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ABSTRACT  

The  engineering  lifecycle  of  cyber-physical  systems  is  becoming  more  challenging  than  ever.  Multiple  engi-

neering  disciplines  must  be  orchestrated  to  produce  both  a  virtual  and  physical  version  of  the  system.  Each 

engineering discipline makes use of their own methods and tools generating different types of work products that 

must be consistently linked together and reused throughout the lifecycle. Requirements, logical/descriptive and 

physical/analytical models,  3D designs,  test case descriptions,  product lines, ontologies, evidence argumenta-

tions, and many other work products are continuously being produced and integrated to implement the technical 

engineering and technical management processes established in standards such as the ISO/IEC/IEEE 15288:2015 

“Systems and software engineering-System life cycle processes”. Toolchains are then created as a set of collab-

orative tools to provide an executable version of the required technical processes. In this engineering environ-

ment, there is a need for technical interoperability enabling tools to easily exchange data and invoke operations 

among them under different protocols, formats, and schemas. However, this automation of tasks and lifecycle 

processes does not come free of charge. Although enterprise integration patterns, shared and standardized data 

schemas and business process management tools are being used to implement toolchains, the reality shows that 

in many cases, the integration of tools within a toolchain is implemented through point-to-point connectors or 

applying some architectural style such as a communication bus to ease data exchange and to invoke operations. 

In this context, the ability to measure the current and expected degree of interoperability becomes relevant: 1) to 

understand the implications of deining a toolchain (need of different protocols, formats, schemas and tool in-

terconnections) and 2) to measure the effort to implement the desired toolchain. To improve the management of 

the engineering lifecycle, a method is deined: 1) to measure the degree of interoperability within a technical 

engineering process implemented with a toolchain and 2) to estimate the effort to transition from an existing 

toolchain to another. A case study in the ield of digital hardware design comprising 6 different technical en-

gineering  processes  and  7  domain  engineering  tools  is  conducted  to  demonstrate  and  validate  the  proposed 

method.   

1. Introduction 

The notion of Cyber-Physical Systems (CPSs) was irst introduced in 

2006  by  the  United  States “to  represent  the  Integration  of  computation, 

networking and physical processes where CPS range from minuscule (pace 

makers) to large-scale (e.g. national power-grid)” [1]. Other authors [2] 

deine  CPSs  as “transformative  technologies  for  managing  interconnected 

systems  between  its  physical  assets  and  computational  capabilities”.  It  is 

possible to ind many examples of CPSs in domains such as Industry 4.0 

(e.g. digital factories), aerospace and defense, automotive, environment 

control,  critical  infrastructures,  or  health  care  devices  to  name  a  few 

where there is a clear need of integrating software-intensive capabilities 

with physical processes and entities. 

However,  CPSs [2] are  far  beyond  traditional  embedded  control 

systems since they pose speciic characteristics: 1) inclusion of software 

capabilities in every physical component; 2) networking at a multiple 

scale; 3) dynamic coniguration; 4) high degree of automation and 5) 

functions that must be dependable and, in many cases, certiied. In this 

context, CPSs represent a type of information and communication sys-

tems characterized by several quality indicators such as performance, 
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dependability, security, safety, large geographical distribution, and very 

large  scale  of  control.  Given  this  context,  some  research  works  [3,4] 

have  deined  some  challenges  in  the  development  lifecycle  of  CPSs. 

More speciically, bringing the principles of DevOps (Development and 

Operations and toolchains) to CPS development [5] is a cornerstone to 

improve both automation of the lifecycle processes and integration of 

tools across the design-operation time. 

The  engineering  lifecycle  of  a  CPS  includes  multiple  engineering 

disciplines  (methods  and  tools)  that  must  be  orchestrated  building 

executable  technical  processes  (e.g.  requirements  analysis  in [6]) 

through toolchains increasing the complexity of the engineering process. 

To improve the engineering process and provide a holistic view of the 

system, a digital transformation process is being conducted in the in-

dustry to shift the engineering paradigm from a document-oriented to a 

digital  asset  approach.  Automation,  modelling,  reuse,  and  simulation 

are considered the key techniques to provide a new collaborative engi-

neering environment in which processes such as veriication and vali-

dation [7] can be easily implemented, automated and reused through 

toolchains. 

In  terms  of  the  engineering  process  and  the  system  development 

lifecycle, traditional linear approaches, e.g. the Waterfall or Vee models, 

or iterative models like Concurrent Engineering have been re-designed 

to support the digitalization of the engineering (DE) process. A better 

management  of  relationships  between  original  equipment  manufac-

turers (OEM) and suppliers is also required to share (digital data pack-

age)  requirements,  descriptive  and  analytical  models,  etc.  boosting 

collaboration.  The  Digital  Thread [8] by  the  Boeing  Company  has 

introduced the concept of a diamond lifecycle, see Fig. 1, to provide a 

virtual version of the well-known Vee model linking the physical and 

virtual worlds. This new engineering lifecycle makes an intensive use of 

digital assets like models, as unit of exchange, and simulation techniques 

enabling the notion of digital twin through automation and collabora-

tive engineering [9]. 

Other initiatives to improve the system engineering process and the 

development lifecycle can be found in the Future of Systems Engineering 

Roadmap [10, pp. 2019–2020] promoted by the SERC (Systems Engi-

neering Research Center). This document establishes ive major goals to 

strategically change the engineering process: 1) “model use for decision 

making”, 2) “authoritative source of truth”, 3) “technology innovation”, 

4) “collaborative environment” and 5) “digital engineering (DE) work-

force and culture”. More speciically, Goal 2 “Authoritative Source of 

Truth” includes the need of a data integration/interoperability frame-

work, DE design process, semantic data links and digital twin innovation 

as a path to reach an augmented engineering process. 

The deinition of a strategy for DE strongly relies on technological 

support  implemented  through  different  tools  that  must  be  seamlessly 

orchestrated  (toolchain)  to  provide  new  collaborative  engineering 

environments,  see Table  1.  Furthermore,  some  key  processes  such  as 

system  traceability  or  quality  management  and,  in  general  technical 

management  processes,  may  also  require  an  integrated  view  of  the 

system under development including different types of work products 

through the access to the corresponding engineering tools. 

