaluated, showing its feasibility and good performance.

xii

UNIVERSIDAD CARLOS III DE MADRID

Resumen
Escuela Politécnica Superior

Departamento de Informática

Doctorado en Ciencia y Tecnología Informática

Titulo

por Cristhian MARTÍNEZ RENDÓN

Hoy en día, independientemente del caso de uso, la mayoría de los datos

de IoT se procesan utilizando flujos de trabajo que se ejecutan en difer-

entes infraestructuras (edge-fog-cloud) desde IoT a través del edge hasta la

fog/cloud. En muchos casos, también involucran a varios actores (organi-

zaciones y usuarios), lo que plantea un desafío para las organizaciones a la

hora de verificar las transacciones realizadas por los participantes en los

flujos de datos. Es fundamental para las organizaciones, no solo para veri-

ficar que la ejecución de aplicaciones se realiza en la secuencia previamente

establecida en un DAG y por participantes autenticados, sino también para

verificar que los datos IoT entrantes y salientes de cada etapa de un flujo

de trabajo no han sido alterados por terceros o por usuarios asociados a

las organizaciones que participan en el mismo. La tecnología Blockchain,

gracias a su mecanismo para registrar transacciones de manera distribuida

y descentralizada, es un tecnología ideal para soportar los retos y desafíos

antes mencionados ya que permite la verificación de los registros generados

xiii

de manera segura. Sin embargo, la integración de la tecnología blockchain

con flujos de trabajo para IoT no es baladí considerando que es un desafío

proporcionar el rendimiento necesario sin perder la generalización de los

motores de flujos de trabajo, que deben ser modificados para incluir el

módulo blockchain integrado. El objetivo principal de esta investigación

doctoral es desarrollar nuevas técnicas para integrar blockchain en In-

ternet de las Cosas (IoT) para la gestión masiva de datos en un entorno

edge-fog-cloud. Para cumplir con este objetivo general, se ha diseñado

un modelo de flujos para procesar grandes datos de IoT en computación

Edge-Fog-Cloud mediante el uso de la composición de micro/nanoservicio,

un modelo de verificación continua basado en blockchain para registrar

eventos significativos de la modelo de entrega continua de datos, selec-

cionando técnicas para integrar blockchain en sistemas cuasi-reales que

permiten asegurar la trazabilidad y el no repudio de datos obtenidos de

dispositivos y sensores, La evaluación propuesta ha sido minuciosamente

evaluada, mostrando su factibilidad y buen rendimiento.

xiv

CONTENTS

Published and Submitted Content vii

Other Publications ix

Abstract xi

Resumen xiii

List of Figures xix

List of Tables xxi

Abbreviations xxiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 4
1.3 Hypothesis . 6
1.4 Objectives . 7
1.5 Contributions . 8
1.6 Research Methodology . 9
1.7 Dissertation outline . 12

2 Background and Related Work 15
2.1 Background . 16

2.1.1 Workflows engines for IoT 16
2.1.2 Data management in IoT workflows 18
2.1.3 Blockchain technology 21

2.2 Related Work . 27
2.2.1 Optimizations in Blockchain platforms 27

2.3 Summary . 30
2.3.1 Limitations of Previous Work 32

xv

3 A methodology for continuous delivery/continuous verification
schemes for traceable IoT dataflows 37
3.1 Introduction . 37
3.2 Methodology for building CD/CV schemes 39

3.2.1 Design of the CD/CV Global Manager 40
3.2.2 Construction Manager 45
3.2.3 Operation Manager . 50

3.3 Integration of GM-CD/CV with scientific workflows 52
3.4 Periodic Contract Verification 53

3.4.1 Contract verification process 54
3.5 Summary . 58

4 Blockchain optimizations 61
4.1 Introduction . 61
4.2 Real-time data acquisition . 61
4.3 Traditional blockchain implementation 64

4.3.1 Hyperledger Fabric implementations 65
4.4 Proposed Optimizations in Blockchain 69

4.4.1 Atomic Records . 70
4.4.2 Changing the Transaction Block Size 71
4.4.3 Artifact generation and automatic deployment 71
4.4.4 High-Performance delivery 73
4.4.5 Enhancing the continuous delivery component. . . . 75

4.5 Summary . 77

5 Experimental results 79
5.1 Evaluation methodology . 79
5.2 Case Study 1: User Mobility . 81

5.2.1 Description of case study 81
5.2.2 Infrastructure Hardware and Software 83
5.2.3 Solutions Studied . 83
5.2.4 Configuration Initial CD/CV 84
5.2.5 Metrics . 86
5.2.6 Exploratory evaluation phase 87
5.2.7 Results and discussion of the studied solutions 89
5.2.8 Performance comparison. 95
5.2.9 Discussion . 106

xvi

5.3 Case Study 2: Fleet of trucks transporting food 108
5.3.1 Description of case study 109
5.3.2 Infrastructure Hardware and Software 113
5.3.3 Solutions Studied . 114
5.3.4 Configuration Initial CD/CV 114
5.3.5 Experimental Variation 117
5.3.6 Metrics . 117
5.3.7 Analysis and discussion 118

5.4 Case Study 3: Electrocardiogram Signals 127
5.4.1 Description of case study 127
5.4.2 Infrastructure Hardware and Software 128
5.4.3 Solutions Studied . 129
5.4.4 Configuration Initial CD/CV 131
5.4.5 Experimental Variation 132
5.4.6 Metrics . 133
5.4.7 Analysis and discussion 134

5.5 Summary . 144

6 Conclusions and future work 145
6.1 Introduction . 145
6.2 Goals achievements . 145
6.3 Contributions of the thesis . 146
6.4 Publications and conferences 149
6.5 Future research lines . 151

Bibliography 155

xvii

LIST OF FIGURES

1.1 Problem statement . 6
1.2 Research Methodology . 10

2.1 Taxonomy of techniques of data management in IoT. 18

3.1 CD/CV model applied to a workflow. 38
3.2 Methodology proposed for building CD/CV schemes. 39
3.3 Modules of the Global CD/CV Manager. 41
3.4 The architectural pattern of the CD/CV Manager: an exam-

ple of a service for the analysis/processing of data from IoT
environments. 46

3.5 Management framework CD/CV in operation. 51
3.6 Continuous contract verification flowchart 55

4.1 Definition phases of the designed model: definition, deploy-
ment, acquisition and verification of data 63

4.2 Ledger structure . 65

5.1 Evaluation methodology . 80
5.2 Design of the workflow for mobility case study. 81
5.3 Verifiability network for the mobility case study. 85
5.4 Operation of the CD/CV system for the user mobility case

study. 86
5.5 The number of CD/CV Virtual Containers deployed for each

configuration for the mobility scenario - Exploratory stage. . 90
5.6 Response times of the configurations in the exploratory stage. 92
5.7 Throughput of configurations defined in the exploratory stage. 94
5.8 Response time all solutions. 96
5.9 Comparison of the performance overhead/gain of the stud-

ied solutions with C D-S1 configuration. 99
5.10 Response times of the studied solutions considering task

parallelism. 100
5.11 Overhead/gain percentage of all configurations in compari-

son with DagOn* for workload of 10 user data. 102

xix

5.12 Overhead percentage comparison of studied configurations
with C D-S12 for 100 user data. 102

5.13 GM-CD/CV module runtimes. 104
5.14 Case study Transport fleet . 109
5.15 Search for validated shipments 112
5.16 Detail of a validated shipment 113
5.17 Generic blockchain network design 114
5.18 Average time per transaction with concatenated records with

different workloads . 119
5.19 Execution errors using concatenated records with different

validation block sizes . 121
5.20 Unrecorded temperature, GPS and speed sensor transac-

tions with different validation block size 123
5.21 Comparison between concatenated records and atomic records

with different workloads . 125
5.22 Delayed transaction validation with different validation block

size . 126
5.23 Case study: ECG signal processing 128
5.24 Speedup Design 1 (Fullstage) and 2 (Greedy). 136
5.25 Comparison of the number of processes selected (Np 4 vs

Np8) in design 3 to process 1024 data. 138
5.26 Comparison between the best configuration (6 Hosts and

NP 4-4-4) obtained in Design 2 and 3. 139
5.27 Comparison of design 2 (Greedy) and design 4 (Greedy L5)

to process 1024 data. 141
5.28 Comparison of design 4 (Greedy L5) and design 5 (Greedy

L5 Blockchain) to process 1024 data. 142

xx

LIST OF TABLES

2.1 Summary of state of the art - General solutions. 31
2.2 Summary of state of the art - Blockchain solutions. 34

5.1 A summary of the mean response times produced by the
studied configurations with 10-user-data workload. 102

5.2 A summary of the mean response times produced by the
studied configurations with 100-user-data workload. 103

5.3 Software infrastructure of the case study. 129
5.4 Hardware infrastructure of the case study. 130
5.5 Solutions studied - Case study 3. 130
5.6 Results Design 1- GM-CD: Fullstage. 134
5.7 Results Design 2- GM-CD: Greedy. 135
5.8 Results Design 3- GM-CD/CV: Greedy Blockchain. 137
5.9 Results Design 4- GM-CD: Greedy L5. 140
5.10 Results Design 5- GM-CD/CV: Greedy L5 Blockchain. 141
5.11 Overhead of the D5 (GM-CD/CV: Greedy L5 Blockchain) so-

lution compared to D4 (GM-CD/CV: Greedy L5). 143

xxi

ABBREVIATIONS

API Application Programming Interface

BC Blockchain

CD Continuous Delivery

CV Continuous Verification

DAG Directed Acyclic Graph

DIY Do It Yourself

ETL Extract-Transform-Load

GM Global Manager

HDF5 Hierarchical Data Format version 5

IoT Internet of Things

MPI Message Passing Interface

xxiii

CHAPTER 1

INTRODUCTION

This chapter discusses the research problem of the thesis, presenting both

the motivation and the definition of the research problem. In addition, the

objectives and methodology used for the research work presented in this

document are described.

1.1 Motivation

Internet of Things (IoT) is a paradigm in which physical objects, with fea-

tures such as computing, communication, and sensing capabilities, are

deployed in the field. These sensors and IoT devices collect and transmit

environmental variables to the fog/cloud in real time and on a large scale,

which represents a great challenge for the storage, processing and security

in the life cycle of this data considering the volume of data that can be gen-

erated. According to a report by the International Data Corporation (IDC),

the volume of data produced by 41.6 billion devices is estimated to be 79.4

zettabytes (ZB) of data by 2025. This growth in IoT data is largely due to the

fact that IoT is useful in a wide variety of applications and sectors.

Some of the most common use cases for IoT include industry and manufac-

turing where it monitors and optimizes the production and supply chain as

well as predicting and preventing machine problems and improving energy

efficiency. In the health and wellness sector, it is widely used to monitor and

track patient health, improve efficiency and safety in hospitals. In the field

or agriculture, they are used to monitor and optimize the use of resources,

1

Chapter 1. Introduction 2

such as water and fertilizers, efficiency in crop production or prevent possi-

ble fires. Sectors such as the home and smart cities also incorporate the use

of IoT data to control, monitor and optimize resources. These are just some

of the most common IoT use cases, but the technology is also being used

in other areas, such as transportation, logistics and entertainment, among

others.

Nowadays, regardless of the use case, most IoT data is processed using

workflows that are executed on different infrastructures (edge-fog-cloud),

which produces dataflows from the IoT through the edge to the fog/cloud.

In many cases, they also involve several actors (organizations and users),

which poses a challenge for organizations to establish verification of the

transactions performed by the participants in the dataflows built by the

workflow engines and pipeline frameworks. It is essential for organizations,

not only to verify that the execution of applications is performed in the strict

sequence previously established in a D AG by authenticated participants,

but also to verify that the incoming and outgoing IoT data of each stage of

a workflow/pipeline have not been altered by third parties or by the users

associated to the organizations participating in a workflow/pipeline. Those

verification and validation tasks result crucial for organizations to carry out

critical decision-making processes in a confident manner, as any alteration

in any data exchange performed by the workflow/pipeline applications

would produce erroneous information, which would hinder the work of

decision-makers. For example, several authors, such as [1], have highlighted

the importance of adopting IoT in logistics to reduce the operating costs,

to improve the capacity to respond to the changing needs of both the envi-

ronment and customers, and to facilitate decision-making. The key factor

lies in the agility of data acquisition from the IoT environment in real-time,

which allows for faster processing of the data as soon as it is available.

Chapter 1. Introduction 3

One approach to face up this issue is monitoring and registering all transac-

tions performed by the applications, as well as the alterations of the contents

performed during the transactions, in a trusted environment using pub-

lic/private blockchain networks. Blockchain technology allows the creation

of distributed, immutable and verifiable records between two or more par-

ties without requiring a centralized intermediary. The information is stored

in the form of chained blocks that are linked by a unique cryptographic

hash and where each block in the chain contains a series of transactions.

This hash allows easy identification of data manipulation since if a block-

/transaction is altered, the following blocks in the chain are also altered,

which makes it very difficult for a possible attacker to modify the stored

information without being detected. The use of blockchain technology has

been popularized mainly for its use in cryptocurrency, but it also has wider

applications not only in Supply Chain traceability but also in Electronic

Voting, Healthcare System, Digital Right Management, Insurance, Financial

System, or Real Estate [2]. The interest is due to the characteristics of the

technology, which provides multiple benefits such as the complete opera-

tion of the system without relying on intermediaries or centralized entities,

decisions made by all participants in the network, system transparency,

immutability, reliability, and decoupled verification and processing of the

transactions.

In [3] and [4], the authors studied some cases using blockchain in supply

chain management system. As a result they concluded that it was empha-

sized that enabling secured transactions without trusted third parties in an

automatic way makes legal and regulatory decisions much simpler. One

of the areas that could benefit most is the logistics of food supply chains.

Authors, such as [5], describe how to use blockchain technology in food

supply chains and mention the main benefits of applying it, among which

are more intelligent decision-making both for the client, the producer and

auditors. Moreover, the possibility of achieving inter-organizational trust is

Chapter 1. Introduction 4

a major advantage towards the adoption of blockchain technology in supply

chains management [6].

1.2 Problem statement

Currently, large volumes of IoT data are produced and need to be pro-

cessed to extract knowledge from them in a timely manner for decision

making. One mechanism widely used in the literature for this purpose

is pipelines and workflows. These mechanisms encompass a set of het-

erogeneous services/applications that apply a certain process to data for

information extraction. These processes can be applied independently by

different geographically distributed and unrelated organizations or entities.

This scenario generates the need to establish control mechanisms to ensure

full compliance and correct execution of each of the processes applied to

the data by the different organizations.

On the one hand, it is necessary to establish control over the sequence of

processes. Depending on the use case, there will be scenarios where two or

more processes can be applied simultaneously to a set of data and there will

be cases where there is process dependency. In other words, the execution of

process i of organization A is required before executing the following process

(i+1) of organization B. In this sense, it is vital to ensure the execution of

organization A’s processes so that organization B can operate.

Additionally, in scenarios where there is process dependency and in gen-

eral, there could be failures/alterations in the execution of processes that

critically affect the decision making process. If a participant in the workflow

decides to act maliciously for personal gain or other purposes outside of

what has been agreed upon by all parties involved, a mechanism must be

Chapter 1. Introduction 5

in place to identify it. Therefore, it is essential to identify possible omis-

sions or alterations produced by the organizations or entities involved in

the processing of the data.

Blockchain technology and its mechanism for recording immutable transac-

tions in a distributed and decentralized manner, characterize it as an ideal

technology to support the aforementioned challenges and challenges since

it allows the verification of the records generated in a secure manner.

However, the integration of blockchain technology with workflows for IoT

data processing is not trivial considering that it is a challenge not to lose

the generalization of workflows and/or pipeline engines, which must be

modified to include the embedded blockchain module.

On the other hand, by including the verification component to the tradi-

tional workflow processes, there are estimated costs (overhead) of recording

transactions performed by applications through edge-fog-cloud environ-

ments, which produces an efficiency problem that manifests itself in the

form of delays in the delivery of data to the applications that create the

dataflows and in the delivery of information assets to the decision-making

processes.

Additionally, to ensure the recording of transactions in the blockchain, this

network must produce and manage different cryptographic artifacts such

as private keys and certificates to properly secure and guarantee the partici-

pation of organizations.

In this context, Figure 1.1 structures the previously described problems

in three sections: 1) Workflow process verification, 2) Efficient IoT data

processing and 3) Information management. Current traditional workflow

engines and pipeline frameworks often do not take into account services to

address these issues.

Chapter 1. Introduction 6

Workflow process verification Efficient IoT data processing

Verifiability network
overload

Information management

Process sequence
control.

Identification of
omissions or alterations

Data volume
Heterogeneity of

applications

1 3

Handling of
cryptographic material

2

FIGURE 1.1: Problem statement

1.3 Hypothesis

The main hypothesis of this thesis is that the integration of blockchain

techniques in IoT data management workflows could facilitate trust among

actors and decision-making in almost real-time by making continuous veri-

fication of smart contracts applied to the different stages of IoT data process-

ing. We foresee that platform-agnostic blockchain optimizations should

provide better performance than that currently provided by blockchain

platforms.

In this context, the present research work proposes the creation of new

techniques to use blockchain in Internet of Things (IoT) domains and con-

trolled workflows with execution commitments specified by users. These

techniques focus on optimizing tools for use in near-real-time systems to

ensure non-repudiation and traceability of data generated in workflows

from IoT data obtained from devices and sensors. These aspects are cru-

cial in order to maintain the accuracy of data and to reproduce the results

obtained in scientific research and critical data analysis. Additionally, it

permits the verification of the results achieved, the inspection of the data

Chapter 1. Introduction 7

analysis process to address queries, and the pinpointing of possible areas

for refinement. In this sense, the following general objective is proposed

together with the specific objectives that allow the fulfillment of the same.

1.4 Objectives

The main objective of this doctoral research was to create new techniques

to use blockchain in the Internet of Things (IoT). Thus, we defined the main

goal of this thesis is to design new techniques to integrate blockchain

in Internet of Things scenarios for massive data management in edge-

fog-cloud environments. These techniques will focus on the optimization

of tools for their use in near-real-time systems to ensure traceability and

non-repudiation of data obtained from devices and sensors. In addition, the

effects of these techniques for the implementation of controlled workflows

with execution commitments specified by the users will be studied. The

techniques provided should be infrastructure-agnostic to allow the usage

of generic distributed processing structures to manage data life cycles, as

well as to create one scheme for adding non-functional properties to the

delivery of data.

To fulfill this general objective, the following specific goals are foreseen for

this thesis.

1. To design a content delivery model for processing big IoT data in Edge-

Fog-Cloud computing by using micro/nanoservice composition.

2. To design a continuous verification model based on blockchain to reg-

ister significant events from the continuous delivery model, selecting

techniques to integrate blockchain in quasi-real systems that allow en-

suring traceability and non-repudiation of data obtained from devices

and sensors.

Chapter 1. Introduction 8

3. To enhance the performance of blockchain systems to log IoT data to

cope with the poor performance of current systems.

4. To evaluate the solution proposed with study cases to demonstrate

its feasibility.

1.5 Contributions

The main contributions of this thesis are:

• Creation of a Continuous Delivery/Continuous Verifiability model

allowing automatic deployment of integrated workflows for IoT-edge-

fog-cloud systems and blockchain networks to record the actions

performed in the workflows for continuous verification along system

lifecycle. The deployment is made based on user specifications de-

fined as extract/transform/load (ETL) operations and connections

of components defined as a Directed Acyclic Graph (DAG). We have

provided a technological solution for automatic deployment of a large

scale distributed business logic system using virtualized appliances,

including a usable Web interface to assist in deployment and visual-

ization of data and results. We have also devised a formal method to

describe the business logic and the different actors involved.

• Producing new techniques for reducing the overhead of transaction

registration. Blockchain is slow to cope with real-time transactions,

which affects the user service experience (decision-makers) of IoT

workflows. We have enhanced the implementation of the blockchain

transactions with two platform independent optimization techniques

(atomic transactions and grouped validation). Moreover, we have

enhanced transactions data transmission and recording by transpar-

ently providing parallel patterns for the blockchain process. Main

Chapter 1. Introduction 9

enhancements consist of performing real-time data acquisition for

each sensor value independently and recording those values as single

blocks in the chain. Those blocks are later consolidated in a bigger

block for each sensor, but this is made outside the recording process

and, thus, it does not delay data capturing.

• Automatic deployment of smart contracts. The installation and de-

ployment of contracts in the CD/CV system is performed automati-

cally using the ETL mechanism, which allows mapping each stage of

the workflow with an organization in the blockchain. This mapping

allows the verification of transactions in the different organizations or

stages of the workflow, regardless of the specific purpose of each appli-

cation. This generates an IoT data flow that maintains the generality

of the solutions.

• A method for continuous verification of smart contracts in real-time.

A reliable verification, involving trusted third parties in the loop, that

allows very fast conflict resolution.

1.6 Research Methodology

The approach for carrying out the research project is depicted in Figure

1.2 and comprises of 5 primary phases: 1) Defining the scope, 2) Establish-

ing the prototype, 3) Obtaining the necessary techniques, 4) Conducting

experimental evaluation, and 5) Drawing conclusions.

Throughout these phases, an analysis of the current status of the subject

matter will be undertaken to comprehend the overall theme and conceptual-

ization of the issue. This understanding will be used to formulate, construct,

implement and assess the techniques required for optimizing blockchain in

IoT. These techniques will be designed to enable efficient and secure data

Chapter 1. Introduction 10

Define prototype /
Proof of concept

- Conceptual definition of the
prototype.
- Design and development of the
components of the prototype.
- Design and development of a
continuous verification scheme.
- Design of interconnection
mechanisms, management,
orchestration, and choreography.
- Design and development of a
continuous verification scheme.

Design and development techniques
- Analysis of Blockchain technology

components.
- Design and development of blockchain

optimization techniques.
- Design and development of workflow

management techniques.
- Design and development of control scheme

for data management flows

Define scope
- State of the art

- Define case studies
 - Define work methodology

Experimental evaluation
- Design experiments

- Evaluate prototype and techniques
- Analyze preliminary results

- Adjust design

1

2

3

4
Conclusion

and future work
- Analyze final results

- Verify hypothesis
- Write thesis document

5

FIGURE 1.2: Research Methodology

management through a workflow and control system, specifically for the

handling of large amounts of data.

The forthcoming paragraphs outline the details of the four stages and the

corresponding tasks that are anticipated to be executed in this research

work:

1. Define scope: During this stage, 3 sub-steps were performed: 1)

Definition of the state of the art, 2) analysis of possible case stud-

ies including IoT data availability and 3) definition of this research

methodology.

2. Define prototype/Proof of concept: In this phase, we conducted a

proof of concept where an initial prototype was devised and built to

showcase the technical or functional feasibility before implementing

the proposed optimization techniques. To achieve this, the subse-

quent tasks were performed: 1) The creation and construction of the

Chapter 1. Introduction 11

prototype components, 2) The formulation and execution of a con-

tinuous verification scheme, and 3) The design of interconnection,

management, orchestration and choreography mechanisms.

3. Design and development techniques: The choice of optimization

techniques was obtained by establishing the following sub-steps:

• Analysis of Blockchain technology components: This analysis

is focused on detecting possible Blockchain technology compo-

nents that generate bottlenecks or directly affect system perfor-

mance, especially in IoT scenarios where the amount of data to

be processed is considerable.

• Design and development of blockchain optimization tech-

niques: The main goal of this phase was to conceptualize and

establish the design principles of the optimization techniques.

Throughout this stage, we identified the different components or

elements of the proposed solution and adapted the approach to

the design principles that are integral to Blockchain technology

to ensure successful integration into IoT scenarios.

• Design and development of workflow management techniques:

During the progression of this phase, a model/schema for man-

aging large-scale data processing was obtained. The subsequent

tasks were undertaken to create this model: 1) Devising a data

flow management scheme, 2) Creating and implementing tech-

niques to optimize mass data processing using workflows and 3)

Designing and constructing a workflow launcher that integrates

Blockchain technology.

• Design and development of control scheme: In this phase, the

focus was on integrating the optimization techniques that were

previously established to create the design for the Blockchain

Chapter 1. Introduction 12

network to be implemented. The primary purpose of this net-

work is to regulate the management of IoT data flows. Further-

more, to ensure the effectiveness of the network, mechanisms

for verifying transactions or processes carried out on the data

were formulated. In addition, a traceability and non-repudiation

viewer for workflows were conceptualized, constructed, and

tested.

4. Experimental evaluation: The activities carried out in this stage

include the integration in the base prototype of the Blockchain tech-

niques optimized in two real scenarios, design of experiments, evalu-

ation of the results obtained, analysis of the preliminary results and

adjustments to the design of the initially proposed prototype.

5. Conclusion and future work: Finally, the present document was

written to include the analysis of the final results and the verification

of the hypothesis.

1.7 Dissertation outline

This document details the work conducted through the development of this

thesis following the methodology described in the previous section, and it

is structured as follows:

• Chapter 1, Introduction, has briefly presents the motivation, scope,

and objectives of this thesis in the context of the problems currently

evidenced.

• Chapter 2, State of the Art, establishes the basis of the contributions

of this thesis, describing the current state of the main workflows and

that of blockchain technology to address the described problem. This

Chapter 1. Introduction 13

chapter also compares the characteristics of the different solutions

and presents the relevant limitations found in the literature.

• Chapter 3, A methodology for continuous delivery/continuous veri-

fication schemes for traceable IoT dataflows, presents the proposed

Manager for integrating blockchain technology with IoT data work-

flows.

• Chapter 4, Blockchain optimizations, presents the optimizations ob-

tained and applied to the proposed Manager.

• Chapter 5, Evaluation, presents the results obtained by evaluating the

proposed solution in different use cases.

• Chapter 6, Conclusions, summarizes this thesis and its objectives,

detailing its contributions and results, while discussing potential di-

rections for future research enabled by this work.

CHAPTER 2

BACKGROUND AND RELATED WORK

This chapter discusses the current status of various topics and areas re-

lated to the thesis. To provide a clear understanding of the related works,

they have been grouped into three main sections. The first section covers

workflow engines for IoT, the second focuses on data management in IoT

workflows, and the third section is dedicated to Blockchain technology with

a focus on describing its limitations and challenges. Finally, a related works

section is presented to describe the works that cover some "convergence"

between blockchain technology with workflows in the IoT environment,

the proposed optimizations to the challenges of blockchain technology and

the limitations found in those works. This organization allows a thorough

and systematic exploration of the different aspects that are relevant to the

thesis.

G1

G2

G3

G4

Internet of
Things

G1

G2

G3

G4

Research context

Workflows + IoT + Blockchain

Workflows + IoT

IoT + Blockchain

Workflows + BlockchainBlockchain

Workflows

Workflows

15

Chapter 2. Background and Related Work 16

2.1 Background

Scientific workflow engines like Pegasus [7], Triana [8], and Sacbe [9] are

primarily designed for handling heavy processes, and not for dealing with

IoT environments. Although some solutions like DagOnStar [10] and Parsl

(Scalable Parallel Scripting) [11] are based on libraries and can manage

workflows consisting of Python functions and external applications on any

computational resource, none of them are specifically designed for creating

efficient workflows on IoT systems.

2.1.1 Workflows engines for IoT

New proposals have emerged to integrate IoT with workflows for real-time

and automated decision-making environments. For example, a study [12]

presented a proposal for using IoT in repetitive construction operations,

while Osmotic flow computing [13] is a paradigm that allows for automatic

deployment of microservices over interconnected Edge and Cloud Data

Centers. In the Osmotic Flow model, an IoT workflow application is repre-

sented as a directed graph with data transformation tasks as its nodes and

dataflow dependencies between them as its vertices. The FairWind system

[14] is an intelligent navigation system that uses cloud computing and IoT

to collect data from vessel sensors to create high-resolution 3-D maps of the

ocean floor. However, FairWind is limited to a specific use case and depends

on a third-party infrastructure like Amazon Web Services.

Recently, a new IoT workflow composition system (IoTWC), which allows

IoT users to define their workflows with proposed IoT workflow activity

abstract patterns (e.g., data capture, data store, data visualization), has

been presented [15]. IoTWC leverages the analytic hierarchy process (AHP)

to compose the multi-level IoT workflow that satisfies the requirements

Chapter 2. Background and Related Work 17

of any IoT application. An analysis, made using a smart home scenario,

showed the effectiveness of IoTWC in terms of IoT workflow abstraction

and composition. However, the paper lacks a real-world evaluation to mea-

sure performance of the solution, that seems to be mostly theoretical. All

the former tools lack verifiability and traceability in the workflow stages

deployed.

From the literature reviewed, we could see that major challenges for IoT

workflows in collaborative edge, fog, and cloud environments are related

to data placement strategies [16], [17], providing self-adapting services

orchestration [18], interoperability of data and processes between the dif-

ferent stages [17, 19], portability of tasks [20], computation offloading [21],

programmability and flexibility [22], efficiency [23], and finally verifiability.

Verifiability is a critical property in IoT workflows where data are used to

control quality of goods, medicines, food, etc. [24]. However, a major chal-

lenge is that the data processing in IoT workflows can result in incorrect

results, making them untrustworthy. Therefore, securely and reliably pro-

cessing the outsourced data is a crucial security issue with many challenges.

To address this problem, one proposed solution is to combine blockchain

and smart contracts with IoT operations [25],[26],[27],[28],[29],[30]. For

example, in [31], the authors demonstrated a blockchain-based supply

chain traceability system for food safety, while in [32], they presented a

blockchain tokenizer for industrial IoT applications that lack trust.

However, the unique characteristics of IoT systems, such as heterogeneity

and pervasiveness, pose challenges in designing smart contracts for such

systems [33],[34]. Moreover, even if the blockchain technology provide de-

centralized security and privacy [35], efficiency is a major issue, as it may

involve power surge, high latency operations, and considerable computa-

tion, which is not adequate in some settings [36]. A cost analysis of internet

of things sensor data storage on blockchain via smart contracts is shown in

Chapter 2. Background and Related Work 18

[37]. The study showed that even though expensive, for those applications

where the integrity and transparency of data are crucial, storing IoT sensor

data on Ethereum could be a reliable solution.

2.1.2 Data management in IoT workflows

A comprehensive and systematic review of the existing literature on big data

management techniques in the Internet of Things (IoT) is presented in [38].

The study explores the various big data management techniques that have

been proposed and applied in the context of the IoT, including techniques

for storage (e.g. distributed databases, cloud, in-memory or distributed file

system), processing (real-time, batch, cloud or distributed), analysis (e.g.

data mining, machine learning, sentiment analysis, social networking) and

data visualization (e.g. real-time, static or geospatial data).

From a more generalized and reduced point of view, the typical data han-

dling that is done in workflows is described in Figure 2.1.

Treatment for
administration

Assurance

Treatment for
decision making

DATA
MANAGEMENT

Processing

Transactional
RecordingTreatment for

establish Control

 Decremental

 Incremental

Preprocessing

Confidentiality Integrity

Research
context

FIGURE 2.1: Taxonomy of techniques of data management in IoT.

The taxonomy that is illustrated in the figure is based on the work presented

in [39]. In this taxonomy, there are three types of data processing:

Chapter 2. Background and Related Work 19

• Treatment for decision-making. It basically consists of the processes

applied to the data either for the extraction of knowledge and patterns

in the data (decremental process), or to generate added value to them

(incremental process) [40].

• Administration of meta-data. It refers to the management of the meta-

data of the data, such as where the data is located, where it comes

from, who it is, size, etc. [41].

