
ComputerStandards&Interfaces86(2023)103744

Availableonline21March2023
0920-5489/©2023TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-

nc-nd/4.0/).

Towards a method to quantitatively measure toolchain interoperability in

the engineering lifecycle: A case study of digital hardware design

Jose María Alvarez-Rodrígueza,*, Roy Mendietab, Eduardo Cibríana, Juan Llorensa

aDepartment of Computer Science and Engineering, Carlos III University of Madrid, Av. De la Universidad 30, 28911, Legańes, Spain
bThe Reuse Company Inc, Avd. Margarita Salas, 28919, Legańes, Spain

ARTICLE INFO

Keywords:

Software tools

Software reusability

Web services

Software as a service

Internet

ABSTRACT

The engineering lifecycle of cyber-physical systems is becoming more challenging than ever. Multiple engi-

neering disciplines must be orchestrated to produce both a virtual and physical version of the system. Each

engineering discipline makes use of their own methods and tools generating different types of work products that

must be consistently linked together and reused throughout the lifecycle. Requirements, logical/descriptive and

physical/analytical models, 3D designs, test case descriptions, product lines, ontologies, evidence argumenta-

tions, and many other work products are continuously being produced and integrated to implement the technical

engineering and technical management processes established in standards such as the ISO/IEC/IEEE 15288:2015

“Systems and software engineering-System life cycle processes”. Toolchains are then created as a set of collab-

orative tools to provide an executable version of the required technical processes. In this engineering environ-

ment, there is a need for technical interoperability enabling tools to easily exchange data and invoke operations

among them under different protocols, formats, and schemas. However, this automation of tasks and lifecycle

processes does not come free of charge. Although enterprise integration patterns, shared and standardized data

schemas and business process management tools are being used to implement toolchains, the reality shows that

in many cases, the integration of tools within a toolchain is implemented through point-to-point connectors or

applying some architectural style such as a communication bus to ease data exchange and to invoke operations.

In this context, the ability to measure the current and expected degree of interoperability becomes relevant: 1) to

understand the implications of deining a toolchain (need of different protocols, formats, schemas and tool in-

terconnections) and 2) to measure the effort to implement the desired toolchain. To improve the management of

the engineering lifecycle, a method is deined: 1) to measure the degree of interoperability within a technical

engineering process implemented with a toolchain and 2) to estimate the effort to transition from an existing

toolchain to another. A case study in the ield of digital hardware design comprising 6 different technical en-

gineering processes and 7 domain engineering tools is conducted to demonstrate and validate the proposed

method.

1. Introduction

The notion of Cyber-Physical Systems (CPSs) was irst introduced in

2006 by the United States “to represent the Integration of computation,

networking and physical processes where CPS range from minuscule (pace

makers) to large-scale (e.g. national power-grid)” [1]. Other authors [2]

deine CPSs as “transformative technologies for managing interconnected

systems between its physical assets and computational capabilities”. It is

possible to ind many examples of CPSs in domains such as Industry 4.0

(e.g. digital factories), aerospace and defense, automotive, environment

control, critical infrastructures, or health care devices to name a few

where there is a clear need of integrating software-intensive capabilities

with physical processes and entities.

However, CPSs [2] are far beyond traditional embedded control

systems since they pose speciic characteristics: 1) inclusion of software

capabilities in every physical component; 2) networking at a multiple

scale; 3) dynamic coniguration; 4) high degree of automation and 5)

functions that must be dependable and, in many cases, certiied. In this

context, CPSs represent a type of information and communication sys-

tems characterized by several quality indicators such as performance,

* Corresponding author.

E-mail address: josemaria.alvarez@uc3m.es (J.M. Alvarez-Rodríguez).

Contents lists available at ScienceDirect

Computer Standards & Interfaces

journal homepage: www.elsevier.com/locate/csi

https://doi.org/10.1016/j.csi.2023.103744

Received 28 February 2022; Received in revised form 28 February 2023; Accepted 18 March 2023

mailto:josemaria.alvarez@uc3m.es
www.sciencedirect.com/science/journal/09205489
https://www.elsevier.com/locate/csi
https://doi.org/10.1016/j.csi.2023.103744
https://doi.org/10.1016/j.csi.2023.103744
https://doi.org/10.1016/j.csi.2023.103744
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2023.103744&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

ComputerStandards&Interfaces86(2023)103744

2

dependability, security, safety, large geographical distribution, and very

large scale of control. Given this context, some research works [3,4]

have deined some challenges in the development lifecycle of CPSs.

More speciically, bringing the principles of DevOps (Development and

Operations and toolchains) to CPS development [5] is a cornerstone to

improve both automation of the lifecycle processes and integration of

tools across the design-operation time.

The engineering lifecycle of a CPS includes multiple engineering

disciplines (methods and tools) that must be orchestrated building

executable technical processes (e.g. requirements analysis in [6])

through toolchains increasing the complexity of the engineering process.

To improve the engineering process and provide a holistic view of the

system, a digital transformation process is being conducted in the in-

dustry to shift the engineering paradigm from a document-oriented to a

digital asset approach. Automation, modelling, reuse, and simulation

are considered the key techniques to provide a new collaborative engi-

neering environment in which processes such as veriication and vali-

dation [7] can be easily implemented, automated and reused through

toolchains.

In terms of the engineering process and the system development

lifecycle, traditional linear approaches, e.g. the Waterfall or Vee models,

or iterative models like Concurrent Engineering have been re-designed

to support the digitalization of the engineering (DE) process. A better

management of relationships between original equipment manufac-

turers (OEM) and suppliers is also required to share (digital data pack-

age) requirements, descriptive and analytical models, etc. boosting

collaboration. The Digital Thread [8] by the Boeing Company has

introduced the concept of a diamond lifecycle, see Fig. 1, to provide a

virtual version of the well-known Vee model linking the physical and

virtual worlds. This new engineering lifecycle makes an intensive use of

digital assets like models, as unit of exchange, and simulation techniques

enabling the notion of digital twin through automation and collabora-

tive engineering [9].

Other initiatives to improve the system engineering process and the

development lifecycle can be found in the Future of Systems Engineering

Roadmap [10, pp. 2019–2020] promoted by the SERC (Systems Engi-

neering Research Center). This document establishes ive major goals to

strategically change the engineering process: 1) “model use for decision

making”, 2) “authoritative source of truth”, 3) “technology innovation”,

4) “collaborative environment” and 5) “digital engineering (DE) work-

force and culture”. More speciically, Goal 2 “Authoritative Source of

Truth” includes the need of a data integration/interoperability frame-

work, DE design process, semantic data links and digital twin innovation

as a path to reach an augmented engineering process.

The deinition of a strategy for DE strongly relies on technological

support implemented through different tools that must be seamlessly

orchestrated (toolchain) to provide new collaborative engineering

environments, see Table 1. Furthermore, some key processes such as

system traceability or quality management and, in general technical

management processes, may also require an integrated view of the

system under development including different types of work products

through the access to the corresponding engineering tools.

From a technical point of view, the implementation of technical

engineering processes through toolchains is basically a problem of data

interoperability and process integration. In the engineering lifecycle

context, the efforts made by the family of standards ISO 10303-STEP

(Standard for the Exchange of Product Model Data) or OASIS OSLC

(Open Services for Lifecycle Collaboration) represent the major initia-

tives to cover data exchange of multiple work products within a feder-

ated environment of services (REST-based architectural style). Emerging

standardization efforts such as the SysMLV2 API (Systems Modeling

Application Programming Interface and Services speciications) [11, p.

0] also follow a similar approach in which data is encoded as a model

and the communication among tools must occur under a set of REST

services. Although these approaches are paving the way to unify the

communication and exchange of data among tools, there is no more

decision criteria than the use of well-recognized standards to evaluate

which is the status of interoperability and the effort to transition from

one technical approach to another.

In summary, there is a need to improve the engineering practice of

CPSs to consider: 1) the digitalization of engineering work products and

technical engineering processes, 2) the creation of collaborative engi-

neering environments and 3) the automation and communication at

different levels of abstraction: people (e.g. engineering teams), organi-

zations (e.g. manufacturers-suppliers), engineering stages/activities and

methods (e.g. requirements engineering and veriication/validation)

and tools (e.g. requirements management system and logical modelling

tools). In this context, standardization remains as a key-enabler to

implement the automation of technical engineering processes through

toolchains. In fact, one of the means to reach a proper level of auto-

mation and communication within the development lifecycle relies on

providing different levels of toolchain interoperability enabling the

communication and exchange of data, information and knowledge be-

tween people, organizations, and tools. Table 1 shows examples of

building toolchains to implement different scenarios that require the

collaboration of domain engineering tools and different actors.

However, the implementation of interoperable engineering envi-

ronments with toolchains does not come free of charge. It requires an

effort to agree which parts must be interoperable and how this inter-

operability can be achieved from a technical and technological

perspective, see Section 2.1. Most of the interoperability evaluation

models that have been deined, see Section 2.2, are focused on the

overall capacity of an organization. These models can be used to eval-

uate what is the current and target status of a software environment in

terms of interoperability. However, they do not explicitly deine a

method to calculate the effort to transition from one level to another.