From  a  technical  point  of  view,  the  implementation  of  technical 

engineering processes through toolchains is basically a problem of data 

interoperability  and  process  integration.  In  the  engineering  lifecycle 

context, the  efforts  made by  the family of standards ISO  10303-STEP 

(Standard  for  the  Exchange  of  Product  Model  Data)  or  OASIS  OSLC 

(Open Services for Lifecycle Collaboration) represent the major initia-

tives to cover data exchange of multiple work products within a feder-

ated environment of services (REST-based architectural style). Emerging 

standardization  efforts  such  as  the  SysMLV2  API  (Systems  Modeling 

Application Programming Interface and Services speciications) [11, p. 

0] also follow a similar approach in which data is encoded as a model 

and  the  communication among tools  must occur  under a  set  of  REST 

services.  Although  these  approaches  are  paving  the  way  to  unify  the 

communication  and  exchange  of  data  among  tools,  there  is  no  more 

decision criteria than the use of well-recognized standards to evaluate 

which is the status of interoperability and the effort to transition from 

one technical approach to another. 

In summary, there is a need to improve the engineering practice of 

CPSs to consider: 1) the digitalization of engineering work products and 

technical engineering processes, 2) the creation of collaborative engi-

neering  environments  and  3)  the  automation  and  communication  at 

different levels of abstraction: people (e.g. engineering teams), organi-

zations (e.g. manufacturers-suppliers), engineering stages/activities and 

methods  (e.g.  requirements  engineering  and  veriication/validation) 

and tools (e.g. requirements management system and logical modelling 

tools).  In  this  context,  standardization  remains  as  a  key-enabler  to 

implement the automation of technical engineering processes through 

toolchains.  In  fact, one  of  the  means  to  reach  a  proper  level  of  auto-

mation and communication within the development lifecycle relies on 

providing  different  levels  of  toolchain  interoperability  enabling  the 

communication and exchange of data, information and knowledge be-

tween  people,  organizations,  and  tools. Table  1 shows  examples  of 

building  toolchains  to  implement  different  scenarios  that  require  the 

collaboration of domain engineering tools and different actors. 

However,  the  implementation  of  interoperable  engineering  envi-

ronments with toolchains does not come free of charge. It requires an 

effort to agree which parts must be interoperable and how this inter-

operability  can  be  achieved  from  a  technical  and  technological 

perspective,  see Section  2.1.  Most  of  the  interoperability  evaluation 

models  that  have  been  deined,  see Section  2.2,  are  focused  on  the 

overall capacity of an organization. These models can be used to eval-

uate what is the current and target status of a software environment in 

terms  of  interoperability.  However,  they  do  not  explicitly  deine  a 

method to calculate the effort to transition from one level to another. 

Therefore, the implementation of interoperability mechanisms cannot 

be completely measured and estimated within an organization or engi-

neering team. 

That is why, in this paper, authors review existing interoperability 

evaluation  models  making  an  evaluation  of  their  applicability  to  the 

context  of  system  lifecycle  and  toolchains.  Afterwards,  an  evaluation 

and  estimation  of  effort  method  for  interoperability  is  theoretically 

deined. To verify the applicability of the proposed method, a case study 

in the frame of the H2020-AHTOOLs (Arrowhead Tools for Engineering 

of Digitalization  Solutions) project and  the Use Case  3 (UC-3) is con-

ducted to demonstrate its applicability to a real toolchain environment 

to  design  digital  hardware.  Finally,  some  conclusions  and  future 

research directions are also outlined. 

2. State of the art 

According  to  the  ISO/IEC  2382-15-“ Information  technology — 
Fig. 1.Evolution of the Vee model lifecycle and notion of “Digital Thread” by 

the Boeing Company [8]. 
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Vocabulary”, interoperability can be deined as follows: "The capability to 

communicate, execute programs, or transfer data among various functional 

units in a manner that requires the user to have little or no knowledge of the 

unique characteristics of those units." In this work, we take this deinition 

as a reference for the required technical interoperability within a tool-

chain to implement executable technical engineering processes. 

2.1. Interoperability within the systems engineering process 

In the frame of cyber-physical systems lifecycle development, the use 

of  architectural  frameworks,  standardized  languages,  common  data 

models  and  communication  protocols  are  common  practices  to  enable 

technical  interoperability  in  both  sides:  development  and  operation. 

Model-based Systems Engineering (MBSE) [12] has emerged as a complete 

methodology to address the challenge of unifying the techniques, methods 

and  tools  within  the  development  lifecycle.  This  means  a “formalized 

application of modelling” to support the left-hand side in the Vee lifecycle 

model  and  the  upper-side  section  of  the  diamond  model,  see Fig.  1, 

implying that any process, task, or activity will generate different system 

artifacts but all of them represented as a model. 

The  MBSE  approach  is  considered  a  cornerstone [13] for  the 

improvement  of  the  current  practice  in  the  Systems  Engineering 

Table 1 

Use case scenarios combining different Technical Engineering processes, methods (tools) and actors.  
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discipline since it is expected to cover multiple domains [14], to provide 
better results in terms of quality and productivity, lower risks and, in 
general, to support the concept of continuous and collaborative engi-
neering. However, the MBSE approach considers that everything can be 
a model, e.g. a logical/descriptive SysML (System Modelling Language) 
model or a physical/analytical model, and this assumption is not always 
true in the development of a cyber-physical system. For instance, re-
quirements are still specified as text statements, test cases description 
are usually defined using a restricted natural language and, in general, 
any piece of information that must be shared should also have a verbal 
representation since not everyone in an engineering team may under-
stand or have the same interpretation of a model. Furthermore, the mere 
use of models as first-class members of the engineering process does not 
guarantee process automation and interoperability within the toolchain, 
it only unifies what is the type of artifact to be exchanged. 

Technical interoperability initiatives for cyber-physical systems 
development such as the family of standards ISO 10303-STEP (Standard 
for the Exchange of Product Model Data) or the OASIS OSLC (Open 
Services for Lifecycle Collaboration) specifications, try to boost the 
implementation of technical engineering processes through an interop-
erable approach [15,16], easing the creation of federated environments 
of services (tools). Both define a collaborative engineering ecosystem 
through the definition of data shapes or schemes that serve us as a 
contract to get access to information resources. The Representational 
State Transfer (REST) software architecture style is used in both to 
manage information resources that are publicly represented and 
exchanged in different formats such as JSON or XML. Last version of the 
SysMLV2 API (Systems Modeling Application Programming Interface 
and Services specifications) [11, p. 0] is also following a similar 
approach, defining a REST API to consume SysML models. 