• Procedures to establish control of the data. It basically corresponds

to two tasks, the first is the traceability record of the operations on

the data necessary to avoid problems such as non-repudiation [42],

and the second task is the assurance (for example, confidentiality and

integrity) that is required in sensitive data now. They are transmitted

during the different stages of the workflow and primarily in cloud

environments [43].

In addition, in [44] the authors present an insight into the data manage-

ment techniques for IoT. The study includes the most relevant concepts of

IoT data management and a comparison of surveys on the topic. The au-

thors highlight new IoT data management methods, such as middleware or

architecture-oriented solutions to facilitate efficient storage, the integration

of generated data, and indexing methods of structured and unstructured

data. In general, the authors classify these methods around three main

principles: data collection, data management system design, and data pro-

cessing. As future work, the authors propose mechanisms using future

technologies such as Fog computing to improve data management.

Transactional Recording

The traditional solutions for verification of transactions are focused on a

single piece of software with which the end-users are dealing with. This

Chapter 2. Background and Related Work 20

type of solution is not suitable for workflows used in IoT dataflows, as a

workflow is composed by different pieces of software (applications).

Security is a critical aspect of managing IoT data. As a result, various studies

have suggested integrating blockchain solutions into IoT systems to en-

hance security in data access, transmission, and storage [45, 46]. Blockchain-

based solutions provide trust and stability, making them a suitable option

[47]. Recently, Puri et al. [48] have proposed using smart contract-based

policies to reinforce privacy and security in IoT.

Some solutions have been proposed to avoid Over-centralization of data.

Ramachandran et al. [49] describe different approaches for distributing the

verification and data management aspect between Linked Data and the

distributed ledger, keeping the integrity of the stored information intact

through Blockchain-based verification. Helo presented in [50] a pilot sys-

tem of a cloud-based portal for real-time tracking and tracing of logistics

and supply chains using IoT and blockchain. The architecture of the pro-

posed portal system is connected to transport companies, tracking devices,

consolidation points and suppliers.

Braun et al. [51] have recently presented an approach for documenting the

execution of inter-organizational workflows on a distributed ledger, with

the possibility of adding selectively shared verifiable data to the workflow

instances’ documentation. It allows to record events, but the solutions is

tailored to the specific use case. Shukla et al. [52] have presented this year a

system called BlockIoT which connects personal Internet of Medical Things

(IoMT) devices to Electronic Health Records using blockchain technology

to provide a trustworthy and reliable method for aggregating IoMT device

data and smart contracts that automatically provide relevant alerts to the

healthcare providers.

Chapter 2. Background and Related Work 21

2.1.3 Blockchain technology

Classification

Blockchain technology can be classified attending to the nature of the

blockchain network created. Different studies analyze the different de-

velopment tools and network taxonomies available to determine which

one provides better security, confidentiality, immutability, decentralization,

anonymity, or auditability of data. Basically, there are three main types: pub-

lic, private, and consortium. The different network taxonomies available in

blockchain technology are compared in [53] and [54].

In public networks, anyone can participate and register operations in the

blockchain. The transactions are visible to all participants and allow a com-

pletely decentralized blockchain network to be established. In addition,

the high number of individuals connected in the network ensures that the

stored data is immutable, since it is replicated by each of the participants,

making it practically impossible to alter it. However, this information is

visible to all members, which means that privacy is reduced, because any-

one can perform and validate transactions without needing to belong to

a specific organization. The Ethereum [55] and Bitcoin [56] development

platform uses this type of network. A example of application is the platform

called BanQu, which aims to connect the unbanked to the global economy

through mobile phones and a blockchain network [57], those platform al-

lows people to record their financial transactions in the blockchain history

owning their data. The main characteristics of the former platforms are prof-

itability, transparency using secure and auditable records, implementation

anywhere, and sustainability.

Nevertheless, there are several issues associated with public and open net-

works. For instance, research conducted on BanQu [58] revealed that the

storage location of the decentralized ledger is uncertain. In addition, it

Chapter 2. Background and Related Work 22

is challenging to deploy the technology infrastructure in the targeted cus-

tomers’ region. Another study [59] demonstrated that Bitcoin transactions

can be linked to users, which jeopardizes anonymity. Moreover, the scala-

bility of these solutions is typically poor since there is no limit to block size.

To address this challenge, a novel protocol that focuses on scalability has

been proposed in [60].

In private networks, only some peers have the capacity to record and man-

age operations in the blockchain system, being Hyperledger Fabric [61] the

de-facto standard platform for this kind of networks. In contrast to public

networks, private networks only have participants who are members of a

particular organization [62]. This removes the anonymity of the participants

in the transactions, because they must authenticate their identity with a

certificate. In those networks, it is a lot easier to modify a transaction, but

the immutability level is still high.

The third category of network taxonomy is consortium networks [63], which

are a fusion of the two previous network types. These networks have public

data, but only a particular group of participants are responsible for vali-

dating transactions. Hyperledger Fabric is an example of a development

tool that can utilize this type of network. Currently, consortium blockchain

and smart contract technologies are being used to secure data storage and

sharing in IoT systems. For instance, the application of these networks in

vehicular edge networks is demonstrated in [64].

Lastly, it is noteworthy to mention the investigations conducted by [65],

[66], and [67], where they compare various development platforms, such

as Hyperledger Fabric and Ethereum. They mainly focused on the depend-

ability of the data stored in the transactions and the implemented network

type. As highlighted in those studies, private networks provide better reli-

ability since only trusted actors within the organization participate in the

Chapter 2. Background and Related Work 23

validation process. This feature also enhances security since participants

outside the organization cannot view the content of the transactions.

In this research work, we have chosen to use Hyperledger Fabric, since its

features, which are described in the following section, allow the creation

of networks of entities with different privileges, ideal for integration with

workflows where multiple actors are involved.

Hyperledger Fabric

Hyperledger Fabric is an open source blockchain technology toolkit created

by the Linux Foundation, which aims to provide a flexible and scalable

infrastructure for building blockchain-based enterprise applications [61].

Hyperledger Fabric achieves consensus by relying on a backend service

(known as the ordering service) that intermediates the messages between

senders and receivers [68]. This backend service will ensure that all receivers

will see messages in the same order – it follows that if all receivers see mes-

sages in the same order, they will perform the same actions/commits, etc.

and the consensus is achieved. The consensus method used in Hyperledger

Fabric is called "Consensus Pluggable", which gives users the option to

select different consensus algorithms according to their business needs and

requirements.

Consensus algorithms available in Hyperledger Fabric include Practical

Byzantine Fault Tolerance (PBFT), Raft and others. Currently Fabric 2.x uses

Raft, a Leader/Follower type, consensus algorithm [69]. Moreover, Hyper-

ledger Fabric uses Crash Fault Tolerance (CFT) to achieve consensus for

single as well as multiple org systems. Crash Fault Tolerant model guaranties

to withstand system failures, such as crashes, network partitioning. Having

N nodes in your consensus system CFT capable to withstand up to N/2 such

crashes.

Chapter 2. Background and Related Work 24

During the consensus process in Hyperledger Fabric, network nodes (also

called "peers") validate and confirm transactions, reaching consensus on

the current state of the distributed ledger (known as the "ledger"). Each node

in the network maintains a copy of the ledger, ensuring that all participants

have access to the same information and that data integrity is maintained.

Hyperledger Fabric uses a modular network architecture to achieve consen-

sus, which means that business logic and data are separated into different

layers. This separation allows the creation of private channels and the estab-

lishment of access policies that control who can see what data and under

what conditions. In addition, Hyperledger Fabric provides an identity and

access management system that enables enterprises to control and manage

permissions for users and stakeholders on the network.

In summary, Hyperledger Fabric uses a scalable and modular approach to

consensus, giving users the ability to choose between different consensus

algorithms and control access to data. This makes it a standout choice for

enterprise blockchain applications that need a high level of security, privacy

and flexibility.

Applications

One of the prominent uses of blockchain technology is in the field of cryp-

tocurrency, such as Bitcoin, to enable financial transactions and supply

chain financing [70, 71]. Some of the popular blockchain applications in

this area include the utilization of cryptocurrencies to manage logistics and

transport operations, as seen in the Chinese "One Belt One Road-OBOR"

initiative [72]. This project aims to connect China with multiple countries

across Eurasia, Africa, and Oceania. According to experts, the implemen-

tation of blockchain technology can significantly reduce the transfer time

and costs of funds, making it a feasible financing option for OBOR projects.

Chapter 2. Background and Related Work 25

In an effort to address the needs of the maritime logistics industry, [73]

developed a blockchain-based token deposit system using Ethereum as

the underlying technology platform. The system included a RESTful API

for business integration and garnered the participation of several major

carriers and shippers. However, the system faced two significant challenges

which led to its suspension in October 2019. Firstly, the low volume of

transactions made it difficult to continue commercial operations. Secondly,

there were design issues, resulting in some shipments not being executed

in accordance with reservations. Additionally, shippers faced difficulties in

confirming their reservations during the high season due to performance

problems.

In [5] and [74], studies are presented that explore the use of blockchain

technology for provenance and traceability in the Internet of Things (IoT)

integrated with food logistics. The authors describe different cases that

have been implemented in various parts of the world. One of the cases

studied involves Walmart using blockchain to monitor pork in China and

mangoes in Mexico [75]. The results of the tests indicate that blockchain

can significantly reduce the time required to track information, from one

week down to just 2.2 seconds.

Various studies have implemented blockchain technology in supply chains

due to its valuable benefits like traceability and trust, which enhance the

dependability of supply chains. Although it can be applied to any prod-

uct, blockchain is particularly useful for sensitive items such as food and

medicine. For example, agri-food supply chains to certify and warranty the

origin of goods to prevent frauds [5, 76–78]. Furthermore, it has been used

in medicine supply chains, because many of them are sensitive to tempera-

ture or humidity, among other factors. Therefore, it is essential to ensure

that the medicine is in optimal condition when it is consumed, following

the Good Distribution Practice of medicinal products for human use (GDP).

Chapter 2. Background and Related Work 26

For example, in [79] they use sensors to take measurements that are sent

to a cell phone, which records the measurement in the ledger. Moreover,

blockchain technology has been also used in supply chains for high-value

items to prevent counterfeiting, such as in the case of Diamonds [80].

Bext360 [81] is a platform that aims to provide a traceable supply chain from

producer to consumer. The platform offers configurable solutions and APIs

that enable its technology to be integrated into various systems, such as

supply chain management and point of sale systems. Data is collected at

every stage of the supply chain and stored in an immutable record. However,

according to [58], it is unclear how the data is handled in the later stages of

the supply chain, which may result in the consumer not having a complete

understanding of the supply chain.

In [82], guidelines for building a traceability system in the agrifood supply

chain using RFID technology and blockchain are proposed. The authors

suggest that RFID can be used to acquire and exchange data at different

stages of the supply chain, while blockchain can ensure the reliability and

authenticity of the shared information. However, the authors do not provide

a prototype to demonstrate the potential benefits of their proposed solution.

Instead, they focus on explaining where RFID tags should be placed, what

information should be recorded, and how to use this information at each

stage of the food supply chain.

In the study presented in [83], the authors used blockchain technology

to improve the traceability and transparency of current recycling systems.

Their theoretical model analyzed the costs associated with implementing a

traceability system and proposed ways to reduce costs to make the system

cost-effective. They focused on determining the optimal amount of waste

that could be exchanged between supplying and consuming companies to

maximize profit based on parameters such as the number of suppliers, con-

suming companies and the processing capacity of consuming companies.

Chapter 2. Background and Related Work 27

To estimate blockchain implementation costs, the authors used several use

cases provided by blockchain solution provider companies.

In [84], a smart logistics architecture using Ethereum Smart Contracts, mi-

croservices, automatic learning, and big data was proposed. The solution

includes a logistics planner and a contract supervisor for asset management.

However, the study’s scenario was deemed unrealistic due to its small scale

(e.g., a single consumer, an asset) and lack of cost analysis for blockchain-

based traceability. Additionally, the authors did not provide measures such

as throughput or latency to indicate the system’s data processing capabili-

ties.

However, as explained in [85], [86] and [4], the majority of works focuses

on studying and describing conceptual or theoretical models of potential

applications of this technology in supply chains, but they do not explain

the technical details to implement the model or analyze its performance to

determine if it is feasible to use blockchain in production of the described

use case.

2.2 Related Work

This section outlines the studies conducted within the state of the art that

have the most relevance to the research work at hand.

2.2.1 Optimizations in Blockchain platforms

Blockchain performance has been always an issue, especially when applied

to real-time systems, like IoT. Several authors have made performance anal-

ysis on the different available development platforms [87, 88] and other

studies have recently proposed optimizations to increase the performance

Chapter 2. Background and Related Work 28

and scalability of the tools based on RAFT [89, 90]. Those aspects are es-

pecially important for those environments including IoT devices, which

send a big volume of data in a short time, making the management and

storage of the data more difficult. However, most works propose to mod-

ify the architecture of the Fabric development tool so that the validation

phase has a shorter execution time, as it is the main bottleneck detected in

blockchain technology. The result is that those optimizations depend on

the development tool and the modified consensus protocol used to validate

the transactions. Thus, they are not generic optimizations and in many

cases they are not adopted by the users.

Since blockchain consensus protocols are very complex, several publica-

tions, pursuing to increase blockchain performance, have carried out a

thorough study to determine the bottlenecks that exist when a new transac-

tion is processed and stored into the database [91–93]. Particularly in [92],

the study describes the performance and optimization of the Hyperledger

Fabric blockchain platform. In this study, extensive testing and analysis of

different blockchain network configurations are conducted to determine

the impact on the performance and efficiency of the platform. In addi-

tion, the authors propose and evaluate several strategies to improve the

performance and scalability of the network, such as block size optimization,

implementation of resource isolation policies, and equal distribution of

nodes. The main objective of the study is to provide a practical guide for

blockchain developers and architects working with the Hyperledger Fabric

platform to improve the performance and efficiency of their blockchain

applications.

Following the bottlenecks detected, different optimizations have been pro-

posed to reduce the latency in transaction processing and storage. Those

optimizations mainly consist in the implementation of local caches, paral-

lelization of the transaction validation, or massive and parallel writing and

Chapter 2. Background and Related Work 29

reading in the database that stores the world state [94–98]. Other interesting

improvements, try to reduce the size of the messages by separating the trans-

action header from the body, which contains the relevant content of the

transaction, to send only the transaction identifier and the body, thus reduc-

ing the size of the transaction [97]. Finally, another possible optimization

is to use a hash table in memory to store the world status, thus increasing

performance as access is made to memory and not to hard disk [99].

In addition to these optimizations that affects directly to the transaction

validation phase, there are other optimizations that are applied to the

blockchain network configuration to increase the number of transactions

that can be executed. One possible improvement proposed [100] consists

of dividing the peer nodes into two different roles: Commitment and En-

dorsement, allowing the peer nodes to require fewer resources and to be

able to scale the network on demand. Other optimizations consist of ad-

justing parameters, such as the number of channels on the network, the

database used to store the world state, or the resources available to the nodes

(e.g. number of CPUs or the network bandwidth) among other parameters.

Thakkar [92] made a performance analysis using this type of optimizations

and noticed that the number of transactions increased with some of the

proposed configurations, thus increasing the performance.

As shown above, most works propose to modify the architecture of the

development tool so that the validation phase has a shorter execution time,

as it is the main bottleneck detected in blockchain technology [92, 94, 97].

However, these optimizations depend on the development tool and the

consensus protocol used to validate the transactions. Thus, they are not

generic optimizations.

The performance limitations are evident in terms of transaction volume,

latency, and block size [53]. On the other hand, most proposals consider

a predefined scenario or a time-invariant data set. Usually, a monolithic

Chapter 2. Background and Related Work 30

deployment is performed where the verifiability network and the proposed

solution are on the same infrastructure. In many cases, these deployments

are performed on virtual machines and require the knowledge of an expert,

limiting their scalability and their performance (in contrast to containers

[101, 102]). Additionally, communication between different blockchain

implementations is not possible at this time, preventing interoperability

and widespread adoption for data storage and analysis [103]. Finally, in the

validation of accumulated data that occurs in the final stages of the value

chain, they limit or prevent the use of early corrective actions to reduce the

cost of damage caused.

2.3 Summary

Table 2.1 shows a summary of similar solutions from the state-of-the-art

focused on the management, processing, and traceability of data through

the edge-fog-cloud. We have classified these solutions according to:

1. the scope of the solution (Blockchain: use smart contracts and Work-

flow: structures for the processing of data),

2. their environment (Multiple: if the solution is deployable in any of

the edge, the fog, and the cloud),

3. their deployment (Distributed: on multiple compute nodes and Con-

tainer: encapsulated and interoperable solution),

4. the data verification process (Real-Time: Receiving real-time data

streaming, Continuous: issuing alerts, and traceability at any time of

the data lifecycle),

5. whether they include a visualization component (e.g., Dashboard to

visualize the resulting data or analysis),

Chapter 2. Background and Related Work 31

6. the domain or use case (Multiple: solution available for different use

cases, and IoT: If the data flow is coming from IoT devices),

7. the use of efficiency techniques to reduce the time required to manage

and process the data (Parallelism: if data processing or verification

processes in parallel and Scalable: when the solution allows increasing

its nodes/services without ceasing to operate).

Work

Scope Environment Deployment Verification Visualization Domains Efficiency

B l
oc

kc
ha

in

W
or

kfl
ow

s

M
ul

tip
le

D
is

tr
ib

ut
ed

C o
nt

ai
ne

r

R e
al

-T
im

e

C o
nt

in
uo

us

D
as

hb
oa

r d

M
ul

tip
le

I o
T

Pa
r a

lle
lis

m

Sc
al

ab
le

Jenkins [104] - - - - - -
Pegasus [105] - - - - - - †
Slurm [106] - - - - - - -
PuzzleMesh [107] - - - - -
DagOnStar [10] - - - -
Parsl [11] - - - - - - †
Martinez [108] - - -
Sacbe [9] - - - - - - - -
Nasir [88] - - - - - - - -
Ramachandran [49] - - - - - - -
Helo [50] - - - -
Braun [51] - - - - - - - -
Shukla [52] - - - -
CD/CV

† means that the characteristic is provided by external tools.

TABLE 2.1: Summary of state of the art - General solutions.

Solutions such as Jenkins [104], Pegasus [105], Slurm [106], PuzzleMesh

[107], DagOnStar [10], Parsl [11] among others, allow the construction of

workflows for multiple use cases including IoT data management. Addition-

ally, these solutions are intended to be distributed and deployed in different

infrastructures (e.g., in any of the edge, the fog, or the cloud), including

parallelism patterns that allow them to be efficient and scalable. However,

they lack the verification component to ensure the traceability of data or

the correct execution of the processes that are part of these workflows. Ra-

machandran in [49] include the blockchain for a complete decentralized

verification of data with confidentiality, however, such work is a conceptual

solution that is in the process of development and testing. Implemented

Chapter 2. Background and Related Work 32

works such as that of Helo [50] and Shukla [52] use the blockchain for pro-

cess verification on IoT and real-time data but are designed and defined for

a particular use case, the former for logistics/supply chains and the latter for

Electronic Health Records. The latter, together with Braun’s work [51], inte-

grate blockchain technology with a workflow in a single solution. However,

Braun’s work does not indicate its applicability in an IoT data environment

but focuses on the execution of an interorganizational workflow using the

distributed ledger.

2.3.1 Limitations of Previous Work

A summary of the features of the solutions analyzed with blockchain is

presented in Table 2.2. Their main strengths and limitations using major

features are discussed below.

1. Generality and performance: We have identified the main perfor-

mance bottlenecks in blockchain and the solutions that have been

proposed in the literature to solve them to obtain better performance

and scalability of the Blockchain platform. The performance limita-

tions are evident in terms of transaction volume, latency, and block

size, or in bytes of transactions related to traditional systems such as

Visa or Mastercard [53] where about 50,000 t/s are processed. This de-

mand for transactions from traditional applications has led to strong

efforts to optimize each development platform or a specific consen-

sus protocol. However, this approach prevents a generic coupling of

the solutions proposed to other blockchain platforms.

2. Blockchain-IoT integration: The design of most of the works ana-

lyzed does not allow the integration of blockchain technology with

systems that support the data load produced by different IoT devices.

Chapter 2. Background and Related Work 33

The majority of the proposals consider a predefined scenario or an

already established and unchanging data set over time.

3. Monolithic deployment: A major limitation of the proposal found is

the lack of dynamic deployment of the blockchain network together

with the solution they propose. In many studies, the deployment of

verification networks and the proposed solution are in the same infras-

tructure, so that it is not possible to have a decoupled, distributed, and

decentralized system. In this sense, current work does not consider

factors such as latency resulting from the geographical distribution

of network nodes or scenarios in which possible network nodes or

solution components fail.

4. Manual and supervised deployment: Part of the studies analyzed

deploy the blockchain network manually through the knowledge of an

expert in the area. This dependence on the expert’s knowledge limits

the scalability of the system in scenarios with a complex network,

considering additionally that companies or entities not an expert in

the use of blockchain could not deploy a solution for lack of technical

knowledge in the area.

5. Use of virtual machines: With the advance of technology, different

studies have highlighted the advantages and benefits obtained by the

containers against the use of virtual machines [101, 102].

6. Interoperability and integration with existing systems: There are

currently different implementations of blockchain designed by sev-

eral companies. Communication between these implementations is

not possible at this time, which prevents their interoperability and

widespread adoption for data storage and analysis of higher-order

and capacity [103].

Chapter 2. Background and Related Work 34

7. Post-registration verification: Some works consider the registra-

tion of transactions in real-time, and other accumulate data before

performing the registration. However, the validation of these accu-

mulated data occurs in the final stages of the value chain, limiting or

preventing the use of early corrective measures to reduce the cost of

damage caused.

This research aims to address the problems discovered in the literature

reviewed by designing, building, and deploying a system that includes all

the fields analyzed in Table 2.2.

TABLE 2.2: Summary of state of the art - Blockchain solutions.

Teca Depb Verc Visd

BC IoT Di Co RT Cn Da

Baliga [109] - - - - -
Nasir [88] - - - - - -
Pournader [110] - - - - - -
Saberi [111] - - - - - -
Tian [92] - - - - - -
Javaid [94] - - - - -
Gorenflo [97] - - - - -
Arumugam [84] - - - - -
Treat [82] - - - - -
Leung [73] - - - - -
Gadnis [57] - - - -
Jones [81] - - - -
Kamath [75] - - -
CD/CV

a Technology (BC: Blockchain, IoT); b Deployment (Di: Distributed, Co: Container); c

Verification (RT: Real-Time, Cn: Continuous); d Visualization (Da: Dashboard).

Unlike previous examples, the CD/CV schemes proposed in this thesis in-

troduce an intermediary layer between the workflows components and

Chapter 2. Background and Related Work 35

the blockchain, enabling the workflows to remain generalized and easily

adaptable for organizations. This intermediary layer facilitates the regis-

tration of application actions and the execution sequence of applications,

while also providing automatic deployment of parallel patterns and consol-

idation of transaction registers to improve the performance of interaction

with workflows and blockchain. The CV components enable the creation of

continuous verifiability for transaction registration in distributed structures,

making it possible to implement verifiability networks based on blockchain

in edge-fog-cloud environments. This solution is applicable to any IoT

data management workflow without requiring modifications to the applica-

tions themselves. The workflow stages provide real-time information, while

blockchain technology ensures a chain of immutable transactions. This

solution is described in detail in the next chapter.

CHAPTER 3

A METHODOLOGY FOR CONTINUOUS

DELIVERY/CONTINUOUS VERIFICATION

SCHEMES FOR TRACEABLE IOT DATAFLOWS

In this chapter, a scheme is explained for tracking the flow of data in IoT. The

proposed method involves combining blockchain technology with a data

processing model that is frequently used in workflows, known as continuous

delivery.

3.1 Introduction

This research work presents a new approach for the development of CD/CV

(Continuous Delivery/Continuous Verifiability) systems that incorporate

blockchain technology with workflow engines and/or pipeline builders.

Figure 3.1 shows an example of the CD/CV scheme proposed. It shows

two layers running in parallel but integrated: a Continuous Delivery system

managing the IoT dataflows, and Continuous Verification system that allows

to register the transactions performed by each stage of a IoT dataflow and

verify them on-line using smart contracts.

The CD layer is based on techniques such as continuous delivery technique

[104, 112], ETL and DAG. Continuous delivery is used in software industry

for organizations to split systems into small manageable software pieces;

as a result, the pieces can be distributed to different teams that could de-

ploy/execute them through multiple infrastructures and integrate them

37

Chapter 3. A methodology for CD/CV schemes 38

Acquisition

Stage 1

Storage

Stage 2

Visualization

Stage N

Data
Source

E T T TEL L E L

Results
repository

 Verifiability network
(Blockchain)

Transaction 1 Transaction 2 Transaction N

ETL

E: Extract T: Transform L: Load

Workflow

...

Stage i

Transaction i

LE T

FIGURE 3.1: CD/CV model applied to a workflow.

into a single solution by using control structures based on directed acyclic

graph (DAG). In this thesis, the coupling technique is reused to create edge-

fog-cloud dataflows and to deploy the pieces on different infrastructures,

as well as to invoke the components of the second part (CV for continuous

verification) of the CD/CV schemes. The ETL processing technique (extract,

transform, and load) [113] traditionally is used in big data scenarios for data

analysis and the transfer of data between different databases. It is used in

our CD model for allowing end-users to provide information about the path

of the Extraction of the input data and contents that will be used by the

stages (i.e., data produced by an IoT device), the T ransformation performed

by the applications associated to this stage to the extracted data/content,

and the Loading of the transformed data/content into another stage or a

storage location (e.g., a sink deployed on the cloud). In this structure, the

nodes represent the applications of the stages whereas the edges represents

the I/O interfaces.

The CV layer registers the transactions performed by each stage of a IoT

dataflow (CD model), thus allowing end-users to create traceability reports

and contract verification for each processing phase in an IoT dataflow. The

Chapter 3. A methodology for CD/CV schemes 39

CD model automatically register the transactions performed by the applica-

tions by using ETL features and the DAG information to create trace routes of

the information assets in the dataflow. The CV layer captures the operations

performed by each software piece deployed on any of the edge, the fog, or

the cloud infrastructures considered in an IoT dataflow. This produces a set

of records in the blockchain network [114, 115], one per stage in a workflow,

concatenated into a single register created by following the DAG of the CD

model. That enables organizations and end-users to yield a continuous

verification of the transactions performed through the workflows by using

intelligent contracts on each stage.

3.2 Methodology for building CD/CV schemes

Figure 3.2 shows the methodology defined for building CD/CV schemes,

consisting of three major steps: preparation, deployment, and operation.

Containers
CD/CV

Transactional
recordConfiguration

St1

Model
ETL

St2
S1

S2

Sn

StN

Workflow

Workflow

Blockchain

Declaration

Blockchain Network

S1

S2

Sn

S1

S2

Sn

1 2 3

CD

CV Register

Global
Manager

Preparation Deployment Operation

ETL: Extraction-Transform-Load
CD: Continuous Delivery
CV: Continuous Verification
St: Stage S: Service

: Virtual Container CD
: Virtual Container CV

Notation: Organizations

Assets

Peers, orderer o Certifying
authority (CAs)

Nodes

FIGURE 3.2: Methodology proposed for building CD/CV schemes.

Chapter 3. A methodology for CD/CV schemes 40

The first phase is a preparation step in which all the stages (organizations)

that want to participate in a IoT dataflow express ETL and DAG information.

In the deployment phase, a Global Manager (GM) receives the ETL and DAG

information to ensure the effective materialization of this information in

the form of traceable workflows by using the CD model. The (DAG) defining

the dataflows is created to deploy them, components are inserted into the

stages, using the ETL paradigm to extract data and events (transactions)

from the CD components (stages, nodes, and edges) arising in IoT dataflows.

The manager uses ETL components and the DAG to create and connect the

different stages of the IoT dataflow, and it also establishes control structures

for registering the transactions in the verifiability network. Finally, it checks

that the continuous delivery (CD) and the continuous verification (CV) for

the workflow are deployed. The CV model uses the information from the

CD model to create two types of records in the blockchain: records of each

service/app using the ETL information, and traceability records using the

DAG scheme.

Finally, in the operation phase, software virtualization has been used to

control the launching of both the workflow, and the verifiability network.

Clones of the stages can be launched and managed as clusters in the form

of parallel patterns (e.g., Manager/Worker pattern [116]), which improve

stage performance and reduce the cost of the verifiability network.

3.2.1 Design of the CD/CV Global Manager

A manager is required to build and operate a CD/CV scheme. In this sense,

Figure 3.3 shows the Global Manager proposed, which is composed of a

Construction Manager and an Operation Manager.

Chapter 3. A methodology for CD/CV schemes 41

Operation Manager

ETL Model

Construction Manager

Operation Manager

Orchestrators Launchers Choreographers

CD CV

Configuration files

CD CV

Services / Apps Peers (Hyperledger
Fabric)

CD CV

Dispatcher
(Load

Balancer)

Patterns
(Manager -

Worker)

Business
network

Continuous Delivery Workflow (CD) Continuous Verifiability Network (CV)

Operation Stack

Global Manager

Construction Manager

FIGURE 3.3: Modules of the Global CD/CV Manager.

The Global CD/CV Manager uses an ETL Interconnection model to get the

information from the end-users to create a IoT dataflow and the verifiability

network. In this sense, the ETL interconnection model together with the

DAG scheme interconnect the workflow components with the verifiability

network.

The CD components of the model that describe the workflow components

are as follows:

1. Data Source (DS): It represents the source of data to be processed

through a workflow (W).

2. Service (S): It represents the user application that performs specific

processing (e.g., S1: data analysis, S2 : data compression, S3 : encryp-

tion, among others.)

3. Stage (St): It represents the set denoted as St = {S1,S2,S3, ...,Sm},

where m is the number of services (S) including in a given stage (St).

4. Workflow (W): The workflow describes the set of stages (St) that col-

laboratively perform general processing to transform the original data

Chapter 3. A methodology for CD/CV schemes 42

source (DS) into useful information for entities or organizations that

require to make decisions from the found information. A workflow is

denoted as W = {St1,St2, ...,StN }, where N is the number of processing

stages, which are interconnecting ETL model and the DAG scheme.

5. Extract, Transform, Load (ETL): The ETL process allows a service

(Si) to obtain data from a given source (DS), applies given processing,

and loads it in a specific storage system or space so that the result

delivered by Si is the input of the following service (Si+1) to perform

the same process, thus forming a workflow (W). This ETL process

defined by each Si ∈ St ∧St ∈W consists of the following phases:

(a) Extract (E): Indicates where to extract or acquire the data that

will be the input of a Si service. In this phase are considered two

attributes < t y pe, path >. Where t y pe indicates the input type

that receives Si : this can be a folder or a file, and path indicating

where are the data to be extracted.

(b) Transform (T): Indicates how Si (application/service) will pro-

cess the data. In this phase, three attributes are considered:

<t y pe, path, par ameter s>. Where t y pe is the method through

which Si implements the data transformation. It can be a service

or an executable (e.g., a JAR, python script, etc). The second at-

tribute is the path where the transformation method is placed in.

Finally, par ameter s are the arguments that the transformation

method receives for execution.

(c) Load (L): Indicates where the Si processing results are delivered.

In this phase, two attributes are considered: < t y pe, path >.

Where t y pe is the output type that provides Si (folder, file), and

path where the processing results are loaded, and which are

then the input to the service Si+1.