Therefore, the implementation of interoperability mechanisms cannot

be completely measured and estimated within an organization or engi-

neering team.

That is why, in this paper, authors review existing interoperability

evaluation models making an evaluation of their applicability to the

context of system lifecycle and toolchains. Afterwards, an evaluation

and estimation of effort method for interoperability is theoretically

deined. To verify the applicability of the proposed method, a case study

in the frame of the H2020-AHTOOLs (Arrowhead Tools for Engineering

of Digitalization Solutions) project and the Use Case 3 (UC-3) is con-

ducted to demonstrate its applicability to a real toolchain environment

to design digital hardware. Finally, some conclusions and future

research directions are also outlined.

2. State of the art

According to the ISO/IEC 2382-15-“ Information technology —
Fig. 1.Evolution of the Vee model lifecycle and notion of “Digital Thread” by

the Boeing Company [8].

J.M. Alvarez-Rodríguez et al.

ComputerStandards&Interfaces86(2023)103744

3

Vocabulary”, interoperability can be deined as follows: "The capability to

communicate, execute programs, or transfer data among various functional

units in a manner that requires the user to have little or no knowledge of the

unique characteristics of those units." In this work, we take this deinition

as a reference for the required technical interoperability within a tool-

chain to implement executable technical engineering processes.

2.1. Interoperability within the systems engineering process

In the frame of cyber-physical systems lifecycle development, the use

of architectural frameworks, standardized languages, common data

models and communication protocols are common practices to enable

technical interoperability in both sides: development and operation.

Model-based Systems Engineering (MBSE) [12] has emerged as a complete

methodology to address the challenge of unifying the techniques, methods

and tools within the development lifecycle. This means a “formalized

application of modelling” to support the left-hand side in the Vee lifecycle

model and the upper-side section of the diamond model, see Fig. 1,

implying that any process, task, or activity will generate different system

artifacts but all of them represented as a model.

The MBSE approach is considered a cornerstone [13] for the

improvement of the current practice in the Systems Engineering

Table 1

Use case scenarios combining different Technical Engineering processes, methods (tools) and actors.

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

4

discipline since it is expected to cover multiple domains [14], to provide
better results in terms of quality and productivity, lower risks and, in
general, to support the concept of continuous and collaborative engi-
neering. However, the MBSE approach considers that everything can be
a model, e.g. a logical/descriptive SysML (System Modelling Language)
model or a physical/analytical model, and this assumption is not always
true in the development of a cyber-physical system. For instance, re-
quirements are still specified as text statements, test cases description
are usually defined using a restricted natural language and, in general,
any piece of information that must be shared should also have a verbal
representation since not everyone in an engineering team may under-
stand or have the same interpretation of a model. Furthermore, the mere
use of models as first-class members of the engineering process does not
guarantee process automation and interoperability within the toolchain,
it only unifies what is the type of artifact to be exchanged.

Technical interoperability initiatives for cyber-physical systems
development such as the family of standards ISO 10303-STEP (Standard
for the Exchange of Product Model Data) or the OASIS OSLC (Open
Services for Lifecycle Collaboration) specifications, try to boost the
implementation of technical engineering processes through an interop-
erable approach [15,16], easing the creation of federated environments
of services (tools). Both define a collaborative engineering ecosystem
through the definition of data shapes or schemes that serve us as a
contract to get access to information resources. The Representational
State Transfer (REST) software architecture style is used in both to
manage information resources that are publicly represented and
exchanged in different formats such as JSON or XML. Last version of the
SysMLV2 API (Systems Modeling Application Programming Interface
and Services specifications) [11, p. 0] is also following a similar
approach, defining a REST API to consume SysML models.

All these efforts to improve the technical interoperability within the
Systems Engineering process have been focused on providing technical
solutions through different approaches like architectural frameworks,
service-oriented computing [17] (e.g. OSLC-based toolchain [18]),
unified data models, ontologies [19] and communication protocols or
integration patterns [20]. However, the focus is mainly on the imple-
mentation of the different technical approaches (e.g. use of services,
common data models, etc.). Although some technical tasks such as the
automatic generation of service providers and clients can be automated
to bring tools into a toolchain, the evaluation of interoperability and the
estimation of effort to transition from one level of interoperability to
another is not covered.

2.2. Interoperability evaluation models

According to the systematic review in [21] conducted in the frame of
European research project FP7 ENSEMBLE, there are many types of
interoperability evaluation or capability models that may change
depending on their philosophy and implementation. Following, a sum-
mary of the main interoperability models is presented:

The LISI (“Levels of Information Systems Interoperability”) model
[22] was first developed by the US Department of Defense in 1988. This
model provides a standard process for evaluating the interoperability of
information systems. The LISI capabilities model comprises:

1) Five levels of interoperability maturity: 0-Isolated (manual integra-
tion of data and information), 1-Connected (peer-to-peer, basic ex-
change of data and information), 2-Functional (distributed, shared
logical data models across systems), 3-Domain (integrated, shared
domain data models across systems) and 4-Enterprise (universal:
unified domain models and interpretation across systems) and

2) Four technical interoperability attributes (PAID), the key-enablers to
reach a maturity level and to enable data/information exchange:
Procedures (policies, standards, and procedures), Applications (set of
applications for exchanging, processing and manipulation of data

and information), Infrastructure (environment: networks, security,
etc.) and Data (formats, protocols, or databases).

A LISI assessment process commonly follows the next stages: 1) fill a
LISI questionnaire, 2) establish a system profile to assess the current
interoperability level and the PAID attributes, 3) create a score card of
the systems to assess the interoperability maturity, 4) establish a strat-
egy for the improvement of the interoperability usually based on expert
judgement and 5) apply the strategy to progress in the maturity level. In
general, the LISI model offers us a method and a process to evaluate both
the organizational and technical interoperability. This model can be
used to measure the interoperability level before and after the imple-
mentation of interoperability mechanisms. Thus, it is possible to have a
picture of the status for a toolchain environment and its evolution. There
is also a review called “the Extended LISI model” that includes more
abstract layers for command-and-control support. However, it does not
include any mechanism to estimate the effort to transition from one level
to another and it is hard to apply the model to a concrete environment
like a toolchain (network of connections).

The LCIM (“Levels of Conceptual Interoperability Model”) [23]
emerged to provide a conceptual interoperability model beyond pure
technical models like the LISI model with special focus on simulation
connection problems [24]. It has also been applied to other domains like
healthcare [25]. The LCIM model also establishes different levels of
interoperability: 0-Stand-alone (no systems interoperability), 1-Technical
interoperability (communication networks and protocols are established
enabling data exchange), 2-Syntactic interoperability (a common data
format is used to represent data and information), 3-Semantic interop-
erability (a common information schema is used to model data and in-
formation), 4-Pragmatic interoperability (interoperating systems are able
to understand methods and operations using a common information
schema), 5-Dynamic interoperability (systems are able to adapt their
behavior to the changes in the environment, e.g. data model or opera-
tion definitions) and 6-Conceptual interoperability (conceptual models
and methods are documented and specified under a common knowledge
framework). As in the LISI model, the LCIM model provides us with an
excellent tool to establish a level of interoperability but the estimation of
effort to transition from one level to another is not completely defined.

The EIMM (“Enterprise Interoperability Maturity Model”) [26] was
created in the frame of the European research project ATHENA
(“Advanced Technologies for interoperability of Heterogeneous Enter-
prise Networks and their Applications”) with the aim of providing a
methodology, guidelines, and a reference architecture to enable
cross-organizational collaboration and integration through interopera-
bility mechanisms. They defined different interoperability profiles for
the following domains: collaborative product development, networked
collaborative product development, electronic procurement, and prod-
uct portfolio management. Furthermore, they also established five levels
of interoperability: 0-Performed (ad-hoc collaboration and integration),
1-Modelled (collaboration and integration is done in the same manner
each time but not automated), 2-Integrated (the collaboration process is
formally defined and documented), 3-Interoperable (enterprise models
and process are dynamically adapted to new changes) and 4-Optimizing
(interoperability is continuously measured and improved through the
application of new technologies and frameworks).

The OIM (Organizational Interoperability Maturity model) repre-
sents another attempt mainly addressing organizational/business needs.
It is focused on assessing the quality of interconnection of systems within
the same organization. Likewise the LISI model, it does not offer us
neither an estimation of the effort nor the specification of the technical
details to improve or reach another level of interoperability. That is why
it should be complemented with other type of model, e.g., the LISI
model. In regard to the description of the defined levels, five different
levels can be found: 0-Independent (manual integration of data and in-
formation), 1-Ad-hoc (some guidelines or frameworks to enable inter-
operability are envisioned), 2-Collaborative (guidelines and frameworks

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

5

are in place with a clear distinction of roles and responsibilities enabling
cross-organizational interoperability), 3-Integrated (a common under-
standing of goals and business services) and 4-Unified (interoperability is
properly deployed enabling exchange across organizations).