All these efforts to improve the technical interoperability within the 
Systems Engineering process have been focused on providing technical 
solutions through different approaches like architectural frameworks, 
service-oriented computing [17] (e.g. OSLC-based toolchain [18]), 
unified data models, ontologies [19] and communication protocols or 
integration patterns [20]. However, the focus is mainly on the imple-
mentation of the different technical approaches (e.g. use of services, 
common data models, etc.). Although some technical tasks such as the 
automatic generation of service providers and clients can be automated 
to bring tools into a toolchain, the evaluation of interoperability and the 
estimation of effort to transition from one level of interoperability to 
another is not covered. 

2.2. Interoperability evaluation models 

According to the systematic review in [21] conducted in the frame of 
European research project FP7 ENSEMBLE, there are many types of 
interoperability evaluation or capability models that may change 
depending on their philosophy and implementation. Following, a sum-
mary of the main interoperability models is presented: 

The LISI (“Levels of Information Systems Interoperability”) model 
[22] was first developed by the US Department of Defense in 1988. This 
model provides a standard process for evaluating the interoperability of 
information systems. The LISI capabilities model comprises: 

1) Five levels of interoperability maturity: 0-Isolated (manual integra-
tion of data and information), 1-Connected (peer-to-peer, basic ex-
change of data and information), 2-Functional (distributed, shared 
logical data models across systems), 3-Domain (integrated, shared 
domain data models across systems) and 4-Enterprise (universal: 
unified domain models and interpretation across systems) and  

2) Four technical interoperability attributes (PAID), the key-enablers to 
reach a maturity level and to enable data/information exchange: 
Procedures (policies, standards, and procedures), Applications (set of 
applications for exchanging, processing and manipulation of data 

and information), Infrastructure (environment: networks, security, 
etc.) and Data (formats, protocols, or databases). 

A LISI assessment process commonly follows the next stages: 1) fill a 
LISI questionnaire, 2) establish a system profile to assess the current 
interoperability level and the PAID attributes, 3) create a score card of 
the systems to assess the interoperability maturity, 4) establish a strat-
egy for the improvement of the interoperability usually based on expert 
judgement and 5) apply the strategy to progress in the maturity level. In 
general, the LISI model offers us a method and a process to evaluate both 
the organizational and technical interoperability. This model can be 
used to measure the interoperability level before and after the imple-
mentation of interoperability mechanisms. Thus, it is possible to have a 
picture of the status for a toolchain environment and its evolution. There 
is also a review called “the Extended LISI model” that includes more 
abstract layers for command-and-control support. However, it does not 
include any mechanism to estimate the effort to transition from one level 
to another and it is hard to apply the model to a concrete environment 
like a toolchain (network of connections). 

The LCIM (“Levels of Conceptual Interoperability Model”) [23] 
emerged to provide a conceptual interoperability model beyond pure 
technical models like the LISI model with special focus on simulation 
connection problems [24]. It has also been applied to other domains like 
healthcare [25]. The LCIM model also establishes different levels of 
interoperability: 0-Stand-alone (no systems interoperability), 1-Technical 
interoperability (communication networks and protocols are established 
enabling data exchange), 2-Syntactic interoperability (a common data 
format is used to represent data and information), 3-Semantic interop-
erability (a common information schema is used to model data and in-
formation), 4-Pragmatic interoperability (interoperating systems are able 
to understand methods and operations using a common information 
schema), 5-Dynamic interoperability (systems are able to adapt their 
behavior to the changes in the environment, e.g. data model or opera-
tion definitions) and 6-Conceptual interoperability (conceptual models 
and methods are documented and specified under a common knowledge 
framework). As in the LISI model, the LCIM model provides us with an 
excellent tool to establish a level of interoperability but the estimation of 
effort to transition from one level to another is not completely defined. 

The EIMM (“Enterprise Interoperability Maturity Model”) [26] was 
created in the frame of the European research project ATHENA 
(“Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications”) with the aim of providing a 
methodology, guidelines, and a reference architecture to enable 
cross-organizational collaboration and integration through interopera-
bility mechanisms. They defined different interoperability profiles for 
the following domains: collaborative product development, networked 
collaborative product development, electronic procurement, and prod-
uct portfolio management. Furthermore, they also established five levels 
of interoperability: 0-Performed (ad-hoc collaboration and integration), 
1-Modelled (collaboration and integration is done in the same manner 
each time but not automated), 2-Integrated (the collaboration process is 
formally defined and documented), 3-Interoperable (enterprise models 
and process are dynamically adapted to new changes) and 4-Optimizing 
(interoperability is continuously measured and improved through the 
application of new technologies and frameworks). 

The OIM (Organizational Interoperability Maturity model) repre-
sents another attempt mainly addressing organizational/business needs. 
It is focused on assessing the quality of interconnection of systems within 
the same organization. Likewise the LISI model, it does not offer us 
neither an estimation of the effort nor the specification of the technical 
details to improve or reach another level of interoperability. That is why 
it should be complemented with other type of model, e.g., the LISI 
model. In regard to the description of the defined levels, five different 
levels can be found: 0-Independent (manual integration of data and in-
formation), 1-Ad-hoc (some guidelines or frameworks to enable inter-
operability are envisioned), 2-Collaborative (guidelines and frameworks 
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are in place with a clear distinction of roles and responsibilities enabling 
cross-organizational interoperability), 3-Integrated (a common under-
standing of goals and business services) and 4-Unified (interoperability is 
properly deployed enabling exchange across organizations). 

The Interoperability assessment methodology [27] was also devel-
oped after the LISI model in the context of military services. It includes 
nine components that are either a “yes/no” response and a mathematical 
equation. Leite further defined “degrees of interconnection” which 
included the availability, connectivity, understanding, interpretation, 
utility, feedback, and execution.” [21]. 

The layered interoperability score (i-Score) [28] is a method to 
measure interoperability of any type. It is used in the operational process 
context, and it is based on assessing the current data architecture. The 
Service Measurement Index [29] also includes a metric for cloud service 
providers in terms of interoperability. Others based on the review in 
[30] such as the government interoperability maturity matrix, the 
business interoperability quotient measurement model [31], represent 
other efforts to measure interoperability in different contexts such as 
quality of service in service oriented architectures. 

Other interoperability maturity models and reference architectures 
include the “NATO C3 Technical Architecture Reference Model for 
Interoperability”, the ISO 11354-1:2011 “Advanced automation tech-
nologies and their applications. Part 1: Framework for enterprise 
interoperability” or the “European Interoperability Framework”. These 
attempts collect similar characteristics to the previous models but ori-
ented to different domains like defense, manufacturing or public ser-
vices [32]. 