Chapter 3. A methodology for CD/CV schemes 43

6. Patterns (Pa): The pattern considered in this research work is the

Manager/Worker (Pa_M a/W o) pattern. This pattern has a Manager

in charge of distributing the workload (data to processed) among N

Workers. The Manager divides the original data set and assigns it

to each of the available workers to process the data source (DS) in

parallel.

The elements of the interconnection model that describe the verifiability

network are:

1. Organization (O): For the workflow component (W), an organization

(O) represents an entity that deploys a set of services (S1,S2, ...SN). In

the proposed model, these services are described as a stage (St =
{S1,S2, ...SN }) that is part of the processing of the data in a workflow

(W) in which participates multiple organizations. In this sense, an

organization is an entity in charge of one or more stages that belong

to a workflow (St ∈W).

2. Nodes (N): From the verifiability network point of view, an organi-

zation is in charge of a set of Nodes (N) that will be used to create a

blockchain network. Each node contains an API REST through which

an organization records the transactions it performs in its stages (St)

that belong to a workflow (St ∈Wi). The Nodes can acquire any of the

following roles:

(a) Peers nodes (Npeer s): Those are the nodes of the verifiability

network that issue transactions.

(b) Peers by organization (P xO): are the peer nodes (Npeer s) will

the system deploy on the IT infrastructure of the organization

(O). For simplicity purposes, this parameter has the same value

for all organizations along the use cases. Thus, the Peers nodes

Chapter 3. A methodology for CD/CV schemes 44

(Npeer s) can be computed easily. For example, if you have a con-

figuration of 2 organizations Or g = {Or g1,Or g2} and |Npeer s | =
2, it means that each organization will have two peer nodes, re-

sulting in 4 peer nodes in the verifiability network. The general

formula is given below:

N ◦ Peer s nodes = |Or g |︸ ︷︷ ︸
N ◦ Or g ani zati ons

∗ |Npeer s |︸ ︷︷ ︸
N ◦ Peer s by Or g

(3.1)

(c) Orderer manager node (Nor): establishes a consensus mecha-

nism between the peer nodes when verifying transactions. The

order manager node also verifies the sequence of transactions

and records consistency.

(d) Certification Authority Node (Nca): manages the certificates

and private keys delivered to all the peer nodes belonging to a

specific organization.

3. Transaction (T x): It represents an action performed by a service (S)

in a workflow (W). The structure of a transaction (T x) depends on

the business network (B N) that was defined.

4. Blockchain (BC): is a peer-to-peer network or P2P, where are recorded

the transactions performed by each service (S).

5. Business Network (B N): defines the business logic ruling the trans-

actions performed by the participants in a workflow, as well as the

abstraction of the entities and assets included in those transactions.

6. Administrator (Ad): manages the access keys associated required

for a given organization (O) to make register in blockchain (BC).

Chapter 3. A methodology for CD/CV schemes 45

Once the declarative model of interconnection for the IoT dataflow and the

verifiability network are described, the Global Manager, through a Construc-

tion Manager and an Operation Manager, can build and operate a CD/CV

system.

3.2.2 Construction Manager

This Manager has three main components: Orchestrators, Launchers, and

Choreographers. They work together to build a CD/CV system from the ETL

interconnection model and DAG scheme described in the previous section.

Construction of the CD/CV system Two main phases are part of the

construction of the CD/CV system: a preparation phase, and a deployment

phase.

Preparation phase: Interconnection ETL model In the preparation phase,

the Construction Manager creates the ETL configuration by using the infor-

mation delivered by end-users about services at the stages of a workflow

(St = {St1,St2, ...,StN } ∈ W , where N → Number of stages). The user (ad-

ministrator) defines the number of services that will be executed in each

Sti as well as the sequence of each Sti ∈ W . The organizations also can

define the parallelism degree (services per stage) to improve the stage and

workflow performance, which is expected to be used to compensate for the

overload produced by the registration of transactions performed by each

stage. The number of services and applications are declared in the ETL

interconnection model as:

Sti = N si → Number of services in stage i, i = 1. . . N .

The CD/CV Construction Manager creates an architectural pattern using

ETL information (see Figure 3.4) to materialize the workflow (W).

Chapter 3. A methodology for CD/CV schemes 46

Stage (St) NStage (St) 2

Stage	1	-	Clone	1

Visualization
Data
Base

Data
Source

Load
Balancer

JSON

JSON

JSON

REST
INPUT

REST
OUTPUT

Stage	1	-	Clone	2

Stage	1	-	Clone	Ns

Stage	2	-	Clone	1

Stage	2	-	Clone	2

Stage	2	-	Clone	Ns

Stage	N	-	Clone	1

Stage	N	-	Clone	2

Stage	N	-	Clone	Ns

Stage (St) 1

WORKFLOW

Stage (St) Visualization

FIGURE 3.4: The architectural pattern of the CD/CV Manager: an
example of a service for the analysis/processing of data from IoT
environments.

The applications and services of each stage are encapsulated into containers

for organizations to clone and deploy stages on IT infrastructure.

For simplicity, we can say that the CD/CV schemes include two parts: the

CD focused on stages of the workflow, and the CV focused on nodes of

the blockchain network. For this thesis, in the CV part of the schemes, the

number of organizations participating in a workflow corresponds to the

number of stages of that workflow. Nevertheless, the CD schemes can create

multiple associations (e.g., multiple stages compose one organization or

multiple organizations compose one stage).

The CV part includes the following components: 1) By default, a single order

manager node is defined to establish consistency in transactions although

multiple order manager nodes can be defined to conform the ordering

service. 2) A CA node for each organization to manage the cryptographic

material for each stage to register transaction; and 3) The number of peer

nodes Npeer s defined for P2P of the blockchain. This parameter is assumed

to be a variable for experimental purposes and of course in production

depending on the IT-resources.

In this sense, the end-user delivers information about the CV scheme, such

as the number of organizations and the number of peer nodes per organiza-

tion in the verifiability network. These parameters are defined in the ETL

Chapter 3. A methodology for CD/CV schemes 47

interconnection model as follows:

PxO = Npeer s

Orgs = {Or g1,Or g2, ...,Or gN }

Where Npeer s is the number of peer nodes for each organization, and Or g s

defines participating organizations. This research assumed that there is a

correspondence between the number of workflow stages and the number

of participating organizations.

The total number of nodes in the verifiability network is represented by the

following notation:

Nodes (N) = {Peer sOr g 1,Peer sOr g 2, ...,Peer sOr g N , NodesC As , Nodesor d }

Where:

Peer sOr gi = {peer 0Or gi , peer 1Or gi , . . . , peer Npeer sOr gi
} ∈Or g i con

i ∈ 1,2, . . . , N
NodesC As = {caOr g1 ,caOr g2 , . . . ,caOr gN }

Nodesor d = {Nor d1, . . . , Nor dP } → Nodes to establish consensus.

By default, an admi ni str ator for each organization is defined for each

CD/CV scheme. Administrators are responsible for adding new participants

to the CD/CV schemes and to associate stages to organizations.

The general formula for estimating the number of nodes deployed is shown

below:

N ◦ Depl oyed Co =|Nca |︸ ︷︷ ︸
A

+
B︷ ︸︸ ︷

2∗ (N ◦ Peer s nodes)+ (3∗Nor)︸ ︷︷ ︸
C

+
D︷ ︸︸ ︷

(Ncl i)+ 1︸︷︷︸
E

(3.2)

Chapter 3. A methodology for CD/CV schemes 48

Where A is the number of Certifying authority nodes; B is the number of

Peer and DB nodes (for each peer node there is a database node); C is the

number of Consensus nodes (for each orderer node two auxiliary nodes are

deployed: Kafka and zookeeper); D is the number of Client nodes; and E is

one container where the intelligent contract is initiated.

Configuration for the CD/CV scheme deployment. The Construction

Manager creates configuration files for the deployment of both components:

continuous delivery (CD scheme part of the workflows) and the continu-

ous verifiability network (CV scheme part of the blockchain) on a given

infrastructure. These files create the paths of Extraction (from data sources),

Transformation (execution of applications and services), and Loading (sink)

to a shared volume in the virtual container of the stages (CD) and nodes

(CV). The definition of paths in each component of the CD/CV schemes

and enables the Construction Manager to materialize the CD/CV schemes

to realize workflows (managed by CD scheme part) and the corresponding

blockchain network (managed by CV scheme part).

The following paths are added to the continuous verifiability (CV scheme

part): 1) Path to Hyperledger Fabric, for the nodes to get the binaries re-

quired to create the cryptographic material (certificate, and public/private

keys) as well as the binaries required to generate the building artifacts of the

blockchain (peer communication channel, genesis block, and membership

manager); and 2) Path to business module, which points to the configura-

tion file containing the business model associated with the ETL model of

all the stages of the workflow.

Chapter 3. A methodology for CD/CV schemes 49

Using CD/CV schemes during executing time This section describes

three subcomponents such as Orchestrators, Launchers, and Choreogra-

phers, which are used by CD/CV Construction Manager to start the exe-

cution of the deployed stages of workflows (CD virtual containers) and

nodes of blockchain network (CV virtual containers). These components

ensure the establishment of controls over the registration of the transactions

performed in stages of workflows in the blockchain nodes.

The Orchestrators enforce the ETL interconnection by creating configura-

tion files that are used by Launchers to initiate all the deployed stages of

workflows (CD scheme part) and blockchain nodes (CV scheme part). Fi-

nally, the Choreographers start the injection of workload (data for stages

and transactions for nodes), and the execution of the applications of the

stages and the connectors of these stages with the blockchain nodes.

These connectors are services/applications that are configured (environ-

ment variables, cryptographic material, etc.) to issue a transaction on behalf

of an organization on the blockchain from the data obtained at each stage

of the workflow. Each connector represents a client/interface between the

CD and CV component of a given organization.

In detail, the Orchestrators create the configuration files and artifacts needed

to deploy the CD/CV schemes for workflows. Two Orchestrators were de-

veloped: the CD Orchestrator, in charge of continuous delivery, and the CV

Orchestrator, designated for continuous verification of transactions.

The CD Orchestrator creates the necessary settings to synchronize the ap-

plications to communicate with each other. To do this, it receives the repre-

sentation of the network from the Manager (i.e., a DAG) and sends orders

to CD Launcher for coupling the stages following the DAG by configuring

input and output ports in a given infrastructure for each stage.

Chapter 3. A methodology for CD/CV schemes 50

The CV Orchestrator creates the logical artifacts needed to create the verifi-

ability network for the workflow defined in the CD scheme. These artifacts

implement the business model of each pair of stages in the verifiability

network (e.g., the definition of participants and assets) for Launchers to

create the smart contracts and to prepare the cryptographic components

(keys for connectors in stages to make transaction registration) as well as to

couple the P2P network with the CA (certification authority).

The CD Choreographs starts the injection over the stages following the DAG

over the deployed virtual containers (stages) to guarantee the correct and

valid coupling and interconnection of the applications deployed on the

virtual containers of the workflow stages.

The CV Choreographs verify that all the connectors of the stages can reach

the blockchain nodes, that the cryptographic components (keys for access-

ing to the blockchain network) are valid, that the smart contracts have been

successfully created, and the transactions of the applications executed at

the stages (workflows/pipelines) can be registered under the control of the

contracts.

3.2.3 Operation Manager

This module is responsible for managing the proper functioning of the

IoT dataflow and the verifiability network. The Operation Manager must

ensure the continuous delivery of the data in the workflow and also the

continuous verification of the transactions performed. Figure 3.5 illustrates

the Management Framework once it is in operation.

Figure 3.5 shows an example of a workflow including N stages containing n

Virtual CD containers that will process a data source and extract, from it,

knowledge, or information useful for decision-making in organizations or

Chapter 3. A methodology for CD/CV schemes 51

3.	Verifiability	network1.	Workflow

Exhibition

2.Operation	Manager

Input interfaces
Output interfaces

Transactions (Tx)

Tx_Et1_CD1

Org2

Nodes Admin Users

OrgN

Nodes Admin Users

Org1

Nodes Admin Users Blockchain

1

2

3

Framework

Data
Source

Stage1 <=> Org1

CD1

CDn

Tx_Et1_CDn

Tx_Et2_CD1

Stage2 <=> Org2

CD1

CDn

Tx_Et2_CDn

Tx_EtN_CD1

StageN <=> OrgN

CD1

CDn

Tx_EtN_CDn

CDi
API REST

Hash function

Virtual
Containers CD

Virtual
Containers CV

FIGURE 3.5: Management framework CD/CV in operation.

interested entities. At this point, the continuous verifiability component

starts recording the transactions (T x) performed by the stages of the IoT

dataflow in the verifiability network. Summary functions (or commonly

known as hash functions). The transactions are registered by using signature

(hashes), which produces an identification for a content. A transaction

includes the hashes of contents incoming to the stages and the resultant

contents transformed by the applications executed at a stage, as well as the

paths used to extract, transform, and loading contents.

This mechanism ensures that any alteration in the input contents and the

resultant contents. This means, the contracts verify the hashes of the assets

before and after to be transformed by each stage in a IoT dataflow; as a

result, the end-users can verify the integrity of the data at each stage of

the workflow. Moreover, the chaining of the ETL paths and hashes allows

end-users to detect/prevent from stages processing unexpected contents

by querying to the blockchain network.

Chapter 3. A methodology for CD/CV schemes 52

3.3 Integration of GM-CD/CV with scientific work-

flows

The integration of GM-CD/CV to existent scientific workflows engines for

processing data from IoT is feasible.

1. Workflow Stages: GM-CD/CV requires that each workflow stage is

in the form of an executable service or application. This restriction

is because the initial design of the Global Manager CD/CV delivers

as a response from a i stage to a i +1 stage, the output of the server

where the service is exposed (API REST response), or the logs of an

executable application.

2. Declarative process: GM-CD/CV assumes that the user declares the

ETL of each application.

3. Data source availability: GM-CD/CV requires the location of a data

source (set of tasks to be processed) to start the continuous delivery

process.

4. Data Exchange: GM-CD/CV requires that the results exchanged be-

tween stages are packaged in a standard format such as JSON to en-

sure continuous delivery. It was assumed that each organization that

performs the exchange known the data placed in the exchange file.

5. Verifiability Network: GM-CD/CV already incorporates the blockchain

manager. If the user needs to change this blockchain manager, he will

have to adjust the GM-CD/CV deployment engine (i.e., use Ethereum

or another mechanism to use cryptocurrency in transactions).

Chapter 3. A methodology for CD/CV schemes 53

3.4 Periodic Contract Verification

Most operations executed in the blockchain consists on logging the status or

values of certain data. However, smart contracts can be associated to events

to validate rules, verify values, or firing new actions. Before proceeding with

contract verification procedure, the two elements considered to carry out

the verification process are defined: 1) the penalty clauses; and 2) the type

of verification to be performed.

1. A Penalty Clause is defined to adjust the value of the contract es-

tablished according to the values received from each sensor and the

compliance with the restrictions established in the contract. A penalty

clause is declared per sensor in the model and it is defined as the fol-

lowing three-element function Peni = {x,cond , penal t y}, where x is

the value received in real-time from the sensor, cond is the conditional

function that must be met to record the value of x as valid, and penalty

determines the value of the penalty to be deduced from the total value

of the contract.

2. Type of verification. The verification process consists of contrasting

the data acquired and registered in the blockchain, with the restric-

tions stated in the contract for such data. It also applies the penalty

clauses if required. The proposed system incorporates three types of

contract verification:

(a) Verification by Identifier. In this case only one record identified

by a unique id in the network is analyzed. This type of verification

is useful when the origin and time of the failure is known and it

is conceived to verify the restrictions and possible penalties for

a single record in particular.

Chapter 3. A methodology for CD/CV schemes 54

(b) Lot Verification. Since all records in the network have by default

the time stamp for transaction creation, the lot verification is

meant to recover all records in the blockchain which time stamp

is within a specified time interval. This interval could be previ-

ously defined by the user or could be calculated automatically

to execute the verification periodically.

(c) Results verification. This type of verification is thought to reuse

the results of previous verifications and can be useful in subse-

quent queries for different purposes and reduce costs of running

again previously executed verification processes. As different

actors may need to verify the blockchain records, and since the

records in the blockchain are immutable, it does not make sense

to repeatedly run verification processes on already verified set

of records as they would always give the same results.

3.4.1 Contract verification process

The contract verification process consists of recovering the data stored in the

blockchain network, that have been registered by the different participants

or entities of business logic, and subsequently, determining if each of the

records accomplish the contract terms, which have been established in

the definition phase by the user administrator. In case of failure to comply

with the constraints, the system proceeds to execute the penalty clauses

established on the final value of the shipment (see Section 3.2.3). Figure 3.6

shows the verification processes that are executed to determine whether a

contract is valid or has violated the restrictions.

In most blockchain applications for transport reviewed, contract verification

is made once the products are delivered o whether there is a contract breach

in the delivery date. This may be due to business logic, but in most cases it is

Chapter 3. A methodology for CD/CV schemes 55

Start Contract Gather
Blockchain Data

Contract
Verification Valid Corrective

Action Calculate Penalty Notify Contract
Breach End

Ended

Yes

Wait T
No

Contract
Resolution

End

Start Corrective
Action

Yes

Gather
Maintenance Info

Yes

No No

FIGURE 3.6: Continuous contract verification flowchart

due to the fact that data are not reported in real-time to the actors and then

they cannot verify the contract. In our case, our solution is able to collect

data in real-time and submit the transactions to the blockchain network

so that data are registered immediately or with a small delay. Having data

registered in real-time, we propose to run a continuous contract verification

process, with a periodicity that can be defined by the business logic.

Initially, the smart contract (C) is created and activated only after the entire

blockchain network has been established and a communication channel

has been established. Once this happens, the contract can begin collecting

data or initiating transactions. For instance, let’s consider a food logistics

scenario where the contract is linked to each shipment made by a truck.

The contract is activated as soon as the truck embarks on a new route, and

it is required to validate the contract for each data received by the truck’s

sensors. After that, the sensors (Se) on the truck start collecting real-time

data, which is then recorded on the blockchain network.

Simultaneously, when the contract is started, a periodic verification process

is also started for the contract. This verification process retrieves data from

the network for analysis and every time (T), being T a period defined for

every shipment, determines if the restrictions Res ∈ C are fulfilled. If the

Chapter 3. A methodology for CD/CV schemes 56

restrictions are satisfied, a successful verification process is recorded for this

period. Since the duration of a shipment will be, in general, longer than the

verification period, the process will be repeated for the series of subsequent

periods in the shipment. This procedure is executed repeatedly in a closed

cycle until the status of the whole shipment is delivered. In other words, the

truck has reached its destination and the product has been delivered to the

final consumer. If all the records of the verification process are correct, then

no alert is issued, and the resulting record of the verification will be a valid

contract. In this case, the contract is deemed to have been satisfactorily

terminated.

To achieve the closed cycle between the data capture and the periodic verifi-

cation procedure, the administrator user in the definition phase establishes

the periodicity parameter T , which is the period in which the contract veri-

fication process is executed. Any record in the blockchain written during

this time interval and related with the contract will be verified. The result

of each periodic contract verification is also recorded in the blockchain, as

a new record that includes the results of the verification performed. This

approach has two main advantages: near real-time status of each shipping

and scalability in contract verification.

As contracts are verified every T for a shipping, a periodic verification pro-

cess might determine in near real-time that the contract verification is not

valid in the interval analyzed [t − i , ti +T] due to errors in data capture or

conditions breaching the contract. In this case, the error condition is also

recorded in the blockchain to ensure non-repudiation and the participants

are notified of the incidents found to immediately take corrective measures

(if possible). After that, the system evaluates if the contract has ended. In

case not, it continues the periodic contract verification until the delivery

of the shipment. Otherwise, if it is not feasible to apply the corrective or

maintenance measures, the penalty clauses established in the contract are

Chapter 3. A methodology for CD/CV schemes 57

executed. Following this procedure, and depending on the violations com-

mitted, the final value of the contract is established, and the breaches of

the contract are notified to the interested parties. The penalty clauses are

part of the proposed system model and were described in Section 3.2.3.

The process of verification and application of sanctions is summarized in

Algorithm 1:

Algorithm 1 : Continuous contract verification
1: T = verification period (seconds)
2: cts = current timestamp (“dd/mm/yy-hh:mm:ss”)
3: pts = timestamp with T seconds before cts (“dd/mm/yy-hh:mm:ss”).
4: for All T xse recorded between [pts, cts] do
5: Ci = IdentifyContract (T xsei)
6: Sei = IdentifySensor(Ci)
7: Resi = GET Ci restrictions for Sei

8: if T xsei does not comply with the Resi then
9: Peni = GET Penalty clauses of Ci

10: value Ci = CalculateContractValue(Peni ,Resi)
11: Update result
12: end if
13: Update result
14: end for

Every result of a verification process is saved as a new record in the network,

in this sense, a result variable is declared (step 1) that will store all the trans-

actions that do not comply with the established restrictions. By default,

the proposed system executes the verification process automatically every

verification period (T) in seconds (step 1 pseudocode). Then, the current

system time cts is retrieved (step 2) and the time stamp of the next verifi-

cation interval is calculated as pt s = timestamp of T seconds before that

ct s (step 3). The variables pts and cts denote the initial time and end time

respectively of the time interval to be analysed. Then all blockchain records

that were created for the shipment of the contract within the previously

calculated time interval are analysed one by one (step 4). For each record,

Chapter 3. A methodology for CD/CV schemes 58

its contract is identified (step 5) and the sensor identifier is extracted (step

6) which collected the data sent in the transaction. Knowing the sensors

involved in the execution of the current Ci contract, the restrictions defined

by Res ∈C that must be met are consulted (step 7). If the current transaction

(T xsei) does not comply with the restrictions of the contract (step 8), the

penalty clauses are consulted to apply them to the final value of the contract

price (steps 9 and 10) and the result variable records the current transaction

and an invalid contract status as a warning for subsequent verification.

The proposed procedure increase scalability as the verification is made for

a small subset of transactions (depending on T) and the result is stored.

Thus, on the one hand if all steps are correct, the final verification process

is automatically solved. On the other hand, if there was a contract breach

in a cycle, the verification processes do not need to analyze again all the

data, are the verification results of every steps are also logged in the ledgers,

providing non-repudiation. Even if a third actor would like to verify the

whole shipping, she only had to verify the results of the periodic verification

processes.

3.5 Summary

In this chapter, a new approach for the development of CD/CV (Continuous

Delivery/Continuous Verifiability) systems that incorporate blockchain

technology with workflow engines and/or pipeline builders is presented.

The GM-CD/CV (or Global Manager - Continuous Delivery /Continuous

Verifiability) presented in this research work is an intermediary manager

between workflow engines and blockchains for verification and validation

of the execution of IoT dataflow in an established sequence and the in-

tegrity of digital assets. The CD/CV schemes proposed allow performing

Chapter 3. A methodology for CD/CV schemes 59

continuous verifiability based on blockchain (CV model) of the transac-

tions performed by applications included in workflows (CD model), that are

recorded transparently and automatically in the blockchain system. These

schemes incorporate parallel patterns encapsulated into virtual containers

to reduce the impact of such verifiability on the performance of workflows

when producing IoT dataflows.

I have explained how it is possible to create a CD/CV system by going

through the stages of preparation, deployment, and operation using a par-

ticular technology. The Global Manager (GM) prototype, which includes

two major components - the Construction Manager and Operation Manager

- was presented as an example. Additionally, a model was used to define the

delivery (CD) and verification (CV) components, which will be used to cre-

ate the CD/CV system. Based on the features of this model, guidelines have

been established for integrating the GM-CD/CV technology with scientific

workflows.

Lastly, suggestions and detailed instructions are provided for a periodic con-

tract verification procedure that should be implemented once the CD/CV

system is active and data gathering is underway.

CHAPTER 4

BLOCKCHAIN OPTIMIZATIONS

4.1 Introduction

The methodology proposed in the previous chapter deploys two workflow

chains mixing Internet of Things (IoT) and blockchain. However, using

blockchain technologies for IoT registration has currently considerable chal-

lenges, such as transactions performance, scalability, and near real-time

contract verification. Trying to cope with some of them, in this chapter, we

propose three platform independent optimization techniques (atomic trans-

actions, grouped validation and high-performance delivery) that enhances

data transactions protocol and the data storage procedure in blockchain,

which allows to take corrective actions to reduce operational costs and

increase benefits in current applications.

4.2 Real-time data acquisition

IoT are systems generate massive amounts of data, specially if they col-

lect high-frequency real-time information from different types of sensors.

One of the main challenges in the usage of blockchain technology for IoT

workflows is the time required to process and confirm a transaction on the

network [117], since all participants must approve the transactions. There-

fore, if you do not have an efficient system to process transactions, the

scalability of the system could be compromised. The challenge is much

greater if, in addition to considering a scenario where you have a secure

61

Chapter 4. Blockchain optimizations 62

supply chain (incorporating blockchain technology), you consider a high-

demand supply chain (incorporating IoT devices) to obtain all the benefits

this entails. Achieving the adoption of these new technologies to traditional

supply chains is not trivial. Firstly, the IoT environment devices can capture

large volumes of information in short periods, This generates a challenge

in the infrastructure required to analyze and manage the captured data,

which is not prepared in many companies [50]. Secondly, the volume of

information generated by the IoT devices incorporated in the supply chains

directly affects the number of transactions that need to be registered and

verified in the blockchain, generating scalability and performance issues

[118].

Some recent works have contributed to the development of optimization

techniques to increase performance of blockchain technology [92, 94, 119].

However, these optimizations are platform-specific and do not contribute

to a generic solution. Other research works have proposed platforms and

systems that allow verification of supply chain processes and data [57, 73, 75,

81]. However, these works consider the verification process in the final stage

of the supply chain, which prevents, limits or delays the use of corrective

measures to cope with failures in the supply chains. A last concern is that

many companies lack the necessary architecture (objects, networks, data

services).

This section presents the design decisions and optimizations proposed in

our work to manage and store the data produced by the IoT devices in the

blockchain network. Management and data storage is implemented after

the blockchain network and the contract logic have been fully deployed, as

shown in Figure 4.1.

The use of blockchain technology for information management has been

proposed because it allows the decentralization of information, preventing a

single point of failure, ensuring the persistence, anonymity, and auditability

Chapter 4. Blockchain optimizations 63

Configuration
Documents

Automatic Deployment

Generate cryptographic material

Deploy Blockchain nodes

Install communication channel

Install smart contract

Instantiate smart contract

1

2

3

4

5

network_N.sh

deploy_network.sh

Creation of participants

Creation of paths

Contract setting

Setting up shipments

Smart Contract Queries

1

2

3

4

5

deploy_logic.sh

network_N.sh

deploy_use_case.sh

Data acquisition

Speed

Temperature

Gps

Client node

Contract verification

Client node

generate_data_sensors.sh

validate_contract_by_time.sh

2

3 4

Auditor

> maxmin <
0 < > max

within
Penalty
clauses

Smart
Contract

User Admin

Definition and Configuration1 Certificates

Keys

FIGURE 4.1: Definition phases of the designed model: definition,
deployment, acquisition and verification of data

of the data. Those are critical points of failure in the security and reliability

of IoT devices, because they have limited hardware and therefore cannot

implement security mechanisms that require a lot of resources, making

the data unreliable. However, as IoT devices are capable of sending high

volumes of data in a short time, the design of the network should be scalable

and have a high throughput to be able to manage the data in real-time,

preventing data loses or delays in storage.

Chapter 4. Blockchain optimizations 64

4.3 Traditional blockchain implementation

As a first approach to the problem, the usual way of updating a block in a

blockchain was used, which means concatenating records in a block per

sensor. In other words, when a sensor takes a new measurement, all the

measurements previously taken by that sensor must be recovered, new data

are added to the existing measurements in a new block and, finally, the

transaction is stored in the ledger. This methodology allows to simplify data

recovery when a query is executed, because it is only necessary to get the

last transaction, also called world state, realized in a specific event by the

sensor whose measurements are consulted (e.g. temperature). This query

can be carried out because the last transaction contains all the values read

by the sensor, until that moment.

A case study described in Section 5.3 has been defined to evaluate the tra-

ditional strategies and proposed techniques. Using this case study, two

experiments were conducted with this concatenated records solution to

measure performance (see Section 5.3.7) and verify the correctness of the

performance (see Section 5.3.7) when building a blockchain network for

the defined use case.

The case study described in Section 5.3, focuses on these two aspects as

they are critical metrics of the blockchain network, considering the need to

cope with a massive amount of real-time data.

To explain the optimization techniques being proposed in the Section 4.4,

the subsequent section outlines the essential steps and elements involved

in the implementation of these optimization techniques.

Chapter 4. Blockchain optimizations 65

4.3.1 Hyperledger Fabric implementations

Although the implementation of blockchain technology in Hyperledger

fabric has extensive documentation1 covering various aspects such as com-

ponents, models, architecture, etc., this section specifically focuses on the

components and processes relevant to the proposed techniques.

Block0 Header0

data0

(genesis)

metadata0

Block1 Header1

data1

metadata1

T1 T2 T3

Block2 Header2

data2

metadata2

T4 T5 T6

BlockN HeaderN

dataN

metadataN

T7 T8 T9

Blockchain

Block Header1

(Block number)1

(Hash of current block transactions)CBH1

(Copy of hash from previous block)PBH1

Transaction6
(Header)6

(Signature)S6

(Proposal)P6

(Response)R6

(Endorsements)E6

World State
{key= K1, value = V1} version=0

{key= Kn, value = Vn} version=0

Ledger

Blockchain World
State

FIGURE 4.2: Ledger structure

The components of Figure 4.2 and the essential elements in the proposed

techniques are described below:

1. World State (W S): It is a database that holds the latest values of a

specific set of states or versions of the ledger.
1https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html

https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html

Chapter 4. Blockchain optimizations 66

2. Blockchain (BC): It is a log of transactions that documents all mod-

ifications that lead to the current world state. BC determines W S.

Transactions are grouped together into blocks that are added to the

blockchain. Unlike the world state, the blockchain data structure is

immutable, meaning that it cannot be altered once written.

3. Ledger (Le): A ledger consists of a world state (W D) and a blockchain

(BC). The network preserves several duplicates of a ledger and ensures

that each copy remains consistent with the others using a mechanism

known as consensus.

4. Smart Contract: is a file that includes the functionalities required

(ledger APIs to get, put and delete states) to carry out the business

logic (queries and functions definition). A smart contract creates the

proposed ledger update.

5. Chaincode: In Fabric, smart contracts are implemented using chain-

code, a type of logic that interacts with the ledger. This chaincode is

created using the chaincode APIs.

6. Transaction: a transaction captures changes to the world state. Every

transaction comprises five essential components, including:

• Header: This section includes transaction metadata, such as the

name of the associated chaincode and its version.

• Signature: Refers to a cryptographic signature generated by the

client application, which serves as proof that the transaction data

has not been altered. This section necessitates the application’s

private key to produce the signature.

• Proposal: This component encodes the input parameters that

an application feeds into the smart contract. During the smart

Chapter 4. Blockchain optimizations 67

contract’s execution, this proposal serves as a set of input pa-

rameters that, along with the current world state, determines

the resulting world state.

• Response: This section includes the values of the Read-Write

set (RW-set) that represents the world state before and after the

transaction execution. It acts as the output of a smart contract,

and if the validation process is successful, it will be applied to

the general ledger to update the world state.

• Endorsements: This component is a catalog of signed transac-

tion responses from each organization that fulfills the endorse-

ment policy’s requirements. Although only one transaction re-

sponse is present in the transaction, several endorsements are

included. Each endorsement encodes the transaction response

specific to your organization. If the endorsement policy is not

satisfied, the transaction will be deemed invalid and will not

modify the world’s status.