The Interoperability assessment methodology [27] was also devel-
oped after the LISI model in the context of military services. It includes
nine components that are either a “yes/no” response and a mathematical
equation. Leite further defined “degrees of interconnection” which
included the availability, connectivity, understanding, interpretation,
utility, feedback, and execution.” [21].

The layered interoperability score (i-Score) [28] is a method to
measure interoperability of any type. It is used in the operational process
context, and it is based on assessing the current data architecture. The
Service Measurement Index [29] also includes a metric for cloud service
providers in terms of interoperability. Others based on the review in
[30] such as the government interoperability maturity matrix, the
business interoperability quotient measurement model [31], represent
other efforts to measure interoperability in different contexts such as
quality of service in service oriented architectures.

Other interoperability maturity models and reference architectures
include the “NATO C3 Technical Architecture Reference Model for
Interoperability”, the ISO 11354-1:2011 “Advanced automation tech-
nologies and their applications. Part 1: Framework for enterprise
interoperability” or the “European Interoperability Framework”. These
attempts collect similar characteristics to the previous models but ori-
ented to different domains like defense, manufacturing or public ser-
vices [32].

As interoperability definitions have been adapted to different do-
mains and by several institutions, it is also possible to find recent re-
views on interoperability assessment models [33]. In this work, authors
conducted a systematic review to monitor and analyze a total of 38 INAS
(Interoperability Assessment) models with the main objective of classi-
fying the type of assessment, metrics, and interoperability barriers. They
compared 22 assessment models, only those providing real case studies
or illustrative examples. One of the main conclusions is that metrics are
mainly qualitative (subjective) or those that are quantitative are merely
a ratio (real/expected). In [34] the same authors defined the re-
quirements for an enterprise interoperability assessment method while
in [35] authors defined an ontology of automate the assessment of
interoperability (process and metrics). In [36] authors also review the
status of companies to support the development of cyber-physical sys-
tems (CPS) focusing mainly in the operational aspects of such systems
and reaching as main conclusion that general interoperability frame-
works do not cover all the needs of CPS development and operation. In
[37] authors review the Federated Interoperability Framework (FIF) for
the aerospace and defense sector to check how it has evolved in the last
20 years and how it can be customized for Product Lifecycle Manage-
ment (PLM) interoperability. Although the main -ilities of a system are
considered, they state that supporting virtual manufacturing will play a
critical role in the PLM of the future.

In the context of this work and considering a toolchain as a set of
orchestrated tools (services), the service-oriented architecture (SOA)
assessment methods may be also relevant. In [38] authors proposed a
method to evaluate the feasibility of a SOA architecture based on eval-
uating a set of requirements (functional and non-functional) in some
qualitative scale. This type of approach is similar to others in that time
like the Service Measurement Index (discontinued) but used in some
previous works to evaluate cloud-based CRM (Customer Relationship
Management) solutions [39]. In [40] authors make a systematic review
of SOA maturity models (SOAMMs) in which interoperability is
considered as another organizational and technical dimension. In [41]
authors present the MeFSOAR framework based on Welke’s SOA
maturity model [42] with the aim of providing knowledge to developers
in the adoption of SOA architectures. More interestingly, authors present
in [43] a SOA architecture of Industry 4.0 and small companies
collaboration considering the building blocks of an architecture to

communicate tools in the industry. In many of these works, the concept
of interoperability is mainly considered and evaluated as a
non-functional requirement with a qualitative scale.

As a summary, some of the original maturity/capability models, see
Table 2, have been largely studied, defined, reviewed [5,21], and
extended to cover both dimensions: technical and organizational and to
measure the level of interoperability within an organization or a busi-
ness according to some scale. Starting from the LISI model, every defined
model describes a set of categories (levels) to express and define the
interoperability capabilities. In some of them, a set of guidelines and a
description of the technical details to reach a new level of interopera-
bility are also defined. In terms of evaluating the interoperability of a
toolchain, it is possible to reuse concepts of both types, although the LISI
and LCIM models fit better to the purpose of tool connection evaluation.
However, these models do not reflect how to evolve from one level to
another (apart from checklists). More recent studies considering the
architectural style or different domains still follow a similar approach:
interoperability as a major non-functional requirement that is evaluated
on a qualitative scale at a high-level of abstraction.

2.3. Effort estimation models for software-based systems

In the previous section, a brief review of the interoperability capa-
bility models was presented. The ability of providing a toolchain within
the Systems Engineering process as a set of interoperable services can be
seen as a composed/orchestrated software system that should be esti-
mated following a software effort estimation model.

Effort estimation models for software systems can be classified into
three main categories: empirical, heuristic, and analytical. Models [44]
like COCOMO, SLIM or Function Points have been historically applied to
this end apart from others based on expert-judgement or analogy (expert
opinion and experience). However, most of these models [45] generally
fail to express the underlying complexity of building software unless
formal methods and tools are used to generate the software code.

The development methodology also plays a key role in the estimation
of effort. In the case of Agile methodologies, authors in [46] conducted a
systematic review surveying 25 practitioners and extracting as conclu-
sions that planning poker, expert judgement, use case points and story
points are the main subjective estimation techniques while the “Mean

Table 2
Summary of the main Interoperability Maturity Models.

Interoperability
maturity model

Scope Levels Attributes/
dimensions
(technical
aspects)

Effort
estimation
method

LISI Technical 0-Isolated
1-Connected
2-Functional
3-Domain
4-Enterprise

Yes, PAID
attributes

Not covered

LCIM Technical 0-No
interoperability
1-Technical
2-Syntactical
3-Semantic
4-Pragmatic
5-Dynamic
6-Conceptual

Yes, as an
extension of
the LISI model

Not covered

EIMM Technical 0-Performed
1-Modelled
2-Integrated
3-Interoperable
4-Optimizing

Yes, a
reference
architecture
based on
services

Not covered

OIM Business 0-Independent
1-Ad-hoc
2-Collaborative
3-Integrated
4 Unified

Not covered Not covered

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

6

magnitude of relative error” MMRE metric is used to validate the esti-
mation. Team skills and development experience remain a critical aspect
to define a proper task size and get an accurate estimation. In [47],
authors also conducted a systematic review and a survey to 53 practi-
tioners in 7 different countries. They included different estimation
techniques such as bucket system, dot voting, expert judgement, plan-
ning poker, team estimation game, swimlane sizing, use case points and
story points. As main conclusions, story points are being used to mainly
estimate of the entire effort necessary to develop the software system
while more than 90% of the respondents were using planning poker and
expert judgement as the most common estimation techniques (only one
was using COCOMO). Regarding methods for effort estimation, in [48]
authors propose a differential evolution algorithms to improve the
adjust the parameters of models like COCOMO and COCOMO II. They
validated the approach with two datasets from the Promise repository
and using as a cost function the MMRE metric. In [49] authors propose
an extension to the COCOMO model including cost drivers and other
metrics to update the base model equation. Again, they validated the
approach based on expert judgement and the MRRE metric.

In general, the conclusions about software estimation remain the
same: “no single technique is best for all situations” [50] and, other factors
like organizational (development methodology), experience or appli-
cation type (e.g. web or mobile) are being considered as critical aspects
to provide an accurate estimation of software development efforts. In
fact, this is a research area in which effort can be estimated when using
automated engineering techniques, but the estimation of human
developed software is still open and subjected to variables such as
experience (organizational and team), expert judgement, technology
and application domain.

In the case of interoperability, the situation is like general software
development. Some models can be found [51,52] to estimate the effort
of implementing automated techniques (e.g. Model-Driven Develop-
ment). Others are domain-specific, e.g. buildings and construction [53],
have conducted surveys to know what is the cost of no interoperability
[54] mainly for the stages of operation and maintenance.

Overall, the estimation of software development costs is not an easy
task. There are different types of models but “no one size fits all” and
specific considerations must be added to provide an accurate estimation.
In the context of interoperability effort estimation, some studies can be
found but focusing on the operation and maintenance of systems.
However, it is not clear how to tailor an existing estimation model to
calculate the effort of implementing interoperability mechanisms within
a toolchain for Systems Engineering. A hybrid method considering
expert judgement as well as a weighted set of parameters seems a
feasible approach to estimate the effort of interoperability imple-
mentation within a toolchain. On the other hand, some of the existing
parametric models are based on the analysis of previous projects and
more subjective methods like Function Points seems to not fully consider
the intrinsic complexity of a toolchain (many dependencies between
tools in a non-linear way). Since the implementation of toolchain
interoperability is not so common as other types of software, a method
based on combining parameters established and scaled by the expert
judgment is considered a feasible approach.

3. Definition of a method to evaluate and measure toolchain
interoperability

3.1. Interoperability evaluation method

To establish a method to evaluate the interoperability within a
toolchain, the next definitions must be considered:

• A toolchain, T, is a set of software applications used to implement a
technical process (e.g. verification) within the system development
lifecycle. The set of software tools are usually executed in a linear
manner, being the result of some tool the input of the following one.