As interoperability definitions have been adapted to different do-
mains and by several institutions, it is also possible to find recent re-
views on interoperability assessment models [33]. In this work, authors 
conducted a systematic review to monitor and analyze a total of 38 INAS 
(Interoperability Assessment) models with the main objective of classi-
fying the type of assessment, metrics, and interoperability barriers. They 
compared 22 assessment models, only those providing real case studies 
or illustrative examples. One of the main conclusions is that metrics are 
mainly qualitative (subjective) or those that are quantitative are merely 
a ratio (real/expected). In [34] the same authors defined the re-
quirements for an enterprise interoperability assessment method while 
in [35] authors defined an ontology of automate the assessment of 
interoperability (process and metrics). In [36] authors also review the 
status of companies to support the development of cyber-physical sys-
tems (CPS) focusing mainly in the operational aspects of such systems 
and reaching as main conclusion that general interoperability frame-
works do not cover all the needs of CPS development and operation. In 
[37] authors review the Federated Interoperability Framework (FIF) for 
the aerospace and defense sector to check how it has evolved in the last 
20 years and how it can be customized for Product Lifecycle Manage-
ment (PLM) interoperability. Although the main -ilities of a system are 
considered, they state that supporting virtual manufacturing will play a 
critical role in the PLM of the future. 

In the context of this work and considering a toolchain as a set of 
orchestrated tools (services), the service-oriented architecture (SOA) 
assessment methods may be also relevant. In [38] authors proposed a 
method to evaluate the feasibility of a SOA architecture based on eval-
uating a set of requirements (functional and non-functional) in some 
qualitative scale. This type of approach is similar to others in that time 
like the Service Measurement Index (discontinued) but used in some 
previous works to evaluate cloud-based CRM (Customer Relationship 
Management) solutions [39]. In [40] authors make a systematic review 
of SOA maturity models (SOAMMs) in which interoperability is 
considered as another organizational and technical dimension. In [41] 
authors present the MeFSOAR framework based on Welke’s SOA 
maturity model [42] with the aim of providing knowledge to developers 
in the adoption of SOA architectures. More interestingly, authors present 
in [43] a SOA architecture of Industry 4.0 and small companies 
collaboration considering the building blocks of an architecture to 

communicate tools in the industry. In many of these works, the concept 
of interoperability is mainly considered and evaluated as a 
non-functional requirement with a qualitative scale. 

As a summary, some of the original maturity/capability models, see 
Table 2, have been largely studied, defined, reviewed [5,21], and 
extended to cover both dimensions: technical and organizational and to 
measure the level of interoperability within an organization or a busi-
ness according to some scale. Starting from the LISI model, every defined 
model describes a set of categories (levels) to express and define the 
interoperability capabilities. In some of them, a set of guidelines and a 
description of the technical details to reach a new level of interopera-
bility are also defined. In terms of evaluating the interoperability of a 
toolchain, it is possible to reuse concepts of both types, although the LISI 
and LCIM models fit better to the purpose of tool connection evaluation. 
However, these models do not reflect how to evolve from one level to 
another (apart from checklists). More recent studies considering the 
architectural style or different domains still follow a similar approach: 
interoperability as a major non-functional requirement that is evaluated 
on a qualitative scale at a high-level of abstraction. 

2.3. Effort estimation models for software-based systems 

In the previous section, a brief review of the interoperability capa-
bility models was presented. The ability of providing a toolchain within 
the Systems Engineering process as a set of interoperable services can be 
seen as a composed/orchestrated software system that should be esti-
mated following a software effort estimation model. 

Effort estimation models for software systems can be classified into 
three main categories: empirical, heuristic, and analytical. Models [44] 
like COCOMO, SLIM or Function Points have been historically applied to 
this end apart from others based on expert-judgement or analogy (expert 
opinion and experience). However, most of these models [45] generally 
fail to express the underlying complexity of building software unless 
formal methods and tools are used to generate the software code. 

The development methodology also plays a key role in the estimation 
of effort. In the case of Agile methodologies, authors in [46] conducted a 
systematic review surveying 25 practitioners and extracting as conclu-
sions that planning poker, expert judgement, use case points and story 
points are the main subjective estimation techniques while the “Mean 

Table 2 
Summary of the main Interoperability Maturity Models.  

Interoperability 
maturity model 

Scope Levels Attributes/ 
dimensions 
(technical 
aspects) 

Effort 
estimation 
method 

LISI Technical 0-Isolated 
1-Connected 
2-Functional 
3-Domain 
4-Enterprise 

Yes, PAID 
attributes 

Not covered 

LCIM Technical 0-No 
interoperability 
1-Technical 
2-Syntactical 
3-Semantic 
4-Pragmatic 
5-Dynamic 
6-Conceptual 

Yes, as an 
extension of 
the LISI model 

Not covered 

EIMM Technical 0-Performed 
1-Modelled 
2-Integrated 
3-Interoperable 
4-Optimizing 

Yes, a 
reference 
architecture 
based on 
services 

Not covered 

OIM Business 0-Independent 
1-Ad-hoc 
2-Collaborative 
3-Integrated 
4 Unified 

Not covered Not covered  
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magnitude of relative error” MMRE metric is used to validate the esti-
mation. Team skills and development experience remain a critical aspect 
to define a proper task size and get an accurate estimation. In [47], 
authors also conducted a systematic review and a survey to 53 practi-
tioners in 7 different countries. They included different estimation 
techniques such as bucket system, dot voting, expert judgement, plan-
ning poker, team estimation game, swimlane sizing, use case points and 
story points. As main conclusions, story points are being used to mainly 
estimate of the entire effort necessary to develop the software system 
while more than 90% of the respondents were using planning poker and 
expert judgement as the most common estimation techniques (only one 
was using COCOMO). Regarding methods for effort estimation, in [48] 
authors propose a differential evolution algorithms to improve the 
adjust the parameters of models like COCOMO and COCOMO II. They 
validated the approach with two datasets from the Promise repository 
and using as a cost function the MMRE metric. In [49] authors propose 
an extension to the COCOMO model including cost drivers and other 
metrics to update the base model equation. Again, they validated the 
approach based on expert judgement and the MRRE metric. 

In general, the conclusions about software estimation remain the 
same: “no single technique is best for all situations” [50] and, other factors 
like organizational (development methodology), experience or appli-
cation type (e.g. web or mobile) are being considered as critical aspects 
to provide an accurate estimation of software development efforts. In 
fact, this is a research area in which effort can be estimated when using 
automated engineering techniques, but the estimation of human 
developed software is still open and subjected to variables such as 
experience (organizational and team), expert judgement, technology 
and application domain. 