7. Peer: The peers stores and manages copies of ledgers and smart

contracts.

8. Channel: A method through which elements within a Fabric blockchain

network (peer nodes, orderer nodes, applications, etc) exchange in-

formation and conduct transactions in a confidential manner.

9. Policy: Fabric policies define the rules and procedures that govern

how members reach consensus on whether to approve or reject modi-

fications to a network, channel, or smart contract. Each smart contract

contained within a chaincode package has an endorsement policy

that outlines the number of peers from various channel members

required to validate and execute a transaction for a particular smart

Chapter 4. Blockchain optimizations 68

contract. Therefore, endorsement policies determine which organi-

zations, represented by their peers, are responsible for endorsing or

approving a proposal’s execution.

10. Transaction validation process: In Hyperledger Fabric, the transac-

tion validation process consists of the following steps:

(a) Proposal: A client sends a transaction proposal to the nodes in

the network.

(b) Endorsement: The endorsing nodes execute the relevant smart

contract code and, if the proposal is valid, generate an endorse-

ment. This endorsement is a digital signature indicating that the

result of the transaction execution is correct.

(c) Endorsement collection: Endorsements from endorsing nodes

are sent to the client.

(d) Verification of endorsements: The client verifies that it has re-

ceived enough valid endorsements from endorsing nodes as

specified in the endorsement validation policy.

(e) Sending to the orderer nodes: The client sends the transaction

and the corresponding endorsements to the ordering nodes. The

orderer nodes receive the transaction and validate it again. If

the transaction is valid, they include it in a block along with

other transactions. The ordering nodes then use a consensus

algorithm to agree on the order and content of the blocks.

(f) Confirmation: Once consensus has been reached, the block is

confirmed by the network nodes and added to the distributed

ledger, which finalizes the transaction.

It should be noted that, depending on the network configuration,

there may be several endorsing and ordering nodes involved in the

validation process of a transaction in Hyperledger Fabric.

Chapter 4. Blockchain optimizations 69

11. MaxMessageCount: In Hyperledger Fabric the transactions can be

validated individually or in blocks of transactions, by modifying the

parameter MaxMessageCount. It means that, instead of validating im-

mediately each transaction, the system waits until a certain number

of transactions is available (e.g. 10) to make delayed validation. This

feature allows the system to make optimizations, however the prob-

lem is that until a transaction is not validated, it will not be stored in

the ledger. Thus, it is not available to other partners in the blockchain

network, creating delays in information availability.

A set of experiments (see Section 5.3.7) was conducted to analyze the perfor-

mance of the blockchain system under this traditional implementation and

from which possible implementations of improvements described below

are observed or determined.

4.4 Proposed Optimizations in Blockchain

As shown in the previous section and reflected in the evaluation carried

out in Section 5.3.7, there are problems to be solved in order to use the

blockchain technology in a network gathering real-time data from IoT de-

vices. Those problems are related to performance, scalability, and possible

data losses when transactions are processed. The former problems have

been detected in previous works, but most solutions proposed to cope

with them try to enhance the Internals of the blockchain platform used

(validation, protocols, etc.).

For the sake of usability, and to increase adoption of the solution, two

generic optimizations in transaction processing are proposed in this thesis

that are compatible with any blockchain platform used to implement the

Chapter 4. Blockchain optimizations 70

blockchain network. The optimizations do not require modifying the inter-

nals platform for them to take effect. These improvements are: using atomic

records to store the data sent by the sensors and changing the validation

block size.

4.4.1 Atomic Records

This first optimization proposed in this research work consists of storing

each transaction carried out by a sensors in an atomic form, creating a new

block for each transaction from a sensor. This block includes the minimum

information needed for the transaction to be executed. For example, their

content can be the sensor identifier, the value of the measurement taken,

and the identity of the truck where the sensor is installed. For this purpose,

when a sensor sends a new transaction, a new transaction is added for

this sensor after the most recent one. This avoids the need of recovering

all values previously stored by the sensor to concatenate the new value

afterward, as it happened in the model described in the previous lines.

The effect of this optimization is critical, as the size of the transactions made

by each sensor remains constant over time and the transaction replication

time in all the peer nodes is also constant, as it only contains the last value

and the minimum necessary information. Thus, scalability should be en-

sured. As the blockchain technology provides immutability and auditability,

we provide the functionalities needed to get the history of values of a given

sensor since it was created. Therefore, it is possible to execute queries to

see the content of the last transaction, a set of transactions, or to recover

all the transactions executed, which is also an advantage over the previ-

ous model that always returned the complete history of a sensor requiring

further post-processing.

Chapter 4. Blockchain optimizations 71

The performance evaluation when applying this optimization is described

in the case study (see Section 5.3.7).

4.4.2 Changing the Transaction Block Size

To cope with the delays in the data availability, we proposed a second op-

timization technique in our model: modifying the maximum number of

transactions that can be stored within a validation block. It also uses atomic

transactions to ensure that they are independent of each other. This opti-

mization allows increasing the performance of the blockchain network since

the validation process (the phase that produces the highest latency) is not

carried out every time a transaction is made, but by groups of transactions,

which reduces the number of times the validation process is performed on

the network.

The performance evaluation when applying this optimization is described

in the case study (see Section 5.3.7).

4.4.3 Artifact generation and automatic deployment

This section outlines a new approach to generate and deploy blockchain

network artifacts, considering the multiple components (such as nodes,

certificates, private keys, identities, channels, policies, etc.) needed to create

a verifiable network using Hyperledger Fabric and deploy it within a specific

infrastructure.

In order to set up a functional verifiable network that can record transac-

tions, certain steps need to be taken. These steps include creating cryp-

tographic material for each component of the network, defining the en-

vironment of each node, establishing communication channels, creating

Chapter 4. Blockchain optimizations 72

smart contracts, and installing them on the relevant nodes. These steps

require technical expertise on the part of the verifiable network adminis-

trator. This could be a problem if the participants or organization wants

to incorporate a verification component into their processes but lack the

technical knowledge needed to deploy a verifiable network. Furthermore,

if there are numerous organizations with many participants involved in

an IoT scenario, the configuration of the verifiable network may become

impractical or not easily scalable.

The proposed solution aims to address the limitations mentioned above by

automatically generating the essential components required for verifying

IoT data flows. This is achieved through a series of processes or abstractions,

which include:

1. The number of organizations in the workflow is determined by the

number of stages, and the user can define the number of peers for

each organization.

2. A communication channel is established to facilitate the workflow.

3. An orderer node is created to manage the transaction order for the

entire network.

4. The smart contract logic follows the ETL model and is pre-defined.

Assets refer to the files or data processed through the workflow, while

participants refer to the programs, services or processes that receive

and generate new data. The hashes of incoming and outgoing files

are part of the smart contract logic.

5. The configuration of environment variables, ports, and routes for

each verifiable network node is based on the available infrastructure

where the network will be deployed, and not limited to localhost

deployment.

Chapter 4. Blockchain optimizations 73

6. The proposed method generates all the necessary cryptographic ma-

terial by taking in the user’s ETL declaration and the desired number

of peers for each organization. This is achieved by defining the value

of the Npeers variable in the ETL model. For example, if the user’s

ETL declaration specifies a 3-stage workflow (w = {st g 1, st g 2, st g 3})

and 2 peer nodes are needed per organization (Npeer s = 2), the pro-

posed solution automatically creates the cryptographic material for 3

organizations, with each organization having 2 peer nodes.

The abstractions mentioned earlier enable the automated and generic con-

struction of a blockchain network based on user-defined parameters, with-

out the need for technical expertise.

The research work utilizes the automatic generation and deployment mech-

anism in each of the case studies evaluated. Given that the number of

components (e.g. organizations and peers) of the blockchain network dif-

fers in each case study, it is crucial to redefine the components and artifacts

of the network in every scenario.

4.4.4 High-Performance delivery

The methods explained earlier can be helpful when real-time IoT data is

directly recorded in a decentralized database of a blockchain network, and

then analyzed in the context of a smart contract that is designed for a spe-

cific use case. For instance, in an environmental setting, the smart contract

can assess temperature data to determine if it falls within acceptable tem-

perature limits and predict potential fire risks. Similarly, in a transportation

scenario, the smart contract can evaluate speed data to verify if it meets the

permitted speed limits and detect any traffic violations.

Chapter 4. Blockchain optimizations 74

However, there are situations where a single piece of data is not enough

to trigger the smart contract or business logic to take action. For instance,

in a healthcare setting, a device that captures the electrical activity of the

heart (or electrocardiogram) may provide data that requires more than one

piece of information to determine a possible irregularity in the heart rhythm.

Typically, algorithms designed to detect anomalies require input signals at

specific time intervals. In this case, the device’s sampling frequency can

generate thousands of data points in a few minutes, as it can range between

500Hz and 2000Hz. In fact, the higher the sampling frequency, the more

precise and high-quality the recorded signal becomes.

In this situation, several data sets or structures are produced that must

be maintained in their original format for future processing, analysis, or

storage in the blockchain.

Within the proposed solution outlined in Chapter 3, the CD component

produces results in a JSON format at each stage of the workflow (see 3.3).

However, managing a large amount of data generated by a single stage of

the workflow in this format can be challenging, particularly in scientific

workflows. Moreover, this format does not permit or restrict access to data

by multiple parallel processes.

HDF5 (Hierarchical Data Format version 5) is a technology that is commonly

used to store and share scientific and engineering data [120]. The develop-

ment of this technology was driven by the need for a file format that could

handle large scientific datasets and store them efficiently while allowing

for easy access. The key features of HDF5 include platform independence,

optimized storage techniques, support for managing large amounts of data,

hierarchical organization of data, metadata support, and a simple API for

data access.

Chapter 4. Blockchain optimizations 75

Based on the characteristics of HDF5 technology discussed earlier, we think

that integrating HDF5 as a way to save the outcomes of each step of the CD

component in the proposed solution can greatly decrease the amount of

transactions produced on the blockchain. This would be achieved while

preserving all essential information within the business logic, without any

loss of pertinent data.

The primary CD/CV prototype plan involves adopting a fine-grained ap-

proach, where each file produced from the workflow stages will generate

one blockchain transaction. In contrast, the coarse-grained approach will

involve creating one transaction for the entire group of files created by each

stage within a specific time period.

By incorporating HDF5 technology in the CD/CV prototype, the number of

resulting files in the workflow can be decreased and the size of the trans-

actions that must be generated in the verifiability network can be reduced.

Furthermore, the parallel I/O functionality allows us to save the outcomes of

numerous threads from the same workflow stage simultaneously in a single

file. Consequently, the information from multiple processes (or workflow

stages) can be stored in a single transaction on the blockchain network

using the resulting file information.

4.4.5 Enhancing the continuous delivery component.

To leverage the parallel I/O capability of HDF5 and achieve improved data

transfer performance between workflow stages (component CD), an alterna-

tive solution to the one illustrated in Figure 3.4 from Chapter 3 is proposed

in this section. This alternative solution involves integrating DIY [121], and

Lowfive technologies into the software stack of the proposed prototype

CD/CV.

Chapter 4. Blockchain optimizations 76

1. DIY: DIY is a library2 that allows for the implementation of scalable

algorithms through block-parallel processing, which can be executed

both in-core and out-of-core. It offers the flexibility of using a single

program with one or more threads per MPI process, thereby com-

bining distributed-memory message passing with shared-memory

thread parallelism in a seamless manner.

2. Lowfive: LowFive is a data transfer layer that utilizes the HDF5 data

model for in-situ workflows through the use of in-memory data and

MPI message passing (p.e MPICH [122]). This technology enables the

handling of multiple reads and writes of data from both traditional

HDF5 files in physical storage and those stored in memory. LowFive

also facilitates the redistribution of data from n producing processes

to m consuming processes.

In Chapter 3, the CD/CV prototype is explained, which employs a parallelism

technique based on containers (as depicted in figure 3.4). This technique al-

lows the user to specify the number of threads for processing. Based on this

configuration, a corresponding number of services (or clones) run as con-

tainers at every stage of the workflow, facilitating simultaneous processing

of the data load.

To offer an alternative to the container approach that encapsulates the ser-

vice, a do-it-yourself (DIY) technique is proposed to employ block-parallel

processing by encapsulating the service within the block concept. This

method allows for executing the same program/service using one or multi-

ple threads per MPI process for every stage of the CD component’s workflow

in the proposed solution.

Moreover, it is suggested to incorporate the LowFive technology as a data

transfer layer between the MPI processes to enable sharing or accessing
2https://gitlab.kitware.com/tpeterka/diy

https://gitlab.kitware.com/tpeterka/diy

Chapter 4. Blockchain optimizations 77

the data produced by each of the processes across the various stages of the

workflow (CD component).

The details of this technique are described through the application of a case

study described in Section 5.4.

4.5 Summary

In this chapter, the design of new blockchain platform independent opti-

mization techniques has been shown. New atomic transactions and grouped

validation techniques were proposed, which are applied on top of the

blockchain platform and that are not dependent on any specific platform.

As a result, improvements were obtained in the data collection transactions

protocol and the data storage procedure.

The optimizations carried out on the transactions allowed increasing the

performance and scalability of transactions validation in the blockchain

platform, allowing high speed validation and storing the data consistently in

near real-time, allowing the data to be available for query in the continuous

validation of the contract.

The ETL model has also been adapted to incorporate HDF5 technology in

the CD/CV prototype to make it more suitable for HPC environments. It

has been proven that it can lead to efficient and speedy processing of data

at each stage of the workflow in the CD Component. Moreover, it can also

minimize the number of records required in the blockchain for maintaining

the audit trail of an asset, without compromising its traceability.

Finally, two technologies (DIY and Lowfive) are mentioned as a complement

or alternative solution to the parallelism approach initially proposed in the

CD/CV prototype.

CHAPTER 5

EXPERIMENTAL RESULTS

In the process of solving a problem, it is crucial to have a solution that is

effective and meets the stated objectives. However, once a solution has been

developed, it is necessary to evaluate its performance to ensure that it meets

expectations. This chapter presents the methodology used to evaluate the

proposed solution and explains how the different analyses were carried

out to obtain the results. It is important to note that the evaluation of the

solution is not only fundamental to determine its effectiveness, but also to

identify opportunities for improvement and to make necessary adjustments

in the future.

5.1 Evaluation methodology

An experimental evaluation was conducted in the form of case studies to

investigate the data processing from IoT environments with the proposed

solution. Three different scenarios were considered for this study. The first

scenario involved processing user mobility information, while the second

scenario involved using temperature, GPS, and acceleration data to monitor

and control the routes of a fleet of trucks. The third scenario involved the

analysis of electrocardiogram signals. In all three scenarios, the data han-

dling was performed through continuous delivery processing. The research

work also verified the transactions performed at each stage of these data

flows.

79

Chapter 5. Experimental results 80

The methodology utilized to evaluate the CD/CV prototype and the pro-

posed optimization techniques is illustrated in Figure 5.1.

Evaluation methodology

Configuration Initial CD/CV Variation Experimental Metrics

Case study definition Data Source Infrastructure Hw y Sw

Case StudiesA

3

User
mobility1 Transport

fleet2 Electrocardiogram
Signals3

User mobility: 1

Transport fleet2

Electrocardiogram Signals3

182 user trajectory data

Simulated data

25770 ECG records

ExperimentationB
Solutions Studied

Analysis and discussionC

FIGURE 5.1: Evaluation methodology

The first step in this methodology is to define the use cases based on the type

of IoT data and the need for process verification. Next, the hardware and

software infrastructure required to implement the use cases are determined.

Afterwards, the solutions to be evaluated are defined along with the parame-

ters that will be used to experimentally vary the solutions. The workflow for

processing the case study information is prepared, deployed, and operated

using the CD/CV Management Framework. Finally, the metrics for the case

study are established and the results are analyzed and discussed.

The following is a description of each of the case studies and the evaluation

methodology used in each of them.

Chapter 5. Experimental results 81

5.2 Case Study 1: User Mobility

For this research work, an experimental evaluation is conducted in the form

of a case study based on the processing of IoT data about mobility, interest

points, and trajectories of user.

This section thus describes the CD/CV schemes built for creating a traceable

and verifiable workflow for the case study, which consists of user mobility

data captured from GPS devices.

5.2.1 Description of case study

The mobility data are acquired and processed by software that implements

the algorithm proposed by Montoliu et al. [123]. The algorithm allows the

extraction of points of interest (POIs) by analyzing the location points of a

user. The workflow includes this algorithm and implements stages such as

acquisition, preprocessing, processing, storage, and exhibition.

Figure 5.2 depicts a workflow for the extraction of points of interest (POIs)

from the mobility data of users.

Montoliu et. al 's
Algorithm.

Elimination of
anomalous values
Standard format

Location	data
set

Pre-processing

Stage	1:	Pre-processing

Extraction	of	POIs

Stage	2:	Processing

Inference	of	new
data POIs

Stage	3:	Exhibition

Transportation.
Speed calculation.

Web Service
Points of interest

of users

FIGURE 5.2: Design of the workflow for mobility case study.

The first stage (St1) of the workflow prepares the mobility data extracted by

the acquisition service. This stage includes data preparation procedures

such as removing anomalous values, unifying formats, and transforms them

into a structured form of the data, such as JSON files.

Chapter 5. Experimental results 82

The processing stage (St2) includes tasks for data processing, such as the

extraction of POIs and the inference of new data. Given a list of location

points of different users, this stage extracts points of interest (POIs) for each

user. Subsequently, from the extracted POIs, relevant information about the

user’s mobility is inferred, such as the mode of transportation (for example

walking, by bus, or by airplane) between the POIs and the mobility speed of

these users.

The calculated POIs are stored in a database deployed on the third stage

(St3). Finally, an exhibition module based on a web service shows the POIs

obtained per user and creates a route in a map created by GIS-geoportal.

The end-users of this visualization web service can define search criteria

(e.g., a given user or spatio-temporal parameters). The workflow described

composes the CD/CV system displayed by the Global Manager (see Fig-

ure 5.4).

It is important to note that the signature (hash) of each extraction, transfor-

mation, and load of these sensitive data performed by each stage (in the CD

scheme part) are registered in the traceability network (CV scheme part) in

automatic and transparent manners.

Data Source An Acquisition service extracts records from Geolife Database

[124], which contains information on the paths of 182 users collected over

five years in Beijing, China. This data source includes 18,670 trajectories

of an equal number of users corresponding to 1,292,951 kilometers. The

acquisition service collects data such as latitude, longitude, and timestamp

of each point collected by different GPS devices. The Geolife dataset is a pop-

ular dataset that has been used in many SOTA works for predicting future

locations [125], multimodal locomotion with mobile devices [126], for clas-

sification of transport modes using ensembles [127], or for anonymization

using machine learning [128].

Chapter 5. Experimental results 83

Although a data file extracted from Geolife is used in the case of mobility,

the system behaves as if it were an online data system, since workers deal

with input data as it arrives. The data emitters are responsible for generating

load dynamically.

In CD/CV the platform is dynamically deployed with the number of workers

specified. The number of workers does not change based on the load, rather

they are used as a default pool. Currently the system does not have the

ability to dynamically adapt to the input load. It has been left for future

work to have an elastic system.

5.2.2 Infrastructure Hardware and Software

The stages of the workflow were encapsulated into virtual containers using

the Docker platform. In this case study, the CD/CV manager prototype was

deployed on an Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 64 GB of

memory, two hard drives of 2.7 TB each one, and 12 cores.

The virtual containers also include software such as an operating system

with installation type “Compute Node” version Linux CentOS 7 x64, Cloud-

era Manager, Docker, and Docker Compose higher than 17.06.2-ce, cURL

Latest, Go 1.11.x, Python 2.7.x, Node.js Runtime, and NPM 8.9.x, and Hyper-

ledger Fabric 1.4.

5.2.3 Solutions Studied

A set of solutions is defined, including multiple configurations of CD/CV

and a workflow engine available and studied in the literature.

The solution DagOnStar [10], a workflow engine for scientific and environ-

mental processing, was studied as a related solution found in the literature.

Chapter 5. Experimental results 84

It is also studied the solution proposed in this research (GlobalManager:

GM-CD/CV), which not only creates the workflow but also the network of

verifiability. A version of the workflow only using the continuous delivery

scheme (GM-CD) was also evaluated.

This evaluation compares the performance of GM-CD/CV with that pro-

duced by GM-CD to observe the overhead generated by the CV scheme

part (registering transactions in the blockchain). A comparison between

GM-CD/CV and DagOnStar was performed to measure the impact of par-

allelism patterns on the reduction and even elimination of CV overhead,

where DagOnStar also considers implicit parallelism at the stage level.

5.2.4 Configuration Initial CD/CV

The acquisition service invokes the workflow (W) defined by the following

expressions:

W = {St1,St2,St3}, where: St1 → Preprocessing stage, St2 → Processing
stage, and St3 → Exhibition stage, NuSt1 → N◦ of preprocessing services,

NuSt2 → N◦ of processing services, NuSt3 → N◦ of exhibition services.

The CD/CV Global Manager presents the above notation in the form of boxes

to the end-users to retrieve from them the ETL model and the number

of services to be deployed at each stage. The Global Manager uses this

information to create an architectural pattern for the efficient analysis of

GPS data.

The parameters of the number of organizations (Or g s) and the number

of peer nodes per organization (Npeer s) for this case study are defined as

follows in the continuous verifiability component (CV scheme part):

Or g s = {Or g1,Or g2,Or g3} and P xO = Npeer s

Chapter 5. Experimental results 85

where Or g s defines participating organizations, and Npeer s determines the

number of peers for each organization. In this study, Or g s is equal to three,

which are the number of stages in the workflow and the value of the number

of peers per organization (Npeer s) is defined in the experimental variation

described in Section 5.2.6.

The result of the established definitions automatically creates a network of

verifiability that is displayed below.

Verifiability	network

ca.org1

peer0.org1

peer1.org1

Organization 1
ca.org2

peer0.org2

peer1.org2

Orgaization 2

ca.org3
peer0.org3
peer1.org3

Organization 3

Orderer node
Consensus

AdminOrg1 AdminOrg2

AdminOrg3

peerNpeers.org1 peerNpeers.org2

peerNpeers.org3

FIGURE 5.3: Verifiability network for the mobility case study.

By default, the CV scheme part is created by the administrators defined by

each organization participating in a workflow.

When both CD (workflow) and CV (blockchain) have been established by ad-

ministrators, the Orchestrators configure: the path to the Geolife database,

the ETL routes for each service (pre-processing, processing, and exhibition)

deployed at each stage, and the path that points to the Docker configuration

for each virtual container image of the services considered. The Launch-

ers deploy the virtual containers considered in CD/CV schemes. And the

Choreographers establish the execution of the first stage of the workflow.

This means that when end-users initiate the acquisition stage, the process-

ing starts, and this culminates in the visualization, for end-users, of a map

including the point of interests detected through the IoT dataflow.

Chapter 5. Experimental results 86

At the same time, the Construction Manager with the CV scheme creates

the business model and smart contracts for the stages of the workflow. As

well as it creates the continuous verifiability (CV) network by using the

Hyperledger Fabric. Additionally, it verifies the availability of this network

for the stages of the workflow.

Transaction

AdminCard_Org1

peer0.org1
 peer1.org1
 peer0.org2
 peer1.org2
 peer0.org3
 peer1.org3
orderer

ca.org1 ca.org2 ca.org3

ETL_model.json

Load Balancer

Preprocessing1

Preprocessing2

PreprocessingN

Organization 1

Admin

DS_partition_1

DS_partition_2

DS_partition_n

Processing1

Processing2

ProcessingN

Organization 2

Repository1 Repository2

Db_1

Exhibition_1

Organization 3

Fir_Digital_In

Fir_Digital_Out

Metadata

Framework CD/CV

Workflow

AdminAdmin

Blockchain Network

Transaction

AdminCard_Org2

Fir_Digital_In

Fir_Digital_Out

Metadata

Transaction

AdminCard_Org3

Fir_Digital_In

Fir_Digital_Out

Metadata

User

1

2

3

4
5

6

7
8

9

10

12

11

 Data Source (DS)

Organization 1 Organization 2 Organization 3

FIGURE 5.4: Operation of the CD/CV system for the user mobility case
study.

5.2.5 Metrics

The following metrics were defined and captured in the execution phases

(preparation, deployment, and operation) of the workflow by the three

solutions studied:

1. Response Time (RT): This metric represents the time that elapses

since the user made requests to the IoT dataflow until user gets a

Chapter 5. Experimental results 87

response. For this research work, the response time is the time that

the user applies a load to the workflow until user gets the results.

2. Deployment Time (DT): It represents the time required to deploy

and have in service all the processing units or virtual containers. This

time also includes runtime (Ru), which represents the time interval

in which a deployment script runs on the operating system.

3. Overhead (Ovd): This metric represents the extra time that a specific

operation or process may require if the system adds some functional-

ity. In this case, we seek to measure the overhead produced by adding

continuous verification functionality to a traditional workflow such

as DagOnStar or on our GM-CD proposal.

4. Throughput(T h): It corresponds to the volume of data per unit of

time processed through the IoT dataflow.

5.2.6 Exploratory evaluation phase

To evaluate the performance of the CD/CV schemes built to conduct the

previously described case study, we performed an exploratory evaluation

phase to identify the impact of critical parameters on CD and CV compo-

nents performance as well as a direct performance comparison of CD/CV

schemes with a state-of-the-art solution (DagOnStar [10]).

In the exploratory experimental evaluation, the parameters of both the

continuous delivery (CD) and continuous verifiability (CV) components

are systematically varied.

The parameter variation is defined to explore the performance of the CD/CV

schemes for different workloads. This allowed us to determine the set of

parameters of the proposed solution that produce the best performance.

Chapter 5. Experimental results 88

This phase considers a heterogeneous distribution of data for the number

of mobility routes of each user.

Experimental variation - Continuous Delivery

The following parameters were varied in the exploratory phase of the Contin-

uous Delivery scheme part: a) number of services per phase or parallelism

{1,2,4,6,8,10,12,24}; b) volume of data to be processed {1,10,100} records;

and c) seed of the random number generator {1,2}.

The Operation Manager selects a subset of data or users using two different

seeds (each seed value generates a different subset of data). Considering

all the possible combinations of the parameters (experimental Variety and

Volume), there are a total of 24 configurations to measure the performance

of the IoT dataflow using the CD scheme of GM-CD solution, with the same

subset of data selected for each variation of data Di for each Si service. We

ensured that each solution processes the same subset of source data. This

subset of data is selected by setting a seed value for the random number

generator and allows for replication of the experiments.

Two experiments were performed to apply different workloads (a subset of

data) to the workflow, E1 and E2 (with seed 1 and 2 respectively), each of

them with 24 configurations, having a total of 48 evaluations.

For the exploratory phase, the parameters were systematically varied and

those that allowed to obtain the best performance in a few iterations (ap-

proximately 5) were selected for a second comparative phase with a state-of-

the-art solution. Subsequently, in the comparative phase, each experiment

was run 31 times. The results presented in the comparative phase show the

average and standard deviation of the 31 runs (see tables 5.1 and 5.2). In

most cases, the confidence interval is 5% and even smaller when the data

load is lower (p.e. 10 users).

Chapter 5. Experimental results 89

Experimental variation - Continuous Verifiability

For the CV scheme part, we considered varying the number of Peers in

the blockchain for each organization: {1,2,4,6}. In this sense, for the GM-

CD/CV solution, the total of configurations to be evaluated is given by the

parameters of Variety, Volume, Seed (defined in the continuous delivery

scheme), and the variety of Peers per organization.

This means, considering these four parameters, we performed 96 configura-

tions of GM-CD/CV solution with the same workload for all data variations

(D1, D10, and D100) for each seed. In these configurations, Di represents

the amount (i) of data or users to be processed in the IoT dataflow.

In a similar fashion used for GM-CD configurations, we performed two

experiments for GM-CD/CV, E1 and E2, each of them with the 96 configura-

tions using the same seeds (1,2) selected for the GM-CD solution to process

the same data but this time considering records in a verifiability network.

The result is a total of 192 evaluations to evaluate the GM-CD/CV solu-

tion, considering the component of continuous delivery and continuous

verifiability in the exploratory stage of the experimental variation. In the

comparative stage with the DagOnStar solution, we adjusted the parame-

ters for GM-CD and GM-CD/CV according to the results presented in the

exploratory phase. Section 5.2.8 describes this comparative stage.

5.2.7 Results and discussion of the studied solutions

The first analysis carried out in the exploratory phase consisted of the num-

ber of virtual CD/CV containers to be deployed for processing the mobility

data for the CD scheme part (services per stage) and CV (peer nodes per

organization).

Chapter 5. Experimental results 90

Figure 5.5 shows the number of different types of containers deployed per

each notation Si -P j , where i is the number of services per stage, and j is

the number of peers per organization of a given configuration defined in

the exploratory phase.

For this mobility case study, the C D containers that correspond to the work-

flow are Database, Exhibition, Preprocessing Stage and Processing Stage. The

CV containers in the verifiability network are Ca Nodes, Order Nodes, Client

Nodes, Peer Nodes, and dev-Peer Nodes. The container CD/CV Manager is

the solution proposed in this work of research.

S
1

S
2

S
4

S
6

S
1

P
1

S
2

P
1

S
8

S
1

P
2

S
4

P
1

S
2

P
2

S
6

P
1

S
4

P
2

S
8

P
1

S
6

P
2

S
1

P
4

S
2

P
4

S
8

P
2

S
4

P
4

S
6

P
4

S
1

P
6

S
2

P
6

S
8

P
4

S
4

P
6

S
6

P
6

S
8

P
6

0

10

20

30

40

50

60

Configurations (S:Services-P:Peers)

N
um

be
ro

fv
ir

tu
al

co
nt

ai
ne

rs
de

pl
oy

ed

Manager CD/CV Database

Exhibition Stage Preprocessing
Stage Processing Node Ca
Node Order client

Node Peers(x3-Org) dev-peer

5
7

11

15 16
18 19

22 22
24

26
28

30
32

34
36 36

40

44
46

48 48

52

56

60

FIGURE 5.5: The number of CD/CV Virtual Containers deployed for each
configuration for the mobility scenario - Exploratory stage.

As an example, Figure 5.5 shows that the notation S8P6 deploys 60 virtual

containers on the cloud. In this example, eight correspond to the pre-

processing stage and eight to the processing stage, given the notation S8. For

practical purposes for the development of this research work, all the config-

urations included one virtual container for the database and another one for

the exhibition module. These 18 containers mentioned above are included

Chapter 5. Experimental results 91

in the C D scheme (for continuous delivery in the workflow). In the same

example of S8P6 notation, the P6 indicates that each organization (three for

this case study) has deployed 6 peer nodes in the verifiability network, (i.e.,

the three organizations have deployed 18 virtual containers implementing

peer nodes of a private blockchain). As previously established, the verifia-

bility network includes two more containers for each organization: the first

one implementing the order manager node and the last one implementing

the certification authority (CA) node, which results in 6 virtual containers.

A virtual container called client is deployed by each organization to per-

form operations such as creating the channel through which the peer nodes

communicate, joining the peer nodes to this channel, among others. Also,

for each Peer Node deployed, the Manager deploys another virtual con-

tainer (dev-peer) to configure the business network in the Peer Node. In this

sense, for the verifiability network, there would be 41 virtual containers CV .

The last virtual container of the S8P6 configuration is the CD/CV Manager,

which includes Orchestrator, Launcher, and Choreograph. It is important to

note that both CD and CV virtual containers are automatically deployed by

CD/CV Manager on the cloud and interconnected by using CD/CV scheme

without the intervention of the end-users, which only provides the CD/CV

manager with ETL information and business logic model (based on a DAG).