However, as it has been already stated [55], the design and execution
of a toolchain is not always linear and, in most of cases, it creates a
network of interconnections among tools, as an example Table 1
includes examples of different use case scenarios. It is important to
remark that not all tools require bi-directional communication with
all other tools. In the scope of this work, tools may only need to
access artifact content, but other operations/methods offered
through an interface are not considered.

• Each tool, ti, is a software application designed to perform some
specific tasks within the development lifecycle. A tool ti manages and
produces a kind of work product (e.g. requirements, test cases,
logical models, physical models, source code, etc.) that may be used
by another tool tj.

• The definition, configuration, and integration of tools within a
toolchain can be done manually or automatically within an ALM
(Application Lifecycle Management) or PLM (Product Lifecycle
Management). More specifically, the tool integration strategy can
follow different enterprise application integration patterns such as
an integration bus, a common database, a plugin architecture, or a
queue of messages. The integration usually covers the communica-
tion level, but the syntax and semantics of message payloads must be
implemented in each tool.

Given these initial definitions, an interoperability evaluation method
for a toolchain in the context of cyber-physical systems development can
be defined as follows:

• A toolchain interoperability evaluation method establishes the
required (input/output) connections between the different tools
providing a quantitative value of interoperability at different levels
of abstraction, see Table 3.

Building on these levels of interoperability, an interoperability
evaluation method creates an implicit matrix, M, see Table 4, estab-
lishing two values, vij and vji, for each pair of tools ti and tj. where vij and
vji are not necessarily the same, vij, refers to connectivity from the tool ti
to the tool tj, while vji, expresses the connectivity from tj to the tool ti.
Interpreting the values on this matrix, it is possible to extract two main
aggregated values.

• The full interoperability value of a toolchain T is equals to 3*n2,
being n the number of tools within the toolchain.

• The current interoperability value of a toolchain T is equals to the
sum of elements within the matrix

∑ ∑
vij

As consequence of this evaluation, the current level of technical
interoperability within a toolchain can be calculated and compared to a
target value providing a method to establish the degree of
interoperability.

Table 3
Interpretation of the levels of technical interoperability based on the LCIM
model.

Level Value Description

No exchange 0 There is no need of interoperability between the pair of
tools (ti, tj).

Communication 1 There is a need of interoperability between the pair of
tools (ti, tj) and, ti and tj share the same communication
protocol.

Syntax 2 There is a need of interoperability between the pair of
tools (ti, tj) and, ti and tj share the same data format.

Semantics 3 There is a need of interoperability between the pair of
tools (ti, tj) and, ti and tj share the same meta-model.

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

7

3.2. Interoperability evolution: an effort estimation method

On the other hand, the mere calculation of a degree of interopera-
bility only offers a picture of the current situation and, potentially, a
target objective. However, the transition from one degree of interoper-
ability to another may require an estimation of the implementation
efforts.

As in other effort estimation software models, see Section 2.3, three
different techniques can be used: empirical, heuristic, and analytical. In
this case and with the aim of providing a practical method to estimate
the effort of implementing an interoperability mechanism, an analytical
technique considering both analogy/expert judgement and some pa-
rameters is defined. This effort estimation function is based on three
main aspects: the existence of standards, libraries, and the development
experience. Furthermore, it is also necessary to estimate which is the
effort of implementing a new communication protocol or a new data and
schema processor.

There is always a baseline effort, be, due to tasks related to config-
uration and integration. Furthermore, as Table 5 shows, there is a spe-
cific effort e, associated with the real implementation. This effort e
depends on some scale factor associated with the type of implementation
and the method to produce software, the expert judgement and expe-
rience strongly affects this factor. In the case of interoperability, three
basic types of implementations and efforts are defined:

1 Implementation using an existing library based on standards with a
scale factor ki.

2 Implementation using an existing library not based on standards with
a scale factor of kj.

3 A new customized implementation with a scale factor of kl.

The scale factor is expressed through a value km and it may depend
on different factors such as organizational, human and technological
aspects among others. In order to establish these values of km, a
sequence of ascending numbers K = {k1,…,ki, kj, kl,…, kn} can be used
following some type of progression (e.g. linear, geometric, exponential,
etc.).

For instance, assuming the be is 1 person/month (PM), e is 2 person/
month (PM) and K = {1, 2, 4} (based on our experience developing tool
connectors), the effort of developing an interoperable mechanism based
on a standard library would be 3 PM, if there is no standard behind 5
PMs and, finally, if everything must be implemented from scratch, the
estimated effort would be 9 PMs.

3.3. Example of application

To illustrate the presented approach, let’s consider a toolchain, T,
comprising 3 services (t1, t2 and t3) with the following description:

• t1 uses as communication protocol a standard protocol (p1, HTTP)
generating a work product (wp1, “requirement”) under the format
(f1, XML) and standard (s1, ReqIF).

• t2 uses as communication protocol a standard protocol (p1, HTTP)
generating a work product (wp2, “logical model”) under the format
(f1, XML) and standard (s2, SysML). The tool t2 already has an
implementation to connect to t1 at a syntax level (communication
through HTTP and XML as data format) which implies that (t2, t1) =
2 in Table 6.

• t3 uses as communication protocol a standard protocol (p2, FTP)
generating a work product (wp3, “physical model”) under the format
(f2, JSON) without any concrete semantics.

Furthermore, the target toolchain environment requires the
following connections:

• Tool t1 must be able to consume the information generated by tool t3
at a semantic level: (t1, t3) = 3. The implementation requires then
access to the tool through a new protocol (p2), processing data
through a new data format (f2) and understanding data through a
new schema (native).

• Tool t2 must be able to consume the information generated by t1 and
t3 at a semantic level: (t2, t1) = 3 and (t2, t3) = 3.

• Tool t3, must also be able to semantically consume the information
generated by t1: (t3, t1) = 3.

Given this setting, the current degree of interoperability is calculated
in Table 6, there is a need to increase this degree to interoperability to
reach a target interoperability level as presented in Table 7.

According to Table 8 and following the proposed method, the total
estimated effort can be calculated as follows: 6*(be+k1e) + (be + k3e).
More specifically, each pair (ti, tj) represents an estimated imple-
mentation effort:

• 0 (-) if no implementation is required
• be + k1e: if there is an existing library based on standards.
• be + k3e: if it is a new customized implementation.

4. Case study: a toolchain for digital hardware design

4.1. Context

The H2020-AHTOOLs project aims for “digitalisation and automation
solutions for the European industry, which will close the gaps that hinder the
IT/OT integration by introducing new technologies in an open source plat-
form for the design and run-time engineering of IoT and System of Systems.
The project will provide engineering processes, integration platform, tools and
tool chains for the cost-efficient development of digitalisation, connectivity
and automation system solutions in various fields of application.”

The core element of the project is the Arrowhead framework, pre-
viously implemented in other research projects and now part of the
Eclipse ecosystem. From a conceptual perspective, the framework pro-
vides a complete platform of cross-cutting aspects like security or
interoperability [56] to orchestrate services for different purposes under
a bus integration pattern. Initially, the framework was focused on
providing an execution platform for IoT applications [57,58] comprising
sensors and software services. However, the H2020-AHTOOLs project
focuses on applying and extending the platform to support the

Table 4
Evaluation of interoperability levels between tools within a toolchain.

Tool t0 … ti … tj … tn

t0 0 v0i v0j v0n

… 0
ti vi0 0 vij vin

… 0
tj vj0 vji 0 vjn

… 0
tn vnj vni vnj 0

Table 5
Effort estimation depending on the type of implementation.

Type Library and
standard

Existing library but no
standard

Custom
implementation

Effort be + k1e be + k2e be + k3e

Table 6
Example of an initial interoperability evaluation (value 2).

Tool t1 t2 t3

t1 – – –
t2 2 – –
t3 – – –

J.M. Alvarez-Rodríguez et al.

ComputerStandards&Interfaces86(2023)103744

8

engineering phase of cyber-physical systems unifying the communica-

tion layer to orchestrate different tools within a toolchain. In this

context, the Use Case-3 (UC-3) “Integration of electronic design auto-

mation tools with product lifecycle tools” has been proposed to make use

of the Arrowhead framework supporting the engineering process of

digital hardware.

More speciically, the UC-3 aims at providing means for improving

the reuse of physical hardware models covering the abstraction, selec-

tion, representation, and customization of system artifacts for the whole

development lifecycle. The reuse of any system artifact goes beyond the

mere discovery of a potential reuse, and it must focus on evaluating what

and how a system artifact can be reused (requirements, analytical

models, descriptive models, test cases, etc.). To do so, quality also plays

a role since it is assumed that high-quality system artifacts may help to

improve the reusability factor of a system artifact. Furthermore, in this

use case, there is another major objective focusing on the improvement

of traceability to be able to automatically keep traces [59] from the very

early stage of development to the inal release of a complex product.

Both functions, system reuse and traceability, require access to

different tools and artifacts to build an engineering knowledge graph

that can be exploited to provide suggestions of traces or a set of artifacts

to be reused. In other terms, from an architectural perspective, the

implementation of the use case is based on the creation of a shared

database in which any artifact is represented under the same data

schema. Besides, there are two functions (reuse and trace) implemented

on top of this database and results of these functions are populated in

different tools, e.g. traces in the logical modelling tool or linked artifacts

in the hardware design tool.