In the case of interoperability, the situation is like general software 
development. Some models can be found [51,52] to estimate the effort 
of implementing automated techniques (e.g. Model-Driven Develop-
ment). Others are domain-specific, e.g. buildings and construction [53], 
have conducted surveys to know what is the cost of no interoperability 
[54] mainly for the stages of operation and maintenance. 

Overall, the estimation of software development costs is not an easy 
task. There are different types of models but “no one size fits all” and 
specific considerations must be added to provide an accurate estimation. 
In the context of interoperability effort estimation, some studies can be 
found but focusing on the operation and maintenance of systems. 
However, it is not clear how to tailor an existing estimation model to 
calculate the effort of implementing interoperability mechanisms within 
a toolchain for Systems Engineering. A hybrid method considering 
expert judgement as well as a weighted set of parameters seems a 
feasible approach to estimate the effort of interoperability imple-
mentation within a toolchain. On the other hand, some of the existing 
parametric models are based on the analysis of previous projects and 
more subjective methods like Function Points seems to not fully consider 
the intrinsic complexity of a toolchain (many dependencies between 
tools in a non-linear way). Since the implementation of toolchain 
interoperability is not so common as other types of software, a method 
based on combining parameters established and scaled by the expert 
judgment is considered a feasible approach. 

3. Definition of a method to evaluate and measure toolchain 
interoperability 

3.1. Interoperability evaluation method 

To establish a method to evaluate the interoperability within a 
toolchain, the next definitions must be considered:  

• A toolchain, T, is a set of software applications used to implement a 
technical process (e.g. verification) within the system development 
lifecycle. The set of software tools are usually executed in a linear 
manner, being the result of some tool the input of the following one. 

However, as it has been already stated [55], the design and execution 
of a toolchain is not always linear and, in most of cases, it creates a 
network of interconnections among tools, as an example Table 1 
includes examples of different use case scenarios. It is important to 
remark that not all tools require bi-directional communication with 
all other tools. In the scope of this work, tools may only need to 
access artifact content, but other operations/methods offered 
through an interface are not considered.  

• Each tool, ti, is a software application designed to perform some 
specific tasks within the development lifecycle. A tool ti manages and 
produces a kind of work product (e.g. requirements, test cases, 
logical models, physical models, source code, etc.) that may be used 
by another tool tj.  

• The definition, configuration, and integration of tools within a 
toolchain can be done manually or automatically within an ALM 
(Application Lifecycle Management) or PLM (Product Lifecycle 
Management). More specifically, the tool integration strategy can 
follow different enterprise application integration patterns such as 
an integration bus, a common database, a plugin architecture, or a 
queue of messages. The integration usually covers the communica-
tion level, but the syntax and semantics of message payloads must be 
implemented in each tool. 

Given these initial definitions, an interoperability evaluation method 
for a toolchain in the context of cyber-physical systems development can 
be defined as follows:  

• A toolchain interoperability evaluation method establishes the 
required (input/output) connections between the different tools 
providing a quantitative value of interoperability at different levels 
of abstraction, see Table 3. 

Building on these levels of interoperability, an interoperability 
evaluation method creates an implicit matrix, M, see Table 4, estab-
lishing two values, vij and vji, for each pair of tools ti and tj. where vij and 
vji are not necessarily the same, vij, refers to connectivity from the tool ti 
to the tool tj, while vji, expresses the connectivity from tj to the tool ti. 
Interpreting the values on this matrix, it is possible to extract two main 
aggregated values.  

• The full interoperability value of a toolchain T is equals to 3*n2, 
being n the number of tools within the toolchain.  

• The current interoperability value of a toolchain T is equals to the 
sum of elements within the matrix 

∑ ∑
vij 

As consequence of this evaluation, the current level of technical 
interoperability within a toolchain can be calculated and compared to a 
target value providing a method to establish the degree of 
interoperability. 

Table 3 
Interpretation of the levels of technical interoperability based on the LCIM 
model.  

Level Value Description 

No exchange 0 There is no need of interoperability between the pair of 
tools (ti, tj). 

Communication 1 There is a need of interoperability between the pair of 
tools (ti, tj) and, ti and tj share the same communication 
protocol. 

Syntax 2 There is a need of interoperability between the pair of 
tools (ti, tj) and, ti and tj share the same data format. 

Semantics 3 There is a need of interoperability between the pair of 
tools (ti, tj) and, ti and tj share the same meta-model.  
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3.2. Interoperability evolution: an effort estimation method 

On the other hand, the mere calculation of a degree of interopera-
bility only offers a picture of the current situation and, potentially, a 
target objective. However, the transition from one degree of interoper-
ability to another may require an estimation of the implementation 
efforts. 

As in other effort estimation software models, see Section 2.3, three 
different techniques can be used: empirical, heuristic, and analytical. In 
this case and with the aim of providing a practical method to estimate 
the effort of implementing an interoperability mechanism, an analytical 
technique considering both analogy/expert judgement and some pa-
rameters is defined. This effort estimation function is based on three 
main aspects: the existence of standards, libraries, and the development 
experience. Furthermore, it is also necessary to estimate which is the 
effort of implementing a new communication protocol or a new data and 
schema processor. 

There is always a baseline effort, be, due to tasks related to config-
uration and integration. Furthermore, as Table 5 shows, there is a spe-
cific effort e, associated with the real implementation. This effort e 
depends on some scale factor associated with the type of implementation 
and the method to produce software, the expert judgement and expe-
rience strongly affects this factor. In the case of interoperability, three 
basic types of implementations and efforts are defined:  

1 Implementation using an existing library based on standards with a 
scale factor ki.  

2 Implementation using an existing library not based on standards with 
a scale factor of kj.  

3 A new customized implementation with a scale factor of kl. 

The scale factor is expressed through a value km and it may depend 
on different factors such as organizational, human and technological 
aspects among others. In order to establish these values of km, a 
sequence of ascending numbers K = {k1,…,ki, kj, kl,…, kn} can be used 
following some type of progression (e.g. linear, geometric, exponential, 
etc.). 

For instance, assuming the be is 1 person/month (PM), e is 2 person/ 
month (PM) and K = {1, 2, 4} (based on our experience developing tool 
connectors), the effort of developing an interoperable mechanism based 
on a standard library would be 3 PM, if there is no standard behind 5 
PMs and, finally, if everything must be implemented from scratch, the 
estimated effort would be 9 PMs. 