The deployment of each virtual container, either C D or CV on a given in-

frastructure, implies the consumption of memory, disk space, and other

computational resources. Figure 5.5 shows that, as expected, those con-

figurations with a higher number of peers (e.g., P4 and P6) consume more

resources than those using few peers. In this context, an appropriate ap-

proach is to vary the number of peers depending on the infrastructure,

analyzing its memory resources, computational power, among others. The

variation of this parameter is described in Section 5.2.6.

The notation P0 is equivalent to the solution GM-CD as it does not consider

Chapter 5. Experimental results 92

peer nodes per organization. The configurations with the parameters P1,

P2, P4 and P6 basically are used in GM-CD/CV configuration by varying the

number of peer nodes per organization.

S1 S2 S4 S6 S8 S10 S12 S24

0

0.5

1

1.5

2
·104

Services per stage

Re
sp

on
se

tim
e

(s
ec

)

P0

P1

P2

P4

P6

Workload of 100 selected user data chosen by seed 1.

(A)

S1 S2 S4 S6 S8 S10 S12 S24

0

0.5

1

1.5

2
·104

Services per stage

Re
sp

on
se

tim
e

(s
ec

)

P0

P1

P2

P4

P6

Workload of 100 selected user data chosen by seed 2.

(B)

FIGURE 5.6: Response times of the configurations in the exploratory
stage.

Figures 5.6a and 5.6b show that, independently of the workload or the num-

ber of peer nodes per organization, the configurations with the parameters

Chapter 5. Experimental results 93

S10, S12 and S24 produce the shortest response times in comparison with

the other variations. Even from the S6 configuration, a stabilization of the

proposed solution with the used infrastructure is achieved.

The performance when varying the number of peer nodes per organization

(P1, P2, P4, and P6) could be affected by latency in the case of organizations

selecting multiple cloud resources to create their verifiability network.

Figures 5.7a and 5.7b show the throughput of each GM-CD and GM-CD/CV

configurations processing data of 100 selected user trajectories with seed 1

and 2 respectively.

As it can be seen in the Figures 5.7a and 5.7b, the higher performance is

achieved when parallelism schemes are applied to the CD/CV schemes (see

configurations S2 to S24) as these configurations process data in concurrent

manner using an implicit parallelism model embedded into the CD virtual

containers, which also includes a load balancing algorithm (see P1,P2, . . . ,P6

when each stage using four services). This model compensates and even

eliminates the costs of the CV components (See S2−6 for all P1,P2, . . . ,P6 CV

components), which making feasible to create a traceable and verifiable

critical workflows.

The results presented in this exploratory phase were analyzed to determine

the parameters producing the best performance. In this context, it was

observed that the choosing of the number of services per stage should be

defined according to the number of cores available in the infrastructure

where workflows based on CD/CV schemes were deployed on.

Specifically, in the infrastructure used in this exploratory phase, 4 and 6 peer

nodes for each organization resulted in an overuse of resources (i.e., memory

and disk) for CD/CV schemes, which directly affected the response time.

Although the configuration of one peer node per organization produced

acceptable response times, it might not be adequate as the organizations

Chapter 5. Experimental results 94

S1 S2 S4 S6 S8 S10 S12 S24
0

0.1

0.15

0.2

0.25

0.3

Services per stage

Th
ro

ug
hp

ut
(M

B/
se

c)
P0 P1 P2 P4 P6

*Workload of 100 selected user data chosen by seed 1.

(A)

S1 S2 S4 S6 S8 S10 S12 S24
0

0.1

0.15

0.2

0.25

0.3

0.35

Services per stage

Th
ro

ug
hp

ut
(M

B/
se

c)

*Workload of 100 selected user data chosen by seed 2.

(B)

FIGURE 5.7: Throughput of configurations defined in the exploratory
stage.

would be unable to access the network records of verifiability (blockchain)

in events of node failures.

Chapter 5. Experimental results 95

5.2.8 Performance comparison.

With the results obtained in the first phase, adjustments were made to the

given parameters to carry out, in a second phase, the direct performance

comparison between a state-of-the-art solution (DagOnStar) and the solu-

tions proposed in this research work (GM-CD, GM-CD/CV).

During this phase, the different solutions are configured in a comparable

way (e.g., processing threads), the different response times are determined

applying different workloads to both sequential and parallel versions. Addi-

tionally, the overhead/gain of a given solution is analyzed with respect to

the remaining configurations.

Results and discussion of the solutions studied

The results of the exploratory phase allowed us to identify criteria to chose

CD/CV operation parameters. For the continuous delivery component,

the parameters to consider for the comparative stage were: 10, 12 and 24

services per stage (S10, S12, and S24) with three different workloads (D =
1,10,100). Additionally, we included S = 1 to consider a sequential solution,

generating a total of 12 configurations to evaluate.

Analyzing parameter criteria for GM-CD solution

Figure 5.8 shows that S12 was the best selection of the number of services

per stage for the mobility scenario workflow in GM-CD configuration as

it processed the highest load in the shortest time. In a similar way to the

exploratory phase, the best response times were obtained by the configu-

rations using as many services as available cores in the infrastructure (12

cores). When configurations deploy more threads than available cores (e.g.,

S24), the system ending up creating a queuing of tasks in the available cores

Chapter 5. Experimental results 96

S
1

S
10

S
12

S
24

S
1

P
1

S
1

P
2

S
10

P
1

S
10

P
2

S
12

P
1

S
12

P
2

D
a

g
O

n
-1

T

D
a

g
O

n
-1

0T

D
a

g
O

n
-1

2T

D
a

g
O

n
-1

00
T

D
a

g
O

n
∗

102

103

104

Configurations

Re
sp

on
se

Ti
m

e
(s

ec
on

ds
)

1 User (D1) 10 Users (D10) 100 Users (D100)

GM-CD (S1,S10,S12,S24)
GM-CD/CV (S1P1,S1P2,S10P1, S10P2,S12P1,S12P2)

DagOnStar (DagOnSt ar -1T , DagOnSt ar -10T ,DagOnSt ar -12T , DagOnSt ar -100T ,DagOn∗).

FIGURE 5.8: Response time all solutions.

of the infrastructure, which reduces the improvement in response times

when deploying more services than available cores.

Analyzing parameter criteria for GM-CD/CV solution

For the CV components, the number of peer nodes P = 1,2, produced the

best performance results in the exploratory phase. We discarded the S24

configurations, as deploying more concurrent services than available cores

(12 cores) does not produce performance improvements (-3.46% on average

of all evaluations between S12 and S24).

It was also observed that, from 10 services, the response times tend to

become shorter and configurations do not yield a substantial improvement

(see performance of configurations as S1−10).

Figure 5.8 shows that regardless of the number of peers selected (P1 or

P2), configurations with S10 with a load of 100 data (D100) produces similar

average response times (0.32%).

Chapter 5. Experimental results 97

Analyzing parameter criteria for DagOnStar solution

DagOnStar also performs task parallelism using threads. For the experi-

mentation, we considered the number of threads T = {1,10,12,100,∗} with

the same workloads already evaluated (data of users D = {1,10,100}). The

parameter T =∗ means that DagOnStar manages all the available resources

of the infrastructure, creating a thread for each input task to be processed.

For this purpose, DagOnStar incorporates a component known as SLURM

[106], which is a cluster manager for scaling up thousands of processors.

Figure 5.8 shows the response times obtained when considering a sequential

version of DagOnStar (DagOn-1T) and how it improves with the number of

threads enabled for processing (DagOn-10T , DagOn-12T , DagOn-100T).

The DagOnStar configuration that allows using all the available resources

(DagOn∗) with the SLURM component was the one that obtained the best

results, reducing by 96.43 % the response times for the sequential version of

DagOnStar for a load of 10 data and 94.09 % for an of 1 data.

The DagOn* solution only performs continuous delivery (CD) tasks and

does not include the verifiability component (blockchain network) as the

solution proposed in this thesis. This means the performance of DagOnStar

is similar to GM-CD performance. The comparative results between these

solutions are described in the next section.

The DagOnStar solution only shows results for one and ten workloads (D1

and D10) because the configurations processing 100 user data was could

not be evaluated because of memory issues (threads consuming tens of

Gigabytes). In particular, in the creation process of dependencies between

tasks, DagOnStar creates ten sub-tasks for each data to be processed. More-

over, this configuration executes each sub-task to ensure continuous data

delivery in the workflow. This process resulted in more than 10,000 tasks

Chapter 5. Experimental results 98

that the solution loaded into memory during runtime workflow, which pro-

ducing overflows when DagOnStar processing workloads of 100 users’ data

in the infrastructure used for this experimental evaluation.

Comparative analysis and discussion of the solutions studied

The overhead produced by GM-CD/CV, and GM-CD (sequential version)

configurations is evaluated and discussed in this section. The DagOnStar

sequential version presents a high overhead (10x for 1 data and 7x for 10

data) compared to GM-CD sequential configuration.

Figure 5.9 shows that GM-CD/CV configurations compared to GM-CD gen-

erate mean overheads between 12% and 35%. Additionally, there will be a

higher overhead when considering a higher number of peer nodes and the

workload increases.

In other words, the higher number of peer nodes in the verifiability network,

the longer the time to accepting a transaction in the consensus protocol of

the blockchain, which directly impacts the response times perceived by the

user in the workflow.

To evaluate the efficacy of the parallelism features of the solutions to han-

dle these overheads produced by the verification component in the work-

flow performance, we evaluated the parallel solutions of GM-CD/CV and

DagOnStar with 10 (S10) and 12 (S12) threads each, which were the best

configurations of both solutions.

The four configurations of GM-CD/CV (S10P1,S10P2,S12P1 and S12P2) for 1

user have an overhead between 16.6% and 18.51% compared to the sequen-

tial solution GM-CD, while DagOnStar with 10 and 12 threads limit has an

overhead between 97.43% and 115.39% with respect to GM-CD. These over-

head percentages occur because there is only 1 User to be processed, and

Chapter 5. Experimental results 99

multiple threads are becoming unusable. However, when the load increases

(D10 and D100), the four GM-CD/CV configurations previously mentioned,

reduce the overhead between 61.22% and 61.97% for a 10-data load and

between 75.07% and 75.39% for a 100-data load with respect to GM-CD,

while DagOnStar with 10 threads still has an overhead of 12.39% and 1.24%

with 12 threads for 10 data.

C D/CV -S10P1 C D/CV -S10P2 C D/CV -S12P1 C D/CV -S12P2 DagOn-10T DagOn-12T

−80

−60

−40

−20

0

20

40

60

80

100

120

Parallel solutions

%
In

cr
ea

se
/D

ec
re

as
e

in
Re

sp
on

se
Ti

m
e

1 User 10 Users 100 Users

FIGURE 5.9: Comparison of the performance overhead/gain of the
studied solutions with C D-S1 configuration.

Figure 5.9 shows that the GM-CD/CV configurations including either 1 or 2

peer nodes with 10 and 12 threads do not produce overhead compared to

the traditional sequential GM-CD workflow for 10 and 100 user workloads

(D10 and D100). The overhead (19.24%) of CV components is constant, but

it is only reduced when using parallel patterns. The performance of the

workflow (CD/CV) is even improved when using 10 and 12 concurrent

services over GM-CD was approximately 61% for 10 data and 75% for 100

data.

When DagOnStar applies 10 and 12 threads, it still has a considerable over-

head compared to the sequential GM-CD solution. However, the percentage

was considerably reduced to 1.24% with 10 data when using 12 threads.

Chapter 5. Experimental results 100

To find a competitive DagOnStar configuration, it was allowed to DagOnStar

to launch as many threads as defined by SLURM (see DagOn*). Figure 5.10

shows the response times of each of the studied solutions considering 10

and 12 threads and DagOn*. As it can be seen, DagOn* can significantly

improve the performance of the workflow, but it also imposes a high con-

sumption of computational resources producing task queuing, which also

producing overflows when processing a large number of concurrent work-

loads (e.g., DagOn* produced an overflow when processing mobility routes

of 100 users).

D1 D10 D100

100

1,000

10,000

Workload (Number of users)

Re
sp

on
se

Ti
m

e
(s

ec
)

CD-S10 CD-S12

CD/CV-S10-P1 CD/CV-S10-P2

CD/CV-S12-P1 CD/CV-S12-P2

DagOn∗

FIGURE 5.10: Response times of the studied solutions considering task
parallelism.

As it can be seen, for the 10-user-data workload, the GM-CD solutions with

10 and 12 threads obtained the best response times as these configurations

do not to deal with the blockchain transactions registration overhead.

As expected, the GM-CD/CV configurations (S10-P1, S10-P2, S12-P1, and

S12-P2) produced overhead in comparison with parallel configurations (GM-

CD and DagOnStar), which are not registering transactions. Nevertheless,

this overhead is reduced when managing high-workloads as the CV can

consolidate the registering of transactions, which reduces the overhead

produced by CV components in comparison with parallel GM-CD solutions.

For instance, the overhead of GM-CD/CV solution was with the S10-P2

Chapter 5. Experimental results 101

parameters (10 services per stage and two peer nodes per organization) was

8.80% compared to the best GM-CD solution, which was with 12 processing

threads.

The transaction recording is based on the input and output batch of each

of the processing stages of the workflow and not by the user’s paths. This

coarse-grained strategy allows the execution times of the transactions in

the verifiability network not to be dependent on the number of trajectories

of a user and to be practically constant, while for the continuous delivery

component, the more paths to process, the longer the response time of

the processing of these tasks. In this sense, we estimate that the higher the

workload evaluated in the proposed GM-CD/CV solution, the lower the cost

overhead of using a verifiable network compared to the GM-CD solution

applying the same load.

We recall that DagOn* achieves better response times than configurations

with the verifiability component (CV) for a 10-data load because DagOn*

only performs continuous delivery (CD) tasks and not making registration

in the blockchain.

The average response times and percentage overhead of all configurations of

the studied configurations processing 10-data workload (D10) is compared

with the best DagOnStar configuration in Figure 5.11.

As it can be seen, the C D/CV -S12P2 is the configuration producing less

overhead in comparison with the parallel solution, which is still acceptable

in comparison with the best performance configuration.

Table 5.1 shows a summary of the average response times produced by

the studied configurations. It also includes deviation and the deviation %

of the metrics for a 10-data load. The deviation percentage of the values

obtained for the mean performance average of CD configurations in the

Chapter 5. Experimental results 102

DagOn10T

DagOn100T

CD/CV S 12P
2

CD/CV S 12P
1

CD/CV S 10P
2

CD/CV S 10P
1

DagOn∗
CD 10

CDS 24

CDS 12

−50

0

50

100

150

200

250

300

Solution configurations

%
In

cr
ea

se
/D

ec
re

as
e

in
RT

0

2

4

6

8

10

12

14

16

18

20

Re
sp

on
se

Ti
m

e
-R

T
(m

in
)RT (min) % Increase/Decrease in RT

FIGURE 5.11: Overhead/gain percentage of all configurations in
comparison with DagOn* for workload of 10 user data.

range of [1.31 and 2.66%], [1.29 and 3.63%] for CD/CV, but reducing when

increasing the number of services.

GM-CD GM-CD/CV DagOnStar
S1 S10 S12 S24 S1-P1 S10-P1 S12-P1 S1-P2 S10-P2 S12-P2 T10 T12 T100 T∗

Average 862.4 203.2 201.0 203.0 1001.7 327.9 331.6 1010.7 330.3 334.4 969.3 873.1 376.3 271.1
Standard deviation 22.91 3.76 2.64 3.34 36.39 11.58 7.54 23.76 5.33 4.32 8.47 37.68 26.81 22.58

% Deviation 2.66 1.85 1.31 1.65 3.63 3.53 2.27 2.35 1.61 1.29 0.87 4.32 7.12 8.33

TABLE 5.1: A summary of the mean response times produced by the
studied configurations with 10-user-data workload.

CD/CV S 12P
1

CD/CV S 12P
2

CD/CV S 10P
1

CD/CV S 10P
2

CDS 10

CDS 24

CDS 12

0

10

20

30

40

50

60

70

80

Solution configurations

%
In

cr
ea

se
/D

ec
re

as
e

in
RT

0

10

20

30

40

50

60

70

80

Re
sp

on
se

Ti
m

e
-R

T(
m

in
)

RT (min) % Increase/Decrease in RT

FIGURE 5.12: Overhead percentage comparison of studied configurations
with C D-S12 for 100 user data.

Chapter 5. Experimental results 103

The average response times and percentage overhead of all configurations of

the studied configurations processing 10-data workload (D10) is compared

with the best CD configuration in Figure 5.12.

As it can be seen, the C D/CV -S12P2 is again the configuration producing

less overhead in comparison with the parallel configuration producing the

best performance (under 10%). It is important to note that the more the

workload to be processed, the more the reduction of the overhead produced

by the CV components. The reason for this behavior is due to the coarse

and fine-grained strategies of GM-CD/CV. First, the coarse-grained method

generates a record to the blockchain for each batch of incoming and out-

going information from each service, this is suitable for scenarios where

data generation is constant. As a result, the costs of continuous verifiability

are reduced by logging a consolidation of data transactions (a report based

on the data flow), which reduces the number of logging processes in the

verifiability network. Additionally, the fine-grained strategy is only incorpo-

rated into each ETL transformation process (for each transformed file) to

generate a digital signature for each piece of data arriving and leaving each

stage of the workflows.

Table 5.2 shows a summary of the mean response times produced by the

studied configurations in comparison. It also includes deviation and the

deviation % of the metrics for a 100-data user workload. The deviation

percentage of the values obtained for the mean performance in the solutions

that include the CV model varies in the range of [3.37 and 6.11%].

GM-CD GM-CD/CV DagOnStar
S1 S10 S12 S24 S1-P1 S10-P1 S12-P1 S1-P2 S10-P2 S12-P2 T10 T12 T100 T∗

Average 16903.8 3357.3 3229.9 3341.7 16340.7 3553.2 3587.3 19196.9 3541.7 3584.3 ! ! ! !
Standard deviation 2929.2 231.2 277.1 360.2 551.3 210.7 173.6 1095.5 216.4 188.6 ! ! ! !

% Deviation 17.33 6.89 8.58 10.78 3.37 5.93 4.84 5.71 6.11 5.26 ! ! ! !

TABLE 5.2: A summary of the mean response times produced by the
studied configurations with 100-user-data workload.

Chapter 5. Experimental results 104

Analysis of the verifiability component of the best solution GM-CD/CV

We analyze the best solution of GM-CD/CV to determine the construction

times of the verifiability network. Taking the results previously described

into account, we consider that the best configuration found for the GM-

CD/CV including two peer nodes with ten services per stage (CD/CV-S10-

P2).

Although the results between CD/CV-S10-P2 and CD/CV-S10-P1 are very

close, it is advisable to have a larger number of peer nodes per organization

for an eventual failure of a peer node. For example, in the configuration of 1

peer node (CD/CV-S10-P1), a breakdown in the communication with the

only peer node of an organization could be critical since it could disable the

access of that organization to the verifiability network and not be able to

issue records to the network.

Figure 5.13 shows the execution times of the processes executed in a sequen-

tial and phase-dependent manner when deploying our proposed solution.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

0.01

0.1

1

10

100

1000

10000

0.
13

0.
14

2.
34

·1
0−

2

0.
32

54
7.

76

7.
68

2.
21 4.

63 6.
26

5.
66

6.
47

2.
23 4.

78 12
.3

9

10
.0

1

0.
19

1
·1

0−
2

0.
17

10

46
.8

2

0.
16

35
88

.2
1

Tasks

O
ve

ra
ll

Re
sp

on
se

Ti
m

e
(s

ec
)

FIGURE 5.13: GM-CD/CV module runtimes.

Figure 5.13 shows the runtime of the different GM-CD/CV modules. T1:

creates configuration files; T2: creates certificates; T3: Inserts keys in con-

figuration files; T4: creates channel artifacts; T5: Deploying CV Containers;

Chapter 5. Experimental results 105

T6: Building connection profiles; T7: Creating Verifiability Network Admin

Cards; T8: Importing Admin Cards; T9: Installing BNA on HF; T10: Obtaining

Admin identities; T11: Starting Business Network in Network Fabric; T12:

Creating Administrators per organization; T13: Importing Administrator

Cards; T14: Verifying to Verifiability Network; T15: Creating REST API; T16:

Configuring ETL Model; T17: ETL Model Hash; T18: Loading ETL Model; T19:

Deploy CD Containers; T20: Service Registration (Participants); T21: Task

Assignment; and T22: Overall Response Time.

The first seven tasks (T16:T22) illustrate the execution and service times of

each process of phases such as declaration, deployment, and operation

of the management of CD/CV components. The tasks of the preparation

phase (T16, T17, T18) correspond to the time to create the configuration files

necessary to ensure continuous delivery (CD) in the workflow from the

notation D AG given by the user by using the ETL model. Subsequently, in

the deployment phase, the proposed solution executes the task T19, which

consists of the deployment or start-up of the services of each of the stages,

which we call CD containers. When the solution correctly deployed the

services on the infrastructure used in the experimentation, the manager

registers these containers as participants of the verifiability network (T20)

and assigns them the workload to be executed by each one (T21). Finally,

the manager launches the workflow in the operation phase, where it is

calculated the response time (T22) of processing the 100 data user workloads

through the workflow.

We divided into two phases the processes executed for the construction,

deployment, and operation of the verifiability network: the first corresponds

to the infrastructure of the verification network based on the creation of the

blockchain, and the second corresponds to the business network that mod-

els the logic of the transactions that the solution recorded in the blockchain.

We describe the times used in each of these phases below:

Chapter 5. Experimental results 106

1. Continuous Verification Phase 1 - Creation and deployment of the

verifiability network. In this phase, the verifiability network is built,

deployed, and put into production employing the Hyperledger Fabric

module. The times obtained in each of the processes performed in

this phase correspond to tasks T1, T2, T3, T4, and T5 shown in Figure

5.13.

2. Continuous Verification Phase 2 - Business Network: In this phase, the

business network is built, deployed, and installed in the verifiability

network employing the Composer module. The times obtained in

each of the processes performed in this phase correspond from task

T6 to task T15, which we present in Figure 5.13.

Among the results, the best configuration obtained in the comparative phase

of the user mobility case study shows that the time required to deploy the

CV component (tasks T1 to T5 of the Hyperledger Fabric component and T6

to T15 for the Business module) is much greater than that required by the

CD component (tasks T16 to T21) to perform continuous delivery. A scenario

that considers a higher number of peer nodes per organization than the

one described by the best configuration will generate more deployment

overhead for the CV component than the CD component. The process

identified as T22 includes the processing time of the entire workload and

the verifiability network registration times that contain asset registration

and transaction registration.

5.2.9 Discussion

We conducted a case study focused on the analysis of user mobility data,

which revealed that GM-CD/CV not only registered the transactions in IoT

dataflow, but its parallel patterns also reduced the overhead produced by the

Chapter 5. Experimental results 107

verifiability processes. A direct comparison with state-of-the-art solutions

that produces continuous delivery (without a verifiability network) supports

this claim.

GM-CD/CV is able to manage records in the verifiability network with coarse

and fine grain strategies. The experimental evaluation showed that the

coarse-grained method, applied to information batches, is suitable for sce-

narios where data generation is constant (sensors). On the other hand, the

fine-grain strategy is used in each ETL transformation process (for each

transformed file) to generate a digital signature for each data arriving and

departing to/from each stage of the workflows.

The evaluation revealed that the coarse-grained strategy reduces the costs of

continuous verifiability by recording a consolidation of data transactions (a

dataflow-based report), which reduces the number of registration processes

in the verifiability network. This strategy is more suitable for IoT dataflows

producing data at constant rates (data produced by sensors in time series).

In turn, the second strategy registers, in real-time, each transaction per-

formed during a dataflow (stage-based report) in the blockchain, which

however increases the costs of information recording. This strategy is more

suitable for large data produced asynchronously (e.g., when managing files

not streaming).

In performance details, the experimental evaluation also revealed that the

number of peer nodes in the CV model deployed for each organization

significantly impacts the performance of the CD model. Two peer nodes per

organization were sufficient to perform transaction recording with service

availability without imposing relevant costs on the CD model.

The experimental comparison of GM-CD/CV with a state-of-the-art solu-

tion based on parallel stages (DagOnStar), revealed that DagOnStar does

not allow highly concurrent processing of workloads (it was not possible to

Chapter 5. Experimental results 108

process trajectories of 100 users in the mobility scenario) while GM-CD/CV

did not show this limitation. DagOnStar is quite competitive when pro-

cessing short tasks and is not limited to launching execution threads for

stages (e.g., processing ten users). The best configuration of DagOnStar pro-

duced a 20% performance improvement compared to GM-CD/CV, but know-

ing that DagOnStar does not use the verifiability network (not performing

blockchain records). In scenarios where GM-CD/CV and DagOnStar used

the same number of resources, the overhead was not only eliminated, but

even GM-CD/CV produced a better performance than DagOnStar (82.88%

on average for 10 and 12 threads configurations with 1 and 10 user loads).

Our contributions are important for those companies and organizations

requiring traceability of the processes executed along the several applica-

tions composing a workflow. Moreover, the continuous verifiability allows

firing automatic processes to generate alarms, maintenance actions, or

corrective processes to solve failures in the data-flow processing, which is

important for supply chains, health workflows, business, and many other

sectors. Thus, our solution has many potential applications, and applying

it to several sectors with real-world problems will be part of our next steps.

5.3 Case Study 2: Fleet of trucks transporting food

The case study presented below (transport of goods with trucks including

three sensors) is used to evaluate the optimizations proposed in chapter

4 of this research work. Mainly, the techniques to be applied are focused

on managing the data produced from the IoT environment directly on the

blockchain. Subsequently, the periodic verification process described in

chapter 3 is evaluated.

Chapter 5. Experimental results 109

5.3.1 Description of case study

The case study developed consists of the business logic of food transport.

In this business logic different organizations participate, each organization

has its fleet of trucks, each truck makes different shipments of assets and

incorporates three types of sensors: temperature, GPS, and speed to control

the conditions of each shipment. The scheme of the deployment is shown

in Figure 5.14.

Definition and Configuration

Notation Model

C Contract

Pa

Rou Route
Se Sensor
Shi Shipment

Participant
Tru Truck

Nor

Nca

Ndb

Ncli

Blockchain Network

Orderer node
Certifying
authority node
Data node

Client node

Bussiness Logic

Npeers Peer node
(Grower or Importer)

Bussiness Logic 1

Speed (Se1) GPS (Se2) Temperature(Se3)

Tru1

Pa1 Pa2

Shi1

C1

> maxmin <
0 < > max

within

 Arrival time

Price

 Rous-d

Ncli N

Pa1 Pa2

Shi2

C2

> maxmin <
0 < > max

within

 Arrival time

Price

 Rous-d

Bussiness Logic N

Speed (Se1) GPS (Se2) Temperature(Se3)

TruN

Pa1 Pa2

Shi1

C1

> maxmin <
0 < > max

within

 Arrival time

Price

 Rous-d

Pa1 Pa2

Shi2

C2

> maxmin <
0 < > max

within

 Arrival time

Price

 Rous-d

NcliAuditor

Ncli1

deploy_network_N.sh

deploy_logic_N.sh

de
pl

oy
_u

se
_c

as
e.

sh

Automatic Distributed Deployment

Blockchain Network

User
Admin

1

2

3

4

5

FIGURE 5.14: Case study Transport fleet

Data source

For this case study the data were generated synthetically for each type of

sensor. Below, an example of IoT data generation is presented using the

transportation use case.

Chapter 5. Experimental results 110

Let´s assume that each Tr ui truck collects data with their respective sensors

STi = {Se1,Se2, ...,Sen} where i corresponds to the truck’s identifier and n

is the number of sensors it may have installed. In turn, each sensor has

associated a frequency rate (f rsei) in seconds to determine the frequency of

data collection. For example, the Se1 sensor has an associated frequency

rate f rse1 , if the value of f rse1 is 60 seconds, it means that every minute

the Se1 sensor belonging to STi of the Tr ui truck is obtaining data from its

environment. The frequency rates denoted by F Ri = { f rse1 , f rse2 , ..., f rsen }

may vary from each other, regardless of whether they belong to the same

Tr ui truck.

If the sensors’ data have to be logged in the blockchain infrastructure, a

transaction (T xse) has to be performed to record the data collected for each

sensor, following the frequency rate of each STi sensor, in the blockchain

verifiability network. Each transaction is denoted as T xse = {Sei d , Shii d ,

t i mest amp, value}, where <Sei d > is the sensor identifier, <Shii d > is the

shipment identifier, <t i mest amp> is the data capture date, and <value>

is the set of values collected by the sensor. In this context, the number of

transactions to the blockchain, issued by a shipment (T xshii _tr uck j) is given

by:

T xshii _tr uck j−k =
n∑

i=1
f rsei (5.1)

Where i corresponds to the number of shipment made by the truck j of the

fleet k, and n corresponds to the total number of sensors installed on the

truck j .

Therefore, the number of blockchain transactions that are made is given by:

Chapter 5. Experimental results 111

#_T x_d at a_col l ected =
n f∑

k=1
(

nt∑
j=1

(
ns∑

i=1
T xshii _tr uck j−k)) (5.2)

Where n f corresponds to the number of fleets, nt is the number of trucks,

ns is the number of shipments, i corresponds to the id of shipment made by

the truck j of the fleet k. As may bee seen, the amount of data increase geo-

metrically with number of devices and the frequency (samples per second)

of each device.

T particularize the example, we define three sensors per truck: tempera-

ture, GPS, and speed. Moreover, we assume that sensors may send data

with a different frequency. In our use case, the temperature sensor sends a

measurement every second, while the GPS sensor sends the truck’s location

every ten seconds, and the speed sensor every five seconds, allowing to

know in real-time the status of the foods and the truck, to make decisions

quickly, as will be explained in the following lines.

Verification process

The verification process consists of determining the status of the shipments

made by each truck by verifying whether the records of temperature, speed,

and GPS sensors of each truck meet the conditions established in the con-

tract. In particular, for the temperature recording is verified that it is within

the minimum and maximum values established in the contract, for the

speed sensor that does not exceed the maximum limit allowed and for each

GPS recording is verified that this point is within a minimum distance to

any of the GPS points that make up the route that the truck must follow.

The verification process is done incrementally, from checking a shipment

to checking the status of a fleet of trucks. As an example, it is possible to

Chapter 5. Experimental results 112

check the general state of a truck, that is to say, to check the state of all the

shipments that a particular truck has made. For this purpose, the verifica-

tion history is reused, since there is a record with the verification results of

each shipment.

Tracking shipments with Blockchain Home

Home > Fleet Verification

Shipment Truck Status View Detail

SHIPMENT_001

SHIPMENT_002

SHIPMENT_003

SHIPMENT_004

SHIPMENT_005

TRUCK_1

TRUCK_1

TRUCK_2

TRUCK_2

TRUCK_3

Contract Violation

Contract Violation

Contract Violation

Contract Violation

OK

50 Penalties

20 Penalties

10 Penalties

5 Penalties

0 Penalties

ID_SHIPMENT:

Ej: "SHIPMENT_001"

SUBMIT

FIGURE 5.15: Search for validated shipments

Figure 5.15 shows an output example of contracts tracking for a fleet of

trucks. The list indicates the shipments made by each truck and the con-

tract status of that shipment (Ok or Contract Violation). In the case of

contract violation, the number of penalties that have been recorded during

the complete verification of the shipment is initially shown.