To do so and based on previous experiences [60,61], connectors

between different tools may at least represent any artifact of the tool-

chain in this common database. As a common data schema, the SRL

(System Representation Language) [16] is used and implemented within

the CAKE (“Computer Aided Knowledge Environment”) library (core

component of the KnowledgeManager, Traceability Studio and Verii-

cation Studio tools).

Fig. 8 shows the process of accessing, representing, and indexing

data coming from different tools and artifacts. The reuse and traceability

functions are then implemented on top of the “Systems Assets Store”

providing input for other tools under a speciic data format.

The implementation of this use case [60,61], considers three types of

partners: 1) academic (the Carlos III University of Madrid), to deine the

methodology and help in the implementation of the interoperability

mechanisms, 2) a tool vendor (The Reuse Company, a software company

with more than 20 years of experience providing engineering solutions),

to implement the connectors and to provide the reuse and trace func-

tions and 3) an end-user (ULMA Embedded Solutions, a hardware design

company), to validate the solution of the provided artifacts. In this

research work, we look for providing and showing the designed method

to estimate the effort of this implementation based on the experience of

the technology provider in the development of interoperable connectors.

We evaluate the approach from the perspective of implementation ef-

forts, but we do not include end-user validation.

The speciic engineering process of this use case covers different

technical engineering processes and engineering methods (supported by

different techniques and tools) creating the next toolchain (following the

standard ISO 15288:2015 “Systems and software engineering — System

Table 7

Example of a target interoperability evaluation (value 12).

Tool t1 t2 t3

t1 – – 3

t2 3 – 3

t3 3 – 0

Table 8

Example of implementation effort.

Tool/Element p1 p2 f1 f2 s1 s2 s3

(HTTP) (FTP) (XML) (JSON) (ReqIF) (SysML) (Native)

t1 – be +k1e 0 be +k1e – – be +k3e

t2 – – – – be +k1e – –

t3 be +k1e 0- be +k1e 0 be +k1e – –

Fig. 8.Access and representation of data to provide reuse and traceability capabilities within the UC-3.

Table 9

Engineering process, methods, techniques and tools for the UC-3.

Technical

engineering process

Engineering

method

Techniques Tools

System

Requirements

Deinition

Requirements

Engineering

Text-based

requirements

IBM Doors,

Requirements

Authoring Tool

(RAT)

Architecture

Deinition

Logical

modelling

Diagramming

with SysML/UML

IBM Rhapsody

Design deinition Physical

modeling

Diagramming Altium designer

Implementation Simulation Programming,

simulation

coniguration

Altium designer

Veriication &

Validation

(Measurement

process)

Quality

management

Quality metrics Veriication Studio

(VS)

Information

Management

Knowledge

engineering

Ontologies Knowledge

Manager (KM)

Information

Management

Knowledge

management

Traceability

discovery

Knowledge

Manager

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

9

life cycle processes”) (Table 9):
Fig. 2 shows the interconnection of these engineering processes as

established in Table 10. As it has been introduced, the engineering
process of a complex product should follow a liner approach (no feed-
back between processes and predefined inputs and outputs) (Figs. 3–7).
However, a realistic toolchain comprises the interaction of different
disciplines, people and tools creating an underlying graph of connec-
tions (Fig. 9).

In general, there are three tool providers: IBM, The Reuse Company
and Altium. Most of them provide standardized ways of accessing (files
and services) and consuming work products data and operations.
However, the interpretation of standards (such as SysML or ReqIf) may
differ from one tool to another and, in most of cases, the tools also
manage more relevant information that is not exposed being critical for
processes such as traceability or quality management.

In this context, it is possible to first define interoperability charac-
teristics of the tools to then make a brief evaluation of the required in-
tegrations. To do so, the following table summarizes the data model and
the access/communication models.

To reach the two major objectives of this use case (traceability
management and reuse), the following integrations must be done (see
Table 11) where x: represents a connector or integration that already
exists but it is not based in standards in both senses (communication and
data model) and R a new standard-based connector is required to
properly implement the use case.

4.2. Description and challenges

Building on the previous context, some research questions emerge:

1 What is the degree of interoperability of the current toolchain?
2 What is the degree of interoperability of the target toolchain?
3 Can we estimate the effort of transitioning from the current to the target

toolchain?
4 What is the role and the gain of using the Arrowhead framework?

Applying the defined evaluation model, the first step is to establish
the communication protocols, formats, and data models to be used by
each tool.

• IBM Doors: file, XML, ReqIF metamodel.
• IBM Rhapsody: file, XML, SysML v1 metamodel.
• RAT: HTTP, JSON, SRL (“System Representation Language”) meta-

model [59,15].
• VS: HTTP, JSON, SRL metamodel.
• KM: HTTP, JSON, SRL metamodel.
• Altium designer: file, XML, native metamodel.

According to these dependencies, Table 12 shows the initial inter-
operability evaluation. The degree of interoperability has a value of 18.
More specifically, there is a value of 3 between IBM Rhapsody and IBM
Doors since there is already a connection that allows us to exchange and
interpret requirements in IBM Rhapsody. In the same manner, RAT can
access, interpret, and write requirements in IBM Doors while VS can also
access, interpret requirements and write back quality checking values.
On the other hand, other connections between tools are set to 0 (-) since
no connection exists between tools or it is not required for this use case.

In the same manner, the target toolchain environment will have to
accomplish integrations to consume and produce system artifacts
generated in the different engineering methods and tools. The degree of
interoperability of this target environment will have a value of 33. More
specifically, the effort is focused on consuming information from Altium
in IBM Rhapsody, VS and KM. In the same manner, Altium shall be able
to consume the information generated in IBM Doors, VS and KM.

These two evaluations (initial and target) help us to understand
which is the degree of interoperability of both environments providing
information for tool vendors and engineering management processes (e.
g. systems engineers).

4.3. Results and evaluation

Table 14 presents an estimation of the effort depending on the type of
implementation required, see Table 4, at the three levels of technical
interoperability (communication, syntax and semantics).

In the case of IBM Rhapsody, there are implementations of all
required protocols and data formats but an implementation to under-
stand the Altium metamodel is required. RAT and VS already connect to
IBM Doors but some implementation is necessary to process ReqIF (a
XML serialization of requirements). VS and KM also need to understand
the Altium native metamodel and, in particular, KM requires the un-
derstanding of the SysML metamodel. The results produced by the
different tools must be interpreted and displayed in Altium, so a
connector to SRL is required. In conclusion, the effort relies on pro-
cessing a data format (XML or JSON) and understanding the underlying
metamodels: SysML, SRL, ReqIF or the Altium native metamodel.

According to Table 14, the total estimated effort can be calculated as
follows: 5*(be+k1e) + 1*(be + k2e) + 3*(be + k3e) = 9be + 5k1e + k2e +
3k3e.

As in the initial example, if we assume and assign the next values to
the be = 1PM, e = 2PM and K = {1, 2, 4}, the total effort of increasing the
degree of interoperability would be: (9 × 1)+(5 × 1*2)+(2 × 2)+(3 ×
4*2) = 47 PMs that is bit higher but more analytical and accurate that
the initial estimation (48 PMs) of the main technological partners
(Carlos III University of Madrid and The Reuse Company) in this use
case.

Given these results, the proposed method to evaluate the toolchain
interoperability provides us with a technique to understand and esti-
mate the effort of transitioning from one toolchain environment to
another. It is also possible to establish the current and target degrees of
interoperability, see Tables 12 and 13. Furthermore, this method can
also provide us with insights on the effort of implementing an interop-
erable toolchain, see Table 14.

Table 10
Tool and system artifacts description for the UC-3.

Tool System artifact Data model Access/
Communication
model

IBM Doors Requirement Native
ReqIF
OSLC RM

Native API
Native database
File

IBM Rhapsody Logical models Native
SysML/UML

Native API
Native database
File

RAT Requirement Native
OSLC RM
(Requirements
Management)
ReqIF

Native API
WSDL-based
Service
OSLC/Rest Service
File

Verification
Studio

Quality metric Native
OSLC KM [16]

Native API
WSDL-based
Service
OSLC/Rest Service
File

KM (through
Traceability
Studio)

Trace Native
OSLC KM

Native API
WSDL-based
Service
OSLC/Rest Service
File

KM Ontology,
vocabulary, etc.

Native
OSLC KM
SKOS
OWL

Native API
WSDL-based
Service
OSLC/Rest Service
File

Altium designer Hardware
model

Native Native API
WSDL-based
Service

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

10

In terms of validation, the proposed method and the implementation
of this use case brings the following conclusions:

• Conceptual validation: the proposed method brings together two
already agreed methods to evaluate the interoperability and to es-
timate software effort. More specifically, the proposed method takes
the interoperability levels established in existing maturity models
(the LCIM model) and defines an estimation of effort based on
existing software estimation models (expert judgement, analogy, and
analytical methods). This estimation of effort may contain some bias
since it is only based on the opinion and experience of only one
software company. However, this factor is mitigated since this
company already has in the market tools integrating data and in-
formation from around other 20 third-party tools.