3.3. Example of application 

To illustrate the presented approach, let’s consider a toolchain, T, 
comprising 3 services (t1, t2 and t3) with the following description:  

• t1 uses as communication protocol a standard protocol (p1, HTTP) 
generating a work product (wp1, “requirement”) under the format 
(f1, XML) and standard (s1, ReqIF).  

• t2 uses as communication protocol a standard protocol (p1, HTTP) 
generating a work product (wp2, “logical model”) under the format 
(f1, XML) and standard (s2, SysML). The tool t2 already has an 
implementation to connect to t1 at a syntax level (communication 
through HTTP and XML as data format) which implies that (t2, t1) =
2 in Table 6.  

• t3 uses as communication protocol a standard protocol (p2, FTP) 
generating a work product (wp3, “physical model”) under the format 
(f2, JSON) without any concrete semantics. 

Furthermore, the target toolchain environment requires the 
following connections:  

• Tool t1 must be able to consume the information generated by tool t3 
at a semantic level: (t1, t3) = 3. The implementation requires then 
access to the tool through a new protocol (p2), processing data 
through a new data format (f2) and understanding data through a 
new schema (native).  

• Tool t2 must be able to consume the information generated by t1 and 
t3 at a semantic level: (t2, t1) = 3 and (t2, t3) = 3.  

• Tool t3, must also be able to semantically consume the information 
generated by t1: (t3, t1) = 3. 

Given this setting, the current degree of interoperability is calculated 
in Table 6, there is a need to increase this degree to interoperability to 
reach a target interoperability level as presented in Table 7. 

According to Table 8 and following the proposed method, the total 
estimated effort can be calculated as follows: 6*(be+k1e) + (be + k3e). 
More specifically, each pair (ti, tj) represents an estimated imple-
mentation effort:  

• 0 (-) if no implementation is required  
• be + k1e: if there is an existing library based on standards.  
• be + k3e: if it is a new customized implementation. 

4. Case study: a toolchain for digital hardware design 

4.1. Context 

The H2020-AHTOOLs project aims for “digitalisation and automation 
solutions for the European industry, which will close the gaps that hinder the 
IT/OT integration by introducing new technologies in an open source plat-
form for the design and run-time engineering of IoT and System of Systems. 
The project will provide engineering processes, integration platform, tools and 
tool chains for the cost-efficient development of digitalisation, connectivity 
and automation system solutions in various fields of application.” 

The core element of the project is the Arrowhead framework, pre-
viously implemented in other research projects and now part of the 
Eclipse ecosystem. From a conceptual perspective, the framework pro-
vides a complete platform of cross-cutting aspects like security or 
interoperability [56] to orchestrate services for different purposes under 
a bus integration pattern. Initially, the framework was focused on 
providing an execution platform for IoT applications [57,58] comprising 
sensors and software services. However, the H2020-AHTOOLs project 
focuses on applying and extending the platform to support the 

Table 4 
Evaluation of interoperability levels between tools within a toolchain.  

Tool t0 … ti … tj … tn 

t0 0  v0i  v0j  v0n 

…  0      
ti vi0  0  vij  vin 

…    0    
tj vj0  vji  0  vjn 

…      0  
tn vnj  vni  vnj  0  

Table 5 
Effort estimation depending on the type of implementation.  

Type Library and 
standard 

Existing library but no 
standard 

Custom 
implementation 

Effort be + k1e be + k2e be + k3e  

Table 6 
Example of an initial interoperability evaluation (value 2).  

Tool t1 t2 t3 

t1 – – – 
t2 2 – – 
t3 – – –  
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engineering phase of cyber-physical systems unifying the communica-

tion  layer  to  orchestrate  different  tools  within  a  toolchain.  In  this 

context, the Use Case-3 (UC-3) “Integration of electronic design auto-

mation tools with product lifecycle tools” has been proposed to make use 

of  the  Arrowhead  framework  supporting  the  engineering  process  of 

digital hardware. 

More speciically, the UC-3 aims at providing means for improving 

the reuse of physical hardware models covering the abstraction, selec-

tion, representation, and customization of system artifacts for the whole 

development lifecycle. The reuse of any system artifact goes beyond the 

mere discovery of a potential reuse, and it must focus on evaluating what 

and  how  a  system  artifact  can  be  reused  (requirements,  analytical 

models, descriptive models, test cases, etc.). To do so, quality also plays 

a role since it is assumed that high-quality system artifacts may help to 

improve the reusability factor of a system artifact. Furthermore, in this 

use case, there is another major objective focusing on the improvement 

of traceability to be able to automatically keep traces [59] from the very 

early stage of development to the inal release of a complex product. 

Both  functions,  system  reuse  and  traceability,  require  access  to 

different  tools and  artifacts  to build  an  engineering  knowledge graph 

that can be exploited to provide suggestions of traces or a set of artifacts 

to  be  reused.  In  other  terms,  from  an  architectural  perspective,  the 

implementation  of  the  use  case  is  based  on  the  creation  of  a  shared 

database  in  which  any  artifact  is  represented  under  the  same  data 

schema. Besides, there are two functions (reuse and trace) implemented 

on top of this database and results of these functions are populated in 

different tools, e.g. traces in the logical modelling tool or linked artifacts 

in the hardware design tool. 

To  do  so  and  based  on  previous  experiences  [60,61],  connectors 

between different tools may at least represent any artifact of the tool-

chain  in  this  common  database.  As  a  common  data  schema,  the  SRL 

(System Representation Language) [16] is used and implemented within 

the  CAKE  (“Computer  Aided  Knowledge  Environment”)  library  (core 

component of the KnowledgeManager, Traceability Studio and Verii-

cation Studio tools). 

Fig.  8 shows  the  process  of  accessing,  representing,  and  indexing 

data coming from different tools and artifacts. The reuse and traceability 

functions  are  then  implemented  on  top  of  the “Systems  Assets  Store” 

providing input for other tools under a speciic data format. 

The implementation of this use case [60,61], considers three types of 

partners: 1) academic (the Carlos III University of Madrid), to deine the 

methodology  and  help  in  the  implementation  of  the  interoperability 

mechanisms, 2) a tool vendor (The Reuse Company, a software company 

with more than 20 years of experience providing engineering solutions), 

to implement the connectors and to provide the reuse and trace func-

tions and 3) an end-user (ULMA Embedded Solutions, a hardware design 

company),  to  validate  the  solution  of  the  provided  artifacts.  In  this 

research work, we look for providing and showing the designed method 

to estimate the effort of this implementation based on the experience of 

the technology provider in the development of interoperable connectors. 