Each shipment can then be examined in more detail if needed just by click-

ing on the Penalties icon. The proposed system allows the authorized actors

to view the details of the shipment and the contract, the route that the truck

Chapter 5. Experimental results 113

should follow, and the details of the result of verification (Figure 5.16). The

verification process generates as a result all the data captured by the sensors

that do not meet the conditions of the contract. As an example, Figure 5.16

shows that, in a failed shipment, there was a violation of the contract for

temperature data and a GPS location outside the established route.

Tracking shipments with Blockchain Home

Home > Fleet Verification >

Shipment Details

Contract Details

Shipment information

Route Details

Shipment Verification

Contract Violation (Total Penalties = 50)

1 PenaltiesTEMPERATURE - TEMP_001:

Date

2020-07-27 at 09:38:49

Value

SPEED - SPEED_001:
Speed measurements are correct

0 Penalties

49 PenaltiesGPS - GPS_001:

Date

2020-07-27 at 09:38:49

Longitud / Latitud

116.441859 / 39.993982
2020-07-27 at 09:40:49 116.441859 / 39.993982
2020-07-27 at 09:42:49 116.441859 / 39.993982

20 º C

From 2020-07-27 at 09:38:49 to 2020-07-27 at 10:30:49

FIGURE 5.16: Detail of a validated shipment

Thus, our web tool allows the participants of the blockchain network, the

government entities, or auditors in charge of supervising the correct exe-

cution of the contracts in business logic, to easily consult the data of the

blockchain network and the verification results of any business logic, even

if our use case was developed for fleets of trucks transporting food.

5.3.2 Infrastructure Hardware and Software

As our goal was to implement an efficient closed network, the Hyperledger

Fabric platform was chosen because it provides better performance [110].

Chapter 5. Experimental results 114

We used the version 1.4.2 of this tool and the Kafka protocol [129]. As for

the hardware used to deploy the network, a general-purpose computer has

been used for each organization in the network, which allowed us to see the

performance when using general-purpose computers and not large data

centers.

5.3.3 Solutions Studied

The goal of this case study is to investigate how well traditional and pro-

posed techniques perform in terms of recording blockchain transactions.

To achieve this, we will focus on analyzing the solution suggested in this re-

search (Global Manager: GM-CD/CV). This solution not only establishes the

workflow but also the verifiability network, where the proposed techniques

are analyzed.

5.3.4 Configuration Initial CD/CV

The blockchain network deployed to cope with all this data follows the

architecture shown in Figure 5.17.

Channel

Org 1

Peer 0 Peer N

Org 1

Truck
1

Truck
N

Ledger Ledger

...

...

Org N

Truck
1

Truck
N

...

...

Org N

Peer 0 Peer N

Ledger Ledger

...

...

FIGURE 5.17: Generic blockchain network design

Chapter 5. Experimental results 115

For the purpose of evaluation, we composed a blockchain scenario with

three different organizations connected by a single channel. The transac-

tions registered in one of the organizations are replicated and stored in the

other organizations within the network. Each organization is composed

of two peer nodes that are responsible for the transaction validation and

storage in their corresponding ledger. Each organization have three clients,

which in this use case will be trucks that have three sensors (Temperature,

GPS, and Speed). The trucks, which must belong to the fleet of a specific

organization, execute the transactions to send the sensors’ measurements

to the network.

We define the functionalities necessary to carry out the business logic

(queries and definition of functions) in the smart contract.

Even if the definition of the business logic is specific of each business case,

we here describe the model with our logistic of truck shipments. Below we

show the participants (company), the fleet of trucks of each company, the

routes of trucks, the contracts, and the shipments that will be registered

as transactions in the blockchain verifiability network. The definition of

each of the entities and elements mentioned above is done in the following

order:

1. Participant creation. A participant Pa is defined a tuple of values,

such as <id, type, email, address, quantity>. The <id> allows the unique

identification of the participant (in our case a unique name), the

<type>identifies the role in the business (in our case can be grower,

importer, or truck); <email> and <address> attributes are used to

contact the participant.

2. Fleet of trucks creation. A fleet Fle is established as a set of trucks

for transporting assets. The fleet is denoted as F le = {tr u1, tr u2,

..., tr un}, where each tr ui is a transport truck including a tuple of <id,

Chapter 5. Experimental results 116

sensors> values. The sensors of each truck are denoted as STt = {Se1,

Se2, ...,Sen}, where t is the truck identifier and each Sei is a sensor

identifier incorporated in the truck, which can be temperature, GPS,

speed, etc.

3. Route creation → Rou. A route is established as a set of GPS points

that a certain truck (Tr ui) must follow. The route is denoted as

Rous−d = {poi1, poi2, ..., poin} where s is the origin point and d the

destination point, and where each poii is a GPS point formed by the

tuple of values <latitude, longitude, date, time>. The <latitude> and

<longitude> attribute indicate the position of the truck, and the <date>

and <time> attributes are set to allow time and space restrictions on

the routes that trucks must follow.

4. Contract configuration. A contract C establishes the parameters

agreed upon by the different participants for the execution and fulfil-

ment of a transaction. A contract is denoted as C = {Pas, ar r i val −
t i me, pr i ce, penal t y,Res} where Pas = {Pa1,Pa2, ...,Pan} is the set

of participants that establish the contract, <arrival-time> is the time

limit established for the fulfillment of the same, <price> is the value of

the contract, <penalty> is the amount to pay if the contract is violated,

and Res = {Re1,Re2, ...Ren} denotes the set of constraints to which the

contract is subject. For example, the value of Re1 could correspond

to a minimum value of temperature that can receive an asset or Ren

could be the maximum value of the acceptable speed of the truck that

transports the asset.

5. Shipping configuration → Shi. Shipments are made by trucks (Tru)

and are tied to contracts (C) and established routes (Rou). A ship-

ment is denoted as Shi = {id, asset, status,unit count, Ci d , tr u f i ,

Roui d }, where <id> is the shipment identifier; <asset> is the goods or

object being transferred; shipment <status> can be: created, in transit

Chapter 5. Experimental results 117

or delivered; <unit count> determines the number of assets being

transported; Ci d corresponds to the contract identifier to which the

shipment is tied; <tr u f i > identifies the truck i of the fleet f that makes

the shipment; and Rous−d is the route identifier that the shipment

must follow.

6. Establish queries. The model is designed to consult the current and

historical values of the records of each of the elements or entities

belonging to the business logic.

5.3.5 Experimental Variation

The following parameters were varied for this case study:

1. Number transactions: To evaluate the performance provided by the

blockchain network, we measured the transaction processing average

time in five different workload scenarios: 1.000, 5.000, 10.000, 20.000

and 40.000 transactions respectively.

2. MaxMessageCount: To measure the effects of executing transactions

concurrently, this parameter was modified with the following values:

1, 2, 3, 5, 15, 25 and 100.

5.3.6 Metrics

The following metrics were defined and captured in the operation phase of

the proposed GM:CD/CV prototype for this case study:

1. Response Time (RT): this metric represents the time from when the

user issues a transaction in the blockchain network until that transac-

tion is consolidated or confirmed in the ledger and replicated by all

Chapter 5. Experimental results 118

nodes in the network. The sensors are emulated by having actors that

produce the data of a specific sensor every T time periodically. Thus,

for the near RT issue, data are similar to those of a real-world system.

The transactions in the blockchain are made in a real platform, not a

simulated one. Of course, using the data generator we could have cre-

ated many more scenarios to test, but for this thesis those considered

more significant have been defined.

2. Number of errors (N E): This metric represents the number of trans-

actions that failed to register on the blockchain.

3. Failure Rate (F R): This represents the percentage of transactions that

were not correctly recorded in the blockchain.

4. Delay Time (DT): Represents the delay time it takes for a transaction

to be validated.

5.3.7 Analysis and discussion

In this section, traditional techniques implemented in the blockchain are

evaluated along with two of the optimization techniques proposed in Sec-

tion 4.4.

Evaluation of traditional blockchain implementation - Performance

Analysis

We made a performance evaluation of the blockchain network using the

concatenated records solution when it is subjected to an intense workload,

but without concurrence. In other words, only one sensor of one shipment

from those created in the blockchain network will send data. A temperature

sensor per truck, performing a transaction every 0.5 seconds, is used to

send a large amount of data to stress the system. As shown in Figure 5.18,

Chapter 5. Experimental results 119

the average execution time of a transaction increases as the total number

of executed transactions raises. Therefore, it can be concluded that this

implementation offers low scalability because transaction time increases

quickly. The reason for this behavior is that the block size increases for every

new transaction, as new data are stored concatenated with the previous

values for that sensor, which means a longer time to replicate the transaction

in all the peer nodes of the network.

1000 5000 10000 20000 40000
0

200

400

13
1.

49

15
6.

35

18
0.

32

23
0.

1 1

33
3.

48

Number of Transactions

Av
er

ag
e

Ti
m

e
pe

rT
ra

ns
ac

tio
n

(m
s) Average Time per Transaction with Concatenated Records

FIGURE 5.18: Average time per transaction with concatenated records
with different workloads

Number of transactions 1000 5000 10000 20000 40000
Average Time 131.49 156.35 180.32 230.11 333.48
Standard deviation 19.37 38.12 40.56 68.56 126.59
Sensing time (minutes) 8.34 41.7 83.4 166.7 333.34

In this test, the data capture simulation is performed with a single sensor

(temperature) and the sensing time varies to obtain the desired number of

transactions: 1000,..., 40000. In the Figure 5.18, it can be observed that the

average time to register 1 transaction out of 1000 (sensing time 8 minutes

approximately) transactions is 131.49 ms with a deviation of 19.37. Addition-

ally, it is observed that when the number of transactions is increased, under

Chapter 5. Experimental results 120

a concatenated records approach, the average time to record 1 transaction

increases considerably (e.g. 333.48 ms per transaction out of a total of 40000

transactions).

Evaluation of traditional blockchain implementation - Concurrency

Analysis

In addition to measure performance, we studied the behavior of the blockchain

network when several sensors from trucks send data at the same time, creat-

ing concurrent transactions. The purpose of this experiment is to determine

the number of errors that occur when transactions are executed concur-

rently and, furthermore, to determine the percentage of data that has not

been recorded in the ledger despite the transactions having taken place.

For this reason, the network scenario shown in the Figure 5.17 has been

used to perform this analysis, particularized with a total of nine trucks in

the network with their three corresponding sensors, so that in this study

there are twenty-seven sensors carrying out transactions at the same time,

which ensures the existence of concurrency. To study the number of errors

that happen in execution and the volume of data that is not recorded, a test

of one-hour duration was executed, with the sensors sending information

periodically with the following rates: temperature sensors 1 second, GPS

sensors 10 seconds, and speed sensors 5 seconds.

We use the MaxMessageCount parameter (described in 11) to measure the

effects of this concurrency feature, following the experimental variation

described in 5.3.5.

Figure 5.19 shows the errors produced during the validation of transactions

using concatenated records. This number is very high with the frequencies

defined in our experimental study, specially for individual evaluation. It

also shows that when the size of the block of transactions is increased, the

Chapter 5. Experimental results 121

number of errors that appear during the transaction execution decreases

and the performance is increased. This behavior is due to the effect of

validating multiple transactions simultaneously. The trade-off is that, as

we increase MaxMessageCount, we also decrease the data availability for

the peers. For example, if a GPS sensor is sent every 10 seconds and the

parameter MaxMessageCount is set to 50, those position would be only

available in the ledgers with an average delay of 250 seconds.

1 2 3 5 15 25 100
0

10,000

20,000

30,000

40,000 35
,8

58

35
,1

52

33
,4

84

16
,1

75

7,
84

2

3,
94

1

2,
46

9
MaxMessageCount

N
um

be
ro

rE
rr

or
s

FIGURE 5.19: Execution errors using concatenated records with different
validation block sizes

In this evaluation, given that there are nine clients (trucks) with three sen-

sors each (gps, speed, temperature), data are being generated concurrently

for one hour. The error obtained in the concatenated records approach

is due to the fact that a transaction in the blockchain cannot be recorded

until the block has been validated. Figure 5.19 shows that the highest num-

ber of errors (unrecorded transactions) occurs when only one transaction

is received to validate the block. In other words, when many validation

processes are applied, transactions that are not received due to system sat-

uration are lost. On the contrary, the more transactions are received before

validating the entire block, the fewer the number of errors produced.

Chapter 5. Experimental results 122

After studying how many errors are produced during execution, the percent-

age of data that have not been recorded in the tests described in the previous

lines was analyzed. For this purpose, the average value of unrecorded data

will be calculated for each type of sensor and each test.

The results obtained in these tests are shown in Figure 5.20, where it can

be seen that the losses are worst for high rate sensors, as majority of the

unrecorded data comes from the temperature sensors where the failure

rates are almost always greater than 50%. However, when analyzing the

results obtained in the GPS and speed sensors, the failure rate is lower and,

in some cases, there is no data loss.

This behavior is caused by the method of storing the data received from

the sensors because the data is stored in a concatenated format and the

previous measurements must be obtained first in order to add the last mea-

surement. If the frequency of data sent is high, the previous transactions

may not have been validated yet and, as a consequence, they are not avail-

able for querying because they are not stored in the ledger, which implies

that the last data are not available and the data that were read between the

last transaction stored in the ledger and the last one carried out are lost.

Moreover, as previously mentioned, the majority of the losses are produced

in the temperature sensors, as these sensors have a higher sampling fre-

quency (1 Hz.) than other sensors, while the GPS sensors, with frequency of

0.1 Hz., show less transactions unrecorded. The failure rate is high as each

new measure is added to the block in the blockchain (case MaxMessage-

Count = 1). That means that the block has to be collected, the new data has

to be added at the end, and finally the new block has to be processed in the

chain. As the data grows, the block is larger and the failure rate increase. A

possible solution is to group several measures before inserting them in the

block. Then the failure rate decrease, but the verification is delayed, as the

contracts must wait to have the last pack of data. The problem of the block

Chapter 5. Experimental results 123

1 2 3 5 15 25 100
0

50

100 93
.5

5

97
.0

8

99
.9

7

55
.9

1

47
.1

8

57
.8

4

67
.6

4

MaxMessageCount

Fa
ilu

re
Ra

te
(%

)
Unrecorded Transactions in Concatenated Records - Temperature

1 2 3 5 15 25 100
0

50

100

30

4.
01

3.
3

2.
72

0 0 3
·1

0−
2

MaxMessageCount

Fa
ilu

re
Ra

te
(%

)

Unrecorded Transactions in Concatenated Records - GPS

1 2 3 5 15 25 100
0

50

100

72
.5

2

14
.8

8

14
.9

5

4.
94

0 0.
17

0.
15

MaxMessageCount

Fa
ilu

re
Ra

te
(%

)

Unrecorded Transactions in Concatenated Records - Speed

FIGURE 5.20: Unrecorded temperature, GPS and speed sensor
transactions with different validation block size

size, however, cannot be avoided with this technique. Those results show

that the traditional blockchain platforms are unable to record high speed

Chapter 5. Experimental results 124

transactions due to protocol latency and data storage costs.

The next section evaluates the first two proposed generic transaction pro-

cessing optimizations that are compatible with any blockchain platform

used to implement the blockchain network: atomic records and changing

the validation block size.

Evaluation of proposed optimizations in blockchain - Atomic Records

To evaluate the correctness and performance of this optimization, we run

the same experiments devised to analyze the performance of the concate-

nated model (Section 5.3.7). The results shown in Figure 5.21 prove that the

proposed optimization provides very good performance and scalability of

the blockchain network as the number of transaction increase, since the

average time taken to execute a transaction is kept constant and lower than

in the concatenated case. This effect is especially clear in the load test that

carries out 40,000 transactions, where the time is reduced to less than half.

Furthermore, it should be noted that as the execution time remains constant

regardless of the total number of transactions executed, the scalability of

the network is enhanced.

In contrast with the traditional blockchain, this optimization does not origi-

nate data losses, even making immediate validation of each transactions,

because the transactions are atomic and the previously recorded values

do not have to be recovered as they are stored concatenated. However, al-

though all the data is correctly recorded, we observed that, when the block

size is too small and the data frequency high, the blockchain network is not

able to validate the transactions that are generated in due time, generating

delays in the data availability for queries, because a transaction is available

for querying only when it has been validated.

Chapter 5. Experimental results 125

1000 5000 10000 20000 40000
0

200

400
12

8.
83

12
5.

29

13
1.

6 5

12
6.

5 3

12
5.

78

13
1.

49

15
6.

35

18
0.

3 2

23
0.

11

33
3.

48

Number of Transactions

Av
er

ag
e

Ti
m

e
pe

rT
ra

ns
ac

tio
n

(m
s) Comparative Concatenated Records - Atomic Records

Atomic
Concatenated

FIGURE 5.21: Comparison between concatenated records and atomic
records with different workloads

Evaluation of proposed optimizations in blockchain - Changing the

Transaction Block Size

Figure 5.22 shows the delays generated in validations with the different

block sizes in a scenario of 27 sensors sending data for an hour. The longest

delay occurs when the transactions are validated individually, which is 295

minutes. However, when transaction block sizes are increased to validate a

group of 15, 25, and 100 transactions, the processing delay is not generated

because the system is able to manage all the transactions that are produced

on time and the transactions are stored in the ledger in a short period of

time since they were created.

This optimization allows the existence of concurrency in the system and

increases the performance, because, by adjusting the block size, the system

is able to validate a large number of transactions in a short time, being these

stored in the ledger and available for querying in due time.

Chapter 5. Experimental results 126

1 2 3 5 15 25 100
0

100

200

300
29

5

11
2

90

25

0 0 0

MaxMessageCount

D
el

ay
Ti

m
e

(m
in

)
Delayed Transaction Validation

FIGURE 5.22: Delayed transaction validation with different validation
block size

We run experiments to test the performance and reliability of the solution

proposed. The evaluation results show that the optimizations proposed

allows to process data request with higher registration rate that the solution

provided in by default in blockchain platforms, like Hyperledger. We could

also avoid missing data and reduce the transaction processing delays, thus

increasing the reliability of the supply chain processes.

The evaluation presented in this section allowed to assess the feasibility of

the blockchain optimization techniques proposed. In this case, the solution

has not been compared with other techniques as, as far as I know, there are

no similar solutions. As shown in the state of the art, most blockchain opti-

mizations try to modify the platform or the distributed consensus protocol

to be more efficient, and this hypothesis was not considered in this work.

Chapter 5. Experimental results 127

5.4 Case Study 3: Electrocardiogram Signals

The objective of this case study is to evaluate the high performance delivery

between workflow stages (technique proposed in Section 4.4.4 of chapter 4)

of the CD component of the proposed solution. In addition, to analyze the

performance of the solution in a scenario where the CD and CV components

are distributed.

The primary goal of classifying electrocardiogram signals, which represent

the electrical activity of the heart, is to identify any irregularities in the car-

diac rhythm. Detecting such abnormalities can help issue timely alerts to

prevent severe events like cardiac arrest. Therefore, it’s essential to main-

tain an unchangeable record of the classification results obtained while

processing each ECG signal.

5.4.1 Description of case study

The case study uses data from electrocardiogram signals as its basis. These

signals are subjected to a series of procedures in order to be categorized by

a model that has already been trained. The workflow, which is depicted in

Figure 5.23, involves three primary stages: 1) collection of signals and related

data, 2) segmentation of signals, and 3) classification of each individual

segment of a signal. Each stage of the workflow saves the results in HDF5

format.

All the outcomes achieved during the collection of signals, segmentation of

signals and the ECG signal classification process are recorded and managed

by the proposed solution described in chapter 3.

Chapter 5. Experimental results 128

FIGURE 5.23: Case study: ECG signal processing

Data Source

We utilized a database introduced in [130] to create the case study for pro-

cessing electrocardiogram signals.

The paper [130] details the creation and features of a comprehensive database

of 12-lead electrocardiogram (ECG) readings with multiple labels. The

database comprises 25,770 ECG readings from 24,666 patients who visited

the Shandong Provincial Hospital between August 2019 to August 2020.

These readings have a duration ranging from 10 to 60 seconds.

Each ECG reading is stored in an HDF5 file. That is, 25,770 files are consid-

ered as the data source for the case study described in this section.

5.4.2 Infrastructure Hardware and Software

In this case study, the prototype GM-CD/CV was deployed using the software

and hardware infrastructure described in Tables 5.3 and 5.4 respectively.

Chapter 5. Experimental results 129

As an alternative solution to the container approach that encapsulates the

service/application in the workflow, this case study integrates the DIY and

Lowfive technology into the software stack of the proposed CD/CV pro-

totype. DIY [121] is a library that enables the implementation of scalable

algorithms through block-parallel processing, which can be executed both

inside and outside the core. It offers the flexibility to use a single program

with one or more threads per MPI process, thus combining distributed

memory message passing with shared memory thread parallelism in a trans-

parent manner.

Infrastructure Software

Description Version Description Version

Operating System (8 nodes) Ubuntu 20.04.5 LTS mpi4py 3.1.4
Docker 20.10.12 zlib 1.2.13
Hyperledger Fabric 2.2.1 numpy 1.23.5
Go 1.19.4 tensorflow 2.11.0
Python 3.8.10 keras 2.11.0
gcc 9.4.0 and 11.1.0 cURL Latest
hdf5 (parallel version) 1.12.2 DIY 2
h5py 3.7.0 Lowfive Beta
mpich 4.0.3 Wilkins Beta

TABLE 5.3: Software infrastructure of the case study.

For the deployment of the case study, we built a Linux cluster composed of

8 nodes with the characteristics described in Table 5.4.

5.4.3 Solutions Studied

We have established a group of solutions/designs (refer to table 5.5) specifi-

cally for evaluating this case study:

A description of each of the proposed solutions is described below:

1. Design 1: This proposed solution is the prototype version that doesn’t

incorporate the continuous verification (CV) element and operates

Chapter 5. Experimental results 130

Server Architecture Processor RAM
Memory Storage CPU(s) Socket(s) Core(s)

per socket
Thread(s)
per core

node0 x86_64 Intel(R) Core(TM) i5-3570
CPU @ 3.40GHz 15 G 3.0 T 4 1 4 1

node1 x86_64 Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz 19 G 983 G 8 1 4 2

node2 x86_64 Intel(R) Core(TM) i5-3570
CPU @ 3.40GHz 10 G 3.0 T 4 1 4 1

node3 x86_64 Intel(R) Core(TM) i3-3240
CPU @ 3.40GHz 7.6 G 491 G 4 1 2 2

node4 x86_64 Intel(R) Core(TM) i5-3470
CPU @ 3.20GHz 7.9 G 491 G 4 1 4 1

node5 x86_64 Intel(R) Core(TM) i5-3330
CPU @ 3.00GHz 15 G 983 G 4 1 4 1

node6 x86_64 Intel(R) Core(TM) i5-3330
CPU @ 3.00GHz 7.6 G 983 G 4 1 4 1

node7 x86_64 Intel(R) Core(TM) i7-3770
CPU @ 3.40GHz 32 G 919 G 8 1 4 2

node8 x86_64 Intel(R) Core(TM) i5-3330
CPU @ 3.00GHz 7.6 G 491 G 4 1 4 1

TABLE 5.4: Hardware infrastructure of the case study.

Id solution Solution Components Software stack Blockchain
Design 1 GM-CD: Fullstage CD CD ->H5Py ->HDF5 ->DIY ->MPI N/A
Design 2 GM-CD: Greedy CD CD ->H5Py ->HDF5 ->DIY ->MPI N/A
Design 3 GM-CD/CV: Greedy BC CD + CV CD/CV ->H5Py ->HDF5 ->DIY ->MPI One host
Design 4 GM-CD: Greedy L5 CD CD ->H5Py ->HDF5 ->LowFive ->DIY ->MPI N/A
Design 5 GM-CD: Greedy L5 BC CD + CV CD/CV ->H5Py ->HDF5 ->LowFive ->DIY ->MPI One host

TABLE 5.5: Solutions studied - Case study 3.

on a Fullstage scheme. The Fullstage approach processes all the data

in a given stage i before moving on to stage i+1.

2. Design 2: This particular solution involves the proposed prototype,

which doesn’t factor in the continuous verification (CV) component,

and operates using a Greedy scheme. The Greedy scheme processes

workload immediately as it’s generated, i.e, with the i+1 stage initiated

as soon as any data from the i stage becomes accessible.

3. Design 3: This solution involves the proposed prototype utilizing

a Greedy scheme, with all components of the verifiability network

(blockchain) deployed on a single node.

4. Design 4: This solution consists of the previously described design 2

but including the Lowfive transport layer in the software stack.

Chapter 5. Experimental results 131

5. Design 5: This solution involves the proposed prototype utilizing

a Greedy scheme, with all components of the verifiability network

(blockchain) deployed on a single node and including the Lowfive

transport layer in the software stack.

5.4.4 Configuration Initial CD/CV

In this particular study, the first setup of the CD/CV model is established

during the preparation stage by following the approach outlined in Section

3.2.

Three executable programs were designated for the CD component to create

a workflow. Each executable program represents a stage (St) of the workflow

(W) that will handle the data source (DS) as described in Section 5.4.1.

Afterwards, the ETL model was established for each of the workflow stages.

In essence, this defines the specific locations where each stage (executable:T)

will extract (E) the data from and where it will store (L) the resulting output.

In the case study, the Manager/Worker pattern (PaM a/W o) was employed,

and it is intended to utilize the third technique suggested in Section 4.4.4

by integrating MPI. Consequently, the total data to be processed (specified

later on) is distributed among N workers or MPI processes.

The configuration initial in the CV component involves determining the

number of organizations (O), peer nodes (Npeer s), and Orderer manager

node (Nor) necessary to establish the blockchain network for recording

transactions. Initially, a preliminary evaluation was conducted to define the

configuration of the network. This involved considering two organizations

(O = 2) for the entire workflow, with a single peer node (Npeer s = 1) and an

orderer node (Nor). This configuration was chosen as it represents the most

fundamental setup for assessing the distributed scenario of both CD and

Chapter 5. Experimental results 132

CV verifiability network components, which is one of the main objectives

of the case study.

Lastly, the performance of the CD/CV system under a distributed scheme

and utilizing the high throughput delivery technique is assessed by gradu-

ally increasing the number of organizations (one for each workflow stage)

and the number of peers (with a minimum of two). This evaluation is con-

ducted to determine how well the system functions in a more complex and

distributed environment.

5.4.5 Experimental Variation

The following parameters were varied for this case study:

1. Workload (D): The parameter (D) represents the quantity of input

data (hdf5 files) that will be handled in the workflow. It’s essential to

note that each workflow stage in this case study produces one output

file for each incoming file. Hence, as there are three stages in the

workflow, the total number of files processed in the workflow is equal

to the value of this parameter (D) multiplied by 3. The values to be

considered are D = {128,512,1024}.

2. Number process (P): Adopting the manager/worker pattern, this

parameter represents the count of workers (MPI processes) that will

operate within each workflow stage. For ease of use, the same value is

applied to this parameter across all three stages of the workflow. The

values to be considered are P = {4,8,16}.

3. Hosts (H): This parameter indicates the count of hosts or machines

utilized for processing the workflow data, with the parameter values

determined based on the available resources outlined in 5.4. The

Chapter 5. Experimental results 133

values to be considered are H={1-Host-node(NFC),1-Host-node7,3-

Hosts and 6-Hosts}. The setup labeled as "1-Host-node0(NFS)" means

that the data processing for the workflow is happening on the same

node where the network file system is mounted (node0). Therefore,

the network bandwidth remains unaffected as all the files produced

by the workflow are saved on the same node where the network file

system is mounted.

5.4.6 Metrics

The following metrics were defined and captured in the operation phase of

the proposed GM:CD/CV prototype for this case study:

1. Response Time (RT): This metric represents the time that elapses

since the user made requests to the IoT dataflow until user gets a

response. For this research work, the response time is the time that

the user applies a load to the workflow until user gets the results.

The response time result reported in the experimental evaluation

corresponds to the average of 15 iterations.

2. Speedup (Sp): The speedup is a measure that compares the perfor-

mance of a program or process in two different systems. It represents

the number of times a program is faster in one system compared to

another. The speedup is calculated as the ratio between the time

needed to execute a task in an original system and the time needed

to execute the same task in an improved system. The system that was

used originally and the improved system are identified based on the

experimental variation (see 5.4.5) and evaluation described in Section

5.4.7 of the case study.

Chapter 5. Experimental results 134

3. Overhead (Ovd): This metric represents the extra time that a specific

operation or process may require if the system adds some functional-

ity. In this case, we seek to measure the overhead produced by adding

continuous verification functionality to a traditional workflow.

4. Throughput(T h): It corresponds to the volume of data per unit of

time processed through the IoT dataflow.

5.4.7 Analysis and discussion

Exploratory stage - Scheme selection (D1: Fullstage vs D2: Greedy)

The initial evaluation involves selecting one of the two synchronization

methods, namely Fullstage and Greedy, to synchronize the workflow stages.

The Fullstage method implies that the i-th stage of data flow commences

processing only after the i-1th stage has completed. On the other hand, the

Greedy approach notifies the i+1th stage once the workload is processed

at the i-th stage, and results are acquired, indicating that the workload is

ready for processing at the subsequent stage.

The results obtained with the Fullstage and Greedy approaches are pre-

sented in Tables 5.6 and 5.7 respectively.

Design 1: GM-CD (Fullstage)
Number of process (Np): Np = (Stg1:4 | Stg2: 4 | Stg3: 4) Np = (Stg1:8 | Stg2: 8 | Stg3: 8)

Data / Configuration 6Hosts 3Hosts 1Host
(node7) 6Hosts 3Hosts 1Host

(node7)

100 Average 189,94 289,20 589,27 200,39 392,58 525,67
Stdve 3,04 6,93 6,29 7,43 11,89 3,27

1024 Average 1954,10 2857,80 5948,42 2020,61 3784,62 4588,49
Stdve 29,70 86,72 23,12 31,13 51,28 9,12

TABLE 5.6: Results Design 1- GM-CD: Fullstage.

Chapter 5. Experimental results 135

Design 2 : GM-CD (Greedy)
Number of process (Np): Np = (Stg1:4 | Stg2: 4 | Stg3: 4) Np = (Stg1:8 | Stg2: 8 | Stg3: 8)
\Configuration:
Data 6Hosts 3Hosts 1Host

(node7)
1Host

(node0=NFS) 6Hosts 3Hosts 1Hosts
(node7)

1Host
(node0=NFS)

128
Average 145,40 276,42 646,97 263,25 189,35 342,02 522,71 296,24

Stdve 1,30 5,33 0,90 4,27 5,45 8,31 1,90 4,62
Speedup 1,81 0,95 0,41 1,00 1,56 0,87 0,57 1,00

512
Average 570,98 1081,87 2570,22 979,94 716,99 1266,03 2043,19 1131,83

Stdve 0,85 8,86 10,44 7,84 10,49 10,24 0,63 21,13
Speedup 1,72 0,91 0,38 1,00 1,58 0,89 0,55 1,00

1024
Average 1146,07 2158,32 5120,51 1985,38 1427,48 2517,32 4069,44 2258,67

Stdve 3,04 20,09 10,91 55,16 14,81 20,43 2,13 17,60
Speedup 1,73 0,92 0,39 1,00 1,58 0,90 0,56 1,00

TABLE 5.7: Results Design 2- GM-CD: Greedy.

The difference in experimental variation between design 1 and design 2 is

due to the quick and clear evidence of performance seen in the initial eval-

uations. For instance, Table 5.6 and 5.7 demonstrate that when processing

128 files, the Greedy method performs better than the Fullstage approach,

even when the latter processes a smaller data set (100 data) in almost all

configurations. This implies that Greedy yields better results than Fullstage,

even when dealing with a larger amount of data.