• Technical validation: the implementation of this use case raised some
technical challenges in terms of processing different types of infor-
mation and data. However, once the implementation was verified
and validated by the end-user, we had to demonstrate to what extent
this approach was better than the initial environment. The applica-
tion of the proposed method helped us to demonstrate both the
feasibility, accuracy, and simplicity of the method and the added
value of providing an interoperable environment for the Systems
Engineering process. However, in terms of accuracy, the proposed
method should be validated in more scenarios defining more com-
plex toolchains (hundreds of tools collaborating in different
organizations).

Finally, the application of the Arrowhead framework will help to
decrease the effort of implementing the communication level, auto-
mating the exchange of system artifacts, and enabling the consumption
of operations, but the interpretation of the different metamodels must be
implemented in any case.

4.4. Research limitations

From a conceptual point of view, the proposed evaluation model is
built on previous and validated definitions, especially the LCIM model.
The proposed approach adapts and extends these definitions to provide a
realistic and specific estimation of the degree of interoperability in an
engineering environment.

However, as it has been reviewed in the state-of-the-art section,
software effort estimation models are not accurate and depend on many
factors that require a specific analysis of the problem. Here, authors
propose the use of some analytical and parametrized estimation based
on an increasing sequence of scale factors (K) that must be adapted to
the background of an organization (e.g. software development experi-
ence, existence of libraries, complexity of standards metamodels, etc.).

The presented case study helps understand how to apply the evalu-
ation method in a real toolchain environment. However, the interpre-
tation of the method may change for a more complex product
comprising several organizations (which internal toolchains could be
unknown) and different engineering methods using specific protocols,
data formats and metamodels.

Fig. 9. Technical engineering and management processes for UC-3.

Table 11
Status of interoperability and integration between tools within the UC-3.

Source/Target
tool

IBM
Doors

IBM
Rhapsody

RAT VS KM Altium
designer

IBM Doors x x x R R
IBM Rhapsody x x, R R
RAT x x, R x x
Verification

Studio
x x, R x x R

Traceability
Studio

x R x x x R

Knowledge
Manager

R R x x R

Altium designer R R R R R

Table 12
Initial interoperability evaluation within the UC-3 (value 18).

Tool IBM
Doors

IBM
Rhapsody

RAT VS KM Altium
designer

IBM Doors – 3 3 3 – –
IBM

Rhapsody
3 – – – – –

RAT 3 – – – – –
VS 3 – – – – –
KM – – – – – –
Altium

designer
– – – – – –

Table 13
Target interoperability evaluation within the UC-3 (value 33).

Tool IBM
Doors

IBM
Rhapsody

RAT VS KM Altium
designer

IBM Doors – – – – – –
IBM

Rhapsody
3 – – – – 3

RAT 3 – – – – –
VS 3 – – – – 3
KM 3 3 – – – 3
Altium

designer
3 – – 3 3 –

J.M. Alvarez-Rodríguez et al.

Computer Standards & Interfaces 86 (2023) 103744

11

5. Conclusions and future work

The digital transformation is gaining momentum in the engineering
process of software-intensive systems. The need of delivering complex
engineering products in a timely and cost-effective manner is now more
relevant than ever. The engineering process of these systems comprises
multiple disciplines and engineering domains that must be encompassed
within a development lifecycle.

Digitalization of engineering through automation and simulation as
means to implement a virtual version of a system also requires stan-
dardization and interoperability between the tools used by the different
engineering disciplines. In this context, the ability of exchanging data,
information and the knowledge embedded in the systems artifacts is a
cornerstone to boost collaboration between organizations, people, and
tools. To establish a degree of interoperability and to understand the
effort to transition from one toolchain environment to another, it is
necessary to measure the degree of interoperability between tools and
provide a fine-grained view of the required tool integrations at different
levels of abstraction (communication, syntax, and semantics).

Future research directions may include an improvement of the effort
estimation function based on previous experiences developing interop-
erability adapters and extension of the evaluation to consider other
types of application integration patterns. Furthermore, new toolchain
interoperability evaluations in other sectors such as automotive or
aerospace may also demonstrate the value of the model to estimate
engineering efforts to implement executable technical processes through
interoperable toolchains.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper

Data availability

No data was used for the research described in the article.

Acknowledgments

The work leading to these results has received funding from the
H2020-ECSEL Joint Undertaking (JU) under grant agreement No
826452-“Arrowhead Tools for Engineering of Digitalisation Solutions”
and from specific national programs and/or funding authorities. Fund-
ing for APC: Universidad Carlos III de Madrid (Read & Publish Agree-
ment CRUE-CSIC 2023).

References

[1] M.V. Cengarle, Characteristics, capabilities, potential applications of Cyber-
Physical Systems: a preliminary analysis, CyPhERS (2013) (Accessed 20 January
2023). [Online]. Available: http://www.cyphers.eu/sites/default/files/D2.1.pdf.

[2] J. Lee, B. Bagheri, H.-.A. Kao, A Cyber-Physical Systems architecture for Industry
4.0-based manufacturing systems, Manuf. Lett. 3 (2015) 18–23, https://doi.org/
10.1016/j.mfglet.2014.12.001.

[3] M. Törngren and U. Sellgren, “Complexity challenges in development of cyber-
physical systems,” in Principles of Modeling, vol. 10760, M. Lohstroh, P. Derler, and
M. Sirjani, Eds. Cham: Springer International Publishing, 2018, pp. 478–503. doi:
10.1007/978-3-319-95246-8_27.

[4] A. Mavridou, et al., The ten lockheed martin cyber-physical challenges: formalized,
analyzed, and explained, in: 2020 IEEE 28th International Requirements
Engineering Conference (RE), Zurich, Switzerland, Aug. 2020, pp. 300–310,
https://doi.org/10.1109/RE48521.2020.00040.

[5] Jerome Hugues, Joseph Yankel, John Hudak, Anton Hristozov, TwinOps: Digital
Twins Meets Devops, Carnegie Mellon University, 2022, https://doi.org/10.1184/
R1/19184915.

[6] A.M. Grubb, M. Chechik, Formal reasoning for analyzing goal models that evolve
over time, Requir. Eng. 26 (3) (2021) 423–457, https://doi.org/10.1007/s00766-
021-00350-8.

[7] A. Amjad, F. Azam, M.W. Anwar, W.H. Butt, M. Rashid, Event-driven process chain
for modeling and verification of business requirements–a systematic literature
review, IEEE Access 6 (2018) 9027–9048, https://doi.org/10.1109/
ACCESS.2018.2791666.

[8] D. Seal, The System Engineering ‘V’ - is it still relevant in the digital age?, in:
Presented at the Global Product Data Interoperability Summit, 2018 [Online].
Available: https://gpdisonline.com/wp-content/uploads/2018/09/Boeing
-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBS
E-Open.pdf?pdf=Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Rele
vant_In_the_Digital_Age-MBSE-Open.

[9] ISO/CD 10303-243: MoSSEC: Modelling and Simulation information in a
Collaborative Systems Engineering Context (Under Development), International
Organization for Standardization, Geneva, CH, Standard, 2020.

[10] Research Roadmaps 2019-2020, Systems Engineering Research Center (SERC,
Hoboken, New York, US, 2020. Technical report[Online]. Available: https://serc
uarc.org/wp-content/uploads/2020/01/ROADMAPS_2.3.pdf.

[11] Systems Modeling Application Programming Interface (API) and Services, Version
2.0, Object Management Group, Milford, MA, USA, Standard, 2023 [Online].
Available: https://github.com/Systems-Modeling/SysML-v2-API-Services.

[12] P. Micouin, Model-based Systems Engineering: Fundamentals and Methods,
Hoboken, NJ, USA: iSTE; Wiley, London, UK, 2014.

[13] A. Madni, C. Madni, S. Lucero, Leveraging digital twin technology in model-based
systems engineering, Systems 7 (1) (2019) 7, https://doi.org/10.3390/
systems7010007.

[14] J. Lu, J. Wang, D. Chen, J. Wang, M. Torngren, A service-oriented tool-chain for
model-based systems engineering of aero-engines, IEEE Access 6 (2018)
50443–50458, https://doi.org/10.1109/ACCESS.2018.2868055.

[15] J.M. Alvarez-Rodríguez, R. Mendieta, J.L. De la Vara, A. Fraga, J. Llorens, Enabling
system artefact exchange and selection through a Linked Data layer, J. UCS JUCS
In-Press (2018) 1–24.

[16] J.M. Alvarez-Rodríguez, J. Llorens, M. Alejandres, J.M. Fuentes, OSLC-KM: a
knowledge management specification for OSLC-based resources, INCOSE Int.
Symp. 25 (1) (2015) 16–34, https://doi.org/10.1002/j.2334-5837.2015.00046.x.

[17] M. Biehl, J. El-khoury, F. Loiret, M. Törngren, On the modeling and generation of
service-oriented tool chains, Softw. Syst. Model. 13 (2) (2014) 461–480, https://
doi.org/10.1007/s10270-012-0275-7.