We evaluate the approach from the perspective of implementation ef-

forts, but we do not include end-user validation. 

The  speciic  engineering  process  of  this  use  case  covers  different 

technical engineering processes and engineering methods (supported by 

different techniques and tools) creating the next toolchain (following the 

standard ISO 15288:2015 “Systems and software engineering — System 

Table 7 

Example of a target interoperability evaluation (value 12).  

Tool t1 t2 t3 

t1 – – 3 

t2 3 – 3 

t3 3 – 0  

Table 8 

Example of implementation effort.  

Tool/Element p1 p2 f1 f2 s1 s2 s3 

(HTTP) (FTP) (XML) (JSON) (ReqIF) (SysML) (Native) 

t1 – be +k1e 0 be +k1e – – be +k3e 

t2 – – – – be +k1e – – 

t3 be +k1e 0- be +k1e 0 be +k1e – –  

Fig. 8.Access and representation of data to provide reuse and traceability capabilities within the UC-3.  

Table 9 

Engineering process, methods, techniques and tools for the UC-3.  

Technical 

engineering process 

Engineering 

method 

Techniques  Tools 

System 

Requirements 

Deinition 

Requirements 

Engineering 

Text-based 

requirements 

IBM Doors, 

Requirements 

Authoring Tool 

(RAT) 

Architecture 

Deinition 

Logical 

modelling 

Diagramming 

with SysML/UML 

IBM Rhapsody 

Design deinition  Physical 

modeling 

Diagramming  Altium designer 

Implementation  Simulation  Programming, 

simulation 

coniguration 

Altium designer 

Veriication & 

Validation 

(Measurement 

process) 

Quality 

management 

Quality metrics  Veriication Studio 

(VS) 

Information 

Management 

Knowledge 

engineering 

Ontologies  Knowledge 

Manager (KM) 

Information 

Management 

Knowledge 

management 

Traceability 

discovery 

Knowledge 

Manager  
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life cycle processes”) (Table 9): 
Fig. 2 shows the interconnection of these engineering processes as 

established in Table 10. As it has been introduced, the engineering 
process of a complex product should follow a liner approach (no feed-
back between processes and predefined inputs and outputs) (Figs. 3–7). 
However, a realistic toolchain comprises the interaction of different 
disciplines, people and tools creating an underlying graph of connec-
tions (Fig. 9). 

In general, there are three tool providers: IBM, The Reuse Company 
and Altium. Most of them provide standardized ways of accessing (files 
and services) and consuming work products data and operations. 
However, the interpretation of standards (such as SysML or ReqIf) may 
differ from one tool to another and, in most of cases, the tools also 
manage more relevant information that is not exposed being critical for 
processes such as traceability or quality management. 

In this context, it is possible to first define interoperability charac-
teristics of the tools to then make a brief evaluation of the required in-
tegrations. To do so, the following table summarizes the data model and 
the access/communication models. 

To reach the two major objectives of this use case (traceability 
management and reuse), the following integrations must be done (see 
Table 11) where x: represents a connector or integration that already 
exists but it is not based in standards in both senses (communication and 
data model) and R a new standard-based connector is required to 
properly implement the use case. 

4.2. Description and challenges 

Building on the previous context, some research questions emerge:  

1 What is the degree of interoperability of the current toolchain?  
2 What is the degree of interoperability of the target toolchain?  
3 Can we estimate the effort of transitioning from the current to the target 

toolchain?  
4 What is the role and the gain of using the Arrowhead framework? 

Applying the defined evaluation model, the first step is to establish 
the communication protocols, formats, and data models to be used by 
each tool.  

• IBM Doors: file, XML, ReqIF metamodel.  
• IBM Rhapsody: file, XML, SysML v1 metamodel. 
• RAT: HTTP, JSON, SRL (“System Representation Language”) meta-

model [59,15].  
• VS: HTTP, JSON, SRL metamodel.  
• KM: HTTP, JSON, SRL metamodel.  
• Altium designer: file, XML, native metamodel. 

According to these dependencies, Table 12 shows the initial inter-
operability evaluation. The degree of interoperability has a value of 18. 
More specifically, there is a value of 3 between IBM Rhapsody and IBM 
Doors since there is already a connection that allows us to exchange and 
interpret requirements in IBM Rhapsody. In the same manner, RAT can 
access, interpret, and write requirements in IBM Doors while VS can also 
access, interpret requirements and write back quality checking values. 
On the other hand, other connections between tools are set to 0 (-) since 
no connection exists between tools or it is not required for this use case. 

In the same manner, the target toolchain environment will have to 
accomplish integrations to consume and produce system artifacts 
generated in the different engineering methods and tools. The degree of 
interoperability of this target environment will have a value of 33. More 
specifically, the effort is focused on consuming information from Altium 
in IBM Rhapsody, VS and KM. In the same manner, Altium shall be able 
to consume the information generated in IBM Doors, VS and KM. 

These two evaluations (initial and target) help us to understand 
which is the degree of interoperability of both environments providing 
information for tool vendors and engineering management processes (e. 
g. systems engineers). 

4.3. Results and evaluation 

Table 14 presents an estimation of the effort depending on the type of 
implementation required, see Table 4, at the three levels of technical 
interoperability (communication, syntax and semantics). 

In the case of IBM Rhapsody, there are implementations of all 
required protocols and data formats but an implementation to under-
stand the Altium metamodel is required. RAT and VS already connect to 
IBM Doors but some implementation is necessary to process ReqIF (a 
XML serialization of requirements). VS and KM also need to understand 
the Altium native metamodel and, in particular, KM requires the un-
derstanding of the SysML metamodel. The results produced by the 
different tools must be interpreted and displayed in Altium, so a 
connector to SRL is required. In conclusion, the effort relies on pro-
cessing a data format (XML or JSON) and understanding the underlying 
metamodels: SysML, SRL, ReqIF or the Altium native metamodel. 

According to Table 14, the total estimated effort can be calculated as 
follows: 5*(be+k1e) + 1*(be + k2e) + 3*(be + k3e) = 9be + 5k1e + k2e +
3k3e. 

As in the initial example, if we assume and assign the next values to 
the be = 1PM, e = 2PM and K = {1, 2, 4}, the total effort of increasing the 
degree of interoperability would be: (9 × 1)+(5 × 1*2)+(2 × 2)+(3 ×
4*2) = 47 PMs that is bit higher but more analytical and accurate that 
the initial estimation (48 PMs) of the main technological partners 
(Carlos III University of Madrid and The Reuse Company) in this use 
case. 