Figure 5.24 depicts the speedup attained by utilizing both synchronization

methods with varying workloads, hosts and the number of MPI processes

(Np) to determine the optimal performing approach.

The outcomes depicted in figure 5.24 reveal that the Greedy technique

results in superior performance in the suggested system. Furthermore,

the worst performance is achieved when more resources than required

are assigned, i.e., when the number of processes exceeds the number of

cores per host (Np=16) when varying the number of processes per stage

(N p = {4,8,16}). This observation considers the fact that the number of

available cores in the hardware infrastructure nodes (see Section 5.4), for

this particular study, is either 4 or 8.

Chapter 5. Experimental results 136

1−Host 3−Host s 6−Host s
0

1

2

3

4

5

Number of hosts

Sp
ee

du
p

Speedup Design 1 (Fullstage) and 2 (Greedy)
Full st ag e −D100 −N p4 Full st ag e −D100 −N p8

Full st ag e −D1024 −N p4 Full st ag e −D1024 −N p8

Gr eed y −D128 −N p4 Gr eed y −D128 −N p8

Gr eed y −D128 −N p16 Gr eed y −D512 −N p4

Gr eed y −D512 −N p8 Gr eed y −D1024 −N p4

Gr eed y −D1024 −N p8

FIGURE 5.24: Speedup Design 1 (Fullstage) and 2 (Greedy).

These results allow us to conclude two things:

• A Greedy approach results better than a Fullstage approach, since it

is maximizing the data flow.

• Overprovisioning (Np=16) does not pay off since the data flow models

or programs in this case study consume a lot of CPU.

In this context, the Fullstage approach and overprovisioning (Np>8) are

discarded for the next evaluation phases of this case study.

Chapter 5. Experimental results 137

Solutions with continuous verification in the selected scheme.

Based on the assessment above, Design 2, which utilizes the Greedy method,

outperforms Design 1, which employs the Fullstage approach. The subse-

quent section discusses and examines the outcomes obtained from incor-

porating the verifiability component (CV) into the Greedy solution, known

as Design 3.

Table 5.8 summarizes the outcomes obtained from the evaluation of Design

3 in this case study.

Design 3 : GM-CD/CV (Greedy Blockchain)
Number of process (Np): Np = (Stg1:4 | Stg2: 4 | Stg3: 4) Np = (Stg1:8 | Stg2: 8 | Stg3: 8)
\Configuration:
Data 6Hosts 3Hosts 1Host

(node7)
1Host

(node0=NFS) 6Hosts 3Hosts 1Hosts
(node7)

1Host
(node0=NFS)

128
Average 166,54 290,22 665,87 293,87 194,37 379,42 533,78 319,00

Stdve 1,98 7,14 2,71 13,56 3,52 3,97 0,61 12,77
Speedup 1,76 1,01 0,44 1,00 1,64 0,84 0,60 1,00

512
Average 666,91 1136,78 2639,03 1199,56 745,70 1398,33 2079,74 1236,24

Stdve 5,31 16,06 2,13 8,74 10,69 15,29 1,09 26,70
Speedup 1,80 1,06 0,45 1,00 1,66 0,88 0,59 1,00

1024
Average 1352,57 2289,26 5262,33 2563,26 1469,72 2772,95 4147,21 2536,18

Stdve 4,37 23,40 4,57 43,94 11,69 10,05 3,49 16,70
Speedup 1,90 1,12 0,49 1,00 1,73 0,91 0,61 1,00

TABLE 5.8: Results Design 3- GM-CD/CV: Greedy Blockchain.

Based on the results depicted in Table 5.7 and Table 5.8 for the Greedy

method and Greedy with Blockchain respectively, it is apparent that the

optimal performance is achieved by handling the workload using the max-

imum number of available hosts (6 hosts) with 4 processes assigned per

stage of the workflow.

The primary reason for this is that the hardware infrastructure’s nodes (as

listed in Table 5.4) consist of only two nodes with 8 CPUs while all other

nodes in the cluster have 4 CPUs. Consequently, the proposed solution’s

performance is negatively impacted in setups where the number of pro-

cesses utilized surpasses the available CPUs on the host performing the

assignment.

Chapter 5. Experimental results 138

Figure 5.25 can exemplify the previous declaration, wherein Design 3 shows

that every configuration (number of hosts) with 4 processes per stage (N p =
4) results in superior outcomes than configurations (number of hosts) with

8 processes per stage (N p = 8), except for one configuration involving only

one host that chooses node 7 of the hardware infrastructure. In this scenario,

the performance is improved by using N p = 8 since only node 7, which con-

tains 8 CPUs, is utilized, whereas N p = 4 would lead to an underutilization

of available resources.

1-Host-node0(NFS) 1-Host-node7 3-Hosts 6-Hosts
0

2,000

4,000

6,000

2,
56

3.
26

5,
26

2.
33

2,
28

9.
26

1,
35

2.
572,

53
6.

18

4,
14

7.
21

2,
77

2.
95

1,
46

9.
72

Number of hosts

Re
sp

on
se

Ti
m

e
(s

ec
)

N p4

N p8

FIGURE 5.25: Comparison of the number of processes selected (Np 4 vs
Np8) in design 3 to process 1024 data.

Even though the Figure in 5.25 show the results for processing a workload of

1024 data, the trend of achieving better performance only when the number

of processes equals the available CPUs on the used host is also evident in

the results presented for a workload of 128 data and 512 data (see Table 5.8).

Furthermore, this trend is observed in the outcomes presented for Design

2, as shown in Table 5.8.

Moreover, the optimal setup for both "design 2 (Greedy)" and "design 3

(Greedy Blockchain)" is the one with 6 hosts and 4 processes, which shows

Chapter 5. Experimental results 139

that the suggested solution is practical in a distributed setting. This config-

uration delivers better performance than a local setup where the workflow

outcomes are instantly written to disk or do not go through the network.

A comparison of this optimal configuration (6-hosts with 4 processes per

stage) between design 2 and 3 is presented in the Figure 5.26.

128 Data 512 Data 1024 Data
0

500

1,000

1,500

2,000

14
5.

4

57
0.

98

1,
14

6.
07

16
6.

54

66
6.

9 1

1,
35

2.
57

Workload

Re
sp

on
se

Ti
m

e
(s

ec
)

Response time with best configuration (6-Hosts and Np 4:4:4)

D2-Greedy
D3-Greedy Blockchain

FIGURE 5.26: Comparison between the best configuration (6 Hosts and
NP 4-4-4) obtained in Design 2 and 3.

Solutions with LowFive transport layer

This section assesses the practicality of incorporating the Lowfive compo-

nent into the software stack of the proposed solution. To achieve this, two

new designs are examined: Design 4, which involves the Lowfive compo-

nent (L5) as part of the Greedy version, and Design 5, which is similar to

Design 4 but also includes the verifiability component (CV).

The outcomes acquired from the fourth and fifth designs are compiled and

presented in Table 5.9 and Table 5.10, respectively.

Chapter 5. Experimental results 140

Design 4: GM-CD (Greedy L5)
Number of process (Np): Np = (Stg1:4 | Stg2: 4 | Stg3: 4) Np = (Stg1:8 | Stg2: 8 | Stg3: 8)

Data / Configuration 6Hosts 3Hosts 1Host
(node7)

1Host
(node0=NFS) 6Hosts 3Hosts 1Host

(node7)
1Host

(node0=NFS)

128
Average 145,27 272,85 645,74 236,50 189,51 341,45 518,81 268,94

Stdve 1,02 11,16 2,35 1,62 2,64 9,63 1,62 1,93
Speedup 1,63 0,87 0,37 1,00 1,42 0,79 0,52 1,00

512
Average 571,88 1084,83 2561,15 953,87 722,43 1276,51 2039,62 1086,89

Stdve 2,43 11,50 11,73 3,10 6,33 10,47 10,20 3,47
Speedup 1,67 0,88 0,37 1,00 1,50 0,85 0,53 1,00

1024
Average 1142,28 2164,36 5111,25 1904,58 1430,25 2523,54 4057,23 2157,93

Stdve 9,26 37,03 16,98 9,57 8,34 17,75 5,90 7,26
Speedup 1,67 0,88 0,37 1,00 1,51 0,86 0,53 1,00

TABLE 5.9: Results Design 4- GM-CD: Greedy L5.

The results presented in Table 5.9 indicate that in design 4 (Greedy L5)

and like the previous solutions, the configuration that obtains the highest

performance regardless of the workload corresponds to the deployment of

the solution in six hosts and four processes per workflow stage (6H-Np4).

In fact, with the 6-host distributed approach, a higher speedup is obtained

with respect to the other configurations regardless of the workload or the

number of processes per workflow stage.

Since in Design 4 a new component (L5: LowFive) has been added to the soft-

ware stack of the proposed solution with the higher performance approach

(Greedy), Figure 5.27 shows a comparison between the Greedy solution

without the LowFive component (Design 2) and the Greedy solution with

the addition of this component (Design 4).

Figure 5.27 shows that adding the LowFive component to the proposed

solution does not represent an overhead to the overall system. In fact, the

difference between the two solutions can be considered negligible consid-

ering that the range of values of these differences is between 3.79 and 12.21

seconds. These values do not represent more than 1% of the best solution

in each of the configurations, except for the configurations where only node

0 is used as storage (NFS) and deployment of the entire solution, where the

difference between the GreedyL5 and Greedy solution is between 80.8 and

100.74 seconds.

Chapter 5. Experimental results 141

6Ho-Np4

3Ho-Np4

1Ho(node7)-N
p4

1Ho(⊛
)-N

p4

6Ho-Np8

3Ho-Np8

1Ho(node7)-N
p8

1Ho(⊛
)-N

p8

0

2,000

4,000

6,000

1,
14

6.
07 2,

15
8 .

32

5,
12

0.
51

1,
98

5.
38

1,
42

7.
48 2,

51
7.

32

4,
06

9 .
44

2,
25

8.
67

1,
14

2.
28 2,

16
4 .

36

5,
11

1.
25

1,
90

4.
58

1,
43

0.
25 2,

52
3.

54

4,
05

7.
23

2,
15

7.
93

Configurations

Re
sp

on
se

Ti
m

e
(s

ec
)

D2 : Gr eed y
D4 : Gr eed yL5

(Ho: Number of hosts /Np : Number of process / ⊛: NFS storage node 0)

FIGURE 5.27: Comparison of design 2 (Greedy) and design 4 (Greedy L5)
to process 1024 data.

Finally, a study was carried out (Greedy L5-Blockchain) adding the CV com-

ponent to the Greedy L5 solution with the objective of having a solution

with the continuous verification component and with the characteristics or

functionalities of efficient, distributed and parallel processing. The results

of this study are presented in Table 5.10.

Design 5: GM-CD/CV (Greedy L5 Blockchain)
Number of process (Np): Np = (Stg1:4 | Stg2: 4 | Stg3: 4) Np = (Stg1:8 | Stg2: 8 | Stg3: 8)

Data / Configuration 6Hosts 3Hosts 1Host
(node7)

1Host
(node0=NFS) 6Hosts 3Hosts 1Host

(node7)
1Host

(node0=NFS)

128
Average 164,41 287,27 665,27 260,06 196,44 369,77 529,41 278,75

Stdve 2,62 6,03 2,26 11,17 3,37 5,78 1,42 1,06
Speedup 1,58 0,91 0,39 1,00 1,42 0,75 0,53 1,00

512
Average 653,89 1125,72 2636,09 1051,01 740,47 1377,60 2072,51 1142,67

Stdve 2,54 13,61 6,60 5,38 10,39 14,68 5,76 4,97
Speedup 1,61 0,93 0,40 1,00 1,54 0,83 0,55 1,00

1024
Average 1316,95 2263,52 5262,14 2136,98 1466,41 2753,96 4130,85 2280,78

Stdve 4,73 38,55 6,84 6,55 7,81 12,06 1,51 7,23
Speedup 1,62 0,94 0,41 1,00 1,56 0,83 0,55 1,00

TABLE 5.10: Results Design 5- GM-CD/CV: Greedy L5 Blockchain.

Chapter 5. Experimental results 142

The configurations of 6 hosts with 4 and 8 processes in the workflow stages

obtain the highest performance of all the evaluated configurations. As

can be seen in Table 5.10, the highest system speedup is obtained with 4

processes in each of the workflow stages. All speedups are obtained from the

local configuration (1Host:node0:NFS) where data are stored and processed

directly and the network component does not intervene.

By adding the CV component (D5: Greedy L5-Blockchain) to the solution

with higher performance and functionality (D4: Greedy L5), it is estimated

that there is an overhead produced by the use of the blockchain network

and the transactions to be recorded. The comparison between these two

solutions (D4 and D5) is illustrated in Figure 5.28 and the overhead produced

by D5 with respect to D4 is presented in Table 5.11.

6Ho-Np4

3Ho-Np4

1Ho(node7)-N
p4

1Ho(⊛
)-N

p4

6Ho-Np8

3Ho-Np8

1Ho(node7)-N
p8

1Ho(⊛
)-N

p8

0

2,000

4,000

6,000

1,
14

2 .
28 2,

16
4.

36

5,
11

1.
25

1,
90

4.
58

1,
43

0.
25 2,

52
3.

54

4,
05

7.
23

2,
15

7.
93

1,
31

6.
95 2,
26

3 .
52

5,
26

2.
14

2,
13

6.
98

1,
46

6.
41 2,

75
3.

96 4,
13

0 .
85

2,
28

0.
78

Configurations

Re
sp

on
se

Ti
m

e
(s

ec
)

D4 : Gr eed yL5
D5 : Gr eed yL5−Bl ockchai n

(Ho: Number of hosts /Np : Number of process / ⊛: NFS storage node 0)

FIGURE 5.28: Comparison of design 4 (Greedy L5) and design 5 (Greedy
L5 Blockchain) to process 1024 data.

Chapter 5. Experimental results 143

Figure 5.28 illustrates that there is evidently a small overhead when the CV

component is added to Design 4 (Greedy L5). However, each overhead (see

Table 5.11) is calculated by applying the two solutions (D4 and D5) with

exactly the same configuration (number of hosts and number of processes).

This indicates, as can be seen in Table 5.11, that although the highest over-

head is obtained in the configurations with 6 hosts regardless of the number

of processes, a higher performance is obtained with these configurations

(6 Hosts with Np 4 and 8) incorporating the CV component than the rest

of the configurations of the solution that does not consider the verifiability

component (D4).

Configurations Design4 Design5 Overhead % Overhead
6 Hosts-Np4 1142.28 1316.95 0.1529 15.29%
3 Hosts-Np4 2164.36 2263.52 0.0458 4.58%

1 Host-Np4-node7 5111.25 5262.14 0.0295 2.95%
1 Host-Np4-node0 1904.58 2136.98 0.1220 12.20%

6 Hosts-Np8 1430.25 1466.41 0.0253 2.53%
3 Hosts-Np8 2523.54 2753.96 0.0913 9.13%

1 Host-Np8-node7 4057.23 4130.85 0.0181 1.81%
1 Host-Np8-node0 2157.93 2280.78 0.0569 5.69%

TABLE 5.11: Overhead of the D5 (GM-CD/CV: Greedy L5 Blockchain)
solution compared to D4 (GM-CD/CV: Greedy L5).

As an example, the distributed configuration with the CV verifiability com-

ponent with 6 hosts and 4 processes per stage in the workflow obtains better

performance than the local solution of 1 host and the same number of

processes (1 Host-Np4-node0) of the solution that does not have the veri-

fiability component (D4). In other words, the overhead of this distributed

configuration (6-Hosts-Np4) with respect to the local configuration (1 Host-

Np4-node0) applying the same number of processes (Np=4) is non-existent

(-30.85%).

The comparison of the previous example shows that the application of the

different parallelism and processing techniques in the CD/CV system allows

Chapter 5. Experimental results 144

to obtain higher performance with respect to solutions that do not consider

the verification component.

5.5 Summary

In this chapter we have presented the evaluation of our proposed solutions

by using three use cases, related to distributed systems, real-time systems

data ingestion to blockchain, and analysis of CD/CV using and HPC work-

flow manager.

The results presented, not only verify the execution and sequence of the

processing stages (CD model), but also the transactions (data exchange)

performed by participants when processing assets (e.g., IoT data). Moreover,

the results presented show the scalability and good performance of the

solutions proposed in several environments.

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Introduction

The research work introduces a new system called GM-CD/CV, which acts

as a middleware between workflow engines and blockchains. This system

ensures the continuous verification and validation of the execution of IoT

dataflow in a specific order, as well as the integrity of digital assets. It offers

a reliable and transparent solution for real-time sensor data, with a focus

on security, verification, and traceability.

6.2 Goals achievements

The thesis has fulfilled all the objectives proposed at the begging of the

research.

O1 . To design a content delivery model for processing big IoT data in Edge-

Fog-Cloud computing by using micro/nanoservice composition.

O2 . To design a continuous verification model based on blockchain to reg-

ister significant events from the continuous delivery model, selecting

techniques to integrate blockchain in quasi-real systems that allow en-

suring traceability and non-repudiation of data obtained from devices

and sensors.

145

Chapter 6. Conclusions 146

O3 . To enhance the performance of blockchain systems to log IoT data to

cope with the poor performance of current systems.

O4 . To evaluate the solution proposed with study cases to demonstrate its

feasibility.

6.3 Contributions of the thesis

This research work introduces a novel model for IoT-edge-fog-cloud sys-

tems, which enhances the current state of the art by integrating Continuous

Delivery/Continuous Verifiability and blockchain technology. The system

is designed to enable automatic deployment of smart contracts at different

stages of the workflow to trigger actions related to continuous verifiabil-

ity. One of the key technical achievements is the real-time recording of

transactions in blockchain. The major contributions of this thesis are the

implementation of the model and its optimization to improve the data-flow

processing and event registration in blockchain.

1. Mathematical model: We have created a mathematical model to

illustrate the different parts and elements involved in workflow that

utilize blockchain and real-time data. The model represents the var-

ious stages, such as definition, deployment, data acquisition, and

contract verification, and the entities that participate in these stages.

2. Distributed and automatic deployment: The proposed solution in

this research work enables the deployment and implementation of

the model in an automated way, using tools such as Docker and Hy-

perledger Fabric. This integration allows for both local and distributed

infrastructures to be used.

Chapter 6. Conclusions 147

3. Blockchain platform independent optimization techniques: We

suggest the use of optimization techniques for blockchain platforms

that are independent of any specific platform. These techniques in-

clude atomic transactions and grouped validation, which are applied

on top of the blockchain. By implementing these techniques, im-

provements can be made in the data collection transaction protocol

and the data storage procedure, without being limited to a particular

blockchain platform.

4. Improved blockchain transactions validation performance: We

have made optimizations to improve the performance and scalabil-

ity of blockchain transactions validation. These optimizations have

resulted in faster validation speeds, and consistent data storage in

near real-time. Consequently, the data is available for queries and

continuous validation of the contract.

5. Continuous verification of contracts: The practice of periodically

verifying contracts has been shown to be beneficial in large supply

chain networks. This technique provides near real-time notification

of contract breaches and can increase scalability.

In addition to the benefits mentioned earlier, the proposal presented in

this research work also offers advantages for business logic actors. These

advantages include.

• Usability of the solution: The proposed system in this research work

includes a web interface that integrates the operational model and

makes it accessible to companies or organizations without special-

ized knowledge in information technology. This interface guides users

through the process of deploying their solution, setting up periodic

Chapter 6. Conclusions 148

contract verification, and performing verification queries. It is de-

signed to be user-friendly for individuals without prior experience in

blockchain or supply chains.

• Faster conflicts resolution: If a conflict arises between two or more

participants in the network regarding a contract breach, the proposed

system’s web service can identify the recorded issues during the exe-

cution of the contracts in real-time. This helps establish an irrefutable

party responsible for the problem, considering that the records are

immutable. As a result, the system can help resolve disputes quickly

and accurately.

• Reliable verification with third parties: The proposal in this research

work includes the definition of client nodes that use containers to

connect to the blockchain network. This design allows external enti-

ties, such as auditors, government agencies, or the police, to perform

a reliable and traceable verification of all the registered activities of

each organization on the blockchain network. This feature helps to

ensure transparency and accountability in the network, which can be

beneficial in various contexts.

In order to evaluate the proposed solution’s performance and reliability, a

series of experiments (uses cases) were conducted by the authors. These ex-

periments were designed to measure the system’s effectiveness in handling

various tasks and scenarios, and to assess its ability to meet the demands of

real-world workflows processes. The results of these experiments provide

valuable insights into the strengths and limitations of the proposed solution,

and help to inform potential improvements and future research directions.

The evaluation results indicate that the proposed optimizations allow for

processing data requests at a higher registration rate than the default solu-

tion provided in blockchain platforms such as Hyperledger. Additionally,

Chapter 6. Conclusions 149

the proposed solution reduces the risk of missing data and minimizes trans-

action processing delays, which improves the overall reliability of the IoT

dataflows processes.

We conducted an experimental evaluation of proposed solution applied

to a mobility use case in the first scenario. The results of this evaluation

indicate that the proposed solution is both feasible and highly performant,

even when compared to a state-of-the-art workflow manager that does not

include blockchain logging. This suggests that the proposed solution could

be a viable alternative for organizations seeking to improve their workflows

management processes, especially those in the mobility sector.

We believe that the GM-CD/CV model has great potential for organizations

that are dealing with large amounts of data generated by IoT devices. With

the exponential increase in data volume, this model can help establish con-

tinuous verifiability during IoT data processing workflows. However, while

the model proposed is general in nature, its feasibility for multi-organization

scenarios needs to be evaluated further by testing it with more datasets and

use cases from different business sectors. This will help determine the ex-

tent to which the model can be effectively applied in various real-world

scenarios.

6.4 Publications and conferences

1. Martinez-Rendon, Cristhian, et al. CD/CV: Blockchain-based schemes

for continuous verifiability and traceability of IoT data for edge–fog–cloud.

Information Processing & Management, 2023, vol. 60, no 1, p. 103155.

Q1.

Chapter 6. Conclusions 150

2. Martinez-Rendon, Cristhian, et al. On the continuous contract verifi-

cation using blockchain and real-time data. Cluster Computing, 2022,

p. 1-23. Q1.

3. Lopez-Arevalo, Ivan, et al. A wot-based method for creating digital

sentinel twins of IOT devices. Sensors, 2021, vol. 21, no 16, p. 5531.

Q1.

4. YANG, D., Martinez, C., Visuña, L. et al. Detection and analysis of

COVID-19 in medical images using deep learning techniques. Sci Rep

11, 19638 (2021).

https://doi.org/10.1038/s41598-021-99015-3. Q1.

5. Jesus Carretero and Cristhian Martinez: Blockchain-based schemes

for continuous verifiability and traceability of IoT data. Workshop

BDCSA2023: Big Data Convergence: from Sensors to Applications.

31st Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing (PDP 2023). March 1-3, Naples, Italy.

6. Cristhian Martinez-Rendon, Dante D. Sánchez-Gallegos, Jesús Car-

retero, Jose L. Gonzalez-Compean , Antonio J. Rubio-Montero y Hernán

Asorey. Calibración y evaluación experimental del Gestor CD/CV.

Workshop CABAHLA. Jornadas Sarteco 2022. Alicante. 21 al 23 de

septiembre de 2022.

7. Jesus Carretero, Cristhian Martinez, Jose L. Gonzalez & Dante Sanchez.

CD/CV: Blockchain-based schemes for continuous verifiability and

traceability of IoT data for edge-fog-cloud. Information Processing &

Management Conference 2022. 20-21 October 2022. Wuhan. China.

Online presentation.

Chapter 6. Conclusions 151

6.5 Future research lines

Throughout the course of our research, we were able to identify a range of

potential improvements that could be implemented within the proposed

system in the future. These enhancements represent valuable opportunities

for further development and refinement, with the potential to increase the

efficiency, functionality, and overall effectiveness of the system. With careful

consideration and strategic implementation, these future improvements

could result in a more robust and optimized system that meets the evolving

needs and expectations of different organizations.

1. High-Performance: In order to maintain each individual process and

its corresponding stages within the file system of the proposed infras-

tructure, it is essential to implement a hash function method when

constructing the transaction record. However, it is important to note

that this process of preserving results incurs a certain cost in terms

of reading and writing, which directly impacts the overall response

time experienced by the user. To minimize these costs, we suggest

exploring the option of exchanging information between stages from

memory. Nevertheless, it is crucial to conduct a thorough study on

how to ensure that continuous verifiability is maintained when adopt-

ing this approach.

2. Geographically distributed multi-organization scenario: The aim

of this item is to define and assess a scenario in which multiple orga-

nizations are geographically dispersed. Since the proposed solution’s

components are contained within virtual containers, allowing for de-

ployment across various infrastructures (such as edge, fog, and cloud),

we could examine the costs (including performance, latency, and oth-

ers) associated with distributing the solution in scenarios where the

Chapter 6. Conclusions 152

nodes are completely dispersed geographically. Our primary inter-

est lies in evaluating the performance of the GM-CD/CV system in

this context, where each organization’s stages and peer nodes are

located in completely different geographic regions, forming a verifi-

able network. The aim is provide valuable insights into the feasibility

and potential benefits of deploying GM-CD/CV in a geographically

distributed multi-organization scenario.

3. High availability scheme: The implementation of a high availability

scheme to ensure uninterrupted operation of GM-CD/CV. Without

such a scheme, any failure in the CD service could potentially halt

the continuous delivery process, while any failure in the CV services

(peer nodes) could interrupt or even disable the verifiability network’s

records. Therefore, it is important to incorporate a robust high avail-

ability mechanism that can mitigate the risk of system failure and

ensure the smooth functioning of the GM-CD/CV system at all times.

4. Dynamic workflows: Dynamic workflows that change over time

(Varying loads and actors). The proposed solution considers a static

workflow where the participating entities or actors are previously

defined. In the same sense, a change of load or actors in the initial

workflow may require the inclusion of more actors or components in

the verifiability network to allow verification and validation on the

new components.

5. Improve maintenance of the supply chain elements: Through the

continuous verification of the blockchain’s records, we intend to uti-

lize the information to generate alerts for corrective maintenance and

provide statistics or recommendations for predictive maintenance.

This approach will enable us to identify components that are causing

losses (such as sensors or trucks in poor condition) and establish

Chapter 6. Conclusions 153

appropriate measures to address these issues. By utilizing the ver-

ifiability network and the data collected from IoT devices, we aim

to optimize the maintenance processes for supply chain elements,

which will ultimately improve the overall efficiency and effectiveness

of the system.

BIBLIOGRAPHY

[1] Abubaker Haddud, Arthur DeSouza, Anshuman Khare, and Huei Lee.

Examining potential benefits and challenges associated with the inter-

net of things integration in supply chains. Journal of Manufacturing

Technology Management, 2017.

[2] Bhabendu Kumar Mohanta, Soumyashree S Panda, and Debasish

Jena. An overview of smart contract and use cases in blockchain

technology. In 2018 9th International Conference on Computing,

Communication and Networking Technologies (ICCCNT), pages 1–4.

IEEE, 2018.

[3] D. Roy, D. Bhadra, and B. Das. Is blockchain the future of supply chain

management?-a review paper. In Proceedings of International Ethical

Hacking Conference 2019, pages 83–103. Springer Singapore, 2019.

[4] Peter Gonczol, Panagiota Katsikouli, Lasse Herskind, and Nicola Drag-

oni. Blockchain implementations and use cases for supply chains-a

survey. Ieee Access, 8:11856–11871, 2020.

[5] Amitangshu Pal and Krishna Kant. Using blockchain for provenance

and traceability in internet of things-integrated food logistics. Com-

puter, 52(12):94–98, 2019.

[6] Moutaz Alazab, Salah Alhyari, Albara Awajan, and Ayman Bahjat Ab-

dallah. Blockchain technology in supply chain management: an

empirical study of the factors affecting user adoption/acceptance.

Cluster Computing - The Journal of Networks, Software Tools and Ap-

plications, pages 1–19, November 2020. URL https://doi.org/10

.1007/s10586-020-03200-4.

155

https://doi.org/10.1007/s10586-020-03200-4
https://doi.org/10.1007/s10586-020-03200-4

Bibliography 156

[7] Ewa Deelman, Karan Vahi, Mats Rynge, Rajiv Mayani, Rafael Ferreira

da Silva, George Papadimitriou, and Miron Livny. The evolution of

the pegasus workflow management software. Computing in Science

& Engineering, 21(4):22–36, 2019.

[8] G Kousalya, P Balakrishnan, and C Pethuru Raj. Workflow manage-

ment systems. In Automated Workflow Scheduling in Self-Adaptive

Clouds, pages 55–64. Springer, 2017.

[9] JL Gonzalez-Compean, Victor Sosa-Sosa, Arturo Diaz-Perez, Jesus

Carretero, and Jedidiah Yanez-Sierra. Sacbe: A building block ap-

proach for constructing efficient and flexible end-to-end cloud stor-

age. Journal of Systems and Software, 135:143–156, 2018.

[10] Raffaele Montella, Diana Di Luccio, and Sokol Kosta. Dagon*: Ex-

ecuting direct acyclic graphs as parallel jobs on anything. In 2018

IEEE/ACM Workflows in Support of Large-Scale Science (WORKS),

pages 64–73. IEEE, 2018.

[11] Yadu Babuji, Anna Woodard, Zhuozhao Li, Daniel S Katz, Ben Clifford,

Rohan Kumar, Lukasz Lacinski, Ryan Chard, Justin M Wozniak, Ian

Foster, et al. Parsl: Pervasive parallel programming in python. In Pro-

ceedings of the 28th International Symposium on High-Performance

Parallel and Distributed Computing, pages 25–36, 2019.

[12] Joseph Louis and Phillip S Dunston. Integrating iot into operational

workflows for real-time and automated decision-making in repetitive

construction operations. Automation in Construction, 94:317–327,

2018.

[13] Matteo Nardelli, Stefan Nastic, Schahram Dustdar, Massimo Villari,

and Rajiv Ranjan. Osmotic flow: Osmotic computing+ iot workflow.

IEEE Cloud Computing, 4(2):68–75, 2017.

Bibliography 157

[14] Raffaele Montella, Mario Ruggieri, and Sokol Kosta. A fast, secure,

reliable, and resilient data transfer framework for pervasive iot ap-

plications. In IEEE INFOCOM 2018-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pages 710–715.

IEEE, 2018.

[15] Yinhao Li, Devki Nandan Jha, Gagangeet Singh Aujla, Graham Morgan,

Albert Y Zomaya, and Rajiv Ranjan. Iotwc: Analytic hierarchy process

based internet of things workflow composition system. In 2020 IEEE

International Conference on Cloud Engineering (IC2E), pages 1–10.

IEEE, 2020.

[16] Yanling Shao, Chunlin Li, and Hengliang Tang. A data replica place-

ment strategy for iot workflows in collaborative edge and cloud envi-

ronments. Computer Networks, 148:46–59, 2019.

[17] Farshad Firouzi, Bahar Farahani, and Alexander Marinšek. The con-

vergence and interplay of edge, fog, and cloud in the ai-driven internet

of things (iot). Information Systems, page 101840, 2021.

[18] M Adel Serhani, Hadeel T El-Kassabi, Khaled Shuaib, Alramzana N

Navaz, Boualem Benatallah, and Amine Beheshti. Self-adapting cloud

services orchestration for fulfilling intensive sensory data-driven iot

workflows. Future Generation Computer Systems, 108:583–597, 2020.

[19] Awais Ahmad, Salvatore Cuomo, Wei Wu, and Gwanggil Jeon. In-

telligent algorithms and standards for interoperability in internet of

things, 2019.