[18] INCOSE, Systems Engineering Vision 2020, INCOSE, Technical INCOSE-TP-2004-
004-02, 2004. Accessed: Nov. 24, 2013. [Online]. Available: http://www.incose.
org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf.

[19] J. Lu, G. Wang, M. Törngren, Design ontology in a case study for cosimulation in a
model-based systems engineering tool-chain, IEEE Syst. J. 14 (1) (2020)
1297–1308, https://doi.org/10.1109/JSYST.2019.2911418.

[20] F. Asplund, M. Törngren, The discourse on tool integration beyond technology, a
literature survey, J. Syst. Softw. 106 (2015) 117–131, https://doi.org/10.1016/j.
jss.2015.04.082.

[21] R. Rezaei, T.K. Chiew, S.P. Lee, Z. Shams Aliee, Interoperability evaluation models:
a systematic review, Comput. Ind. 65 (1) (2014) 1–23, https://doi.org/10.1016/j.
compind.2013.09.001.

[22] C. A. W. Group and others, Levels of Information Systems Interoperability (LISI),
US DoD, 1998.

[23] A. Tolk, J.A. Muguira, The levels of conceptual interoperability model, in:
Proceedings of the 2003 Fall Simulation Interoperability Workshop 7, 2003,
pp. 1–11.

[24] W. WANG, A. TOLK, W. WANG, The Levels of Conceptual Interoperability Model:
Applying Systems Engineering Principles to M&S, 2009, https://doi.org/
10.48550/ARXIV.0908.0191.

[25] M. Robkin, S. Weininger, B. Preciado, J. Goldman, Levels of conceptual
interoperability model for healthcare framework for safe medical device
interoperability, in: 2015 IEEE Symposium on Product Compliance Engineering

Table 14
Estimated effort to shift the degree of interoperability within UC-3.

Tool/Element File HTTP XML JSON ReqIF SysML SRL Native Altium

IBM Doors
IBM Rhapsody be+k3e
RAT be+k1e
VS be+k1e be+k3e
KM be+k1e be+k3e
Altium Designer be+k1e be+k1e be+k2e

J.M. Alvarez-Rodríguez et al.

http://www.cyphers.eu/sites/default/files/D2.1.pdf
https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1016/j.mfglet.2014.12.001
https://doi.org/10.1109/RE48521.2020.00040
https://doi.org/10.1184/R1/19184915
https://doi.org/10.1184/R1/19184915
https://doi.org/10.1007/s00766-021-00350-8
https://doi.org/10.1007/s00766-021-00350-8
https://doi.org/10.1109/ACCESS.2018.2791666
https://doi.org/10.1109/ACCESS.2018.2791666
https://gpdisonline.com/wp-content/uploads/2018/09/Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open.pdf?pdf=Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open
https://gpdisonline.com/wp-content/uploads/2018/09/Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open.pdf?pdf=Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open
https://gpdisonline.com/wp-content/uploads/2018/09/Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open.pdf?pdf=Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open
https://gpdisonline.com/wp-content/uploads/2018/09/Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open.pdf?pdf=Boeing-DanielSeal-The_System_-Engineering_V_Is_It_Still_Relevant_In_the_Digital_Age-MBSE-Open
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0009
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0009
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0009
https://sercuarc.org/wp-content/uploads/2020/01/ROADMAPS_2.3.pdf
https://sercuarc.org/wp-content/uploads/2020/01/ROADMAPS_2.3.pdf
https://github.com/Systems-Modeling/SysML-v2-API-Services
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0012
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0012
https://doi.org/10.3390/systems7010007
https://doi.org/10.3390/systems7010007
https://doi.org/10.1109/ACCESS.2018.2868055
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0015
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0015
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0015
https://doi.org/10.1002/j.2334-5837.2015.00046.x
https://doi.org/10.1007/s10270-012-0275-7
https://doi.org/10.1007/s10270-012-0275-7
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
http://www.incose.org/ProductsPubs/pdf/SEVision2020_20071003_v2_03.pdf
https://doi.org/10.1109/JSYST.2019.2911418
https://doi.org/10.1016/j.jss.2015.04.082
https://doi.org/10.1016/j.jss.2015.04.082
https://doi.org/10.1016/j.compind.2013.09.001
https://doi.org/10.1016/j.compind.2013.09.001
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0022
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0022
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0023
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0023
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0023
https://doi.org/10.48550/ARXIV.0908.0191
https://doi.org/10.48550/ARXIV.0908.0191

Computer Standards & Interfaces 86 (2023) 103744

12

(ISPCE), Chicago, IL, 2015, pp. 1–8, https://doi.org/10.1109/
ISPCE.2015.7138703.

[26] P. ATHENA, “ATHENA Interoperability Framework (AIF).” https://sintef-9012.gith
ub.io/athena-interoperability-framework/methodology/eimm.html (Accessed 20
February 2023).

[27] M.J. Leite, Interoperability Assessment, PRC INC ARLINGTON VA, 1998.
[28] T. Ford, J. Colombi, S. Graham, D. Jacques, The Interoperability Score, Air Force

Inst Of Tech Wright, Patterson AFB OH, 2007.
[29] J. Siegel, J. Perdue, Cloud services measures for global use: the service

measurement index (SMI), in: 2012 Annual SRII Global Conference, San Jose, CA,
USA, 2012, pp. 411–415, https://doi.org/10.1109/SRII.2012.51.

[30] C. bCNRS, Towards a comparative analysis of interoperability assessment
approaches for collaborative enterprise systems, in: Transdisciplinary Engineering:
Crossing Boundaries: Proceedings of the 23rd ISPE Inc. International Conference on
Transdisciplinary Engineering October 3–7, 2016 4, 2016, p. 45.

[31] A. Zutshi, A. Grilo, R. Jardim-Goncalves, The business interoperability quotient
measurement model, Comput. Ind. 63 (5) (2012) 389–404.

[32] A. Kouroubali, D.G. Katehakis, The new European interoperability framework as a
facilitator of digital transformation for citizen empowerment, J. Biomed. Inform.
94 (2019), 103166.

[33] G. da Silva Serapião Leal, W. Guédria, H. Panetto, Interoperability assessment: a
systematic literature review, Comput. Ind. 106 (Apr. 2019) 111–132, https://doi.
org/10.1016/j.compind.2019.01.002.

[34] G.S.S. Leal, W. Guédria, H. Panetto, Enterprise interoperability assessment: a
requirements engineering approach, Int. J. Comput. Integr. Manuf. 33 (3) (2020)
265–286, https://doi.org/10.1080/0951192X.2020.1736636.

[35] G. da Silva Serapião Leal, W. Guédria, H. Panetto, A semi-automated system for
interoperability assessment: an ontology-based approach, Enterp. Inf. Syst. 14 (3)
(2020) 308–333, https://doi.org/10.1080/17517575.2019.1678767.

[36] G. Weichhart, H. Panetto, A. Molina, Interoperability in the cyber-physical
manufacturing enterprise, Annu. Rev. Control 51 (2021) 346–356, https://doi.org/
10.1016/j.arcontrol.2021.03.006.

[37] D. Tchoffa, N. Figay, P. Ghodous, H. Panetto, A. El Mhamedi, Alignment of the
product lifecycle management federated interoperability framework with internet
of things and virtual manufacturing, Comput. Ind. 130 (2021), 103466, https://
doi.org/10.1016/j.compind.2021.103466.

[38] N. Ghoddosi, R.J. Rabelo, A Method for Evaluating the Feasibility of SOA Projects,
2015, pp. 1–6, https://doi.org/10.1109/ICSSSM.2015.7170188.

[39] R. Colomo-Palacios, J.M. Alvaraz-Rodríguez, Semantic representation and
computation of cloud-based Customer Relationship Management solutions, in:
Third Workshop on Industrial and Business Applications of Semantic Technologies
and Knowledge-based information systems (INBAST 2014), 2014 [Online].
Available: http://www.onthemove-conferences.org/index.php/inbast-14.

[40] S. Pulparambil, Y. Baghdadi, C. Salinesi, A methodical framework for service
oriented architecture adoption: guidelines, building blocks, and method fragments,
Inf. Softw. Technol. 132 (2021), 106487, https://doi.org/10.1016/j.
infsof.2020.106487.

[41] S. Pulparambil, Y. Baghdadi, Service oriented architecture maturity models: a
systematic literature review, Comput. Stand. Interfaces 61 (2019) 65–76, https://
doi.org/10.1016/j.csi.2018.05.001.

[42] R. Welke, R. Hirschheim, A. Schwarz, Service-oriented architecture maturity,
Computer 44 (2) (2011) 61–67, https://doi.org/10.1109/MC.2011.56.

[43] Z. Liu, et al., The architectural design and implementation of a digital platform for
Industry 4.0 SME collaboration, Comput. Ind. 138 (2022), 103623, https://doi.
org/10.1016/j.compind.2022.103623.

[44] C.F. Kemerer, An empirical validation of software cost estimation models,
Commun. ACM 30 (5) (1987) 416–429, https://doi.org/10.1145/22899.22906.