Given these results, the proposed method to evaluate the toolchain 
interoperability provides us with a technique to understand and esti-
mate the effort of transitioning from one toolchain environment to 
another. It is also possible to establish the current and target degrees of 
interoperability, see Tables 12 and 13. Furthermore, this method can 
also provide us with insights on the effort of implementing an interop-
erable toolchain, see Table 14. 

Table 10 
Tool and system artifacts description for the UC-3.  

Tool System artifact Data model Access/ 
Communication 
model 

IBM Doors Requirement Native 
ReqIF 
OSLC RM 

Native API 
Native database 
File 

IBM Rhapsody Logical models Native 
SysML/UML 

Native API 
Native database 
File 

RAT Requirement Native 
OSLC RM 
(Requirements 
Management) 
ReqIF 

Native API 
WSDL-based 
Service 
OSLC/Rest Service 
File 

Verification 
Studio 

Quality metric Native 
OSLC KM [16] 

Native API 
WSDL-based 
Service 
OSLC/Rest Service 
File 

KM (through 
Traceability 
Studio) 

Trace Native 
OSLC KM 

Native API 
WSDL-based 
Service 
OSLC/Rest Service 
File 

KM Ontology, 
vocabulary, etc. 

Native 
OSLC KM 
SKOS 
OWL 

Native API 
WSDL-based 
Service 
OSLC/Rest Service 
File 

Altium designer Hardware 
model 

Native Native API 
WSDL-based 
Service  
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In terms of validation, the proposed method and the implementation 
of this use case brings the following conclusions:  

• Conceptual validation: the proposed method brings together two 
already agreed methods to evaluate the interoperability and to es-
timate software effort. More specifically, the proposed method takes 
the interoperability levels established in existing maturity models 
(the LCIM model) and defines an estimation of effort based on 
existing software estimation models (expert judgement, analogy, and 
analytical methods). This estimation of effort may contain some bias 
since it is only based on the opinion and experience of only one 
software company. However, this factor is mitigated since this 
company already has in the market tools integrating data and in-
formation from around other 20 third-party tools.  

• Technical validation: the implementation of this use case raised some 
technical challenges in terms of processing different types of infor-
mation and data. However, once the implementation was verified 
and validated by the end-user, we had to demonstrate to what extent 
this approach was better than the initial environment. The applica-
tion of the proposed method helped us to demonstrate both the 
feasibility, accuracy, and simplicity of the method and the added 
value of providing an interoperable environment for the Systems 
Engineering process. However, in terms of accuracy, the proposed 
method should be validated in more scenarios defining more com-
plex toolchains (hundreds of tools collaborating in different 
organizations). 

Finally, the application of the Arrowhead framework will help to 
decrease the effort of implementing the communication level, auto-
mating the exchange of system artifacts, and enabling the consumption 
of operations, but the interpretation of the different metamodels must be 
implemented in any case. 

4.4. Research limitations 

From a conceptual point of view, the proposed evaluation model is 
built on previous and validated definitions, especially the LCIM model. 
The proposed approach adapts and extends these definitions to provide a 
realistic and specific estimation of the degree of interoperability in an 
engineering environment. 

However, as it has been reviewed in the state-of-the-art section, 
software effort estimation models are not accurate and depend on many 
factors that require a specific analysis of the problem. Here, authors 
propose the use of some analytical and parametrized estimation based 
on an increasing sequence of scale factors (K) that must be adapted to 
the background of an organization (e.g. software development experi-
ence, existence of libraries, complexity of standards metamodels, etc.). 

The presented case study helps understand how to apply the evalu-
ation method in a real toolchain environment. However, the interpre-
tation of the method may change for a more complex product 
comprising several organizations (which internal toolchains could be 
unknown) and different engineering methods using specific protocols, 
data formats and metamodels. 

Fig. 9. Technical engineering and management processes for UC-3.  

Table 11 
Status of interoperability and integration between tools within the UC-3.  

Source/Target 
tool 

IBM 
Doors 

IBM 
Rhapsody 

RAT VS KM Altium 
designer 

IBM Doors  x x x R R 
IBM Rhapsody x  x, R   R 
RAT x x, R  x x  
Verification 

Studio 
x x, R x  x R 

Traceability 
Studio 

x R x x x R 

Knowledge 
Manager 

R R x x  R 

Altium designer R R R R R   

Table 12 
Initial interoperability evaluation within the UC-3 (value 18).  

Tool IBM 
Doors 

IBM 
Rhapsody 

RAT VS KM Altium 
designer 

IBM Doors – 3 3 3 – – 
IBM 

Rhapsody 
3 – – – – – 

RAT 3 – – – – – 
VS 3 – – – – – 
KM – – – – – – 
Altium 

designer 
– – – – – –  

Table 13 
Target interoperability evaluation within the UC-3 (value 33).  

Tool IBM 
Doors 

IBM 
Rhapsody 

RAT VS KM Altium 
designer 

IBM Doors – – – – – – 
IBM 

Rhapsody 
3 – – – – 3 

RAT 3 – – – – – 
VS 3 – – – – 3 
KM 3 3 – – – 3 
Altium 

designer 
3 – – 3 3 –  
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5. Conclusions and future work 

The digital transformation is gaining momentum in the engineering 
process of software-intensive systems. The need of delivering complex 
engineering products in a timely and cost-effective manner is now more 
relevant than ever. The engineering process of these systems comprises 
multiple disciplines and engineering domains that must be encompassed 
within a development lifecycle. 

Digitalization of engineering through automation and simulation as 
means to implement a virtual version of a system also requires stan-
dardization and interoperability between the tools used by the different 
engineering disciplines. In this context, the ability of exchanging data, 
information and the knowledge embedded in the systems artifacts is a 
cornerstone to boost collaboration between organizations, people, and 
tools. To establish a degree of interoperability and to understand the 
effort to transition from one toolchain environment to another, it is 
necessary to measure the degree of interoperability between tools and 
provide a fine-grained view of the required tool integrations at different 
levels of abstraction (communication, syntax, and semantics). 

Future research directions may include an improvement of the effort 
estimation function based on previous experiences developing interop-
erability adapters and extension of the evaluation to consider other 
types of application integration patterns. Furthermore, new toolchain 
interoperability evaluations in other sectors such as automotive or 
aerospace may also demonstrate the value of the model to estimate 
engineering efforts to implement executable technical processes through 
interoperable toolchains. 
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