[20] Rawaa Qasha, Jacek Cala, and Paul Watson. Dynamic deployment of

scientific workflows in the cloud using container virtualization. In

2016 IEEE International Conference on Cloud Computing Technology

and Science (CloudCom), pages 269–276. IEEE, 2016.

Bibliography 158

[21] Sina Shahhosseini, Arman Anzanpour, Iman Azimi, Sina Labbaf,

DongJoo Seo, Sung-Soo Lim, Pasi Liljeberg, Nikil Dutt, and Amir M

Rahmani. Exploring computation offloading in iot systems. Informa-

tion Systems, page 101860, 2021.

[22] Esteban Municio, Johann Marquez-Barja, Steven Latré, and Stefano

Vissicchio. Whisper: Programmable and flexible control on industrial

iot networks. Sensors, 18(11):4048, 2018.

[23] Chris Simpkin, Ian Taylor, Daniel Harborne, Graham Bent, Alun

Preece, and Raghu K Ganti. Efficient orchestration of node-red iot

workflows using a vector symbolic architecture. Future Generation

Computer Systems, 111:117–131, 2020.

[24] Xixun Yu, Zheng Yan, and Athanasios V Vasilakos. A survey of verifi-

able computation. Mobile Networks and Applications, 22(3):438–453,

2017.

[25] Konstantinos Christidis and Michael Devetsikiotis. Blockchains and

smart contracts for the internet of things. Ieee Access, 4:2292–2303,

2016.

[26] Amir Taherkordi and Peter Herrmann. Pervasive smart contracts for

blockchains in iot systems. In Proceedings of the 2018 International

Conference on Blockchain Technology and Application, pages 6–11,

2018.

[27] Tiago M Fernández-Caramés and Paula Fraga-Lamas. A review on the

use of blockchain for the internet of things. Ieee Access, 6:32979–33001,

2018.

[28] Xuanmei Qin, Yongfeng Huang, Zhen Yang, and Xing Li. Lbac: A

lightweight blockchain-based access control scheme for the internet

of things. Information Sciences, 554:222–235, 2021.

Bibliography 159

[29] Guangshun Li, Xinrong Ren, Junhua Wu, Wanting Ji, Haili Yu, Jiabin

Cao, and Ruili Wang. Blockchain-based mobile edge computing

system. Information Sciences, 561:70–80, 2021.

[30] Pushpa Singh and Narendra Singh. Blockchain with iot and ai: A

review of agriculture and healthcare. International Journal of Applied

Evolutionary Computation (IJAEC), 11(4):13–27, 2020.

[31] Daniel Bumblauskas, Arti Mann, Brett Dugan, and Jacy Rittmer. A

blockchain use case in food distribution: Do you know where your

food has been? International Journal of Information Management,

52:102008, 2020.

[32] Daniele Mazzei, Giacomo Baldi, Gualtiero Fantoni, Gabriele Montelis-

ciani, Antonio Pitasi, Laura Ricci, and Lorenzo Rizzello. A blockchain

tokenizer for industrial iot trustless applications. Future Generation

Computer Systems, 105:432–445, 2020.

[33] Ana Reyna, Cristian Martín, Jaime Chen, Enrique Soler, and Manuel

Díaz. On blockchain and its integration with iot. challenges and

opportunities. Future generation computer systems, 88:173–190, 2018.

[34] Alfonso Panarello, Nachiket Tapas, Giovanni Merlino, Francesco

Longo, and Antonio Puliafito. Blockchain and iot integration: A sys-

tematic survey. Sensors, 18(8):2575, 2018.

[35] Quanyu Zhao, Siyi Chen, Zheli Liu, Thar Baker, and Yuan Zhang.

Blockchain-based privacy-preserving remote data integrity check-

ing scheme for iot information systems. Information Processing

& Management, 57(6):102355, 2020. ISSN 0306-4573. doi: https:

//doi.org/10.1016/j.ipm.2020.102355. URL https://www.scienced

irect.com/science/article/pii/S0306457320308505.

https://www.sciencedirect.com/science/article/pii/S0306457320308505
https://www.sciencedirect.com/science/article/pii/S0306457320308505

Bibliography 160

[36] Bharat Bhushan, Chinmayee Sahoo, Preeti Sinha, and Aditya Kham-

paria. Unification of blockchain and internet of things (biot): require-

ments, working model, challenges and future directions. Wireless

Networks, pages 1–36, 2020.

[37] Yeşem Kurt Peker, Xavier Rodriguez, James Ericsson, Suk Jin Lee, and

Alfredo J Perez. A cost analysis of internet of things sensor data storage

on blockchain via smart contracts. Electronics, 9(2):244, 2020.

[38] Arezou Naghib, Nima Jafari Navimipour, Mehdi Hosseinzadeh, and

Arash Sharifi. A comprehensive and systematic literature review on

the big data management techniques in the internet of things. Wire-

less Networks, pages 1–60, 2022.

[39] Aisha Siddiqa, Ibrahim Abaker Targio Hashem, Ibrar Yaqoob, Mohsen

Marjani, Shahabuddin Shamshirband, Abdullah Gani, and Fariza

Nasaruddin. A survey of big data management: Taxonomy and state-

of-the-art. Journal of Network and Computer Applications, 71:151–

166, 2016.

[40] Wu He, Feng-Kwei Wang, and Vasudeva Akula. Managing extracted

knowledge from big social media data for business decision making.

Journal of Knowledge Management, 2017.

[41] Pietro Pinoli, Stefano Ceri, Davide Martinenghi, and Luca Nanni.

Metadata management for scientific databases. Information Systems,

81:1–20, 2019.

[42] Jay Lofstead, Joshua Baker, and Andrew Younge. Data pallets: con-

tainerizing storage for reproducibility and traceability. In Interna-

tional Conference on High Performance Computing, pages 36–45.

Springer, 2019.

Bibliography 161

[43] Carole Goble, Sarah Cohen-Boulakia, Stian Soiland-Reyes, Daniel

Garijo, Yolanda Gil, Michael R Crusoe, Kristian Peters, and Daniel

Schober. Fair computational workflows. Data Intelligence, 2(1-2):

108–121, 2020.

[44] Bassirou Diène, Joel JPC Rodrigues, Ousmane Diallo, EL Hadji Malick

Ndoye, and Valery V Korotaev. Data management techniques for

internet of things. Mechanical Systems and Signal Processing, 138:

106564, 2020.

[45] Hui Li, Lishuang Pei, Dan Liao, Xiong Wang, Du Xu, and Jian Sun. Bddt:

use blockchain to facilitate iot data transactions. Cluster Computing

- The Journal of Networks, Software Tools and Applications, 23:1–21,

May 2020. URL https://doi.org/10.1007/s10586-020-03119-w.

[46] Umair Khalid, Muhammad Asim, Thar Baker, Patrick CK Hung,

Muhammad Adnan Tariq, and Laura Rafferty. A decentralized

lightweight blockchain-based authentication mechanism for iot sys-

tems. Cluster Computing - The Journal of Networks, Software Tools

and Applications, 23:2067–2087, September 2020. URL https:

//doi.org/10.1007/s10586-020-03058-6.

[47] Omar Alfandi, Salam Khanji, Liza Ahmad, and Asad Khattak. A survey

on boosting iot security and privacy through blockchain. Cluster

Computing - The Journal of Networks, Software Tools and Applications,

23:1–19, October 2020. URL https://doi.org/10.1007/s10586-0

20-03137-8.

[48] Vikram Puri, Ishaani Priyadarshini, Raghvendra Kumar, and Chung

Van Le. Smart contract based policies for the internet of things. Cluster

Computing - The Journal of Networks, Software Tools and Applications,

24:1–20, January 2021. URL https://doi.org/10.1007/s10586-0

20-03216-w.

https://doi.org/10.1007/s10586-020-03119-w
https://doi.org/10.1007/s10586-020-03058-6
https://doi.org/10.1007/s10586-020-03058-6
https://doi.org/10.1007/s10586-020-03137-8
https://doi.org/10.1007/s10586-020-03137-8
https://doi.org/10.1007/s10586-020-03216-w
https://doi.org/10.1007/s10586-020-03216-w

Bibliography 162

[49] Manoharan Ramachandran, Niaz Chowdhury, Allan Third, John

Domingue, Kevin Quick, and Michelle Bachler. Towards complete de-

centralised verification of data with confidentiality: Different ways to

connect solid pods and blockchain. In Companion Proceedings of the

Web Conference 2020, WWW ’20, page 645–649, New York, NY, USA,

2020. Association for Computing Machinery. ISBN 9781450370240.

doi: 10.1145/3366424.3385759. URL https://doi.org/10.1145/33

66424.3385759.

[50] Petri Helo and AHM Shamsuzzoha. Real-time supply chain—a

blockchain architecture for project deliveries. Robotics and Computer-

Integrated Manufacturing, 63:101909, 2020.

[51] Christoph H.-J. Braun, Janina Traue, Boris Lingl, and Tobias

Käfer. Documenting the execution of semantically modelled inter-

organisational workflows on a distributed ledger. In 2021 IEEE In-

ternational Conference on Blockchain (Blockchain), pages 280–286,

2021. doi: 10.1109/Blockchain53845.2021.00045.

[52] Manan Shukla, Jianjing Lin, and Oshani Seneviratne. Blockchain

and iot enhanced clinical workflow. In International Conference on

Artificial Intelligence in Medicine, pages 407–411. Springer, 2022.

[53] Mehrdokht Pournader, Yangyan Shi, Stefan Seuring, and SC Lenny

Koh. Blockchain applications in supply chains, transport and logis-

tics: a systematic review of the literature. International Journal of

Production Research, 58(7):2063–2081, 2020.

[54] Iuon-Chang Lin and Tzu-Chun Liao. A survey of blockchain security

issues and challenges. IJ Network Security, 19(5):653–659, 2017.

[55] Ethereum. Ethereum, 2020. URL https://ethereum.org/.

https://doi.org/10.1145/3366424.3385759
https://doi.org/10.1145/3366424.3385759
https://ethereum.org/

Bibliography 163

[56] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash sys-

tem. Working Paper, 2008.

[57] Ashish Gadnis, Jeffrey A Keiser, Michael Linton, and Stanislav Natal-

enko. Blockchain-based identity and transaction platform, October 4

2018. URL https://banqu.co/. US Patent App. 15/767,969.

[58] Peter Verhoeven, Florian Sinn, and Tino T Herden. Examples from

blockchain implementations in logistics and supply chain manage-

ment: exploring the mindful use of a new technology. Logistics, 2(3):

20, 2018.

[59] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly

signed contracts: Anonymous on-blockchain and off-blockchain bit-

coin transactions. In International conference on financial cryptogra-

phy and data security, pages 43–60. Springer, 2016.

[60] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Re-

nesse. Bitcoin-ng: A scalable blockchain protocol. In 13th {USENIX}

symposium on networked systems design and implementation ({NSDI}

16), pages 45–59, 2016.

[61] Hyperledger-Fabric. Hyperledger fabric, 2020. URL https://www.

hyperledger.org/projects/fabric.

[62] Dominique Guegan. Public blockchain versus private blockhain.

Technical report, Centre d’Economie de la Sorbonne, 2017.

[63] Julia Nathan and Bob Jacobs. Blockchain consortium networks:

Adding security and trust in financial services. Journal of Corporate

Accounting & Finance, 31(2):29–33, 2020.

[64] Jiawen Kang, Rong Yu, Xumin Huang, Maoqiang Wu, Sabita Maharjan,

Shengli Xie, and Yan Zhang. Blockchain for secure and efficient data

https://banqu.co/
https://www.hyperledger.org/projects/fabric
https://www.hyperledger.org/projects/fabric

Bibliography 164

sharing in vehicular edge computing and networks. IEEE Internet of

Things Journal, 6(3):4660–4670, 2018.

[65] Martin Valenta and Philipp Sandner. Comparison of ethereum, hy-

perledger fabric and corda. no. June, pages 1–8, 2017.

[66] P Sajana, M Sindhu, and M Sethumadhavan. On blockchain appli-

cations: hyperledger fabric and ethereum. International Journal of

Pure and Applied Mathematics, 118(18):2965–2970, 2018.

[67] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis, and Lejia Shen.

Blockchain technology and its relationships to sustainable supply

chain management. International Journal of Production Research, 57

(7):2117–2135, 2019.

[68] Xiaoqiong Xu, Gang Sun, Long Luo, Huilong Cao, Hongfang Yu, and

Athanasios V. Vasilakos. Latency performance modeling and analysis

for hyperledger fabric blockchain network. Information Processing

& Management, 58(1):102436, 2021. ISSN 0306-4573. doi: https:

//doi.org/10.1016/j.ipm.2020.102436. URL https://www.scienced

irect.com/science/article/pii/S0306457320309298.

[69] Sunny Pahlajani, Avinash Kshirsagar, and Vinod Pachghare. Survey

on private blockchain consensus algorithms. In 2019 1st Interna-

tional Conference on Innovations in Information and Communication

Technology (ICIICT), pages 1–6. IEEE, 2019.

[70] Rainer Böhme, Nicolas Christin, Benjamin Edelman, and Tyler Moore.

Bitcoin: Economics, technology, and governance. Journal of economic

Perspectives, 29(2):213–38, 2015.

[71] Sinclair Davidson, Primavera De Filippi, and Jason Potts. Economics

of blockchain. Available at SSRN 2744751, 2016.

https://www.sciencedirect.com/science/article/pii/S0306457320309298
https://www.sciencedirect.com/science/article/pii/S0306457320309298

Bibliography 165

[72] Yaolin Zhang. Developing cross-border blockchain financial trans-

actions under the belt and road initiative. The Chinese Journal of

Comparative Law, 2020.

[73] J. Leung and J. Lee. 300cubits: Blockchain for shipping., 2017. URL

https://www.300cubits.tech/.

[74] Rana M Amir Latif, Muhammad Farhan, Osama Rizwan, Majid Hus-

sain, Sohail Jabbar, and Shahzad Khalid. Retail level blockchain trans-

formation for product supply chain using truffle development plat-

form. Cluster Computing, pages 1–16, 2020.

[75] Reshma Kamath. Food traceability on blockchain: Walmart’s pork

and mango pilots with ibm. The Journal of the British Blockchain

Association, 1(1):3712, 2018.

[76] Ricardo Caballero and Braian Rivera. Blockchain: An alternative to

enable traceability in the agricultural supply chain in panama. In 2019

7th International Engineering, Sciences and Technology Conference

(IESTEC), pages 46–51. IEEE, 2019. doi: 10.1109/IESTEC46403.2019.0

0017.

[77] Samant Saurabh and Kushankur Dey. Blockchain technology adop-

tion, architecture, and sustainable agri-food supply chains. Jour-

nal of Cleaner Production, 284:124731, 2021. ISSN 0959-6526. doi:

https://doi.org/10.1016/j.jclepro.2020.124731. URL http://www.sc

iencedirect.com/science/article/pii/S0959652620347752.

[78] Stephen Wingreen, Ravishankar Sharma, et al. A blockchain traceabil-

ity information system for trust improvement in agricultural supply

chain. In EUROPEAN CONFERENCE ON INFORMATION SYSTEMS

(ECIS2019), 2019. URL https://aisel.aisnet.org/ecis2019_r

ip/10/.

https://www.300cubits.tech/
http://www.sciencedirect.com/science/article/pii/S0959652620347752
http://www.sciencedirect.com/science/article/pii/S0959652620347752
https://aisel.aisnet.org/ecis2019_rip/10/
https://aisel.aisnet.org/ecis2019_rip/10/

Bibliography 166

[79] Thomas Bocek, Bruno B Rodrigues, Tim Strasser, and Burkhard Stiller.

Blockchains everywhere-a use-case of blockchains in the pharma

supply-chain. In 2017 IFIP/IEEE Symposium on Integrated Network

and Service Management (IM), pages 772–777. IEEE, 2017.

[80] Urvish Thakker, Ruhi Patel, Sudeep Tanwar, Neeraj Kumar, and Houb-

ing Song. Blockchain for diamond industry: Opportunities and chal-

lenges. IEEE Internet of Things Journal, 2020.

[81] A. Quijano D. Jones, D. Kingston and C. Willette. Bext360., 2017. URL

https://www.bext360.com/.

[82] Feng Tian. An agri-food supply chain traceability system for china

based on rfid & blockchain technology. In 2016 13th international con-

ference on service systems and service management (ICSSSM), pages

1–6. IEEE, 2016.

[83] Praveen Kumare Gopalakrishnan, John Hall, and Sara Behdad. Cost

analysis and optimization of blockchain-based solid waste manage-

ment traceability system. Waste Management, 120:594–607, 2021.

[84] Senthamiz Selvi Arumugam, Venkatesh Umashankar, Nanjangud C

Narendra, Ramamurthy Badrinath, Anusha Pradeep Mujumdar, Jan

Holler, and Aitor Hernandez. Iot enabled smart logistics using smart

contracts. In 2018 8th International Conference on Logistics, Infor-

matics and Service Sciences (LISS), pages 1–6. IEEE, 2018.

[85] Mohamed Ben-Daya, Elkafi Hassini, and Zied Bahroun. Internet of

things and supply chain management: a literature review. Interna-

tional Journal of Production Research, 57(15-16):4719–4742, 2019.

[86] Tharaka de Vass, Himanshu Shee, and Shah J Miah. Iot in supply chain

management: a narrative on retail sector sustainability. International

Journal of Logistics Research and Applications, pages 1–20, 2020.

https://www.bext360.com/

Bibliography 167

[87] Thanh Son Lam Nguyen, Guillaume Jourjon, Maria Potop-Butucaru,

and Kim Loan Thai. Impact of network delays on hyperledger fabric.

In IEEE INFOCOM 2019-IEEE Conference on Computer Communica-

tions Workshops (INFOCOM WKSHPS), pages 222–227. IEEE, 2019.

[88] Qassim Nasir, Ilham A Qasse, Manar Abu Talib, and Ali Bou Nassif.

Performance analysis of hyperledger fabric platforms. Security and

Communication Networks, 2018, 2018.

[89] Yuchen Wang, Shuang Li, Lei Xu, and Lizhen Xu. Improved raft con-

sensus algorithm in high real-time and highly adversarial environ-

ment. In International Conference on Web Information Systems and

Applications, pages 718–726. Springer, 2021.

[90] Wei Fu, Xuefeng Wei, and Shihua Tong. An improved blockchain

consensus algorithm based on raft. Arabian Journal for Science and

Engineering, 46(9):8137–8149, 2021.

[91] Kejiao Li, Hui Li, Hanxu Hou, Kedan Li, and Yongle Chen. Proof of vote:

A high-performance consensus protocol based on vote mechanism &

consortium blockchain. In 2017 IEEE 19th International Conference

on High Performance Computing and Communications; IEEE 15th

International Conference on Smart City; IEEE 3rd International Con-

ference on Data Science and Systems (HPCC/SmartCity/DSS), pages

466–473. IEEE, 2017.

[92] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance

benchmarking and optimizing hyperledger fabric blockchain plat-

form. In 2018 IEEE 26th international symposium on modeling, analy-

sis, and simulation of computer and telecommunication systems (MAS-

COTS), pages 264–276. IEEE, 2018.

Bibliography 168

[93] Canhui Wang and Xiaowen Chu. Performance characterization

and bottleneck analysis of hyperledger fabric. arXiv preprint

arXiv:2008.05946, 2020.

[94] Haris Javaid, Chengchen Hu, and Gordon Brebner. Optimizing vali-

dation phase of hyperledger fabric. In 2019 IEEE 27th International

Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS), pages 269–275. IEEE, 2019.

[95] Zhipeng Gao and Lulin Yang. Optimization scheme of consensus

mechanism based on practical byzantine fault tolerance algorithm.

In CCF China Blockchain Conference, pages 187–195. Springer, 2019.

[96] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolić. Mir-bft:

High-throughput bft for blockchains. arXiv preprint arXiv:1906.05552,

2019.

[97] Christian Gorenflo, Stephen Lee, Lukasz Golab, and Srinivasan Ke-

shav. Fastfabric: Scaling hyperledger fabric to 20,000 transactions

per second. In 2019 IEEE International Conference on Blockchain and

Cryptocurrency (ICBC), pages 455–463. IEEE, 2019.

[98] Takuya Nakaike, Qi Zhang, Yohei Ueda, Tatsushi Inagaki, and

Moriyoshi Ohara. Hyperledger fabric performance characterization

and optimization using goleveldb benchmark. In 2020 IEEE Interna-

tional Conference on Blockchain and Cryptocurrency (ICBC), pages

1–9. IEEE, 2020.

[99] Saqib Ali, Guojun Wang, Bebo White, and Roger Leslie Cottrell. A

blockchain-based decentralized data storage and access framework

for pinger. In 2018 17th IEEE International Conference on Trust, Se-

curity and Privacy in Computing and Communications/12th IEEE

International Conference on Big Data Science and Engineering (Trust-

Com/BigDataSE), pages 1303–1308. IEEE, 2018.

Bibliography 169

[100] Yacov Manevich, Artem Barger, and Yoav Tock. Endorsement in hy-

perledger fabric via service discovery. IBM Journal of Research and

Development, 63(2/3):2–1, 2019.

[101] Ann Mary Joy. Performance comparison between linux containers

and virtual machines. In 2015 International Conference on Advances

in Computer Engineering and Applications, pages 342–346. IEEE,

2015.

[102] Qi Zhang, Ling Liu, Calton Pu, Qiwei Dou, Liren Wu, and Wei Zhou.

A comparative study of containers and virtual machines in big data

environment. In 2018 IEEE 11th International Conference on Cloud

Computing (CLOUD), pages 178–185. IEEE, 2018.

[103] D. Treat, G. Giordano, L. L. Schiatti, and H. Borne-Pons. Connecting

ecosystems: Blockchain integration., 2018. URL https://www.acce

nture.com/us-en/insights/blockchain/integration-ecosys

tems.

[104] Valentina Armenise. Continuous delivery with jenkins: Jenkins so-

lutions to implement continuous delivery. In 2015 IEEE/ACM 3rd

International Workshop on Release Engineering, pages 24–27. IEEE,

2015.

[105] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda Gil,

Carl Kesselman, Gaurang Mehta, Karan Vahi, G Bruce Berriman, John

Good, et al. Pegasus: A framework for mapping complex scientific

workflows onto distributed systems. Scientific Programming, 13(3):

219–237, 2005.

[106] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux

utility for resource management. In Workshop on Job Scheduling

Strategies for Parallel Processing, pages 44–60. Springer, 2003.

https://www.accenture.com/us-en/insights/blockchain/integration-ecosystems
https://www.accenture.com/us-en/insights/blockchain/integration-ecosystems
https://www.accenture.com/us-en/insights/blockchain/integration-ecosystems

Bibliography 170

[107] Dante Domizzi Sanchez-Gallegos, JL Gonzalez-Compean, Jesus Car-

retero, Heidy Marin, Andrei Tchernykh, and Raffaele Montella. Puz-

zlemesh: A puzzle model to build mesh of agnostic services for edge-

fog-cloud. IEEE Transactions on Services Computing, 2022.

[108] Cristhian Martinez-Rendon, Diego Camarmas-Alonso, Jesus Car-

retero, and Jose L Gonzalez-Compean. On the continuous contract

verification using blockchain and real-time data. Cluster Computing,

pages 1–23, 2021.

[109] Arati Baliga, Nitesh Solanki, Shubham Verekar, Amol Pednekar, Pan-

durang Kamat, and Siddhartha Chatterjee. Performance character-

ization of hyperledger fabric. In 2018 Crypto Valley conference on

blockchain technology (CVCBT), pages 65–74. IEEE, 2018.

[110] Suporn Pongnumkul, Chaiyaphum Siripanpornchana, and Suttipong

Thajchayapong. Performance analysis of private blockchain plat-

forms in varying workloads. In 2017 26th International Conference on

Computer Communication and Networks (ICCCN), pages 1–6. IEEE,

2017.

[111] Sara Rouhani and Ralph Deters. Performance analysis of ethereum

transactions in private blockchain. In 2017 8th IEEE International

Conference on Software Engineering and Service Science (ICSESS),

pages 70–74. IEEE, 2017.

[112] J. L. Gonzalez, J. C. Perez, Vor J Sosa-Sosa, Luis M Sanchez, and

B. Bergua. Skycds: A resilient content delivery service based on diver-

sified cloud storage. Simulation Modelling Practice and Theory, 54:

64–85, 2015.

[113] Panos Vassiliadis. A survey of extract–transform–load technology.

International Journal of Data Warehousing and Mining (IJDWM), 5

(3):1–27, 2009.

Bibliography 171

[114] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Kon-

stantinos Christidis, Angelo De Caro, David Enyeart, Christopher

Ferris, Gennady Laventman, Yacov Manevich, et al. Hyperledger

fabric: a distributed operating system for permissioned blockchains.

In Proceedings of the Thirteenth EuroSys Conference, page 30. ACM,

2018.

[115] Gavin Wood et al. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum project yellow paper, 151:1–32, 2014.

[116] Jorge Luis Ortega-Arjona. Patterns for Parallel Software Design. Wiley

Publishing, 1st edition, 2010. ISBN 0470697342, 9780470697344.

[117] Deepa Pavithran, Khaled Shaalan, Jamal N Al-Karaki, and Amjad

Gawanmeh. Towards building a blockchain framework for iot. Cluster

Computing, 23:2067–2087, September 2020. URL https://doi.or

g/10.1007/s10586-020-03059-5.

[118] Peilin Zheng, Zibin Zheng, Xiapu Luo, Xiangping Chen, and Xuanzhe

Liu. A detailed and real-time performance monitoring framework

for blockchain systems. In 2018 IEEE/ACM 40th International Confer-

ence on Software Engineering: Software Engineering in Practice Track

(ICSE-SEIP), pages 134–143. IEEE, 2018.

[119] Ali Dorri, Salil S Kanhere, and Raja Jurdak. Towards an optimized

blockchain for iot. In 2017 IEEE/ACM Second International Conference

on Internet-of-Things Design and Implementation (IoTDI), pages 173–

178. IEEE, 2017.

[120] Mike Folk, Gerd Heber, Quincey Koziol, Elena Pourmal, and Dana

Robinson. An overview of the hdf5 technology suite and its appli-

cations. In Proceedings of the EDBT/ICDT 2011 workshop on array

databases, pages 36–47, 2011.

https://doi.org/10.1007/s10586-020-03059-5
https://doi.org/10.1007/s10586-020-03059-5

Bibliography 172

[121] Dmitriy Morozov and Tom Peterka. Block-parallel data analysis with

diy2. In 2016 IEEE 6th Symposium on Large Data Analysis and Visual-

ization (LDAV), pages 29–36. IEEE, 2016.

[122] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum.

A high-performance, portable implementation of the mpi message

passing interface standard. Parallel computing, 22(6):789–828, 1996.

[123] Raul Montoliu, Jan Blom, and Daniel Gatica-Perez. Discovering places

of interest in everyday life from smartphone data. Multimedia tools

and applications, 62(1):179–207, 2013.

[124] Yu Zheng, Hao Fu, Xing Xie, Wei-Ying Ma, and Quannan Li. Geolife

gps trajectory dataset-user guide, july 2011. URL: https://www. mi-

crosoft. com/en-us/research/publication/geolife-gps-trajectory-dataset-

user-guide, 2011.

[125] Wesley Mathew, Ruben Raposo, and Bruno Martins. Predicting future

locations with hidden markov models. In Proceedings of the 2012

ACM conference on ubiquitous computing, pages 911–918, 2012.

[126] Hristijan Gjoreski, Mathias Ciliberto, Francisco Javier Ordoñez

Morales, Daniel Roggen, Sami Mekki, and Stefan Valentin. A versatile

annotated dataset for multimodal locomotion analytics with mobile

devices. In Proceedings of the 15th ACM Conference on Embedded

Network Sensor Systems, pages 1–2, 2017.

[127] Zhibin Xiao, Yang Wang, Kun Fu, and Fan Wu. Identifying different

transportation modes from trajectory data using tree-based ensemble

classifiers. ISPRS International Journal of Geo-Information, 6(2):57,

2017.

[128] Sina Shaham, Ming Ding, Bo Liu, Zihuai Lin, and Jun Li. Machine

learning aided anonymization of spatiotemporal trajectory datasets.

Bibliography 173

In IEEE INFOCOM 2019-IEEE Conference on Computer Communica-

tions Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2019.

[129] Apache Kafka. Apache kafka. A distributed streaming platform (ac-

cessed May 2019). https://kafka. apache. org/intro, 2021.

[130] Hui Liu, Dan Chen, Da Chen, Xiyu Zhang, Huijie Li, Lipan Bian, Min-

glei Shu, and Yinglong Wang. A large-scale multi-label 12-lead elec-

trocardiogram database with standardized diagnostic statements.

Scientific Data, 9(1):272, 2022.

	Published and Submitted Content
	Other Publications
	Abstract
	Resumen
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem statement
	1.3 Hypothesis
	1.4 Objectives
	1.5 Contributions
	1.6 Research Methodology
	1.7 Dissertation outline

	2 Background and Related Work
	2.1 Background
	2.1.1 Workflows engines for IoT
	2.1.2 Data management in IoT workflows
	2.1.3 Blockchain technology

	2.2 Related Work
	2.2.1 Optimizations in Blockchain platforms

	2.3 Summary
	2.3.1 Limitations of Previous Work

	3 A methodology for continuous delivery/continuous verification schemes for traceable IoT dataflows
	3.1 Introduction
	3.2 Methodology for building CD/CV schemes
	3.2.1 Design of the CD/CV Global Manager
	3.2.2 Construction Manager
	3.2.3 Operation Manager

	3.3 Integration of GM-CD/CV with scientific workflows
	3.4 Periodic Contract Verification
	3.4.1 Contract verification process

	3.5 Summary

	4 Blockchain optimizations
	4.1 Introduction
	4.2 Real-time data acquisition
	4.3 Traditional blockchain implementation
	4.3.1 Hyperledger Fabric implementations

	4.4 Proposed Optimizations in Blockchain
	4.4.1 Atomic Records
	4.4.2 Changing the Transaction Block Size
	4.4.3 Artifact generation and automatic deployment
	4.4.4 High-Performance delivery
	4.4.5 Enhancing the continuous delivery component.

	4.5 Summary

	5 Experimental results
	5.1 Evaluation methodology
	5.2 Case Study 1: User Mobility
	5.2.1 Description of case study
	5.2.2 Infrastructure Hardware and Software
	5.2.3 Solutions Studied
	5.2.4 Configuration Initial CD/CV
	5.2.5 Metrics
	5.2.6 Exploratory evaluation phase
	5.2.7 Results and discussion of the studied solutions
	5.2.8 Performance comparison.
	5.2.9 Discussion

	5.3 Case Study 2: Fleet of trucks transporting food
	5.3.1 Description of case study
	5.3.2 Infrastructure Hardware and Software
	5.3.3 Solutions Studied
	5.3.4 Configuration Initial CD/CV
	5.3.5 Experimental Variation
	5.3.6 Metrics
	5.3.7 Analysis and discussion

	5.4 Case Study 3: Electrocardiogram Signals
	5.4.1 Description of case study
	5.4.2 Infrastructure Hardware and Software
	5.4.3 Solutions Studied
	5.4.4 Configuration Initial CD/CV
	5.4.5 Experimental Variation
	5.4.6 Metrics
	5.4.7 Analysis and discussion

	5.5 Summary

	6 Conclusions and future work
	6.1 Introduction
	6.2 Goals achievements
	6.3 Contributions of the thesis
	6.4 Publications and conferences
	6.5 Future research lines

	Bibliography