[45] D.V. Ferens, The conundrum of software estimation models, in: Proceedings of the
IEEE 1998 National Aerospace and Electronics Conference. NAECON1998.
Celebrating 50 Years (Cat. No.98CH36185), Dayton, OH, USA, 1998, pp. 320–328,
https://doi.org/10.1109/NAECON.1998.710133.

[46] M. Usman, E. Mendes, F. Weidt, R. Britto, Effort Estimation in Agile Software
Development: A Systematic Literature Review, 2014, pp. 82–91, https://doi.org/
10.1145/2639490.2639503.

[47] R.C. Sandeep, M. Sánchez-Gordón, R. Colomo-Palacios, and M. Kristiansen, “Effort
estimation in agile software development: a exploratory study of practitioners’
perspective,” in Lean and Agile Software Development, vol. 438, A. Przybyłek, A.
Jarzębowicz, I. Luković, and Y. Y. Ng, Eds. Cham: Springer International
Publishing, 2022, pp. 136–149. doi: 10.1007/978-3-030-94238-0_8.

[48] P. Singal, A.C. Kumari, P. Sharma, Estimation of software development effort: a
differential evolution approach, Procedia Comput. Sci. 167 (2020) 2643–2652,
https://doi.org/10.1016/j.procs.2020.03.343.

[49] J.A. Khan, S.U.R. Khan, T.A. Khan, I.U.R. Khan, An amplified COCOMO-II based
cost estimation model in global software development context, IEEE Access 9
(2021) 88602–88620, https://doi.org/10.1109/ACCESS.2021.3089870.

[50] B. Boehm, C. Abts, S. Chulani, Software development cost estimation approaches
— a survey, Ann. Softw. Eng. 10 (1/4) (2000) 177–205, https://doi.org/10.1023/
A:1018991717352.

[51] P. Mork, W. Melo, S. Dutcher, C. Curtis, M. Scroggs, Cost estimation for model-
driven interoperability: a canonical data modeling approach, in: 2014 14th
International Conference on Quality Software, Allen, TX, USA, 2014, pp. 145–153,
https://doi.org/10.1109/QSIC.2014.51.

[52] D. Gürdür, F. Asplund, J. El-khoury, Measuring tool chain interoperability in cyber-
physical systems, in: 2016 11th System of Systems Engineering Conference (SoSE),
2016, pp. 1–4.

[53] D. Forgues, I. Iordanova, F. Valdivesio, S. Staub-French, Rethinking the cost
estimating process through 5D BIM: a case study, in: Construction Research
Congress 2012, West Lafayette, Indiana, United States, 2012, pp. 778–786, https://
doi.org/10.1061/9780784412329.079.

[54] M.P. Gallaher, A.C. O’Connor, J.L. Dettbarn Jr., L.T. Gilday, Cost Analysis of
Inadequate Interoperability in the U.S. Capital Facilities Industry, National
Institute of Standards and Technology, NIST GCR 04-867, 2004, https://doi.org/
10.6028/NIST.GCR.04-867.

[55] vol. 9416 S. Imran, M. Buchheit, B. Hollunder, U. Schreier, Tool chains in agile
ALM environments: a short introduction, in: I. Ciuciu, H. Panetto, C. Debruyne,
A. Aubry, P. Bollen, R. Valencia-García, A. Mishra, A. Fensel, F. Ferri (Eds.), On the
Move to Meaningful Internet Systems: OTM 2015 Workshops, Cham, Springer
International Publishing, 2015, pp. 371–380, https://doi.org/10.1007/978-3-319-
26138-6_40. vol. 9416.

[56] P. Varga, et al., Making system of systems interoperable – The core components of
the arrowhead framework, J. Netw. Comput. Appl. 81 (2017) 85–95, https://doi.
org/10.1016/j.jnca.2016.08.028.

[57] H. Derhamy, J. Eliasson, J. Delsing, System of system composition based on
decentralized service-oriented architecture, IEEE Syst. J. 13 (4) (2019) 3675–3686,
https://doi.org/10.1109/JSYST.2019.2894649.

[58] C. Paniagua, J. Eliasson, J. Delsing, Efficient device-to-device service invocation
using arrowhead orchestration, IEEE Internet Things J. 7 (1) (2020) 429–439,
https://doi.org/10.1109/JIOT.2019.2952697.

[59] J.M. Alvarez-Rodríguez, R. Mendieta, V. Moreno, M.Á. Sánchez-Puebla, J. Llorens,
Semantic recovery of traceability links between system artifacts, Int. J. Softw. Eng.
Knowl. Eng. IJSEKE 30 (11) (2020) 1–28, https://doi.org/10.1142/
S0218194020011967.

[60] E. Cibrián, R. Mendieta, J.M.Á. Rodríguez, J. Lloréns, Towards the reuse of
physical models within the development life-cycle: a case study of Simulink
models, in: 2022 IEEE/IFIP Network Operations and Management Symposium,
NOMS 2022, Budapest, Hungary, April 25-29, 2022, 2022, pp. 1–6, https://doi.
org/10.1109/NOMS54207.2022.9789840.

[61] E. Cibrián, J.M.Á. Rodríguez, R. Mendieta, J. Lloréns, Discovering traces between
textual requirements and logical models in the functional design of Printed Circuit
Boards, in: 5th IEEE International Conference on Industrial Cyber-Physical
Systems, ICPS 2022, Coventry, United Kingdom, May 24-26, 2022, 2022, pp. 1–6,
https://doi.org/10.1109/ICPS51978.2022.9816910.

J.M. Alvarez-Rodríguez et al.

https://doi.org/10.1109/ISPCE.2015.7138703
https://doi.org/10.1109/ISPCE.2015.7138703
https://sintef-9012.github.io/athena-interoperability-framework/methodology/eimm.html
https://sintef-9012.github.io/athena-interoperability-framework/methodology/eimm.html
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0027
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0028
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0028
https://doi.org/10.1109/SRII.2012.51
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0030
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0031
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0031
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0032
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0032
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0032
https://doi.org/10.1016/j.compind.2019.01.002
https://doi.org/10.1016/j.compind.2019.01.002
https://doi.org/10.1080/0951192X.2020.1736636
https://doi.org/10.1080/17517575.2019.1678767
https://doi.org/10.1016/j.arcontrol.2021.03.006
https://doi.org/10.1016/j.arcontrol.2021.03.006
https://doi.org/10.1016/j.compind.2021.103466
https://doi.org/10.1016/j.compind.2021.103466
https://doi.org/10.1109/ICSSSM.2015.7170188
http://www.onthemove-conferences.org/index.php/inbast-14
https://doi.org/10.1016/j.infsof.2020.106487
https://doi.org/10.1016/j.infsof.2020.106487
https://doi.org/10.1016/j.csi.2018.05.001
https://doi.org/10.1016/j.csi.2018.05.001
https://doi.org/10.1109/MC.2011.56
https://doi.org/10.1016/j.compind.2022.103623
https://doi.org/10.1016/j.compind.2022.103623
https://doi.org/10.1145/22899.22906
https://doi.org/10.1109/NAECON.1998.710133
https://doi.org/10.1145/2639490.2639503
https://doi.org/10.1145/2639490.2639503
https://doi.org/10.1016/j.procs.2020.03.343
https://doi.org/10.1109/ACCESS.2021.3089870
https://doi.org/10.1023/A:1018991717352
https://doi.org/10.1023/A:1018991717352
https://doi.org/10.1109/QSIC.2014.51
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0052
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0052
http://refhub.elsevier.com/S0920-5489(23)00025-9/sbref0052
https://doi.org/10.1061/9780784412329.079
https://doi.org/10.1061/9780784412329.079
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.6028/NIST.GCR.04-867
https://doi.org/10.1007/978-3-319-26138-6_40
https://doi.org/10.1007/978-3-319-26138-6_40
https://doi.org/10.1016/j.jnca.2016.08.028
https://doi.org/10.1016/j.jnca.2016.08.028
https://doi.org/10.1109/JSYST.2019.2894649
https://doi.org/10.1109/JIOT.2019.2952697
https://doi.org/10.1142/S0218194020011967
https://doi.org/10.1142/S0218194020011967
https://doi.org/10.1109/NOMS54207.2022.9789840
https://doi.org/10.1109/NOMS54207.2022.9789840
https://doi.org/10.1109/ICPS51978.2022.9816910

	Towards a method to quantitatively measure toolchain interoperability in the engineering lifecycle: A case study of digital ...
	1 Introduction
	2 State of the art
	2.1 Interoperability within the systems engineering process
	2.2 Interoperability evaluation models
	2.3 Effort estimation models for software-based systems

	3 Definition of a method to evaluate and measure toolchain interoperability
	3.1 Interoperability evaluation method
	3.2 Interoperability evolution: an effort estimation method
	3.3 Example of application

	4 Case study: a toolchain for digital hardware design
	4.1 Context
	4.2 Description and challenges
	4.3 Results and evaluation
	4.4 Research limitations

	5 Conclusions and future work
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	References

